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Abstract

Segmentation of brain structures during the pre-natal and early post-natal peri-

ods is the first step for subsequent analysis of brain development. Segmentation

techniques can be roughly divided into two families. The first, which we denote

as registration-based techniques, rely on initial estimates derived by registration

to one (or several) templates. The second family, denoted as learning-based tech-

niques, relate imaging (and spatial) features to their corresponding anatomical

labels. Each approach has its own qualities and both are complementary to each

other. In this paper, we explore two ensembling strategies, namely, stacking and

cascading to combine the strengths of both families. We present experiments

on segmentation of 6-month infant brains and a cohort of fetuses with isolated

non-severe ventriculomegaly (INSVM). INSVM is diagnosed when ventricles

are midly enlarged and no other anomalies are apparent. Prognosis is difficult

based solely on the degree of ventricular enlargement. In order to find markers

for a more reliable prognosis, we use the resulting segmentations to find abnor-

∗Corresponding author
Email address: gerard.sanroma@upf.edu (Gerard Sanroma)

Preprint submitted to Computerized Medical Imaging and Graphics May 21, 2018



malities in the cortical folding of INSVM fetuses. Segmentation results show

that either combination strategy outperform all of the individual methods, thus

demonstrating the capability of learning systematic combinations that lead to

an overall improvement. In particular, the cascading strategy outperforms the

ensembling one, the former one obtaining top 5, 7 and 13 results (out of 21

teams) in the segmentation of white matter, gray matter and cerebro-spinal

fluid in the iSeg2017 MICCAI Segmentation Challenge. The resulting segmen-

tations reveal that INSVM fetuses have a less convoluted cortex. This points to

cortical folding abnormalities as potential markers of later neurodevelopmental

outcomes.

Keywords: fetal brain MRI segmentation, multi-atlas label fusion, stacking,

cascading, isolated non-severe ventriculomegaly

1. Introduction

Studying the brain in the pre-natal and early post-natal stages allows un-

derstanding the mechanisms of both normal and abnormal brain development.

With the recent advances in brain magnetic resonance imaging (MRI), high-

quality images with excellent contrast among several anatomical structures can5

be obtained. The morphological analyisis of such structures promises to dis-

cover disease biomarkers with the subsequent identification of individuals at

risk for possible early intervention (Benkarim et al., 2017). In the case of fe-

tuses, ventriculomegaly (VM) is the most frequent brain abnormality in prenatal

ultrasound examination (Huisman et al., 2012). It consists of an enlargement10

of the ventricles, as measured by an atrial diameter ≥ 10mm. When the en-

largement is between 10mm and 15mm, and there are no other anomalies (e.g.,

infections, malformations, ...), it is called isolated non-severe VM (INSVM).

Prognosis in INSVM fetuses cannot be predicted solely from the degree of ven-

tricular enlargement (Beeghly et al., 2010). To find more reliable prognostic15
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markers, recent works have searched for abnormalities in the cortex of INSVM

fetuses, both in volume (Kyriakopoulou et al., 2014) and folding (Scott et al.,

2013).

Segmentation of brain structures is the first step required for such analy-

ses, which is usually done with T1 and/or T2 MRI modalities since they of-20

fer good anatomical contrast. Compared to the adult brain, segmentation of

the developing brain poses several challenges. Due to fetal motion, 3D brain

volumes have to be reconstructed from motion corrupted stacks (Murgasova

et al., 2012), which may compromise image quality. Furthermore, rapid devel-

opment causes dramatic changes in shape and image intensities in short periods25

of time. These challenges motivate the use of specific templates for different

age ranges (Gholipour et al., 2017; Shi et al., 2011). Commonly used techniques

for segmenting both the adult and infant brain can be roughly divided into

registration- and learning-based.

Registration-based techniques first obtain a rough estimate of the location30

of the anatomical structures by registering the target image to one or several

templates. Then, these estimates are refined to better fit the target anatomy

based on either 1) parametric image intensity models (Makropoulos et al., 2014;

Leemput et al., 1999; Avants et al., 2011), 2) non-parametric weighted voting

techniques (Coupé et al., 2011; Wang et al., 2013; Koch et al., 2014) or 3) a35

combination of both (Ledig et al., 2015; Sanroma et al., 2014). Multi-atlas label

fusion falls in the second kind of approaches, where the label on each target

point is obtained as a consensus among the local atlas labels.

