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Abstract

Achieving a high performance for the detection and characterization of architectural distortion in screening mammo-
grams is important for an efficient breast cancer early detection. Viewing a mammogram image as a rough surface
that can be described using the fractal theory is a well-recognized approach. This paper presents a new fractal-based
computer-aided detection(CAD) algorithm for characterizing various breast tissues in screening mammograms with
a particular focus on distinguishing between architectural distortion and normal breast parenchyma. The proposed
approach is based on two underlying assumptions: i) monitoring the variation pattern of fractal dimension, with the
changes of the image resolution, is a useful tool to distinguish textural patterns of breast tissue ii) the bidimensional
empirical mode decomposition (BEMD) algorithm appropriately generates a multiresolution representation of the
mammogram. The proposed CAD has been tested using different validation datasets of mammographic regions of
interest (ROIs) extracted from the Digital Database for Screening Mammography (DDSM) database. The validation
ROI datasets contain architectural distortion(AD), normal breast tissue, and AD surrounding tissue. The highest clas-
sification performance, in terms of area under the receiver operating characteristic curve, of Az = 0.95 was achieved
when the proposed approach applied to distinguish 187 architectural distortion depicting regions from 2191 normal
breast parenchyma regions. The obtained results validate the underlying hypothesis and demonstrate that effectiveness
of capturing the variation of the fractal dimension measurements within an appropriate multiscale representation of
the digital mammogram. Results also reveal that this tool has the potential of prescreening other key and common
mammographic signs of early breast cancer.

Keywords: Mammography, Computer-Aided Detection, Architectural Distortion, Bidimensional Empirical Mode
Decomposition, Fractal Dimension

1. Introduction

Breast cancer is the most common cancer that kills
women around the world. Statistics from 2011 indicated
that in the United States (US) 1 in 8 women is at risk of
developing invasive breast cancer in her life time. In
the European Union (EU), breast cancer accounts for 1
in every 6 female deaths from cancer [1]. The detec-
tion and diagnosis of the disease in its early stages has
been shown to be very important toward better breast
cancer survival rates. Mammography, an X-ray based
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breast imaging modality, is currently the most effective
tool for screening and for detecting the disease in its in-
fancy when it is more curable. Early signs of breast can-
cer commonly considered by radiologists during mam-
mography reading are: calcifications, masses, architec-
tural distortion, and bilateral asymmetry[2]. The dou-
ble reading of screen mammograms has been shown to
reduce the number of missed cancers. However, secur-
ing such a process is mostly not feasible and not cost
effective. Over the years researchers have made ex-
tensive efforts to develop computer aided detection and
diagnosis (CAD) systems that can provide radiologists
with a second opinion and as an alternative to the dou-
ble reading[3]. Among the most common early sign
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of nonpalpable breast cancer detected mammographi-
cally, the prevalence of architectural distortion is low
and ranked third after calcifications and masses. How-
ever, architectural distortions subtlety and obscured na-
ture, and variable appearance make the detection task
more difficult and challenging[5]. Moreover, retrospec-
tive analysis of false negative results has shown that
about 12% to 45% of misinterpreted screening mammo-
grams turned out to be architectural distortion findings
[6]. For this, early and accurate detection of architec-
tural distortion potentially can improve the breast can-
cer prognosis. Compared to masses and calcifications,
the performance provided by existing architectural dis-
tortion CAD algorithms has not yet reached satisfactory
levels and hence more research focus is needed.

In the past decade, several approaches have been de-
veloped for the detection of architectural distortion. In
[7], the application of image morphology and concen-
tration index methods,respectively, produced sensitivity
rates of 94% with 2.3 false positives per image and 84%
with 2.4 false positives per image. Fractal analysis was
used in [8],[9],[10] to distinguish between normal breast
tissue and architectural distortion in mammographic re-
gions. The application of the Gabor filter and phase
portrait analysis was used in[11],[10]. Multiscale anal-
ysis and linear structure characterizing was employed
by[12]. The use of spicularity and angular dispersion
measures was investigated by [13]. The biggest coef-
ficients from curvelet transform were also used as tex-
tural features to classify various mammographic abnor-
malities (including architectural distortions) contained
in the MIAS database [14]. Other studies[15] and [16]
proposed a unified approach to detect both spiculated
masses and architectural distortions by considering the
speculated patterns as a common feature between the
two abnormalities. Sampat et al. [16] applied radial
spiculation filters to enhanced images. For a dataset of
45 images, with architectural distortion images a sensi-
tivity of 80% at 144 false positives per image was ob-
tained.

Viewing the intensity of medical images including
mammography as rough surfaces that can be described
using the fractal theory has been recognized by many
studies[20],[8]. The fractal dimension(FD) is a useful
tool for characterizing the variation of structure details
(or image features) as measuring scale changes [17]
and for measuring the roughness of an image surface
[19]. For mammography, it is known that normal breast
parenchyma demonstrates a strong self similarity and
so the fractal behavior can be observed to some ex-
tent. The fractal based assessment of mammographic
prenchymal of the breast indicated a better match to a

human expert’s evaluation than the conventional proce-
dure [20]. The presence of different breast abnormal-
ities such as architectural distortions and masses was
found to alter the fractal properties of normal breast tis-
sue, which have been utilized in [8],[9] to characterize
and to detect breast cancer. For the detection of archi-
tectural distortions, in particular, the statistical analysis
[8] indicated the mammographic regions with AD ex-
hibiting an average fractal dimension that is lower than
that of the regions with normal breast tissue. Tourassi
et al.[8] used the fractal dimension to discriminate be-
tween breast regions depicting architectural distortion
and normal breast tissue. The fractal dimension was es-
timated using the circular average power spectrum tech-
nique and used as a decision variable to construct the
receiver operating characteristics(ROC) curve. Using
a dataset with 1388 regions representing normal breast
tissue and 112 abnormal regions depicting architectural
distortion extracted from the DDSM database, the ob-
tained performance, measured in terms of the area under
ROC curve (AUC) or Az value, was 0.89.

