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ABSTRACT 

The aim of this work is to compare Bayesian Inference for nonlinear models with commonly used 

traditional non-linear regression (NR) algorithms for estimating tracer kinetics in Dynamic 

Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI). The algorithms are compared in 

terms of accuracy, and reproducibility under different initialization settings. Further it is 

investigated how a more robust estimation of tracer kinetics affects cancer diagnosis. The derived 

tracer kinetics from the Bayesian algorithm were validated against traditional NR algorithms (i.e. 

Levenberg-Marquardt, simplex) in terms of accuracy on a digital DCE phantom and in terms of 

goodness-of-fit (Kolmogorov-Smirnov test) on ROI-based concentration time courses from two 

different patient cohorts. The first cohort consisted of 76 men, 20 of whom had significant 

peripheral zone prostate cancer (any cancer-core-length (CCL) with Gleason>3+3 or any-grade 

with CCL>=4mm) following transperineal template prostate mapping biopsy. The second cohort 

consisted of 9 healthy volunteers and 24 patients with head and neck squamous cell carcinoma. 

The diagnostic ability of the derived tracer kinetics was assessed with receiver operating 

characteristic area under curve (ROC AUC) analysis. The Bayesian algorithm accurately 

recovered the ground-truth tracer kinetics for the digital DCE phantom consistently improving 

the Structural Similarity Index (SSIM) across the 50 different initializations compared to NR. For 

optimized initialization, Bayesian did not improve significantly the fitting accuracy on both 

patient cohorts, and it only significantly improved the ve ROC AUC on the HN population from 

ROC AUC=0.56 for the simplex to ROC AUC=0.76.  For both cohorts, the values and the 

diagnostic ability of tracer kinetic parameters estimated with the Bayesian algorithm weren’t 

affected by their initialization. To conclude, the Bayesian algorithm led to a more accurate and 

reproducible quantification of tracer kinetic parameters in DCE-MRI, improving their ROC-AUC 

and decreasing their dependence on initialization settings. 

 

Keywords: DCE analysis, Bayesian Inference for nonlinear model, Prostate cancer, Head and 

Neck 
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1. Introduction 

 Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is influenced by 

the micro-vascular characteristics of tissue, such as blood flow/volume, surface 

area/permeability of vessel walls, and micro-vascular density. These characteristics are 

associated with the expression of potent cytokines (such as the vascular endothelial growth 

factor) that support the development of tumor vessels. This makes DCE-MRI a valuable 

diagnostic tool in oncology. The purpose of this study is to investigate whether accurate 

quantification of tracer kinetic parameters using the proposed Bayesian Inference for nonlinear 

models can improve cancer diagnosis compared to traditional non-linear regression fitting 

algorithms.  

Quantification of tracer kinetic parameters is affected by field inhomogeneities, 

gradients, SNR of the reconstructed images, and spatiotemporal resolution [1].  Besides 

limitations in acquisition, quantification of tracer kinetic parameters will depend on the 

selection of tracer kinetic model, the accurate estimation of the arterial input function, the 

estimation of the native T1 of the tissue [2] and the selection of fitting algorithm. Heyes et al. 

[3, 4] studied the variation within- and between workstations in the derivation of tracer kinetic 

parameters and reported a 25.1%–74.1% within-subject coefficient of variation. The conclusion 

of these studies is that unless the contrast agent material, the definition of AIF, the image SNR, 

and the fitting process are standardized DCE MRI related parameters will not be reproducible.  

Tracer kinetic models such as the extended Toft model [5] that describe the enhancement 

process are often used to derive quantitative parameters and are increasingly used in diagnostic 

models [6] including computer aided diagnostic (CAD) software [7, 8]. Accurate quantification 

that will be reproducible between different clinical sites is necessary for the widespread of DCE 

based CAD software. This work will investigate how the optimization process itself can affect 

the quantification and the diagnostic ability of the quantified parameters. 

Quantitative DCE parameters are usually extracted by fitting the estimated 

concentration to the measured concentration time intensity course (TIC), using algorithms such 
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as non-linear least squares or the simplex algorithm. These fitting algorithms are prone to hit 

local minima [9] resulting in fitting errors and fitted parameters that depend on their 

initialization. To the best of our knowledge there are no guidelines on how to initialize the tracer 

kinetics, and its clinical site uses its own initialization settings. Consequently there is a clear 

need to develop robust fitting strategies that will not be affected by the initialization of the 

tracer kinetics.  

To overcome these issues, Bayesian inference for nonlinear models were suggested [10, 

11, 12]. Bayesian algorithms can model the noise of the measured concentration of the contrast 

agent and have a theoretical guarantee to converge if run long enough [13]. This work suggests 

a Bayesian inference for nonlinear model algorithm similar to the ones proposed by other 

groups [10, 11, 12] and evaluates its robustness and diagnostic value against the Levenberg–

Marquardt and the simplex algorithms on two separate cohorts of patients: 

i) a cohort of 76 men, 20 of whom had significant prostate cancer in the peripheral zone 

ii) a cohort of 9 healthy volunteers and 24 patients with squamous cell carcinoma. 

