arXiv:1708.00251v1 [cs.CV] 1 Aug 2017

CNN Cascades for Segmenting
Whole Slide Images of the Kidney

Michael Gadermayr®‘, Ann-Kathrin Dombrowski®, Barbara Mara Klinkhammer®,
Peter Boor®, Dorit Merhof?

4Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
bInstitute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
“Corresponding author: M. Gadermayr, Michael.Gadermayr@lfb.rwth—-aachen.de
Kopernikusstr. 16, 52074 Aachen, Germany

Abstract

Due to the increasing availability of whole slide scanners facilitating digitization of
histopathological tissue, there is a strong demand for the development of computer
based image analysis systems. In this work, the focus is on the segmentation of the
glomeruli constituting a highly relevant structure in renal histopathology, which has
not been investigated before in combination with CNNs. We propose two different
CNN cascades for segmentation applications with sparse objects. These approaches
are applied to the problem of glomerulus segmentation and compared with conven-
tional fully-convolutional networks. Overall, with the best performing cascade ap-
proach, single CNNs are outperformed and a pixel-level Dice similarity coefficient
of 0.90 is obtained. Combined with qualitative and further object-level analyses the
obtained results are assessed as excellent also compared to recent approaches. In con-
clusion, we can state that especially one of the proposed cascade networks proved to be
a highly powerful tool for segmenting the renal glomeruli providing best segmentation
accuracies and also keeping the computing time at a low level.

Keywords: cascades, neural networks, fully convolutional networks, glomeruli,
kidney

Figure 1: Example WSI showing a complete mouse kidney (left) as well as magnified versions of a selected
patch. The right patch exhibits one of the regions-of-interest, a so-called glomerulus.
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1. Introduction

The digitization of histopathological tissue by means of so-called whole slide scan-
ners results in highly resolved image data exhibiting resolutions in the range of gi-
gapixels. As a consequence, the resulting whole slide images simultaneously contain
large context (e.g. a slice of a mouse kidney, Fig. |1} left) and a high level of detail
(Fig.[I] right). In this work, we focus on an application scenario from kidney pathol-
ogy, specifically, we aim at segmenting the so-called glomeruli (Fig. [I] right) which
are potentially the most relevant structures in histopathological research of the kidney
(see Sect. 2). In this study, focus is on mouse kidney which is particularly relevant in
research. However, mammalian kidneys in general are highly similar and therefore it
can be assumed that an approach developed for mouse kidney can be also applied to
other mammalian kidneys after small adjustments.

Due to the large size of renal WSIs, a manual annotation (detection and encircling)
for research purposes is cumbersome and extremely time consuming (Fig. [Z). Apart
from the difficulty of detecting each of the small objects (diameters of approx. 300
pixels) in the huge WSIs, the segmentation procedure is also subject to inter-observer
variability showing potential for bias in the evaluations. A further issue is given by
the variable sizes of the objects primarily because the 3D objects are cut at different
positions and not necessarily centrally. During manual annotations scientists have to
decide whether the respective glomerulus is large enough to be included into the statis-
tics (as small objects are generally not considered) also providing potential for bias in
the evaluation.

Although histopathological image analysis is currently of high interest (Barker|
et al., |2016; BenTaieb and Hamarneh, |2016; [Hou et al., |2016; [Ronneberger et al.|
2015 |Sertel et al.l 2009} [Veta et al., [2016), there exists few literature on methods for
automated segmentation of renal WSIs (Sect. [I.2). One inhibiting factor for the devel-
opment of segmentation methods is given by the relatively high initial effort required
for annotating large amounts of training and testing data which are required for most
state-of-the-art approaches. This is especially time consuming because, due to the rela-
tively small area covered by the sparsely occurring glomeruli, large overall data need to
be manually processed (Gadermayr et al., 2016a). Moreover, difficulties for automated
segmentation approaches arise because of a high variability due to the staining process,
due to variations in the cutting process as well as inter-subject variability (Gadermayr
et al.l 2016c)). Especially in case of pathological tissue, the outline of the glomeruli as
well as the texture of the tissue can change dramatically.