Rangayyan et al.[10], first, applied Gabor filters and
phase portrait analysis to perform node analysis of
mammogram images and to detect specious regions
of architectural distortion, then, they used the frac-
tal dimension, computed using the average circular
power spectrum, and Haralick textural descriptors to re-
duce the number of false positive results by classify-
ing specious regions into abnormal (with architectural
distortion) regions and normal ones. The proposed ap-
proach was tested on prior and detection mammograms
from which, respectively, 21 and 18 architectural distor-
tions and 365 and 380 normal regions were obtained. A
prior mammogram is the mammogram acquired before
the detection of cancer [3] while the detection mammo-
gram is the mammogram on which the cancer is identi-
fied. Using the fractal dimension alone, they achieved a
classification performance in terms of Az value of 0.68
on datasets from detecting mammograms and 0.74 on
the dataset from prior mammograms. The performance,
on the prior mammogram regions, was further improved
to Az = 0.80 using the fractal dimension, three Haralick
textural descriptors and a Bayesian classifier.

Tourassi et al. used fractal dimension to character-
ize the presence of architectural distortion in mammo-
graphic ROIs. On a dataset of 1500 ROIs of which
112 depicting architectural distortion and 1388 related
to normal breast tissue, an ROC with Az of 0.89 was
obtained. Guo et al.[9] applied the lacunarity and
fractal(another fractal property) to improve the fractal-
based detection of the architectural distortions. On a
ROI dataset with 19 architectural distortion and 41 nor-
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mal regions, applying lacunarity and the fractal dimen-
sion (estimated using the fractional Brownian motion
method) features with an SVM classifier, achieved an
area under ROC curve of 0.875 .

In estimating the fractal dimension of digital images,
in theory, the measured fractal dimension must not be
affected by the pixel size (or the image resolution). In
fact, this was found to hold for some pixel resolutions
but varying the pixel size beyond some level (or size)
has been shown to affect the estimated fractal dimen-
sion [21]. Ahammer et al. [21] observed that the pattern
in which the estimated fractal dimension varies with im-
age resolution (or pixel size) changes was different for
different fractals and such variation itself can be em-
ployed as a tool for textural-based classification of im-
ages. For screening mammograms, measured fractal di-
mension was also found to vary with the image reso-
lution. Tourassi et al. [8] related experimental work
demonstrated that the performance of fractal dimension
for discriminating between normal and abnormal mam-
mographic regions had influenced by the pixels size
with the down-sampling used to change the scale or the
pixel size and concluded that monitoring fractal prop-
erties of mammographic images over different scales
might be a useful tool for prescreening architectural dis-
tortions. It is worth noting that in [8] the variation of
fractal dimension measurements with scales was only
observed but not used for the detection of architectural
distortion.

Consequently, key contributions of this study are:
capturing the variation and fractal dimension measure-
ments over multiscale representation and its application
for architectural distortion prescreening and detection.
Another and second contribution is the use of the 2D
EMD for generating multiscale representation of mam-
mographic images. The underlying hypothesis of this
paper is that, for the fractal-based characterization of
breast tissue, capturing the variation of the fractal di-
mension measurements with the change of the image
resolution (or pixel size) has the potential to differen-
tiate between architectural distortion and normal breast
tissue. For this purpose, the bidimensional empirical
mode decomposition (BEMD) [22] and filtering algo-
rithm [23], an alternative to the simple the image sub-
sampling process, is first employed to produce the mul-
tiresolution representation of an image. Fractal dimen-
sion measurements are, consequently, estimated from
the multiscale representation and used for the classifi-
cation of normal and abnormal breast tissue.

The empirical mode decomposition (EMD) algorithm
was first introduced by Huang et al. [22] as an adap-
tive and data driven multiresolutional decomposition

and filtering algorithm that suits various signals. The
basic concept of the EMD approach is to decompose
the original signal into a complete and almost orthog-
onal set of components namely intrinsic mode func-
tions (IMF) and a residue. The extension of the one-
dimensional EMD algorithm [22] to process digital im-
ages, called the bidiminsional EMD (BEMD), was pro-
posed by Nunes et al.[23]. Further and several refine-
ments and modification to the two-dimensional EMD
were also proposed by [24] and [25]. Among these
modifications the fast and adaptive BEMD (FABEMD)
[25] is the most interesting since it facilitates apply-
ing BEMD to large-size images such as mammograms
without significantly jeopardizing the essential proper-
ties of the BEMD by providing an alternative and effi-
cient method for accomplishing the envelope estimation
process. Since EMD and BEMD algorithms were intro-
duced, several studies have applied BEMD algorithms
for the pattern analysis of computer-aided detection of
breast cancer [27] [28], [29], [35]. Caroline et al. [35]
applied ensemble EMD with adaptive noise and GLCM
feature extraction methods for the detection and diagno-
sis of masses in mammographic regions obtained from
the MIAS database. Authors [35] also suggested,as a
future work, the extraction of fractal dimension of IMF
components to improve the proposed algorithms. For
the detection of architectural distortion,particularly, pre-
vious studies [28] applied BEMD and statistical model-
ing of detail subbands (i.e. 2DIMF) to distinguish ar-
chitectural distortion depicting ROIs from normal breast
tissue. On a ROI dataset of 187 and 887 normal regions,
the classification performance Az of 0.88 was produced.
Also, the generalized Gaussian models of BEMD and
the fractal dimension( estimated from original image
rather than it’s BEMD), were also used to characterize
the architectural distortion surrounding tissue [29]. Re-
sults of this work revealed that the textural patterns of
surrounding tissue are statically different form normal
breast tissue. On a set of 353 surrounding tissues (ex-
tracted from abnormal or architectural distortion mam-
mograms)and 2191 normal ROIs, the best architectural
distortion recognition performance achieved was Az of
0.869.