The proposed Bayesian inference for nonlinear model algorithm is described in the 

theory section. The robustness value is assessed based on goodness-of-fit, and how robust the 

algorithm is when using different initialization settings of the estimated tracer kinetic 

parameters. Receiver operating characteristic (ROC) analysis is performed on the derived tracer 

kinetics to assess their ability to classify significant cancer.    

 

2. Theory 

2.1 Tracer kinetic Modeling 

A tracer kinetic analysis was performed by fitting the extended Toft [5] (Eq. 1) modelled 

concentration 𝐶(t)  (mmol/L) to the concentration time course 𝐶𝑇𝐼𝐶(t)   (Eq. 2). 

 
𝐶(t) = 𝑣𝑝 ∙ 𝐶𝑎(t) + 𝐾𝑡𝑟𝑎𝑛𝑠 ⋅ ∫ 𝐶𝑎(τ − 𝑡0) ⊗ e

(−
𝐾𝑡𝑟𝑎𝑛𝑠

𝑣𝑒
∙(𝑡−τ))

dτ

t

0

 (1) 
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Where 𝐶𝑎(t) is the arterial input function (mmol/L), 𝑣𝑝is the blood plasma volume fraction, 

𝐾𝑡𝑟𝑎𝑛𝑠 is the transfer constant between plasma and interstitial space (min-1),𝑣𝑒is the interstitial 

space volume and 𝑡0is the arrival time of the bolus at the tissue (secs). A population arterial 

input function was used [15]. 

The concentration time course was calculated from the image signal intensities 𝑆(t) using the 

approximation Repetition time⪡T1 

 
𝐶𝑇𝐼𝐶 (t) =

1

𝑟1 ∙ 𝑇10 
(

𝑆(t) − 𝑆0

𝑆0
) (2) 

 

Where 𝑟1 is the in-vivo relaxivity (4.51 L mmol-1 sec-1), 𝑇10 is the native T1 of the tissue 

before contrast agent injection, calculated from a multiple flip angle dataset (sec), and 𝑆0 is the 

average of the acquired images before the injection of the contrast agent. 

 

2.2 Traditional nonlinear regression algorithms 

Tracer kinetic models are fitted with two commonly used non-linear regression algorithms 

i.e. the Levenberg-Marquardt and the simplex algorithm. Levenberg-Marquardt is a least squares 

curve fitting algorithm that is a blend between the Gauss–Newton and the gradient descent 

method. The update rule of the tracer kinetics parameters is: ki+1=ki-(H+λI)-1∇L(ki), where H is 

the Hessian matrix at ki, λ is a regularization parameter and L is the likelihood function to be 

minimized i.e. L(ki)=∑ (𝐶𝑇𝐼𝐶 (t) − 𝐶(t))2
𝑡  . When the likelihood is decreased λ is also reduced, 

but if the likelihood is increased λ will also be increased to reduce the influence of gradient 

descent. Contrary to other gradient based methods Levenberg-Marquardt is not performing a 

line minimization (where the direction of gradient descent is decided prior to step size 

estimation) hence requires less likelihood evaluations reducing the computational cost.  
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The simplex algorithm is also an iterative procedure but unlike the Levenberg-Marquardt 

does not require derivative information. The algorithm will create a “random” simplex of n+1 

points, where n is the number dimensions (number of tracer kinetic parameters to be estimated). 

The simplex moves iteratively by reflection, expansion or contraction steps trying to find the 

tracer kinetic parameters that minimize the likelihood function. In this work we used a 

constrained variation of the simplex algorithm [16, 17] and a ℓ1-norm in the likelihood function 

to improve robustness [18]. The simplex algorithm is particularly advantageous in cases where 

the gradient of the likelihood functions is hard to calculate. 

 

2.3 Bayesian inference for nonlinear models 

In the proposed Bayesian Inference for nonlinear model algorithm the measured 

concentration 𝐶𝑇𝐼𝐶(t) is modelled using additive Gaussian noise σ2 and the  tracer kinetic 

parameters, k= {vp, Ktrans, ve, t0} for the extended Tofts model.  