Another family of methods, which we refer to as learning-based techniques,

aim at computing a mapping from image features to anatomical labels, typi-40

cally using some machine learning algorithm. Features are usually derived from

intensity information but may also incorporate spatial information. Different
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machine learning techniques have been used including k-nearest-neighbors (An-

beek et al., 2013), support vector machines (SVM) (Moeskops et al., 2015),

random forest (Wang et al., 2015) and more recently, deep learning (Moeskops45

et al., 2016; Kamnistas et al., 2016).

One of the differences between both families is the way in which spatial and

intensity information are treated. Learning-based techniques integrate both

spatial and intensity information as features into some machine learning algo-

rithm, whereas registration-based techniques adopt a more sequential approach50

where spatial information is used as prior or initialization to the subsequent

intensity-based modelling.

Both approaches have their drawbacks and advantages. The spatial con-

straints used in registration-based techniques tend to produce specific models

for each region and therefore can better discriminate between the anatomical55

subtleties of adjacent similar structures. For example, in multi-atlas label fusion,

the decision on each point is done taking into consideration only the neighbor-

ing atlas locations. As a downside, they tend to be sensitive to registration

errors, which cause the model to use the wrong information. Learning-based

approaches, in contrast, are more robust to registration errors since they use60

a global model and thus, not specific for a given region. On the other hand,

because of this reason, they might fail in distinguishing between adjacent struc-

tures with similar intensity patterns. Similar concerns have previously been

raised in the context of fetal brain segmentation by Wright et al. (2012).

Motivated by the complementarity of registration- and learning-based ap-65

proaches, in this paper we propose to combine them based on two different en-

sembling strategies, namely, stacking and cascading. Stacking aims at learning

which regions each method works best to combine them accordingly. Cascading,

on the other hand, is incremental, and results from one method are fed onto the
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other aiming at their improvement.70

Other works have adopted a cascading strategy for brain MRI segmenta-

tion (Wang and Yushkevich, 2013; Tu and Bai, 2009; Kim et al., 2013; Sanroma

et al., 2015). Compared to these works, the main methodological contribution of

this paper consists in the observation that learning- and registration-based label

fusion methods are complementary and how to best combine them to their ad-75

vantage. The cascading strategy is therefore one of the two proposed strategies

to address this question.

A preliminary version of this work was presented in Sanroma et al. (2016),

where we proposed the stacking strategy and obtained excellent results in the

NeoBrainS12 Neonatal Brain Segmentation Challenge (http://neobrains12.80

isi.uu.nl/). In the current paper, we 1) include the cascading scheme, 2)

compare both of them, 3) present further brain MRI segmentation experiments

on 6-month infants and a cohort of fetuses with isolated non-severe ventricu-

lomegaly (INSVM) and 4) analyze cortical folding abnormalities in INSVM fe-

tuses at later gestational ages than in Scott et al. (2013), when there is more85

gyrification.

2. Method

In the following we describe our proposed combination strategies. We use

as baseline methods 1) multi-atlas joint label fusion (JLF) (Wang et al., 2013)

as representative of registration-based methods and 2) SVM (Cortes and Vap-90

nik, 1995) classifiers as representative of learning-based methods. In multi-atlas

joint label fusion, each target label is computed as a weighted combination of

local labels from a set of registered atlases, based on the local similarity be-

tween atlas and target image patches. In SVM-based segmentation, a classifier

is learnt to discriminate the anatomical label on each point based on a set of ex-95
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tracted features, similarly as done in (Moeskops et al., 2015). Both registration-

and learning-based approaches require a set of multiple annotated images (i.e.,

atlases).

2.1. Cascading

We propose to combine complementary segmentation methods in a cascading100

approach so that the results of one of them are used for guiding the segmentation

with the other. Fig. 1 shows the pipeline for the testing phase of our proposed

cascading approach.

