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Abstract

We present the application of limited one-time sampling irregularity map (LOTS-IM): a fully automatic
unsupervised approach to extract brain tissue irregularities in magnetic resonance images (MRI), for quan-
titatively assessing white matter hyperintensities (WMH) of presumed vascular origin, and multiple sclerosis
(MS) lesions and their progression. LOTS-IM generates an irregularity map (IM) that represents all voxels
as irregularity values with respect to the ones considered "normal”. Unlike probability values, IM represents
both regular and irregular regions in the brain based on the original MRI’s texture information. We evaluated
and compared the use of IM for WMH and MS lesions segmentation on T2-FLAIR MRI with the state-
of-the-art unsupervised lesions’ segmentation method, Lesion Growth Algorithm from the public toolbox
Lesion Segmentation Toolbox (LST-LGA), with several well established conventional supervised machine
learning schemes and with state-of-the-art supervised deep learning methods for WMH segmentation. In
our experiments, LOTS-IM outperformed unsupervised method LST-LGA on WMH segmentation, both in
performance and processing speed, thanks to the limited one-time sampling scheme and its implementation
on GPU. Our method also outperformed supervised conventional machine learning algorithms (i.e., support
vector machine (SVM) and random forest (RF)) and deep learning algorithms (i.e., deep Boltzmann machine
(DBM) and convolutional encoder network (CEN)), while yielding comparable results to the convolutional
neural network schemes that rank top of the algorithms developed up to date for this purpose (i.e., UResNet
and UNet). LOTS-IM also performed well on MS lesions segmentation, performing similar to LST-LGA.
On the other hand, the high sensitivity of IM on depicting signal change deems suitable for assessing MS
progression, although care must be taken with signal changes not reflective of a true pathology.

Keywords: white matter hyperintensities (WMH), multiple sclerosis (MS) lesion, unsupervised lesion
segmentation, irregularity map, penumbra of brain’s lesion, characterisation of WMH and MS lesions.

1. Introduction

Stroke lesions, white matter hyperintensities
(WMH) presumably of vascular origin and cen-
tral nervous system’s lesions in multiple sclero-
sis (MS) similarly appear as hyperintense (bright)
regions in T2-Fluid Attenuation Inversion Recov-
ery (FLAIR) brain MRI. WMH of presumably
vascular origin have been reported a predictor of
stroke (Rensma et al., 2018) and are associated
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with cognitive decline (Pohjasvaara et al., 2000;
del C. Valdés Herndndez et al., 2013) and progres-
sion of dementia (Wardlaw et al., 2013). MS le-
sions described as T2-weighted hyperintensities of
diameters of 3mm or more, disseminated in dis-
tinct anatomical locations within the central ner-
vous system indicating a multifocal process, are
part of the MS diagnostic criteria (Thompson et al.,
2018). Interestingly, it has been reported that the
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extent of these namely T2-FLAIR hyperintensities
not always predicts functional degeneration in MS,
and that smaller T2-FLAIR hyperintensities could
be disproportionally more damaging than larger le-
sions (Meier et al., 2007). Therefore the need to
identify and characterise all breadth of lesions.

Due to their importance, there have been many
studies proposing different approaches/methods for
detecting and assessing WMH and MS lesions au-
tomatically. Hence, voxels of WMH and MS le-
sions in T2-FLAIR MRI have been identified and
”segmented” from the other "normal” brain tissues
either with the help of manually generated labels
(supervised learning) or without the help of these
manual labels (unsupervised learning).

Since the widespread use of deep neural network
algorithms (i.e. referred to as "deep learning”) in
computer vision, these methods have become the
state-of-the-art for detection/segmentation prob-
lems in brain MRI. For example, deep learning
based architectures such as DeepMedic (Kamnit-
sas et al., 2017), UNet (Ronneberger et al., 2015)
and UResNet (Guerrero et al., 2018) have outper-
formed conventional machine learning algorithms
(e.g., support vector machine (SVM) and random
forest (RF)) on automatic segmentation of WMH.
However, as supervised methods, they are highly
dependent on manual labels produced by experts
(i.e., physicians) for training process. This depen-
dency to expert’s opinion limits their applicabil-
ity due to the expensiveness of manually generat-
ing WMH labels and the limited number of them.
Furthermore, the quality of manual labels itself de-
pends on and varies according to the expert’s skill.
These intra/inter-observer inconsistencies can be
quantified and reported, but they do not solve the
problem. On the other hand, the more recent un-
supervised deep learning methods based on genera-
tive adversarial networks (GAN) (Goodfellow et al.,
2014), such as anomaly GAN (AnoGAN) (Schlegl
et al., 2017) and adversarial auto-encoder (AAE)
(Chen and Konukoglu, 2018)), need large number
of both healthy and unhealthy data for adversarial
training processes, usually not available or easily
accessible.