 𝐶𝑇𝐼𝐶(t)~𝐧𝐨𝐫𝐦𝐚𝐥(𝐶(t), σ)   (3) 

The suggested Bayesian algorithm similar to [10, 11, 12] maximizes the posterior probability 

distribution function p(k,σ|CTIC) as a function of k and σ 

 𝑘̂, 𝜎̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘,𝜎  𝑝(𝑘, 𝜎|𝐶𝑇𝐼𝐶 )  (4) 

According to the Bayes theorem p(k,σ|CTIC) is given by, 

 
𝑝(𝑘, 𝜎|𝐶𝑇𝐼𝐶 ) = 𝑝(𝑘, 𝜎) ∙ 𝑝(𝐶𝑇𝐼𝐶|𝑘, 𝜎) ∫ 𝑝(𝑘∗, 𝜎∗) ∙ 𝑝(𝐶𝑇𝐼𝐶|𝑘∗, 𝜎∗)

𝑘∗,𝜎∗
  (5) 

Where p(CTIC|k,σ) is the likelihood function of CTIC given the tracer kinetic parameters k,  

 
𝑝(𝐶𝑇𝐼𝐶 |𝑘, 𝜎) = (2𝜋𝜎2)−1exp (−

1

2𝜎2
‖𝐶𝑇𝐼𝐶 (𝒓, 𝑡) − 𝐶(𝒓, 𝑡)‖2

2)  (7) 

and p(k,σ) is the product of the prior probability distribution functions of k and σ, 𝑝(k, σ). 

Prior probability distribution functions reflect our prior knowledge about the k and σ2 

parameters. Similarly to Schmid et al. [10] the subsequent prior distributions are assumed for 

every tracer kinetic parameter: 

 vp follows a Beta distribution, vp~Beta(1,19) [19] reflecting an a priori expected value 

of 0.05. 
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 Ktrans was parameterized as suggested by Schmid et al. [10] as eθ where θ follows a 

Gaussian distribution θ~Normal(0,1) 

 ve  follows a Beta distribution, ve~ Beta (2,1.5) reflecting an a priori expected value of 

0.57 

 t0 follows a uniform random distribution unif (injection time,injection time+40).  

 σ2 follows an uninformative Inverse Gamma distribution IG(10-4, 10-4)  

The integral ∫ 𝑝(𝑘∗, 𝜎∗) ∙ 𝑝(𝑦|𝑘∗, 𝜎∗)
𝑘∗,𝜎∗  is estimated with the Metropolis–Hastings algorithm.  

 

3. Materials and methods 

3.1 Generate Simulated DCE data 

 The DCE simulation used is similar to the one published from our group in Dikaios et 

al. (2014) [20]. A normal volunteer underwent a fast gradient echo DCE-MRI protocol (flip 

angle α=10o, repetition time TR=2.3 msecs). A T1-weighted abdominal image was acquired 

without contrast injection. The first time-frame was manually segmented into: liver, bowel, right 

and left heart, aorta, portal vein. Such segmentation was used as a map to simulate contrast 

enhancement using the extended Tofts model or the dual input function Orton model for the 

liver. Ground truth parametric maps i.e. native T10 (range 382-1932 msecs), vp (range 0-1), ve 

(range 0-1), and Ktrans  (range 0-1.38 min-1) were used to simulate fifty DCE images with 

temporal resolution 3 secs using the spoiled gradient echo model.  

 

𝑆(𝑡) = 𝜌
sin(𝛼) ∙ (1 − exp (−

𝑇𝑅
𝑇1(𝑡; 𝑘)))

1 − cos (𝛼) ∙ exp (−
𝑇𝑅

𝑇1(𝑡; 𝑘))
  (8) 

Where  is the proton density image, and was calculated analytically using Eq. 8 from the T1-

weighted abdominal image without contrast injection and the graund truth T10 maps.  

DCE images were transformed to (k, t)-space with fast Fourier transformation where noise was 

added. The noise of complex valued (k, t)-space MR data can be reasonably modelled by an 

additive white Gaussian distribution on both real and imaginary components (independent and 

identically distributed random variables). Simulated DCE data were generated for 2 different 
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noise levels , one corresponding to the average SNR before contrast injection of prostate T1w  

images (SNR~9.2, noise level=2500) and a separate one corresponding to the average SNR 

before contrast injection of neck T1w images (SNR~15.1, noise level=800). The SNRs were 

calculated as described in Dikaios et al. [21]. 

 

3.2 Patient populations 

Institutional review board (IRB) approval for the study was obtained. The requirement 

for consent was waived for use of images acquired in routine clinical practice (prostate 

peripheral zone population) and obtained from all patients undergoing imaging as part of a 

separate clinical trial (head and neck population). 

 

Prostate population 

The prostate population consisted of men with clinically suspected prostate cancer (elevated 

prostate specific antigen (PSA) ± abnormal digital rectal examination ± family history of 

prostate cancer ± urinary symptoms,) undergoing prostatic multiparametric MRI (mp-MRI: T2 

weighted, diffusion weighted and DCE imaging) prior to template-prostate-mapping (TPM) 

biopsies as part of standard of care at our institution. In total 76 men (mean age 63 years, range 

45-79) with a mean prostate specific antigen of 7.8 ng/ml (range 1.2-20 ng/ml) and a mean 

prostate gland volume of 48.2 ml (range 23-137 ml) were included from 06/2007 to 03/2011. 