Figure 1: Pipeline for the testing phase of cascading. Input images, intermediate output and
final results are shown in blue rectangles on the left, middle and right sides of the figure,
respectively. Registration-based approach joint label fusion (JLF) with different modalities is
represented in orange boxes. Learning-based approach is composed of feature extraction and
learning, represented in green and orange boxes, respectively. Note that the learning based
approach is equipped with a dual pathway of feature extraction, for probabilistic estimates
and images, respectively. Dashed boxes contain details of each cascade level. The output of
the level-0 is used as input for level-1.

The level-0 of the cascade segments (possibly multi-modal) images (we use

T1 and T2 as illustrative example), with multi-atlas joint label fusion (Wang105

et al., 2013) applied independently to each modality. The estimated probability

maps along with the original images are fed onto the level-1 of the cascade.
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In level-1, first, a dual pathway is implemented for extracting multi-scale fea-

tures from both input images and level-0 probability maps, respectively. Image

features are extracted using 1) Gaussian, 2) Laplacian-of-Gaussian, and 3) gra-110

dient magnitude images convolved with Gaussians at multiple scales for each

modality. Probability features are obtained by convolving the level-0 prob-

ability maps with Gaussians at multiple scales. We use the following scales

σ = [1.0, 5.0, 10.0, 20.0] mm, which correspond to the standard deviation of the

Gaussian kernel. The multi-scale image and probability-map features are fed115

to a SVM classifier (Cortes and Vapnik, 1995) that outputs the final estimated

labelmap. Adding features at different scales allows the classifier to incorporate

local appearance information.

The training phase consists in standard SVM training where each sample

is built with the (image and spatial probability) features extracted from each120

voxel from the training set.

2.2. Stacking

We propose to learn an optimal spatial combination of the probabilistic

estimates of the baseline segmentation methods. Using probabilistic estimates

has better generalization abilities than using discretized segmentations (Li et al.,125

2014), as it allows for a finer quantification of the performance of each baseline

method during training. Fig. 2, shows the pipeline for the testing phase of our

proposed stacking approach.

As learning-based method, we use a similar SVM classifier as in the cascading

approach, but instead of a dual feature extraction pathway for probabilistic130

estimates and image features, respectively, it implements a single image feature-

extraction pathway. This is because the stacking approach fuses the probabilistic

estimates at a later stage. Since our stacking approach draws upon probabilistic

segmentations, we use the approach by Wu et al. (2004) to obtain probabilistic

7



Figure 2: Pipeline for the testing phase of stacking. Input images and final results are shown in
blue rectangles. Registration-based approach joint label fusion (JLF) with different modalities
is represented in orange boxes. Learning-based approach is composed of feature extraction and
learning, represented in green and orange boxes, respectively. Note that a single image feature
extraction pathway (for both modalities) is used for the learning-based method. Dashed boxes
shows the results of each method along with the optimal combination weights, computed
during training as described below. Final results are obtained as a weighted combination of
the results from the different methods.

predictions from SVM.135

The output segmentation is obtained as the weighted combination of the

base probabilistic segmentations, as follows:

Fi =
∑
k

ωk
i P

k
i s.t.

∑
k

ωk
i = 1 , (1)

where Pk
i is the label probability-vector assigned by method k to voxel i and

ωk
i is the weight denoting its contribution, whose computation is the goal of the

training phase and is described in the following.

2.2.1. Training

Instead of simply using the discrete ground-truth labels for training, we use

probabilistic estimates, which allows us to account for the confidence in the

prediction of each method when learning the optimal combination weights. We
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Figure 3: Margins for the learning-based and multi-atlas label fusion methods in a particular
example. Red circles indicate parts where the methods are complementary.

define the margin as performance measure for each baseline method, which is

positive (negative) in case it predicts the correct (wrong) label, with a magnitude

proportional to its confidence. That is,

mk
i = Λk

i P
k
ic (2)

where P k
ic is the probability assigned to the predicted label (i.e., c) by method140

k at voxel i, and Λk
i ∈ {1,−1} indicates whether the predicted label c is correct

(1) or not (−1). By using probabilistic estimates, we are not limited to just

determining whether the prediction is correct or not but we can furthermore

quantify the confidence of such prediction. Fig. 3 shows the margins for two

segmentation methods on a sample image, which visually captures the notion145

of complementarity.