On the other hand, conventional unsupervised
segmentation methods, such as Lesion Growth Al-
gorithm from Lesion Segmentation Tool toolbox
(LST-LGA) (Schmidt et al., 2012) and Lesion-
TOADS (Shiee et al., 2010), do not have the afore-
mentioned dependencies to segment WMH and
multiple sclerosis (MS) lesion in brain MRI. Hence,

these methods have been tested in many studies
and become the standard references to the other
segmentation methods. Unfortunately, their per-
formance is usually worse than that of supervised
methods (Ithapu et al., 2014; Rachmadi et al.,
2017a).

Recently, a new unsupervised segmentation
method named irregularity age map (IAM) (Rach-
madi et al.,, 2017b) and its faster version one-
time sampling TAM (OTS-IAM) (Rachmadi et al.,
2018c¢) have been proposed and reported to work
better than the state-of-the-art unsupervised WMH
segmentation method LST-LGA, the conventional
machine-learning schemes SVM and RF, and some
deep learning methods such as deep Boltzmann ma-
chine (DBM) (Salakhutdinov and Larochelle, 2010)
and convolutional encoder network (CEN) (Brosch
et al., 2016). TIAM and OTS-TAM uniquely pro-
duce an irregularity map (IM) that has some advan-
tage over deep learning’s probability map. Unlike
a probability map, IM captures regular and irregu-
lar regions by retaining changes of the original T2-
FLAIR intensities. This cannot be achieved with
deep neural network algorithms, which are trained
to reproduce manually generated binary masks (see
Figure 2 and Figure 3). For example, the grad-
ual changes of hyperintensities along the border of
WMH, usually referred to as “penumbra” (Mail-
lard et al., 2011), can be well represented in IM
(see Figure 2). The penumbra of WMH has been
subject of many studies in recent years, which de-
bate criteria to correctly identify the WMH bor-
ders (Firbank et al., 2003; Jeerakathil et al., 2004;
Hernéndez et al., 2010). Moreover, the penumbra of
WDMH itself is especially important for the study of
WMH progression (Kapeller et al., 2003; Bendfeldt
et al., 2009; Callisaya et al., 2013). It is also worth
to mention that IM facilitates simulating the pro-
gression of WMH, as has been proposed previously
(Rachmadi et al., 2018a).

While TAM and OTS-TAM have been tested in
previous studies and show produced very good re-
sults in the segmentation of WMH in MRI scans
from individuals with minor vascular pathology,
they had one main limitation: their lengthy com-
puting time. The most recent OTS-TAM takes 13
minutes (on GPU) to 174 minutes (on CPU) for
processing a single MRI scan data of 256 x 256 x 35
voxels in average. The aforementioned computa-
tion times are not ideal especially if thousands of
MRI are to be processed.

In this study, we proposed a new version of IAM
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namely limited one-time sample irregularity map
(LOTS-IM) which greatly improves the processing
time compared to IAM and OTS-TAM without hav-
ing a perceivable quality degradation. This study
also: 1) documents in more detail the generation
of the irregularity map (IM) and the method’s per-
formance (i.e. including limits of validity), not re-
ported in previous studies, 2) describes and evalu-
ates the generation of the internal parameters in-
volved in the computation of the IM, and 3) evalu-
ates the method’s performance in the segmentation
of MS lesions.

2. Irregularity Map Method

The “irregularity age map” (IAM) for WMH as-
sessment on brain MRI was originally proposed in
(Rachmadi et al., 2017b), and it is based on a com-
puter graphics method (Bellini et al., 2016) de-
veloped to detect aged/weathered regions in tex-
ture images. The term “age value” and “age map”
were originally used by Bellini et al. (2016) for the
2D array of values between 0 and 1 denoting the
weathered regions considered texture irregularities
in natural images. In this study, we changed the
term of age value and IAM to “irregularity value”
and “irregularity map” as the concept of detecting
“aged /weathered” textural regions no longer ap-
plies. In the irregularity map (IM), the closer the
value to 1, the more probable a pixel/voxel belongs
to a neighbourhood that has different texture from
that considered “normal”.