Twenty of the 76 men had histologically verified clinically significant peripheral zone prostate 

cancer. 

Imaging was performed using a 1.5T magnet (Avanto, Siemens, Erlangen, Germany) 

with a pelvic phased array coil. The contrast media was Dotarem with an application dose 0.2 

mL/Kgr.  Prior to imaging, 0.2 mg/kg (maximum 20 mg) of spasmolytic (Buscopan; Boehringer 

Ingelheim, Ingelheim, Germany) was administered intravenously to reduce peristalsis. DCE-

MRI was performed with a T1 weighted volumetric FLASH sequence with TR/TE 5.61/2.5 ms, 

flip angle 15o, 384384 matrix dimensions, field of view 269 mm, slice thickness 3 mm, 26 
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reconstructed slices, temporal resolution of 16 seconds, and number of time points 35.  

For the purpose of this study and to match with the target performance of mp-MRI as defined by 

recent consensus [24]; histopathologists identified all locations with clinically significant cancer 

based on volume assessment (0.2 ml) estimated by the cancer core length (CCL)>= 4 mm 

and/or the presence of Gleason pattern 4 disease [25]. Small volume (<0.2 ml) and low grade 

(<=Gleason 3+3) tumour was identified as clinically insignificant cancer.  

An experienced radiologist (with 10 years of mp-MRI experience, reporting 500 mp-

MRI prostate scans/year) and using the TPM biopsy histology as a guide, carefully matched the 

histopathology template to the mp-MRI; and contoured a region of interest (ROI) on early 

contrast enhanced T1 weighted images at the single largest histologically confirmed significant 

cancer site. For patients where the entire prostate was benign or contained only insignificant 

cancer, the radiologist contoured a 1-cm2 ROI at a confirmed benign location within the PZ. 

 

Head and Neck population 

Twenty-four consecutive patients (mean age 60 years, standard deviation 9 years, range 44 to 80 

years) satisfying inclusion criteria of histologically confirmed head and neck SCC with cervical 

nodal metastatic disease at pre-therapy staging, and 9 normal volunteers (mean age 48 years, 

standard deviation 16 years, range 20 to 75 years) were recruited between March 2010 and May 

2012. All patients underwent contrast enhanced neck computed tomography (CECT), 

anatomical MRI and neck ultrasound as part of routine pre-treatment staging; and were 

consented for additional DCE MRI of the neck for research purposes.  

All MRI studies were acquired using a 1.5T Siemens Avanto (Siemens, Erlangen, Germany) 

magnet with the manufacturer’s carotid coils. The contrast media was Dotarem with an 

application dose 0.2 mL/Kgr. DCE-MRI was performed with a T1 weighted volumetric FLASH 

sequence with TR/TE 2.3/1.0 ms, flip angle 10o, 256256 matrix dimensions, field of view 269 

mm, slice thickness 4 mm, temporal resolution of 3 seconds, and number of time points 50.  
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The reference standard was established by experienced head and neck radiologists (with 8 years 

and 24 years of head and neck experience respectively) through review of all CT and anatomical 

MRI, and performance of ultrasound evaluation of the neck in all patients. Cervical nodes were 

assessed as per the Union for International Cancer Control (UICC): Tumor nodal-metastasis 

(TNM) classification of malignant tumours [26]. Equivocal nodes were sampled at the time of 

ultrasound by fine needle aspiration (FNA) and classified by in-room cytology.  

 

3.3 Optimization details of the fitting algorithms 

Fitting algorithms were implemented with in-house–developed software in MATLAB 

(The Mathworks Inc, Natick, MA). The tracer kinetic parameters for the simplex, the 

Levenberg-Marquardt and the Bayesian inference for nonlinear model were initialized as vp
0= 

0.05, Ktrans
0= 0.4 min-1, ve

0= 0.5 for both the simplex and the Levenberg-Marquardt. The 

constraints of the tracer kinetic parameters were: 𝑣𝑝 ∈ [0,1], 𝐾𝑡𝑟𝑎𝑛𝑠 ∈ [0,2.7] 𝑚𝑖𝑛−1, 𝑣𝑒 ∈

[0,1], 𝑡0 ∈ [𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒, 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 + 40 𝑠𝑒𝑐𝑠]. Onset time was initialized with the 

time point the contrast agent was administered.  

The simplex, the Levenberg-Marquardt and the Bayesian inference for nonlinear model 

were run using multiple initialisations of the tracer kinetic parameters. In addition to the 

aforementioned initialization, 49 different initialisations were also generated (50 initializations 

in total) using uniform distributions supported within intervals as described by the following 

formulas: vp
0= unif (0, 0.2), Ktrans

0= unif (0.3, 1.0), ve
0= unif (0.3, 0.6). 