Substituting the probability of the estimated label in Eq. (2) by the one cor-

responding to the ensemble segmentation of Eq. (1), the margin of the ensemble
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for point i is defined as:

mi (wi) =
∑
k

ωk
i Λk

i P
k
ic , (3)

where the weights vector wi =
[
ω1
i , . . . , ω

k
i

]
is the parameter of the ensemble to

be estimated.

Finally, we seek the optimal weights for each point that maximize the margin.

Instead of computing the combination weights for each point, we aggregate the

points in spatial neighborhoods N . In this way, we increase the number of

samples in the optimization to improve the stability of the results. For the

points in the neighborhood i ∈ N , we compute the weights that minimize the

following quadratic loss:

min
w

∑
∀i∈N

(1−mi (w))
2

+ λ‖w‖2 = min
w
‖u−Mw‖22 + λ‖w‖22 , (4)

where u is a vector of ones, M is a matrix with each column Mk containing the

margins of method k for all the neighborhood (i.e., Mk =
[
mk

1 , . . . ,m
k
i , . . . ,m

k
|N |

]>
)150

and λ is a regularization parameter. This minimization can be solved with stan-

dard convex optimization packages such as CVX (Grant and Boyd, 2014, 2008).

Fig. 4 shows the weights obtained by two segmentation methods for a given

training set of segmented images. Qualitative inspection of the weights reveals

that learning-based methods perform better in the cortex whereas multi-atlas155

label fusion performs better in the sub-cortical structures. These results are

consistent with the fact that learning-based approaches work best in the cortex,

where registration is difficult because it is a highly convoluted structure but

has a distinct intensity profile compared to the surrounding tissues. On the

other hand, registration-based approaches work best in the subcortical struc-160

tures which have less distinguishable intensity profiles but a better defined shape
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(a) Learning-based (b) Multi-atlas LF

Figure 4: Weights for the learning-based and multi-atlas label fusion methods. Bright denotes
higher weight. Points are aggregated in spatial neighborhoods to compute the weights.

and hence, more easily registrable.

3. Experiments and results

We evaluate the proposed combination strategies in 1) 6-month infant brain

segmentation using the iSeg2017 dataset (http://iseg2017.web.unc.edu/)165

and 2) fetal segmentation using an in-house dataset (Benkarim et al., 2018).

When both T1 and T2 images are available, we include the modality in the

acronym of the registration-based method, i.e., JLF T1 and JLF T2 (we use

both modalities simultaneously in the learning-based method, when available).

To evaluate the importance of including spatial features in the learning-based170

approaches, we test two versions of the SVM-based method: one including rough

atlas spatial priors as features (SVM) and the other without (SVM nospat).

As pre-processing, we first matched the intensity histograms of the images

of both datasets to a reference template. We used the templates by Shi et al.

(2011) and Gholipour et al. (2017) for the infant and fetal datasets, respectively.175

Next, we non-rigidly registered all the images to the above templates using

ANTs (Avants et al., 2008). Non-rigid registrations were used by 1) JLF to ob-

tain pair-wise registrations by concatenating registrations through the template

11
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and 2) SVM-based segmentation to obtain rough spatial priors to be included as

features. No post-processing steps were applied after the proposed combination180

methods.

The computational time for segmenting each subject was ∼ 30 min., which

was mostly spent by the baseline methods in equal proportion (AMD Opteron

Abu Dhabi 6378 processor).

3.1. 6-month infants185

Images for the iSeg 2017 segmentation challenge were obtained from the

Baby Connectome Project, an initiative jointly held by the University of North

Carolina (UNC) at Chapel Hill and the University of Minnesota (UMN) with

the aim of understanding how the human brain develops from birth through

early childhood.190

Results were evaluated in 3-fold cross-validation experiments on the 10 anno-

tated images provided for training purposes. Annotated tissues included white

matter (WM), gray matter (GM) and cerebro-spinal fluid (CSF). Datasets con-

tained both T1- and T2-weighted scans at 1 mm isotropic resolution. Skull

and cerebellum were extracted by the organizers with the iBEAT tool (http:195

//www.nitrc.org/projects/ibeat/). Fig. 5 shows the T1 and T2 images

along with the ground-truth tissue annotations for an example subject.