Convolutional neural networks (CNNs) generally exhibited excellent performance
in recent work on biomedical image analysis and especially in the field of histopatho-
logical image analysis (BenTaieb and Hamarnehl 2016; Ronneberger et al., 2015).
For segmentation tasks, especially fully-convolutional networks (FCNs) and deriva-
tives (BenTaieb and Hamarneh, 2016} |Girshick et al.l 2014} [Long et al. 2015} Ron-
neberger et al., 2015} Seyedhosseini et al.,|2013)) yielded excellent performances. Pre-
vious work (Gadermayr et al., [2017) additionally identified them to be highly robust
to staining variability providing further incentive for an investigation with respect to
WSIs of the kidney.

However, the application addressed here distinctly differs from typical tasks for



FCN-based segmentation (BenTaieb and Hamarneh| 2016} [Ronneberger et al., 2015)).
Whereas the original images are huge, the glomeruli, which should be segmented, are
small objects also constituting a small overall area compared to the negative (non-
glomerulus) class (Fig.[I). Large areas in central kidney regions (medulla) even typi-
cally do not show any glomeruli.

1.1. Medical Background

Histological analyses of kidneys are crucial and are broadly utilized in basic and
translational research, in drug development as well as in drug toxicity testing. Mor-
phological and ultrastructural alterations provide information on the pathomechanisms
of renal injury, location (which compartment and/or which cells of the kidney are af-
fected), distribution (is the damage focal or diffuse or segmental or global within a
glomerulus) as well as severity of damage. Glomeruli are the blood-filtration units and
are affected in a large number of kidney diseases. Analyses of glomeruli is therefore
definitely one of the most important steps in histological evaluation of kidney biopsies
in both clinical as well as experimental nephropathology. To obtain morphological in-
formation of specific structures of interest, different histological stainings are applied.
The most important staining in renal histopathology is periodic acid schiff (PAS) pro-
viding important information for diagnosis (Fig. [I] Fig.[2).

1.2. Related Work

Few approaches were proposed to perform segmentation of the glomeruli. Kato
et al.| (2015) introduced a separate detection and segmentation stage, both based on
training a supervised classification model, specifically a linear support vector machine.
For detection and segmentation different versions of histogram of oriented gradient
descriptors were applied. Detection was performed by means of the sliding window
approach. For segmentation, a polygon-fitting technique was utilized to determine
the precise outline of the objects by adding a circularity constraint. For learning to
distinguish between border region and non-border regions (and not between inside and
outside of a glomerulus), this method requires highly precise annotations for training.
This method was developed for a specific staining (desmin) which highlights cells in
glomeruli.

To circumvent the need for large annotated training data, [Samsi et al.|(2012) pro-
posed an unsupervised segmentation algorithm. The authors aim at segmenting the
Bowman’s capsule surrounding the glomerulus by applying a color-based segmentation
approach. The segmentation method consists of k-means clustering after thresholding
including morphological operations. The inherent problem here is, that the Bowman’s
capsule is not always visible, depending on the staining protocol as well as the cutting
plane (Fig. [T} 2). Therefore, this method is not capable of generating a reliable precise
segmentation of all objects.

All further approaches do not focus on a segmentation but on related tasks such
as tissue classification or object detection: In the work of |(Gadermayr et al.| (2016b)
the need for large annotated training data was circumvented by a weakly-supervised
approach. It was shown that even with a small number of positive training samples, a
detection of the glomeruli can be performed. However, a segmentation stage is missing



in this work. In a study of|Herve et al.|(201 1)) various image representations were inves-
tigated to determine whether they are appropriate for distinguishing between different
regions in renal pathology. The authors found that colour as well as texture represen-
tations can be utilized for distinguishing between the investigated texture classes. In a
further study (Gadermayr et al., 2016c) domain adaptation methods were investigated
for patch-wise classification of renal tissue. It was shown that domain adaptation can
help to improve the fit of trained models for image data showing changed properties.
However, the performance of feature-based patch-wise classification was not sufficient
for a reliable classification or segmentation applying a difficult-to-segment staining.

Pedraza et al| (2017) applied a CNN for distinguishing between glomerulus and
non-glomerulus texture based on previously extracted patches (similar to |Gadermayr
et al.| (2016c); Herve et al.|(2011)). Although this application is distinct from a seg-
mentation, it provides evidence for the principal effectiveness of CNNs for distin-
guishing between glomerulus and non-glomerulus tissue. Neural networks were also
applied by [Ledbetter et al.| (2017) with focus on a regression on WSI level. Specifi-
cally, the authors focussed on directly predicting the kidney function based on biopsies
from patients suffering from chronic kidney disease without previously segmenting the
glomeruli.