In this paper, we propose to apply multiscale frac-
tal dimension measurements for characterizing different
textures of breast tissue, with focus on the architectural
distortion detection in screening mammograms, as fol-
lows: the BEMD image approach, is first applied for
generating adaptive and data driven multiresolutional
decomposition of the mammogram image. Then, the
fractal dimension is estimated from each resolution and
used for distinguishing between normal and abnormal
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regions. The feature vector formed, from the multiscale
fractal dimension measurements, is subsequently used
for the classification of different texture of breast tissue.
To the best of our knowledge this study is the first to
propose to apply fractal based analysis of BEMD image
decomposition for characterizing and classifying archi-
tectural distortion and normal breast parenchyma.

2. Materials and Methods

2.1. Overview of BEMD
Different versions of the EMD approach commonly

accomplish the multiscale decomposition of the origi-
nal signal using three basic steps: 1) the extraction of
minima and maxima 2) estimation of the lower and up-
per envelopes corresponding to the minima and maxima
maps, respectively, and 3) formation of the mean enve-
lope to produce an IMF from the original signal. How-
ever, accomplishing lower and upper envelope estima-
tion using cubic spline or radial basis function meth-
ods is computationally expensive and is a major chal-
lenge facing the application of the BEMD to analyze
images of large size. To address this problem, sev-
eral modifications have been introduced [25], [24],and
[30]. The BEMD algorithm applies a sifting process
[22] to decompose a discrete time signal f (x, y) into a
set of two-dimensional intrinsic mode functions (IMFs),
im fi(x, y) i = 1, 2 . . . ,N and a residue signal, rN(x, y):

f (x, y) =
∑N

i=1 im fi(x, y) + rN(x, y), (1)

The sifting process [22] was mainly proposed to re-
fine the extraction of the IMF components such that
each IMF meets the following two requirements:

• The total number of extrema (minima and max-
ima) and the number of zero-crossings must equal
or differ at most by one.

• The mean value of the upper and lower envelopes,
at any point, is equal to zero.

Indeed, the IMF and residue components (images
or 2D signals) from (1), can be seen to be equiv-
alent but not equal, to the details and approximate
subbands (images) produced by wavelet or filter bank
approaches[37].

We define a source signal (or image), f (x, y),as be-
ing eligible for BEMD calculation if it has a sufficient
number of extrema, at least two; one maximum and one
minimum [22]. The process of extracting the intrinsic
modes of the signal, namely the IMF and the residue
components using the BEMD algorithm is described as
follows

• Initialize the IMF index, i = 1, and let the residue
signal ri−1(x, y) = f (x, y).

• Define the sifting process stopping criteria, which
are the maximum number of iterations allowed, J,
and SDmax the limit on the standard deviation be-
tween two successive results of the sifting process.

• Initialize the iteration index j = 1 and the source
image h j−1(x, y) = ri−1(x, y)

• Extract the ith IMF (i.e. im fi(x, y) or IMFi) by
applying the sifting process to the source image
h j−1(x, y)

While { j ≤ J

1. Identify the local minima and maxima in h j−1(x, y)
2. Estimate the lower ELower(x, y) and upper

EU pper(x, y) envelopes from the minima and
maxima maps, respectively.

3. Compute the envelopes mean, M j−1(x, y) =

(ELower(x, y) + EU pper(x, y))/2
4. Compute h j(x, y) = h j−1(x, y) − M j−1(x, y)
5. Compute the standard deviation between h j−1(x, y)

and h j(x, y)

SD =

∑Nx
x=1
∑Ny

y=1|h j(x,y)−h j−1(x,y)|
2∑Nx

x=1
∑Ny

y=1|h j−1(x,y)|
2 (2)

6. Check if the first stopping criterion is met
If SD ≤SDmax

• Obtain the IMF and residue components
im f i(x, y) = h j(x, y)
ri(x, y) = ri−1(x, y) − im fi(x, y)

• Break the current loop (i.e. terminate the sift-
ing process)

Else

• Increase the iteration index j = j + 1 (i.e.
apply sifting steps again)

End

• If the obtained residue ri(x, y) is eligible for
BEMD, increase the IMF component index i = i+1
and re-apply the sifting process to extract a new
IMF. Otherwise, the BEMD algorithm is termi-
nated.

As previously mentioned, this study derives the
BEMD of mammographic regions using the FABEMD
[25] version of BEMD algorithms [23] and [26]. The
main difference between the standard BEMD [23] and
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FABEMD is in the method used for performing the es-
timate of the lower and upper envelope that is a key step
for BEMD. Using the FABEMD method, the envelop
estimation is done by applying a 2D order statistics fil-
tering instead of the use of classical scattered data sur-
face interpolation technique [26].

The envelop estimation process using the FABEMD
[25] approach is accomplished by two steps as follows:

• The determination of the filter size (2D sliding
neighbourhood or window) is done by construct-
ing arrays correspond to the smallest Euclidian
distance between each minimum (maximum) and
other minima(maxima). From these arrays, the
sizes of the order-statistics filters can be obtained.

• The estimation of the lower and upper envelops
is done by applying minimum and maximum fil-
tering to the sliding neighborhood of h j−1(x, y), to
construct the lower ELower(x, y) and upper envelope
EU pper(x, y), respectively. Using the same window
size as used for minimum and maximum filtering,
another sliding window smoothing filter is then ap-
plied to further improve the estimated lower and
upper envelopes.

The FABEMD provides different filter or window
lengths (or sizes) for performing the BEMD of the orig-
inal signal. However, one can still perfectly, within ma-
chine precision error, recover the original signal from
any of its BEMDs (or multiscale representations). As
indicated in [25] the previous method for determin-
ing the size of the filter may require manipulation if
both window sizes obtained for the new scale are both
smaller than the previous one. However, one should
avoid high degree of time-sale (or filter size) manipu-
lation so the time-driven feature of the original EMD is
lost.