We select the best parameters according to 3-fold cross-validation exper-

iments. We selected the set of parameters that, in average, performed best

across the 3 folds. Then, we fixed these parameters for the segmentation ex-200

periments in all the folds. Specifically, for JLF, we set patch radius of 2 for

both modalities and search window of 7 and 5 for T1 and T2, respectively. For

SVM, we set the regularization constant to C = 5, we use an RBF kernel and

we normalize the feature vectors to zero-mean and unit standard deviation. For

stacking, we set the regularization parameter to λ = 10−3 (although we found205
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(a) T1 (b) T2 (c) Labemap

Figure 5: Images and labelmap for an example subject in iSeg 2017 database.

little performance differences for a range of values).

Table 1 shows the mean and standard deviation Dice coefficients obtained by

each method in each tissue. To get a better understanding of the performance

of the methods, Fig. 6 shows a boxplot with the distribution of average Dice

coefficients (across tissues) for all the methods.

Method CSF GM WM
JLF T1 88.18± 0.98 86.84± 1.12 84.35± 1.72
JLF T2 84.42± 1.91 83.18± 1.64 79.02± 1.70
SVM 90.96± 1.16? 86.27± 1.27 83.22± 1.68
SVM nospat 90.69± 1.24? 85.89± 1.40 82.81± 1.91
Stacking 90.83± 1.15? 87.81± 1.21 85.32± 1.57†
Cascading 91.48± 1.07? 88.44± 1.14 ? † 86.86± 1.80 ? †

Table 1: Mean (± st.d.) Dice coefficient of each method and each tissue in the iSeg 2017
database. Star (?) and dagger (†) denote significantly better than the base methods JLF T1
and SVM, respectively, according to Wilcoxon signed-rank test (p < 0.05).

210

As we can see from Table 1 and Fig. 6, the proposed combination methods

perform better than any of the individual baseline methods. We argue that this

is because the proposed combination methods succeed in exploiting the com-

plementarity of the baseline methods. In particular, the cascading approach

performed better than stacking. We did not find any improvements by adding215

further levels to the cascading approach based on SVM classifiers, thus suggest-

ing that results from previous layers were not useful for further improving the

results. Including spatial features to SVM increases its performance by ∼ 0.4
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Figure 6: Boxplot with the distribution of the average Dice coefficients across tissues for each
method.

Dice points, as we can see from the difference between SVM and SVM nospat.

Finally, the T2 modality might not be playing an important role in this partic-220

ular dataset, based on the results of JLF T2.

Out of the 21 participating teams in the challenge, our Cascading approach

ranked 5, 7 and 13 in the segmentation of WM, GM and CSF, respectively, ac-

cording to the Dice scores in the testing set. The deep learning methods based

on the methodologies by Moeskops et al. (2016) and Kamnistas et al. (2016)225

were among the best performing ones in the challenge. It is difficult to point

to a single factor explaining the performance of deep learning methods since

there is already a great variability in performance among them in the i-Seg

2017 challenge. One common feature of deep learning methods compared to the

proposed SVM-based approach is that feature extraction is performed as part230

of the classification problem instead of being done in two separate stages, and

therefore the extracted features are optimized for the classification task. An

interesting avenue of future research would be to substitute the SVM approach

by a deep learning method in the proposed ensembles. In the cascading ap-

proach, this would imply to design a new deep learning method that uses the235

spatial probability maps derived from multi-atlas segmentation as additional
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input channels.

3.2. Fetuses

3.2.1. Subjects

We selected 32 subjects from a cohort within a research project on congenital240

isolated ventriculomegaly, containing 19 controls and 13 cases of INSVM 1.

INSVM was defined as unilateral or bilateral ventricular width between 10-14.9

mm. Out of the 13 INSVM cases, 2 were left, 7 right and 4 bilateral. All

fetuses were from singleton pregnancies without other malformations or risk of

abnormal neurodevelopment. Ages of the included subjects range between 26245

and 29.3 gestational age in weeks (GA).