Besides renal pathology, CNNs were effectively applied in further histopatholog-
ical image analysis applications. Classifications of WSIs with different targets were
performed by Barker et al| (2016); Hou et al.| (2016); |Sertel et al|(2009). CNNs also
yielded excellent performances in segmenting and classifying histopathological image
data (BenTaieb and Hamarneh| 2016} [Veta et al.| | 2016)). For segmentation, besides the
sliding-window-based approach (Ciresan et al.,2012), especially FCNs as well as mod-
ifications were successfully applied in the field of biomedical image analysis (BenTaieb
and Hamarneh| 2016} Ronneberger et al.,[2015) especially due to their high efficiency.

Since the work of [Viola and Jones| (2001), cascades became highly popular, specif-
ically in the field of face detection. Cascades were also combined with state-of-the-art
CNN architectures and were not only applied to face detection (Li et al.l 2015) but
also for segmentation applications (Dai et al., |2016; Jackson et al.| 2016; Ma et al.|
2017). Jackson et al.|(2016) proposed a method to improve facial part segmentation
performance by first detecting facial landmarks. |Ma et al.| (2017) introduced a cas-
cade for combining segmentation and classification of thyroid nodules in ultrasound
images. |Dai et al.|(2016) proposed a CNN cascade including feature sharing to sepa-
rately address detection, segmentation and classification. In contrast to these multi-task
approaches (Dai et al., [2016} Jackson et al.,[2016}; [Ma et al.,[2017)), here the focus is on
segmentation only.

1.3. Contribution

We propose two CNN cascades for segmentation applications with sparse objects-
of-interest. By applying cascade approaches, one network is optimized for detection
(i.e. a rough segmentation) based on the whole input images and another network is
tweaked for a precise segmentation based on the output of a detection. The introduced
approaches are evaluated with respect to the segmentation of glomeruli in WSIs of
mouse kidneys and are compared to conventional single CNNs trained with different
strategies. This application scenario was not investigated before in combination with



Figure 2: Example ground-truth annotations for several glomeruli in a renal WSIL.

CNNs. Compared to typical segmentation scenarios for CNNs, the objects-of-interest
in this task are small, sparse objects also constituting a small relative overall area. Ex-
haustive evaluation is performed on pixel- as well as object-level figuring out positive
and negative aspects of the different approaches.

The remainder of this paper is structured as follows: Section. 2 provides details
of the methods proposed and investigated in this paper. In Sect. 3, the experimental
setting as well as the results are shown. In Sect. 4, the results are discussed and finally,
Sect. 5 concludes this paper.

2. Methods

We investigated four different segmentation pipelines consisting of two conven-
tional single FCNs as well as two cascade networks (Sect. El). The individual net-
work architectures consisting of the original and a shallow version of the U-Net
[neberger et al}[2013)) (U-Net-D and U-Net-S) and a sliding window CNN method
(SW-CNN) are provided in Sect. [2]2. Further details on data augmen-
tation, experimental details, image data and implementations are provided in Sect.[2]3-
le.

2.1. Segmentation Pipelines

The following four different segmentation pipelines based on different training
strategies are investigated in this work:

2.1.1. Single Net 1 (SN1)

For this approach, the U-Net-D is trained on the high resolution image data (for
explanations of the resolutions see Sect. [2.5). To balance the ratio between positive
and negative pixels, training is performed with patches randomly sampled with the re-
striction that at least a part of an object (glomerulus) must be visible. Due to the sparse
occurrence of the objects, positive pixels still occur less often. The U-Net architecture
was chosen due to the efficient end-to-end learning and the high performances obtained
in biomedical applications (Ronneberger et al., 2015).

2.1.2. Single Net 2 (SN2)

For this approach, the same network architecture (U-Net-D) and image resolution
is applied. Training is performed with data randomly sampled all over the kidney in
order to uniformly incorporate data from regions distant to the objects-of-interest. This



is also motivated by the fact that the negative class shows more variability compared to
the positive (glomerulus) class (Gadermayr et al., 2016b).