2.2. Fractal Dimension

For the analysis of image texture, it was observed
that the human observer’s subjective ranking and the
fractal dimension are strongly correlated [20]. The ba-
sic concept of the fractal dimension measurements is to
measure an image feature (energy, intensity difference,
edges) as a function of the scale. If the variation of the
feature to the scale changes is plotted on a log-log plot,
a linear relation is obtained where the fractal dimension
is linearly related to slope of that relation. Several meth-
ods were developed for estimating the fractal dimen-
sion of grayscale images [18]. A popular and efficient
method for estimating the fractal dimension is based on

fractional Brownian motion model (FBMM) to describe
rough surfaces that are seen as the end result of a ran-
dom walk. Intensity medical images and ultrasonic and
x-ray images can be similarly viewed and has enabled
the use of the FBMM to estimate the fractal dimension
of medical images [19]. For mammography, in particu-
lar, the FBMM method has been shown to be the most
efficient over other methods[9].

Given an image region f (x, y), of size Nx × Ny, a use-
ful measure of the roughness of the image surface, the
fractal dimension D, can be computed from the follow-
ing equation:

gd(s) = usH (3)

where u is a constant, s is the scale (distance in pix-
els) variable and gd(s) is the expectation of the intensity
variation of the pixels separated by a distance s:

gd(s) = 1
2Nx(Ny−s) (

∑Nx
x=1
∑Ny−s

y=1 | f (x, y) − f (x, y + s)|

+
∑Nx−s

x=1
∑Ny

y=1 | f (x, y) − f (x + s, y)|)
(4)

The H parameter, which characterizes the image sur-
face, is to be estimated and is related to the fractal di-
mension D using the equation H = 3 − D. Computing
the log of (3) gives:

log gd(s) =log u+Hlog s (5)

The least square linear regression is used,then, to esti-
mate the slope H of the line equation, on a log-log scale
to obtain the fractal dimension as:

D = 3 − H (6)

2.3. Mammogram datasets
Mammographic regions of interest (ROIs) will be

used for evaluating the proposed mammography CAD
and architectural distortion characterization approach
are obtained from the DDSM databse [31]. Another
mammography databases commonly used for evaluat-
ing mammography CAD algorithms is the Mammo-
graphic Image Analysis Society (MIAS) [32] database.
However, the MIAS database compared to DDSM is rel-
atively small and only includes 322 digitized mammo-
grams with 8 bits per pixel, 200µm pixel resolution, and
sized 1024 × 1024. For this, the application to MIAS
dataset will be only for the comparison with other stud-
ies. The DDSM database, on the other hand, is much
larger with screening mammograms digitized at three
different pixel resolutions (42,43.5, and 50µm) and two
different bit depths (12 and 16 bit per pixel). Radiol-
ogists’ annotations of abnormal DDSM cases included
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in an .ics file accompanied each case also reports the
patients age, at the time of the data acquisition, and ab-
normality description according the Breast Imaging Re-
porting and Data System (BI-RADS) lexicons [4].

This work used three different validations ROI
datasets extracted from abnormal and normal DDSM
mammograms. The datasets, shown by Table 1, rep-
resent architectural distortion or true positive (TP) re-
gions, normal breast parenchyma or true negative (TN)
regions, and AD surrounding tissue (ST) regions. The
TP and AD depicting ROI dataset consists of 187 archi-
tectural distortions extracted from 187 abnormal mam-
mograms. The normal dataset consists of 2191 TN re-
gions obtained from 261 mammograms (about 8 regions
per mammogram) from DDSM normal volumes pro-
duced by LUMISYS and HOWTEK mammogram dig-
itizers. The surrounding tissue ROI dataset consists of
558 regions extracted from 187 abnormal mammograms
(images already used to obtain AD regions). The size
of AD depicting ROI is proportional to the lesion size
and varies from one case to another. Selecting the size
of a normal regions, to some extent, is open, however,
computing BEMD and estimating the fractal dimension
have been also taken into consideration. Hence, in this
work, normal ROIs allowed to have two sizes 512× 512
or 384 × 384 pixels. These adopted sizes were around
the mean size of abnormal samples but also consider-
ing the normal mammogram from which TN samples
were extracted. The application to MIAS database, in
this work, was mainly to compare with existing stud-
ies. The MIAS contains 115 abnormal cases from which
only 19 cases are with architectural distortion are used
as TP dataset, and 207 normal cases from which a set
41 mammograms were used to obtain the TN regions.
Examples of abnormal and normal ROIs extracted from
the DDSM database are shown in Fig. 1. To display the
outline and location of AD in the region,in Fig. 1, the
size of the abnormal region used were larger than the
actual size used for the analysis.

The surrounding tissue dataset were obtained from
the same abnormal images previously used to extract
TP or AD regions. That is subsequent to localizing the
rectangle ROI including the AD (using the mammogram
annotation provided by the DDSM), eight neighboring
regions were extracted and considered potential sur-
rounding tissue regions. However, in a semi-supervised
approach, candidates surrounding tissue were checked
and those regions overlap with pectoral muscle or back-
ground were eliminated. The size of ST regions was
originally the same as size that of AD region, however,
to avoid elimination of most ST regions, regions were
then cropped to 512 × 512 or 384 × 384 pixels. Us-

ing this process a surrounding tissue (ST) dataset with
558 regions were obtained. Furthermore, important fac-
tors impacting the task of mammographres are mainly
the density of the breast (in both normal and abnormal
mammogram),and the subtlety (or visibility) of the le-
sion and its severity. The distribution of breast densities
of abnormal and normal mammograms images, used in
this work, are presented in Fig. 2. For abnormal mam-
mograms used, the distribution of lesion’s subtlety and
severity are shown in Fig. 2(b).