For the proposed Bayesian inference for nonlinear model the total number of iterations 

was 500, burn-in iterations were 300, thinning equal to 5, and tune iteration (number of 

iterations for tuning) was 67. 

 

3.4 Statistical analysis 

Statistical analysis was performed using SPSS (SPSS Base 20.0 for Windows. SPSS 
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Inc., Chicago IL). The same statistical analysis was performed for both the head and neck and 

PZ prostate population. 

A Mann–Whitney U test (MWU sig) was performed to compare the median values of 

the tracer kinetic parameters between normal and cancer ROIs. The goodness-of-fits were 

assessed with the Kolmogorov-Smirnov (KS) test statistic. 

Separate univariate logistic regression models were built for the tracer kinetic 

parameters derived using the simplex and the Bayesian algorithms. The ability of individual 

tracer kinetic parameters to classify cancer was assessed by receiver operator characteristic 

(ROC) area under curve (AUC) analysis.  

Leave-one-out analysis [21] was used for internal validation of predictive models. One 

case (out of the total patient population) was excluded, and a model generated from the 

remainder of the cases. The model was then tested on the excluded case and a predictive 

probability calculated. The process was repeated for all cases, excluding successive cases in turn 

allowing calculation of a predictive probability per case. An ROC (LOO ROC) was then created 

using the derived predictive probabilities. ROC curves were compared using the significance 

test suggested by Hanley and McNeil [27]. 

 

4. Results 

4.1 Simulated DCE data 

Table 1 demonstrates the similarity in terms of Structural SIMilarity (SSIM) index of 

the estimated tracer kinetic maps estimated with the simplex, the Levenberg Marquardt and the 

Bayesian inference for nonlinear model to the ground truth tracer kinetic maps. Results are 

shown for two different noise realizations, one corresponding to the SNR of prostate T1w 

images (~9.2) before contrast injection and one corresponding to the SNR of neck T1w images 

(~15) before contrast injection. The tracer kinetic maps estimated with the Bayesian algorithm 

have substantially higher SSIM and are less affected from the different initializations of the 
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tracer kinetic parameters (lower interquartile range across the 50 different initializations). The 

simplex algorithm has similar performance to the Levenberg-Marquardt (LM), with marginally 

higher SSIM. Fig. 1 provides a visual comparison between the tracer kinetics maps estimated 

with the simplex and the Bayesian algorithm. 

 

 
Fig. 1  

Parametric maps (vp, Ktrans, ve, t0) estimated with pixel-by-pixel fitting of the simulated DCE 

images with SNR=9.2 using the simplex and the Bayesian inference for nonlinear model. Ground 

truth tracer kinetics maps are shown at the top row. 

 

Table 1  

SIMilarity (SSIM) index between the parametric maps (vp, Ktrans, ve, t0) estimated with pixel-by-
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pixel fitting (using the simplex, the Levenberg Marquardt and the Bayesian algorithms) and the 

ground truth parametric maps of simulated DCE data. Results are shown for different noise 

realizations with SNR=9.2 (prostate T1w images) and SNR=15 (neck T1w images). Median and 

Interquartile range (iQR) of SSIM were calculated across the 50 different initializations for each 

method. 

 Median (iQR) vp Ktrans  ve t0 

SNR=9.2 

simplex 0.90 (0.17) 0.69 (0.13) 0.81 (0.14) 0.70 (0.12) 

LM 0.89 (0.17) 0.69 (0.14) 0.80 (0.15) 0.68 (0.14) 

Bayesian 0.92 (0.02) 0.81 (0.01) 0.84 (0.02) 0.76 (0.01) 

SNR=15 

simplex 0.95 (0.11) 0.81 (0.10) 0.87 (0.08) 0.79 (0.09) 

LM 0.95 (0.11) 0.81 (0.10) 0.86 (0.08) 0.79 (0.09) 

Bayesian 0.98 (<0.01) 0.91 (<0.01) 0.93 (0.01) 0.86 (0.01) 
 

 

4.2 Prostate population  

Multiple initialisations – Robustness of evaluated algorithms 

The simplex, the Levenberg-Marquardt and the Bayesian algorithm were all run with the same 

50 different initializations, Fig. 2 shows the KS test statistic (across the 76 mean ROI TICs of 

the PZ prostate population) for each initialization. The interquartile range of the medians was 

0.019 for the simplex algorithm, 0.018 for the Levenberg-Marquardt algorithm and 0.002 for the 

Bayesian algorithm. The simplex algorithm had consistently better goodness-of-fit than the 

Levenberg-Marquardt; hence hereafter the Levenberg-Marquardt was excluded from the 

comparison. 
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Fig. 2 

Plot of the median KS statistic test (median KS statistic test across the 76 mean ROI PZ prostate 

TICs) across the 50 different initializations for the Levenberg-Marquardt, the simplex and the 

Bayesian algorithms. The interquartile range (iQR) of the median KS statistic test is 0.019 for the 

Levenberg-Marquardt, 0.018 for the simplex and 0.002 for the Bayesian.  