After segmenting the regions of interest where the
algorithm will work (e.g. brain tissue) using well
established fully automatic computational methods
(Step 1), IM is calculated from each structural MRI
slice (i.e. preferably in axial or coronal orientation)
by applying the following steps: patch generation
(Step 2), irregularity value calculation (Step 3) and
final irregularity map generation (Step 4). These
four steps are schematically represented in Figure
1 and described in the rest of this section.

2.1. Brain tissue masking

For brain MRI scans, the brain tissue mask is nec-
essary to exclude non-brain tissues which can repre-
sent “irregularities” per se (e.g., skull, cerebrospinal
fluid, veins and meninges). In other words, we
would like to compare brain tissue patches among
themselves, not with patches from the skull, other
extracranial tissues or fluid-filled cavities. For this

purpose we use two binary masks: intracranial vol-
ume (ICV) and cerebrospinal fluid (CSF) masks,
the latter containing also blood vessels and pial el-
ements like venous sinuses and meninges. In our
experiments, the ICV mask was generated by us-
ing optiBET (Lutkenhoff et al., 2014). However,
several tools that produce accurate output exist
and can be used for this purpose (e.g., bricBET?!,
freesurfer?). The CSF mask was generated by using
a multispectral algorithm (Valdés Herndndez et al.,
2015). The brain tissue masking is schematically
represented in Figure 1(A).

The pre-processing step before computing LOTS-
IM only involves the generation of these two masks
as per in the original IAM and in OTS-IAM (Rach-
madi et al., 2017b, 2018b). Their subtraction gen-
erates the brain tissue mask, which is, then, multi-
plied by the FLAIR volume. This study also uses
the normal appearing white matter (NAWM) mask
in a post-processing step, as per OTS-TAM (Rach-
madi et al., 2018b), to exclude brain areas in the
cortex that could be identified as false positives. We
generated NAWM masks using FSL-FAST (Zhang
et al., 2001), but these can also be generated using
other tools (e.g., freesurfer).

2.2. Patch generation

As per TAM Rachmadi et al. (2017b), LOTS-IM
requires the generation of two sets of patches; non-
overlapping grid patches called source patches and
randomly-sampled patches called target patches,
which can geometrically overlap each other (see Fig-
ure 1). In the IM computation, a source patch
is used as reference to the underlying pixel/patch
while a target patch is used to represent a sample of
all possible image textures. A set of target patches
is randomly sampled from the same image. Note
that the distribution of randomly sampled target
patches closely follows the underlying distribution
of all target patches, i.e., brain tissues’ textures.

Source and target patches are used to calculate
the irregularity value, where each of the source
patches is compared with several randomly sampled
target patches using a distance function (Bellini
et al., 2016). This will be discussed in the next
subsection. We use hierarchical subsets of four dif-
ferent sizes of source and target patches, which are

Thttps://sourceforge.net/projects/bric1936/files/
MATLAB_R2015a_to_R2017b/BRIClib/
?https://surfer.nmr.mgh.harvard.edu/
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Figure 1: Flow of the proposed LOTS-IM. 1) Pre-processing: brain tissue-only T2-FLAIR MRI 2D slices are generated
from the original T2-FLAIR MRI and its corresponding brain masks (i.e., intracranial volume (ICV) and cerebrospinal fluid
combined with pial regions (CSF)). 2) LOTS-IM: the brain tissue-only T2-FLAIR MRI slice is processed through the LOTS-IM
algorithm on GPU. 3) Post-processing: final age map of the corresponding input MRI slice is produced after a post-processing

step, which is optional.

1x1,2x2,4x4 and 8 x 8 pixels. Thus, source and
target patches are defined as 2D arrays. The patch
generation process is schematically represented in
Figure 1(B).