3.2.2. MRI Acquisition

T2-weighted MR imaging was performed on a 1.5-T scanner (SIEMENS 105

MAGNETOM Aera syngo MR D13; Munich, Germany) with a 8-channel body

coil. All images were acquired without sedation and following the American250

college of radiology guidelines for pregnancy and lactation. Half Fourier ac-

quisition single shot turbo spin echo (HASTE) sequences were used with the

following parameters: echo time of 82 ms, repetition time of 1500 ms, number

of averaging = 1, 2.5 mm of slice thickness, 280×280 mm field of view and voxel

size of 0.5 × 0.5 × 2.5 mm. For each subject, multiple orthogonal acquisitions255

were performed: 4 axial, 2 coronal and 2 sagittal stacks. Brain location and

extraction from 2D slices was carried out in an automatic manner using the

approach by Keraudren et al. (2014), followed by high-resolution 3D volume

reconstruction using the method by Murgasova et al. (2012).

1Approval was obtained for the study protocol from the Ethics Committee of the Hospital
Cĺınic in Barcelona - Spain (HCB/2014/0484) and all patients gave written informed consent
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3.2.3. Segmentation260

Ground-truth segmentations were obtained for the following tissues and

structures: extracerebellar cerebro-spinal fluid (CSF), cortical gray matter (CoGM),

white matter (WM), lateral ventricles (LV), cerebellum (CB) and brain stem

(BS). To obtain the ground-truth structures, first, 4 subjects were manually

segmented by two expert raters. Then, the remaining subjects were segmented265

using the automatic method by Sanroma et al. (2016) and the automatic seg-

mentations were manually corrected by the same expert raters. Fig. 7 shows

an example of raw acquisitions, the final reconstructed volume and the ground-

truth segmentations.

Figure 7: Brain MRI of a 26 weeks old (GA) healthy control reconstructed from 8 stacks of
2.5 mm slice thickness. From top to bottom: axial, coronal and sagittal views of axial (A)
and coronal (B) raw stacks, final reconstruction (C) and ground-truth segmentations (D).

For JLF, we set patch radius of 2 and search window of 3. For SVM, we set270

the regularization constant to C = 1, we use an RBF kernel and we normalize

the feature vectors to zero-mean and unit standard deviation. Likewise as in the

iSeg 2017 experiments, we set the stacking regularization parameter to λ = 10−3.

We select 3 subjects as atlases and segment the remaining 29 ones. Table 2

shows the average (and st.d.) in Dice coefficients across the 29 testing subjects.275
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To get a better understanding, Fig. 8 shows a boxplot with the distribution of

average Dice coefficients (across tissues) for all the methods except SVM nospat,

which obtained considerably lower values.

Method CSF CoGM WM
JLF 94.93± 0.99 89.71± 1.12 97.62± 0.58
SVM 95.20± 1.26 89.37± 1.47 97.42± 0.41
SVM nospat 89.02± 4.61 75.66± 12.02 85.53± 18.14
Stacking 95.56± 1.14? 90.37± 1.14 ? † 97.71± 0.36†
Cascading 95.46± 1.14 90.67± 1.06 ? † 97.88± 0.24 ? †
Method LV CB BS
JLF 93.67± 2.51 96.15± 0.46 94.07± 0.88
SVM 93.10± 2.48 95.86± 0.53 94.48± 0.43
SVM nospat 49.95± 21.67 43.56± 15.67 31.16± 13.38
Stacking 93.49± 2.47 96.02± 0.51 94.59± 0.43?
Cascading 94.22± 2.22 96.23± 0.50† 93.93± 0.92

Table 2: Mean (± st.d.) Dice coefficient of each method and each tissue in the fetal brain
database. Star (?) and dagger (†) denote significantly better than the base methods JLF and
SVM, respectively, according to Wilcoxon signed-rank test (p < 0.05).

Figure 8: Boxplot with the distribution of average Dice coefficients across tissues for each
method.