 

Univariate ROC analysis 

Table 2 shows the ROC analysis of the tracer kinetic parameters estimated with the simplex and 

the Bayesian algorithms using the optimum tracer kinetic initialization in terms of goodness-of-

fit.  Ktrans was the best classifier of PZ prostate cancer for both the simplex and the Bayesian 

algorithm. According to the score test only Ktrans estimated with the Bayesian algorithm could 

significantly discriminate PZ prostate cancer (p=0.02) (Table 2). However following a 

significance test between ROC curves, the AUC of Ktrans estimated with the Bayesian algorithm 

(shown in Table 2) was not significantly better.  

The simplex and the Bayesian algorithms were run with different initializations as 
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described in section 3.3 and the ROC AUC were estimated per tracer kinetic parameter for each 

initialization. The median (interquartile range) ROC AUC across the 50 different initializations 

were vp:0.55 (0.05), Ktrans:0.57 (0.14), and ve:0.56 (0.05) for the simplex algorithm and vp:0.63 

(0.02), Ktrans:0.67 (0.02), and ve:0.56 (0.01) for the Bayesian algorithm. The median ROC AUC 

values for vp and Ktrans between the simplex and the Bayesian were significantly different. 

 

Table 2 

Score test and univariate ROC analysis of the tracer kinetic parameters derived with the simplex 

and the Bayesian algorithms (using the optimum tracer kinetic initialization in terms of goodness-

of-fit) performed on the ROI-based TIC from the whole PZ population and following LOO 

analysis. 

 

 

 

 

 

 

 

Comparison of tracer kinetic parameters between PZ prostate cancer/benign ROIs 

Parametric maps of a PZ prostate cancer patient estimated with the simplex and the Bayesian 

algorithms are illustrated in Fig. 3. The modelled concentration C(t) is fitted to the mean 

concentration TIC along the PZ prostate cancer ROI CTIC(t) (Fig. 3).  In Fig. 3, while vp values 

estimated from the cancer ROI TIC are almost zero for the simplex algorithm, following pixel-

by-pixel fitting the cancer area in the vp seems to be slightly higher than zero. Tracer kinetic 

parameters estimated by fitting mean ROI TICs will not necessarily correlate with tracer kinetic 

parameters estimated by pixel-by-pixel fitting. Taking the mean of an ROI and propagating it in 

time will generate a “smooth” profile, resulting in an approximated time-intensity curve. Ideally 

    score (p-value) ROC AUC (CI) LOO ROC AUC (CI) 

simplex 

vp 0.21 (0.65) 0.61 (0.47-0.76) 0.22 (0.11-0.33) 

Ktrans 3.22 (0.07) 0.64 (0.50-0.78) 0.57 (0.41-0.72) 

ve 0.69 (0.41) 0.54 (0.40-0.68) 0.41 (0.28-0.54) 

 

 
  

 

Bayesian 

vp 2.31 (0.13) 0.58 (0.43-0.74) 0.48 (0.32-0.65) 

Ktrans 5.46 (0.02) 0.67 (0.54-0.81) 0.63 (0.50-0.77) 

ve 0.75 (0.39) 0.56 (0.41-0.71) 0.44 (0.30-0.58) 
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pixel-by-pixel fitting needs to be performed, but because it is more computationally demanding 

many clinical papers resort to mean ROI TIC fitting. 

Following MWU test, none of the tracer kinetic parameters estimated with the Bayesian 

algorithm were significantly different from the ones estimated with the simplex algorithm for 

either the benign or the cancer ROIs (Fig. 4). 

Fig. 3 

Tracer kinetic maps (vp, Ktrans, ve) estimated with pixel-by-pixel fitting using the simplex and the 

Bayesian algorithms for a PZ prostate cancer patient. A plot of the mean ROI concentration TIC 

𝐶𝑇𝐼𝐶(t) and the fitted to curve using the simplex and the Bayesian algorithms is also shown.  
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Fig. 4  

Boxplot diagram of the tracer kinetic parameters derived with the simplex and the proposed 

Bayesian algorithm, performed separately for the normal and cancer PZ prostate ROI based TIC. 

The terms in brackets refer to the median value (interquartile range) of the estimated tracer kinetic 

parameters.  