Table 1: The distribution of different breast tissue regions in each ROI
dataset
Database Dataset # AD # TN #ST Region size(in pixels)

DDSM S 1 187 2191 − 384 × 384, 512 × 512
S 2 187 − 558 384 × 384, 512 × 512
S 3 − 2191 558 384 × 384, 512 × 512

MIAS? S 4 19 41 − 128 × 128
? The MIAS ROI dataset is mainly used for comprasion with other studies

3. Mammography CAD using the Fractal Dimen-
sion Measurements of BEMD

To investigate the usefulness of image representation
using BEMD for the fractal based characterization of ar-
chitectural distortion, we apply the proposed methods to
distinguish between abnormal mammographic regions
depicting architectural distortions in the center and nor-
mal regions representing normal breast parenchyma.
The proposed mammographic regions (or images) and
architectural distortion CAD system, first applies the
FABEMD method to accomplish an adaptive and data
driven multiscale decomposition, namely the IMF com-
ponents of the original mammographic image, then, the
fractal dimension estimated using FBMM is computed
for each IMF to obtain a textural feature vector for clas-
sification. The well-known nonlinear SVM classifier
with radial basis kernel function is employed to distin-
guish between patterns of normal and abnormal regions.

Mammographic Region Extraction: in this stage, the
abnormal mammographic regions are extracted using
the lesion annotations provided by each database with
the size of each rectangular region chosen to best fit
the abnormality, while the normal regions are extracted
from normal mammograms as in[9]where normal but
suspicious regions to be included are restricted to have
a fractal dimension value between 2.0 to 2.9.

Bidimensional empirical mode decomposition
(BEMD): For decomposing mammographic images
using BEMD, several experiments have been performed
by varying the maximum iteration, sifting process
stopping criterion, and filter size used for the envelope
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                   (a)                                                (b)                                               (c)                                               (d) 

                    (e)                                              (f)                                                 (g)                                               (h) 

Figure 1: Examples of mammographic regions representing architectural distortion in (a) - (d) and normal breast parenchyma in (e)-(h). Architec-
tural distortion related regions, shown in this figure, were obtained from the DDSM abnormal mammograms in the cancer volume 9 (a)case0230
(Right breast, MLO view) (b) case3390 (left breast, CC view) (c) case3407 (right breast, CC view) and (d) case3078 (Right breast, CC view).

1 2 3 4
0

100

200

300

400

500

600

700

800

900

Distributions of the breast desnities in normal  images used

Breast Desnity       (a) 

     (b) 
Figure 2: (a)Distributions of breast density, in scale of 1 to 4, in normal mammograms used.(b)Distributions of abnormalities in mammograms
used, in terms of, the breast density, in scale of 1 to 4, the lesion Subtlety or visibility, in scale of 1(subtle) to 4 (obvious),and the ACR (BI-RAD)
assessment rating of the lesion between 0 and 5.

7



Page 8 of 16

Acc
ep

te
d 

M
an

us
cr

ip
t

estimation. We have empirically selected to use the IMF
decomposition parameters with a maximum number
of iterations of 4 and SD max of 0.2 . For extending
an image along the boundaries that is required for
filtering signals (or images) with finite representation,
the traditional symmetrical extension (or mirrorizing)
technique is used [33].For an efficient EMD analysis,
EMD research studies suggested that one needs to
avoid the use of very low resolution (or undersampled)
signals or apply a sifting process with a large number
of iterations or very small SDmax values [36]. Unlike
the case of the classical wavelet decomposition [37]
where the maximum number of detail subbands (or
scales) that can be attained mainly depends on the
image size, for EMD decompositions, the maximum
number of IMF components (or scales) produced from
the original signal is data driven. Particularly using the
MIAS dataset where mammogram images are only 8
bits per pixel and 200µ pixel size, most images produce
BEMD decomposition with 5 IMFs while some images
produce 6 IMFs. For DDSM mammographic regions,
the situation is different and a higher number of IMFs
are expected to be provided because DDSM mammo-
grams are more detailed since the pixel depth is from
12 to 16 bits and the pixel resolution is between 42 and
50µm. In this study, 5 and 6 IMFs will be used for the
analysis of images from MIAS and DDSM datasets,
respectively. Examples of the BEMD algorithm applied
to abnormal and normal MIAS mammographic regions
are shown in Figs. 3 and 4. To ensure that the pattern
representation and so the number of features obtained
is the same for all samples (or images), the number of
IMF components that is common for all images, in our
datasets, is used for feature extraction and for pattern
classification.

Fractal Dimension Estimation: the FBMM fractal di-
mension method, used in this analysis, is adopted for its
ability to estimate the fractal properties directly from the
original image without further processing. Moreover, it
has been shown to be superior over other methods, in
particular, FBMM was proven more efficient than the
conventional power spectrum technique for fractal anal-
ysis of mammograms [9]. The FBMM, as explained in
Section 2, was applied to the IMF components obtained
from the BEMD. This step produces feature vectors rep-
resenting the fractal dimension measurements of each
mammographic region as

D = [D0,D1,D2, ...,DN] (7)

where N is the maximum number of IMF components
D0 denotes the fractal dimension of the original image

while Di, for i = 1, 2 . . . ,N, represents the fractal di-
mension of the ith IMF component. An example of the
fractal dimension measurements obtained from BEMD
analysis of an abnormal region is illustrated in Fig. 5.

Pattern recognition using SVM classifier: over the
years, SVM classifiers have demonstrated superior per-
formance for solving different machine learning prob-
lems including the development of mammography CAD
systems [2]. The properties of an SVM based pat-
tern classification that suits different pattern recognition
problems are 1) the ability to be trained using a small
number of samples 2) able to work with both high di-
mensional and low dimensional feature spaces 3) can be
applied to solve both one-class, binary or two-class, and
multi-class problems. The machine learning approach
of the SVM classification is derived from modern statis-
tical learning theory. An SVM classifier finds an opti-
mal hyper-plane that maximizes the separation (geomet-
ric margin) among the patterns from different classes
[38]. Further details on SVM theory can be found in
[38] and [39].