2.1.3. Cascade Net 1 (CNI)

It can be assumed that training in an extremely class-imbalanced sense (SN2) is not
beneficial for precise segmentations whereas an imbalance considering data variability
(SN1) could lead to false detections. To circumvent a trade-off between precision and
recall, we propose two cascade network approaches. CN1 consists of the SW-CNN
on the low resolution image for a detection of the regions-of-interest followed by a
precise segmentation of the U-Net-D on the high resolution image. The U-Net-D is
only applied to patches showing detected objects and training is performed for both
networks individually. To tweak the two networks for their purposes, the SW-CNN is
trained based on randomly sampled data (as in case of SN2), whereas the U-Net-D is
trained on object containing data only (as in case of SN1).

2.1.4. Cascade Net 2 (CN2)

CN2 consists of the shallow U-Net-S applied to low resolution images followed by
a deep U-Net-D applied to the high resolution data. The shallower U-Net-S compared
is utilized for the first stage in order to account for the lower image resolution. It is
trained based on randomly sampled data (as in case of SN2), whereas the U-Net-D
is trained on object containing data only (SN1). As in case of CN1, the U-Net-D is
only applied to regions showing detected objects. The application of an FCN in a first
stage is motivated by the high computational efficiency. Furthermore, the impact of the
different architecture compared the SW-CNN should be assessed.

2.2. Neural Network Architectures

Three different network architectures were investigated consisting of a pixelwise
CNN relying on sliding window segmentation and two different FCNs. All of them
proved to be highly effective for biomedical segmentation applications.

2.2.1. Sliding-Window Convolutional Neural Network (SW-CNN)

The first network architecture is given by the segmentation approach introduced
by |Ciresan et al.| (2012) which is based on a sliding window approach using a CNN
for classification on patch-level. The utilized network structure consists of alternations
between convolutional (three 4 x 4 and one 5 x 5 layers) and pooling layers (2 x 2)
followed by one fully connected layer with 200 neurons and the output layer containing
two neurons, one for each class (glomerulus and non-glomerulus) as proposed by |Cire-
san et al.|(2012). The input image size is 95 x 95 pixels.

We also applied foveation (Ciresan et al., [2012) utilizing different Gaussian ker-
nels (o € [1,9]) and non-uniform sampling to provide the network with more context
information while keeping the input image size small (Fig.[3).
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Figure 3: Effect of foveation and non-uniform sampling on a glomerulus patch.

2.2.2. Fully Convolutional Networks (FCN)

[Cong et al] (2013)) introduced an FCN that is able to generate output pixel maps
instead of single pixels only. This so-called end-to-end training especially increases
efficiency of segmentation compared to the sliding window approach
2012). We investigated a modified version of the traditional FCN, the so-called U-
Net (Ronneberger et al.,[2015) which combines up-sampled features from deep, coarse
layers with those from shallow, fine layers and exhibited excellent performances in
biomedical applications. Similar architectures were also proposed in literature (Gir-
[shick et al.| 2014} [Long et al.| 20135}, [Seyedhosseini et al.|[2013).

The contracting path of the U-Net consists of two 3 x 3 convolutions followed by
a 2 x 2 max pooling. The expanding path consists of an up-sampling step, followed by
a 2 x 2 convolution, during which the number of feature channels is divided by two.
The feature maps are then combined with the feature maps of matching resolution from
the contracting path facilitating training with view training samples and/or allow to use
deeper network architectures.

Besides the original network architecture (Ronneberger et all, 2015) consisting of
23 convolutional layers (U-Net-D), we furthermore investigated a shallower architec-
ture consisting of 13 convolutions to take account of different image resolutions (U-
Net-S). A comparison of the networks investigated in this work is provided in Table[T]

network in.put ou.tput network conv.  pooling tra‘ining
size size parameters  layers layers time
SW-CNN 95 x 95 1x2 220,826 4 4 0.5h
U-Net-D 492 x 492 308 x 308 31,031,745 23 4 55h
U-Net-S 492 x 492 452 x 452 1,862,849 13 2 45h

Table 1: Comparison of the investigated different network architectures.

2.3. Data Augmentation & Training Data

As the glomeruli do not have a distinct orientation, rotation (multiples of 90°) and
flipping was performed without losing any distinctive information. Additionally, we
applied elastic deformations (Ronneberger et al.}, 2015 [Simard et al., 2003;[Wong et al.}




2016) to cover natural variability. In the case of the SW-CNN, additionally foveation
and non-uniform sampling was applied as described in Sect.