 

4.3 Head and Neck population    

Multiple initialisations – Robustness of evaluated algorithms 

The simplex, the Levenberg-Marquardt and the Bayesian algorithms were all run with the 

same 50 different initializations, Fig. 5 shows the median KS statistic test (across the 33 mean 

ROI TICs of the head and neck patients and volunteers) for each initialization. The interquartile 

range of the medians was 0.0083 for the simplex algorithm, 0.010 for the Levenberg-Marquardt 

algorithm and 0.0021 for the Bayesian algorithm. Simplex algorithm had consistently better 

goodness-of-fit than the Levenberg-Marquardt; hence from hereafter the Levenberg-Marquardt 

was excluded from the comparison. 
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Fig. 5  

Plot of the median KS statistic test (median KS statistic test across the 33 mean ROI head and 

neck TICs) across the 50 different initializations for the simplex and the Bayesian algorithms. 

The interquartile range (iQR) of the median KS statistic test is 0.010 for the Levenberg-

Marquardt, 0.0083 for the simplex and 0.0021 for the Bayesian algorithm.  

 

Univariate ROC analysis 

Table 3 shows the ROC analysis of the tracer kinetic parameters estimated with the 

simplex and the Bayesian algorithms using the optimum tracer kinetic initialization in terms of 

goodness-of-fit.  Ktrans was the best classifier of head and neck metastatic patients for both the 

simplex and the Bayesian algorithms. According to the score test, for the simplex algorithm only 

Ktrans could significantly classify metastatic patients, whereas for the Bayesian both Ktrans and ve 

were significant classifiers (table 3). 

Following a significance test between ROC curves, the AUC (on the original population or 
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following LOO analysis) of Ktrans, estimated with the Bayesian algorithm, was not significantly 

better. Significant difference was only found for the ve AUC between the simplex and the 

Bayesian algorithms (table 3).  

The simplex and the Bayesian algorithms were run with different initializations as 

described in section 3.3 and the ROC AUC were estimated per tracer kinetic parameter for each 

initialization. ROC AUC were estimated per tracer kinetic parameter for each initialization. The 

median (interquartile range) ROC AUC across the 50 different initializations were vp: 0.54 (0.14), 

Ktrans:0.76 (0.13), and ve:0.56 (0.15) for the simplex algorithm and vp:0.59 (0.03), Ktrans:0.81 

(0.01), and ve:0.79 (0.02) for the Bayesian algorithm. The median ROC AUC values for ve 

between the simplex and the Bayesian were significantly different. 

 

Table 3  

Score test and univariate ROC analysis of the tracer kinetic parameters derived with the simplex 

and the Bayesian algorithms (using the optimum tracer kinetic initialization in terms of goodness-

of-fit) performed on the ROI-based TIC from the whole head and neck patient population and 

following LOO analysis. Asterisk (*) denotes the cases where the tracer kinetic parameter 

estimated with the Bayesian algorithm is significantly different from the corresponding one 

derived with the simplex algorithm. 

    score (p-value) ROC AUC (CI) LOO ROC AUC (CI) 

simplex 

vp 0.12 (0.73) 0.56 (0.33-0.79) 0.30 (0.13-0.48) 

Ktrans 5.43 (0.02) 0.74 (0.58-0.90) 0.66 (0.43-0.89) 

ve
* 0.54 (0.49) 0.56 (0.34-0.77) 0.31 (0.15-0.50) 

 
 

   

Bayesian 

vp 1.05 (0.31) 0.58 (0.35-0.80) 0.51 (0.31-0.72) 

Ktrans 6.37 (0.01) 0.80 (0.64-0.94) 0.75 (0.57-0.92) 

ve
* 4.76 (0.03) 0.76 (0.60-0.93) 0.70 (0.52-0.89) 

 
 

Comparison of tracer kinetic parameters between metastatic/benign ROIs 

Parametric maps of a head and neck metastatic patient estimated with the simplex and the 
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Bayesian algorithms are illustrated in Fig. 6. Fitting the estimated concentration C(t) to the mean 

ROI concentration TIC along the head and neck metastatic nodes CTIC (t) is also shown in Fig. 6.   

Following MWU test all the tracer kinetic parameters estimated with the Bayesian 

algorithm were significantly different from the ones estimated with the simplex algorithm for both 

the benign and the cancer ROIs (Fig. 7). 

 

Fig. 6  
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Parametric tracer kinetic maps (vp, Ktrans, ve) estimated with pixel-by-pixel fitting using the 

simplex and the Bayesian algorithms for a head and neck patient with a metastasis. A plot of the 

mean ROI concentration TIC 𝐶𝑇𝐼𝐶 (t) and the fitted curve using the simplex and the Bayesian 

algorithms is also shown. 

 

Fig. 7 

Box-plot diagram of the tracer kinetic parameters derived with the simplex and the proposed 

Bayesian algorithms, performed separately for the benign and metastatic neck node ROIs. The 

terms in brackets refer to the median value (interquartile range) of the estimated tracer kinetic 

parameters. Asterisk (*) denotes significant difference (p<0.05) between the simplex and 

Bayesian algorithms.  