4. Results

4.1. Experimental setup

In the SVM classification stage, the libsvm software
package [40], MATLAB interface, with the nonlinear
SVM and radial basis function kernel options, has been
used. A grid search with C value between 0.5 and
1048576 and kernel control parameter γ value between
0.0625 and 16 were, respectively, employed for the
SVM penalty (or regularization) constant and for the
Gaussian kernel control parameter. For the performance
evaluation, each datasets is partitioned into 50% train-
ing and 50% testing. A 5-fold cross validation proce-
dure and grid search procedure were applied to the train-
ing dataset to optimize the classification performance.

Using the BEMD approach presented in Sections 2
and 3 , six IMF components were produced by mam-
mographic regions from DDSM datasets.On the other
hand, the low pixel resolution regions from the of MIAS
database provide only five IMF layers per region. In or-
der to evaluate the contribution of various IMF compo-
nents, the fractal dimension features of the IMF com-
ponents are successively included for the classification
and the obtained performance has been evaluated and
reported. Moreover, we have examined the impact of in-
cluding the fractal dimension of the original image with
the fractal measurements from all IMFs in one experi-
ment and with the first IMF only in another experiment.
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Figure 3: Applications of BEDM algorithm to mammographic regions depicting architectural distortion. In each row, the original image is placed
first, followed by extracted IMFs components (or images) and the residue component is the last subimage

Figure 4: Applications of BEDM algorithm to mammographic regions related to normal breast tissue. In each row,again, the original image is
placed first, followed by extracted IMFs components (or images) and the residue component is the last subimage.
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Figure 5: BEMD and fractal dimension measurements applied to
an architectural distortion region from the DDSM dataset (case1140,
cancer volume 6). (a) An AD image and its BEMD; the original im-
age is placed first, followed by its IMF and residue components.(b)
The FBMM technique applied to estimate the fractal dimension of
the original image and its BEMD with the expectation of the inten-
sity variation gd(s), plotted on the log-log scale, against the scale s (
i.e.the separation-distance in pixels). The fractal dimension of each
image is,then, computed from the linear fit of the corresponding log-
log plot.

4.2. Analysis of fractal dimension measurements

After extracting intrinsic components (i.e. 2D IMF
layers) of each mammographic region, the fractal di-
mension is estimated, as explained in Section 3, from
each image (original or IMF) using the FBMM tech-
nique. A feature vector representing each mammo-
graphic region is constructed, as previously discussed,
to be used subsequently for the classification between
abnormal and normal regions. Previous analysis [8],
[10], [9] of fractal properties of AD and normal breast
parenchyma has indicated that presence of an architec-
tural distortion disturbed the fractal properties of nor-
mal breast parenchyma and so a lower fractal dimen-
sion of mammographic regions was observed, which
was used as tool for architectural distortion prediction.

In this work, measurements shown in Table 2, have also
demonstrated that the average FD estimated for AD re-
gions (original image) is lower than that of TN regions.
This observation is also observed for FD measurements
from IMF components. That is the average fractal di-
mension of BEMD (including detail and residue layers)
of abnormal or AD depicting regions was lower than
the corresponding values from normal regions. This ob-
servation also extends for ST regions that demonstrate
average FD that is lower than TN regions but higher
than AD regions. For instance, respectively for nor-
mal, abnormal or AD, ST regions the fractal dimen-
sion estimated from IMF0 (i.e. original region) were
2.707 ± 0.104, 2.575 ± 0.071 and 2.678 ± 0.107.

Table 2: Average fractal dimension measurements of BEMD (i.e.
2DIMF layers) for different breast tissue types
IMF
layer

TN AD or TP ST

D0 2.707 ± 0.104 2.575 ± 0.071 2.678 ± 0.107
D1 3.064 ± 0.01 3.053 ± 0.014 3.057 ± 0.014
D2 3.059 ± 0.01 3.051 ± 0.024 3.071 ± 0.029
D3 2.905 ± 0.042 2.888 ± 0.067 2.895 ± 0.043
D4 2.775 ± 0.049 2.744 ± 0.058 2.765 ± 0.053
D5 2.649 ± 0.062 2.619 ± 0.072 2.634 ± 0.066
D6 2.523 ± 0.073 2.493 ± 0.09 2.504 ± 0.078

4.3. Statistical analysis

The average FD estimated from various IMF layers,
as shown by results in Table 2, is different among three
classes of breast tissue ( i.e. AD, normal parenchyma,
and ST tissue). To examine whether the difference of
FD value among different breast tissue is statically sig-
nificant, so, it can used for the detection of AD, we have
used the two tail t-test of the null hypothesis (H0: equal
mean). The t-test was applied to examine the statistical
significant of the discrimination, based on the FD, be-
tween AD tissue and normal breast parenchyma ( AD vs
TN), in one experiment, and the discrimination, in an-
other experiment, between normal breast parenchyma
and surrounding tissue (ST vs TN). Also for classify-
ing AD from surrounding tissue (AD vs ST). For dis-
tinguishing between AD and normal breast tissue, the
differences of FD measurements from all layers were
statically significant. That is attained p-value and the
95% confidence interval (CI) suggest rejecting the null
hypothesis (i.e. the two mean are equal), as none of the
corresponding 95% CI contains 0. As shown by test re-
sutls in Table 3 The difference of FD between normal
breast parenchyma and surrounding tissue were also

10



Page 11 of 16

Acc
ep

te
d 

M
an

us
cr

ip
t

statically significant but not for all FD measurements,
namely, FD of the first IMF layer that produced p-value
of 0.7693 that is larger than 0.05. The staticial anslysis
of FD measurments’ difference between srrounding tis-
sue and AD regions indicated that the difference of FD
measurments of low-frequency layers (D4,D5, and D6)
is not signficant. Hence, the use of FD features of the
fourth, fifth, and sixth layers is expected to be not effi-
cient for classification. Results of the statistical analysis
of the difference of the FD measurements over BEMD
scales reveal the potential of the FD for distinguishing
between AD and normal breast parenchyma.