2.4. Experimental Details

As common practise for preprocessing, we transformed the data to show zero-mean
and unit-variance. For training the networks, batch normalization was applied in com-
bination with L2 Regularization. The batch size was set to five for the FCNs and to
100 for the SW-CNN. All networks were trained using cross-entropy as a loss function
and Adam (Kingma and Bal [2014)) as an optimizer with learning rate v = 1075. The
networks were trained for 15 epochs, where the optimum epoch was evaluated based
on the validation error. The reported rates were obtained on a separate test set.

In order to facilitate unbiased evaluation and to obtain an outcome for each WSI,
eight-fold cross validation was applied. The available 24 WSIs were split into training,
validation and test set containing 18, three and three images, respectively. For the U-
Net architectures, we extracted 2,700 patches from the 18 training WSIs for each fold
for training. These patches where further augmented resulting in 10,800 patches for the
U-Net-D and 27,000 patches (due to the smaller input image size) for the U-Net-S. For
the SW-CNN, overall 864,000 augmented samples were extracted from 3,600 original
patches. For the sliding window approach (SW-CNN), a step size of five pixels (in
the downscaled image) was selected to keep the computation effort comparable to the
FCN.

2.5. Image Data

The WSI data was obtained from resected mouse kidneys. Kidneys were processed
as previously described by Boor et al.|(2015). They were fixed in methyl Carnoy’s solu-
tion and embedded in paraffin. Paraffin sections (1 pm) were stained with PAS reagent
and counterstained with hematoxylin. Whole slides were digitalized with a Hamamatsu
NanoZoomer 2.0HT digital slide scanner in combination with a 20x objective lens.

The investigated overall image data set consisted of 24 WSIs showing mouse kid-
ney stained with PAS with sizes of roughly 50000 x 40000 pixels. All of these slides
were manually annotated, specifically all glomeruli were encircled by a polygon by a
student helpe supervised by an expert (coauthor B. M. Klinkhammer). As in previ-
ous work (Kato et al.| 2015)), the second highest resolution (i.e. the highest resolution
downscaled by factor 2) was accessed for precise segmentation, constituting the high
resolution”. Additionally, for first-stage segmentation (CN1, CN2) we also made use
of a resolution obtained by additionally downscaling by factor 4 (referred to as “low
resolution”). Due to the multi-resolution image format (Hamamatsu ndpi), these reso-
lutions can be efficiently directly accessed without the need for actual downsampling.

2.6. Implementation Detail

All approaches were coded in python using Keras (Chollet, 2015) as a high-level
neural networks API, running on top of TensorFlow (Abadi et al., 2015). Evaluations
were performed on NVIDIA TITAN X graphics cards.

1Special thanks to Hanry Ham for supporting us with highly precise annotations



3. Results

Evaluation was first performed on pixel-level (Sect. [3.1)), i.e. the binarized CNN
output was interpreted as class label map. These output label maps were directly com-
pared with the ground-truth label maps for the complete WSIs. Furthermore, the seg-
mentation performances were evaluated on object-level (Sect. [3.3)). For this purpose,
we computed the performances individually for each glomerulus and finally aggregated
the outcomes by computing the cumulative distributions based on the segmentation
metric.

Whereas pixel-level analysis facilitates assessing the general performance consid-
ering false classifications, object-level analysis additionally allows to separate a false
detection of objects and an imprecise segmentation.

3.1. Pixel-Level Analysis

For evaluating the segmentation performances, first the pixelwise classification per-
formance was assessed. In Fig. [da] Dice similarity coefficient (DSC), precision and
recall is provided for all individual approaches. Specifically, we provide mean and
standard deviation over the individual WSIs.

Considering the outcomes, we notice that balanced-training-based SN1 delivered
DSCs of 0.77 and was distinctly outperformed by SN2 (DSC: 0.86) relying on data
sampled all over the kidney although recall was decreasing. With both multi-stage
networks, CN1 and CN2, the precision of SN1 as well as the recall of SN2 were out-
performed. Overall, DSCs were 0.81 and 0.87, respectively.

For further analyses (Fig. b)), we excluded glomeruli which were marginally cut
only (and therefore smaller than 20,000 pixels) in the ground truth as well as in the
segmentation. This is motivated by the fact that in research these objects are ignored as
well. Furthermore, large objects (comprising more than 200,000 pixels) were deleted
which were obviously no glomeruli (and can be easily removed automatically) but
influenced the performance measure distinctly. This procedure can be understood as
postprocessing.