 

5. Discussion 

This works aims to investigate the diagnostic benefits of using Bayesian algorithms for 

the derivation of tracer kinetic parameters in DCE-MRI. The proposed Bayesian algorithm is 

compared against traditional non-linear regression algorithms (i.e. Levenberg-Marquardt and 
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simplex) in terms of accuracy, reproducibility under different initialization settings and ability to 

classify cancer.  

The simplex algorithm had consistently marginally higher SSIM with the ground truth 

kinetics of the simulated DCE phantom and better goodness-of-fit for the ROI-based TIC of both 

populations than the Levenberg–Marquardt, which could be attributed to its convergence 

properties [17]. Unlike the Levenberg–Marquardt, the simplex algorithm does not use gradients, 

which provides some resilience to noise and local minima.  Nonetheless both the Levenberg–

Marquardt and the simplex algorithm are prone to hit local minima, which is evident from our 

data. Re-initialization could reduce the risk to stop at a local minima. However to the best of our 

knowledge there is no optimum way on how to re-initialize the algorithms for DCE-MRI tracer 

kinetic quantification. Alternatively this work proposes a Bayesian inference for nonlinear model 

algorithm, which is shown to be resilient to local minima. Specifically, when running the proposed 

Bayesian for different initializations we found that 

i. The SSIM with the ground truth tracer kinetic maps for the Bayesian algorithm was 

consistently higher than for the non-linear regression algorithms for all initializations. 

ii. The goodness-of-fit (KS statistic test) for the Bayesian algorithm was almost constant 

and consistently lower than the non-linear regression algorithms for all initializations and 

for both populations. 

iii. The ROC AUC of the tracer kinetic parameters estimated with the Bayesian 

algorithms have an interquartile range across the different initializations up to 0.03, 

whereas for the simplex algorithm the interquartile range is up to 0.14 (PZ prostate 

population) and 0.15 (head and neck population). 

Tracer kinetic parameters estimated with the proposed Bayesian algorithm had higher 

classification ability for both PZ prostate and head and neck cancer. Tracer kinetic parameters 

estimated with the simplex algorithm that could not significantly classify disease, when estimated 

with the proposed Bayesian algorithm were significant classifiers of PZ prostate cancer (i.e. Ktrans) 

and metastatic head and neck cancer (i.e. ve). However the ROC AUC improvement achieved 
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with the Bayesian algorithm was not significant for the PZ prostate cancer. For the head and neck 

metastasis only the ROC AUC improvement for ve was significant. 

 

Bayesian inference for nonlinear model algorithms have been proposed before in the 

literature [10, 11, 12] to estimate unbiased quantitative tracer kinetic parameters. The proposed 

scheme is similar to the one suggested by Schmid et al. [10], the main difference is on the 

estimation of the onset time. The accuracy of the estimated tracer kinetic parameters will depend 

on the arrival time of the contrast agent to the tissue (onset time) [28]. Schmid et al. [10] calculated 

the onset time as the minimum time t*, for which the contrast concentration significantly exceeds 

zero minus C(t*)/tC(t*). For the simulated DCE phantom with SNR=9.2, the SSIM index of the 

onset time calculated with the method of Schmid et al. [10] is 0.5754, whereas for the proposed 

Bayesian algorithm the respective SSIM is 0.76 (Table 1). This affected the estimation of the 

tracer kinetic parameters, but if the same onset time was used the Bayesian method suggested by 

Schmid et al. [10] has similar performance with the one proposed in this work. This is expected 

since both use the Metropolis–Hastings Markov chain Monte Carlo (MCMC) method and similar 

prior information. Their only difference is that we parameterized the posterior probability 

distribution function p(k,σ|CTIC) with ve to optimize EES volume directly instead of calculating it 

via kep (ve=Ktrans/kep) [7]. 

 

6. Limitations 

For the PZ prostate population, we were reliant upon visual matching of the Barzell zone histology 

on TPM with the ROIs on the mp-MRI. Therefore, results may be influenced by mis-registration 

errors. Although no biopsy is free from sampling error [29] we used TPM to address as much of 

the systematic error inherent to transrectal ultrasound (TRUS) guided biopsy as possible [29, 30].  

For the head and neck population there was a relatively small sample size. We took great care to 

be certain about positive and negative disease status within individual nodes by recruiting patients 
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with N2/3 disease confirmed by CT, MRI and US ± FNA.  

 

7. Conclusions  

DCE MRI tracer kinetic parameters are increasingly used in clinical practice; their diagnostic 

ability will depend on their accurate and reproducible quantification.  The proposed Bayesian 

inference for nonlinear model algorithm has been shown in this work to improve the diagnostic 

ability compared to the simplex algorithm and was robust when different initializations of the 

tracer kinetic parameters were used. These assets of the algorithm are essential to train and 

validate robust CAD software based on DCE-MRI that could be used between different sites. The 

performance of the Bayesian algorithm was consistent on two different populations, acquired with 

different settings. 
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