Table 3: Statistical significance(p-value) of FD measurements for
characterizing different classes of breast tissue

Feature AD vs TN ST vs TN AD vs ST
D0 ≈ 0 0.0010 ≈ 0
D1 ≈ 0 0.7693 ≈ 0
D2 ≈ 0 ≈ 0 ≈ 0
D3 0.0024 0 0.049
D4 ≈ 0 0 0.427
D5 ≈ 0 0 0.500
D6 ≈ 0 0 0.158

4.4. Pattern recognition results

The kernel based SVM classifier was used for pat-
tern recognition of different breast tissue. The classi-
fication results obtained from different experiments are
presented in Tables 4-6. The average cross-validation
and test performance, in terms of Az value, form all
runs, were reported and used for the evaluation. For
the distinguishing between architectural distortion and
normal breast parenchyma regions, the classification re-
sults, of FD features of BEMD are shown in Table 4.
The best classification performance of 0.941 ± 0.009
was obtained using D3D2D1 (derived from 3IMFs). Re-
sults also indicate that the use of all available IMF
layers including the original image to accomplish the
fractal dimension analysis has not provided any perfor-
mance improvement. For instance, the fractal analy-
sis, using D6D5D4D3D2D1D0 and D6D5D4D3D2D1D?

0
respectively produced an average Az of 0.936 ± 0.009
and 0.882 ± 0.005. The poor performance achieved by
more features can be justified by the weak discrimina-
tive power of the fractal measurements of IMF compo-
nents corresponding to the lower image resolutions. In
Fig. 6, the best ROC curve, corresponds to each fea-
tures, was also produced and constructed. To answer
the question whether the fractal properties of the sur-
rounding tissue are relevant to architectural distortion or

to normal breast parenchyma, we applied BEMD frac-
tal dimension measurements to discriminate surround-
ing tissue from architectural distortion and from normal
breast parenchyma regions. Obtained classification re-
sults, in Table 5, show that FD measurements of the
first three IMF layers achieved the highest average AZ

of 0.854± 0.013. Results also showed that the inclusion
of D0 can be used to achieve higher AZ value. Results
also revealed that the contribution of FD measurements
from low-frequency layers (i.e. D4,D5, and D6 ) is al-
most negligible even might be deteriorating. Moreover,
examining results of applying multiscale FD features to
distinguish ST from normal breast tissue, in Table 6, the
highest classification performance of 0.771± 0.007 was
produced using FD features D1D2. This, however, is
significantly lower than the performance of D1D2 in Ta-
ble 6 when used to distinguish between AD and normal
breast tissue.

Table 4: Classification results, in terms of (Az ± S D), of BEMD frac-
tal measurements for distinguishing between AD and normal breast
parenchyma
FD Features Cross-Validation Test
D0 0.845 ± 0.001 0.846 ± 0.001
D1 0.85 ± 0.006 0.849 ± 0.010
D1D?

0 0.89 ± 0.004 0.882 ± 0.005
D1D2 0.903 ± 0.005 0.893 ± 0.013
D3D2D1 0.938 ± 0.010 0.941 ± 0.009
D4D3D2D1 0.939 ± 0.005 0.934 ± 0.012
D5D4D3D2D1 0.933 ± 0.007 0.935 ± 0.009
D6D5D4D3D2D1 0.929 ± 0.005 0.936 ± 0.009
D6D5D4D3D2D1D?

0 0.890 ± 0.004 0.882 ± 0.005
? the fractal dimension of the original image is included.

Table 5: Classification results, in terms of (Az±S D), of BEMD fractal
measurements for the distinguishing between surrounding tissue and
AD
FD Features Cross-Validation Test
D0 0.786 ± 0.001 0.777 ± 0.008
D1 0.6 ± 0.008 0.576 ± 0.015
D1D?

0 0.801 ± 0.006 0.793 ± 0.013
D1D2 0.803 ± 0.012 0.774 ± 0.019
D3D2D1 0.856 ± 0.007 0.854 ± 0.013
D4D3D2D1 0.852 ± 0.007 0.851 ± 0.013
D5D4D3D2D1 0.846 ± 0.009 0.837 ± 0.020
D6D5D4D3D2D1 0.834 ± 0.012 0.839 ± 0.014
D6D5D4D3D2D1D?

0 0.862 ± 0.007 0.869 ± 0.009
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Figure 6: Best Receiver operating characteristic curves of the proposed fractal based analysis. In this illustration, the notation D1 . . .DN implies
that fractal features were extracted from the successive and first Nth IMFcomponents and D?

0 is used when the fractal dimension of the original
image is included as well.
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Figure 7: (a)Distributions of FP and FN results according to region’s density(b) Distributions of FN results according to assessment and subtlety
region ratings
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Table 6: Classification results, in terms of (Az±S D), of BEMD fractal
measurements for distinguishing between normal breast parenchyma
and surrounding tissue
FD Features Cross-Validation Test
D0 0.572 ± 0.005 0.549 ± 0.009
D1 0.742 ± 0.004 0.738 ± 0.003
D1D?

0 0.758 ± 0.006 0.745 ± 0.012
D2D1D2 0.779 ± 0.004 0.771 ± 0.007
D3D2D1 0.77 ± 0.007 0.761 ± 0.010
D4D3D2D1 0.768 ± 0.006 0.762 ± 0.006
D5D4D3D2D1 0.747 ± 0.004 0.748 ± 0.009
D6D5D4D3D2D1 0.741 ± 0.004 0.738 ± 0.006
D6D5D4D3D2D1D?