Similarly as with the previous database, the proposed combination strategies

outperform the baseline methods, however in this case the difference is smaller.280

Among the combination strategies, cascading slightly outperforms stacking. The

spatial information (derived through registration) plays a critical role in this

dataset, as can be seen by the poor results of SVM nospat. With T2 contrast

alone and without spatial information, it is indeed difficult to discriminate some
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deep brain structures such as the BS and LV.285

3.2.4. Cortical Folding Analysis

We extracted the inner cortical surface from the resulting segmentations to

assess the folding. We separated the two hemispheres by registration to the

developing brain atlas by Makropoulos et al. (2014). We smoothed the WM

binary masks using a 2 mm full width at half-maximum Gaussian kernel and290

we reconstructed cortical surface meshes for each hemisphere with the marching

cubes algorithm (Lorensen and Cline, 1987).

Cortical folding alterations due to ventricular enlargement were investigated

in each hemisphere independently using a curvature-based approach. A similar

approach has been used previously to study cortical folding in fetuses (Wright295

et al., 2014; Wu et al., 2015). For each vertex on the cortical surface, prin-

cipal curvatures were obtained, denoted as k1 and k2, and the following four

representative folding measures were computed:

• Curvedness index: CI =
√

k1+k2

2

• Positive mean curvature: PMC =
(
k1+k2

2

)+
300

• Squared mean curvature: SMC =
(
k1+k2

2

)2
• Positive Gaussian curvature: PGC = (k1 · k2)

+

The overall folding for each hemisphere was determined by a weighted av-

erage of these measures across all vertices, with weights corresponding to the

mean area of the cells incident at each vertex. For all these measures, the more305

folding, the higher the measure. Unilateral INSVM cases (i.e., left or right) were

considered as controls in the analysis of the opposite hemisphere.

Figures 9 and 10 show plots of the average folding measures across GA in

weeks for the left and right hemispheres, respectively. At the top of each plot,
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Figure 9: Different cortical folding measures in the left hemisphere w.r.t. gestational age in
weeks for the patient (blue) and control (green) groups, respectively. We overlay linear fits
for each diagnostic group respectively, along with their confidence intervals. P-values of the
association between cortical folding and diagnostic group are displayed in the top of each plot.

we display the p-values of the association between diagnostic group (INSVM310

/ control) and cortical folding, corrected by age, estimated with a generalized

linear model according to the following expression: folding ∼ INSVM + age.

Results show that there is indeed an association between ventricular enlarge-

ment in INSVM and cortical folding, especially in the left hemisphere. Cortical

folding alterations have been linked to neuro-developmental problems (Wolosin315

et al., 2009; Batty et al., 2015). These findings point to cortical folding ab-

normalities as potential makers for INSVM prognosis in addition to ventricular

enlargement (Beeghly et al., 2010). To test the efficacy of cortical folding ab-

normalities as markers for INSVM prognosis, post-natal follow up cognitive test
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Figure 10: Different cortical folding measures in the right hemisphere w.r.t. gestational age
in weeks for the patient (blue) and control (green) groups, respectively. We overlay linear fits
for each diagnostic group respectively, along with their confidence intervals. P-values of the
association between cortical folding and diagnostic group are displayed in the top of each plot.

data would be necessary.320

4. Conclusions

We have presented two strategies for combining the strengths of comple-

mentary brain MRI segmentation methods. Stacking learns the optimal spatial

combination of baseline segmentation methods and cascading uses the results

of one of them as input to the other. As complementary baseline methods, we325

use one representative of registration-based methods, namely, multi-atlas joint

label fusion (Wang et al., 2013) and one representative of learning-based meth-

ods, namely, SVM-based segmentation (Cortes and Vapnik, 1995). We compare
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the proposed methods in 6-month infant and fetal brain MRI segmentation ex-

periments. Results show that the proposed combination strategies outperform330

the individual baseline methods, suggesting that systematic combinations can

be learnt capable of improving the results. We found that cascading is a more

successful combination strategy than stacking in the presented experiments.

Adding more levels to the cascade did not further improve the results. One

possible reason might be that the additional classifiers were not methodolog-335

ically different from the ones in previous levels, although further research is

needed to determine the exact reason. Analysis of the resulting fetal brain MRI

segmentations shows that INSVM fetuses have a less convoluted cortex. This

suggests the potential of cortical folding abnormalities as marker of later neuro-

developmental outcomes. However, this remains to be tested when follow-up340

cognitive test data is available.
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