Considering the thereby achieved measures, all of them increased and we obtained
DSCs between 0.84 (SN1) and 0.90 (CN2). Especially precision increased distinctly
for all approaches due to a reduced number of false-positive objects. CN2 still showed
the best performance followed by SN2 as in case of evaluating the original CNN out-

puts (Fig. [4a).

3.2. Object-Level Analysis

Furthermore, the segmentation performance was calculated on object level, i.e. we
computed the performances (DSCs) individually for each glomerulus in the ground-
truth and finally aggregated the outcomes by computing the cumulative distribution
based on the measure as shown in Fig. [5a]

In this setting, CN1, CN2 and SNI1 exhibited similar performances. 95 % of
ground-truth glomeruli showed a segmentation performance (DSC) of 0.80 and above.
80 % of ground-truth glomeruli even showed a segmentation performance of 0.90 and
above. The single resolution protocol SN2 showed worse classification rates.
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This object-level analysis (Fig. [5a), however, completely ignores false positive ob-
jects as only the segmentation performance of ground-truth objects was aggregated and
false positive objects were not assessed. Therefore, we additionally analysed the per-
formance based on the segmented objects ignoring that some objects were missed (i.e.
false negative objects are neglected here).

Fig. [5b] shows the cumulative distributions of detected objects in a similar man-
ner. Whereas object-level recall was generally extremely high as almost each ground-
truth object showed a DSC greater than 0.0 (left column in Fig. [5a), object-level preci-
sion differed more distinctly. SN1 and also CN1 exhibited the lowest precision (0.58
and 0.67) indicated by cumulative rates starting at a low DSC-level. Especially CN2
showed the best rates over the whole DSC range. The obtained object-level precision
was 0.86 (Fig.[5b] left column).

3.3. Qualitative Analysis

Exemplary segmentation outputs for complete WSIs are provided in Fig. [6] which
also exhibits the cumulative object-level measures as summarized for all objects in
Fig.[5aland Fig.[5b] Further example segmentation output on a high resolution is pro-
vided in Fig.[/|showing examples for mis-segmentations as well as accurate segmenta-
tions.

3.4. Runtime Evaluation

Empty regions in the WSIs were previously detected by means of low-pass fil-
tering, thresholding and morphological operations and thereafter ignored to increase
efficiency. The runtimes for the four pipelines are as follows: Whereas the single net-
works SN1 and SN2 showed similar execution runtimes of 135 s per WSI on average,
CN1 and CN2 both exhibited improved efficiency resulting in 105 s (CN1) and 60 s
(CN2) per WSI. The improvements of efficiency occurred due to fast first stages (CN1:
18 s, CN2: 3 s) distinctly decreasing the amount of segmented data in the second stage.

4. Discussion

In this work, two CNN cascades were proposed, applied to the problem of glomeru-
lus segmentation and compared with two conventional CNN approaches.

Considering the single network approaches SN1 and SN2, it can be observed that
SN1 showed distinctly lower precision whereas SN2 exhibited slightly lower recall
(Fig. [6). This is obviously due to the divergent training setting with more negative
data in case of SN2 compared to the rather balanced setting in case of SN1. In order
to optimize the DSCs it can be summarized that the negative class exhibiting higher
variability requires more training data in a single network setting.

Considering the cascade approaches it can be observed that both methods were able
to increase the precision of SN1 while also increasing the recall of SN2. Training the
first glomerulus detecting stage with large negative data while training the final seg-
menting stage with rather balanced data is obviously an effective approach to tackle a
segmentation application with highly unbalanced class distributions. Especially CN2,
relying on two FCNs, is able to improve the overall segmentation performance (DSC)
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(b) Examples for mis-segmentations (too small segmentation, false negative object
and false positive object)

Figure 7: Example segmentation output in a high resolution (red) extracted from the WSI shown in Fig.Elm

compared to a single FCN even further. CN1, which is based on the sliding-window
approach for detection of the glomeruli exhibited a lower precision also leading to a
lower DSC. This is supposed to be due to the rather large step size which was chosen to
keep the computational costs on a similar level compared to the fully convolutional net-
work. Although measures generally increase, the rankings are consistent if considering
the original CNN output (Fig. a) or the domain specific evaluation in Fig. [#b]