0 0.78 ± 0.005 0.761 ± 0.011

4.5. Analysis of false negative and false positive results
The density of mammograms (abnormal and normal),

the lesion’s subtelty(or visibility) and severity are main
factors influence mammographers’ decision when ex-
amining screening mammography. Considering these
factors we analyzed the classification results, obtained
in this study, and reported, in Fig. 7(a), the distri-
bution false positive and false negative misclassifica-
tions according to the breast density, the distribution of
false negative according to the subtlety, and assessment
(severity) rating of the lesion. Obtained analysis shows
that the performance of multiscale fractal measurements
for abnormal and normal regions were impacted by the
density. That is the mammograms with higher density
ratings (3 and 4) were misclassified more often, namely,
regions with density rating 3. For abnormal regions
classification and the false negative results associated, in
addition to breast density, lesions’ subtlety and severity
are important factors to be considered and expected to
the impact the performance of the detection task. Anal-
ysis shows that the more subtle the lesion is the higher
is the risk of misclassification. For this study, in par-
ticular and as shown by in Fig. 7(b), expected abnor-
mal regions depicting AD with highest subtlety rating 5
were misclassified more often than more visible (or less
subtle) regions. However, regions with subtlety rating
2 were misclassified more frequent than region with 1
and 3 subtlety ratings. The analysis of FN results with
respect to the lesion’s severity has shown that regions
with higher degree of severity (higher assessment rat-
ing), namely, abnormal region with assessment rating
4 were misclassified at higher frequency than other rat-
ings.

5. Discussion and Conclusions

The underlying hypothesis of this study is that cap-
turing the variation of fractal dimension of the intensity

of a mammographic region over multiscale representa-
tion is an efficient tool for characterizing different breast
tissue and, namely,for the recognizing of the architec-
tural distortion. Previous fractal analysis [8], [10],and
[9],[29] demonstrated that the fractal dimension differ-
ence between abnormal regions ( architectural distor-
tion) and normal regions is significant and that is ab-
normal regions show lower FD values than normal re-
gions. However, these studies estimated a single FD
measurement estimated from the original image. The
fractal analysis, in this study, is multiscale and our ex-
periments have shown, for several scales, the multiscale
FD is significantly different among different classes of
breast tissue: architectural distortion and its surround-
ing tissue, and normal breast tissue.

Unlike previous fractal based analysis [8],[10], and
[9], our approach for the characterization and detection
of architectural distortion, after applying BEMD algo-
rithm to produce a multiresolution representation of the
mammograhic region, extracted multiscsale FD mea-
surements. Rather than just using a single FD value
extracted from the original image, we applied multi-
scale fractal properties to characterize breast texture.
More specifically, we exploited the variation of the frac-
tal dimension with the change of the image resolution
to characterize and discriminate textural patterns of dif-
ferent breast tissue (architectural distortion and its sur-
rounding tissue, and normal breast parynchema).

For distinguishing architectural distortion from nor-
mal breast tissue, on the ROI dataset (187 AD and 2191
normal regions), described in Table 1, our fractal anal-
ysis produced Az = 0.941 ± 0.009. Our results were
more efficient than the performance of the parametric
statistical modeling of BEMD that produced area under
the receiver operating characteristic curve of 0.88. Our
approach also outperformed the work in [8] that pro-
duced Az = 0.89 by applying the fractal dimension to
distinguish 112 architectural distortion from 1388 nor-
mal regions. The fractal dimension was also previously
[10] used to improve the detection of architectural dis-
tortion in suspicious mammographic regions obtained
from the detection and prior mammograms reducing
the number of false positive results, producing Az val-
ues of 0.68 on the detection mammogram and 0.74 on
the dataset from the prior mammograms. Other stud-
ies [9] used a smaller ROI dataset (19 AD and 41 nor-
mal regions), extracted from the mini MIAS database
for the evaluating the fractal based approach. For fair
comparison with exiting studies [9] we have applied
our approach to the MIAS dataset previously described,
and achieved an average cross-validation performance
of 0.964 ± 0.019. Clearly, on the MIAS dataset, our re-
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sult of Az = 0.941± 0.009 was significantly higher than
Az of 0.875 obtained using fractal dimension lacunarity
features in [9].

In this paper, the BEMD algorithm was used to pro-
vide a data-driven and adaptive multiresolution repre-
sentation of the breast texture. The variation of frac-
tal dimension over different scales, from BEMD, was
captured and used for characterizing different types
of breast texture; architectural distortion, surrounding
tissue of architectural distortion, and normal breast
parynchema. Consequently, the variation of the frac-
tal dimension across different images resolutions was
shown to be an efficient tool for the detection of ar-
chitectural distortion textural patterns. Obtained results
demonstrated that the multiscale fractal dimension not
only can discriminate architectural distortion from nor-
mal breast tissue but also architectural distortion from
surrounding tissue and surrounding tissue from normal
breast tissue.

This study also demonstrated the ability of the pro-
posed approach to achieve a superior and satisfac-
tory performance in distinguishing between architec-
tural distortion and normal breast parenchyma. Results
also revealed the effectiveness of the proposed approach
for the detection of architectural distortions, in digital
mammogram or at least we recommend the proposed
approach as a tool for reducing false positives that could
be produced by an automatic detection system. Future
and further extensions of this study will involve the de-
velopment of an automated architectural distortion de-
tection system, and the use of frequency information of
the IMFs to characterize the speculation patterns of ar-
chitectural distortions, and the extraction of other textu-
ral features such as the first and second order statistics
of the IMFs.
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 Multiscale Fractal analysis of Architectural Distortion was applied   

 Bidimensional  EMD was applied to mammographic ROI 

 Multiscale Fractal Dimension was  applied  

 Multiscale  fractal properties of Architectural Distortions are distinct 

 Results obtained are   promising  
. 
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