Considering the object-level scores (Fig. [5a and [5b) it can also be noted that CN2
corresponds to the best overall approach providing the best outcomes for both evalu-
ation procedures which is a highly interesting outcome as in general improved recall
often corresponds to decreased precision and vice versa. Comparing the object-level
scores, we notice that CN2 was only negligibly inferior to any of the other approaches
in the range between a DSC of 0.00 and 0.80 based on evaluating the ground-truth
objects (Fig. [5a). That means, some of the glomeruli which were weakly segmented
(e.g. DSC 0.6 and below) with e.g. SN1 where not detected at all with CN2. As the
difference is minor and as it is questionable if weakly segmented objects are for the fi-
nal problem not even more problematic than objects which were not detected at all, we
conclude that these analyses identified CN2 as best approach. Compared to pixel-level
analysis, the object-level benefit of CN2 compared to SN2 is even more pronounced.
This is supposed to be because in case of CN2 the second stage network was optimized
for precise segmentation by training on more specific glomerulus-containing data only.

To summarize, CN2 performed best on pixel-level as well as on object-level pro-
viding a highly appropriate ratio between precision and recall in both scenarios. This
approach also performed best considering the evaluation runtimes.
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4.1. Comparison with Previous Work

Due to little literature on glomerulus segmentation in combination with different in-
vestigated histological stainings, it is very difficult to compare the proposed approaches
with previous work.

We can compare the detection performance with a previous sliding window detec-
tion method (Gadermayr et al., [2016b) showing detection F;-Scores of 0.80 for PAS
stained WSIs. For CN2, we obtain detection rates of 0.91 (precision: 0.97, recall: 0.86)
which is clearly higher. However, a direct comparison is not completely fair because
in the recent work focus was on obtaining a small-data-based solution with very few
training samples only.

An evaluation for glomerulus segmentation was performed by Kato et al.| (2015).
However, the authors focused on a immunostaining (desmin), which is a known glomeru-
lar injury marker specifically delineating cells in glomeruli with the disadvantage that
not all glomeruli are explicitly highlighted (Kato et al.l [2015). As we focused on the
general purpose PAS staining, a direct comparison of rates is not equitable and also
an application of the proposed method on our data is difficult. Ignoring the different
data and directly comparing the outcomes, it can be assumed that our method performs
a more accurate segmentation as especially the object-detection rates of the proposed
algorithm were lower (mean F;-Score of 0.87) due to a larger number of false-positive.
Considering the segmentation stage, 90 % of the detected glomeruli showed an F-
measure greater than 0.80 which was also higher in case of CN2.

4.2. Interpretation of Segmentation Performance

The original evaluation on pixel level (Fig. 4] (a)) was limited by the fact that the
ground-truth annotation contains small objects which where not always annotated be-
cause at some point it becomes extremely difficult to determine if a marginally cut
glomerulus actually is a glomerulus. As these small objects are not relevant for medical
purposes, we excluded them (as well as very large objects with can be easily detected)
for all further evaluations. The obtained outcomes are highly satisfying from a quanti-
tative as well as qualitative point of view. We assume that the considered application
scenario is consequently solved and focus in future should be on further issues such as
variability due to pathologies and on different histopathological stainings. Segmenta-
tion DSCs of 0.90 and above on pixel- and object-level indicate a good correspondence
of ground-truth and segmentation output. As the ground-truth annotations are also sub-
ject to uncertainty and inter-observer variability, we assume that the obtained results are
quite close to the limits of feasibility.

The obtained computing times of 60 s on average on a single GPU indicate a high
effectiveness of the proposed pipeline which processes images with resolutions in the
range of one gigapixel. Thereby, biomedical analyses can be performed without long
delays.

5. Conclusion

Two CNN cascades were proposed, applied to the problem of glomerulus segmen-
tation and compared with two conventional CNN approaches. We can state that FCNs
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are generally highly powerful tools for this segmentation task. Specifically, a cascade
consisting of an FCN for detection and another network for precise segmentation (CN2)
delivered the best outcomes exhibiting a mean DSCs of 0.90 on pixel-level. Consider-
ing the results on object-level, 80 % of the ground-truth objects were segmented with
a DSC of 0.90 and above in combination with the fewest false-positives which is even
more impressive and shows that this method can directly be utilized in practise for tis-
sue showing no pathological variations. We are confident that the proposed method can
also applied to other problem domains with sparsely distributed objects-of-interest.

In future work, we will investigate the effect of typical pathologies which has not
been performed so far. We will focus on iterative unsupervised domain adaptation of a
healthy model by means of WSIs showing increasing severity.
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