2.3. Irregularity value calculation

The irreqularity value calculation is the core of
the IM generation process. Let s be a source patch
and t be a target patch, then the distance (d) be-
tween s and t is:

d = average(|max(s — t)|, |mean(s —t)|) (1)

Based on Equation 1 above, the distance between
source patch (s) and target patch (t) can be cal-
culated by averaging the maximum difference and
the mean difference between s and t. The differ-
ence between s and t is calculated by subtracting
their intensities. The averaging of maximum and
mean differences is applied to make the distance
value robust against outliers. To capture the dis-
tribution of textures in an image (i.e., slice MRI),
each source patch is compared against a set of tar-
get patches (e.g., 2,048 target patches in (Rachmadi
et al., 2018¢)) in which the same number of distance
values are produced.

The irregularity value for a source patch can be
calculated by sorting all distance values and aver-
aging the 100 largest distance values of the whole
set. The rationale is simple: the mean of the 100
largest distance values produced by an irregular
source patch is still comparably higher than the one
produced by a normal source patch. Also, mean is
chosen as we are comparing irregularities with re-
spect to the normal-appearing white matter, and
normal tissue intensities are known to be normally
distributed, although other descriptive statistics,
such as percentiles, have been identified and used
to discern degree of pathology (Dickie et al., 2015,
2014).

All irregularity values from all source patches are
then mapped and normalised to real values between
0 and 1 to create the irreqularity map for one MRI
slice (see Figure 1(C)). Lastly, the IM is up-sampled
to fit the original size of MRI slice (Rachmadi et al.,
2018¢) and smoothed using a Gaussian filter as per
(Bellini et al., 2016).

2.4. Final irreqularity map generation

The generation of the final IM consists of three
sub-steps, which are a) blending of the four irregu-
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larity maps produced in the irreqularity value calcu-
lation step, b) penalty and ¢) global normalisation.

Blending of four irreqularity maps is performed
by the following formulation:

IMpiendea = - IMy + 3 -IMa +-IMy +6-IMg (2)

where o + 8 + v + § is equal to 1 and IM;, IMs,
IMy and IMg are irregularity maps from 1 x 1, 2 x
2, 4 x 4 and 8 x 8 pixels of source/target patches.
Note that combining all information from patches
of different sizes is performed to capture different
levels of details, where smaller patches capture a
more detailed information of the MRI’s intensity
while bigger patches capture a bigger contextual
information of the brain (Rachmadi et al., 2017b).
Depiction of the blended IM can be seen in Figure
1(D).

The resulted (blended) irregularity map is then
penalised using the formulation below:

p=bxXo (3)

where b is the voxel from the blended irregular-
ity map, o is voxel from the original MRI and p
is the penalised voxel. Penalisation here is per-
formed to eliminate artefacts usually caused by
low quality ICV or CSF masks (Rachmadi et al.,
2017b). Artefacts might be produced in previous
step (Equation 1) when non-brain tissues repre-
sented as hypo-intensities in FLAIR MRI are un-
successfully excluded by ICV and CSF masks. Note
that Equation 1 cannot differentiate between hyper-
intensities (i.e., bright voxels) and hypo-intensities
(i.e., dark voxels) (Rachmadi et al., 2017b).

Lastly, all irregularity maps from different MRI
slices are normalised together to produce values be-
tween 0 to 1 for each voxel to estimate “irregular-
ity” with respect to the normal brain tissue across
all slices. We name this normalisation procedure as
global normalisation. Depiction of the resulted (i.e.,
penalised and globally normalised) irregularity map
can be seen in Figure 1(E).

Some important notes on IM computation are: 1)
source and target patches need to have the same size
within the hierarchical framework, 2) the centre of
source/target patches needs to be inside the brain
and outside the CSF masks at the same time to be
included in the irregularity value calculation and 3)
the slice which does not provide any source patch
(i.e where no brain tissue is observed) is skipped to
accelerate computation.

3. Limited omne-time sampling irregularity
map (LOTS-IM)

As previously mentioned, while the original IAM
has been reported to work well for WMH segmen-
tation, its computation takes considerable time be-
cause it performs one target patch sampling for each
source patch, selecting different target patches per
source patch. For clarity, we named this scheme as
multiple-time sampling (MTS) scheme. The MTS
scheme is performed in the original IAM to satisfy
the condition, stated in the original study (Bellini
et al., 2016), that target patches should not be too
close to the source patch (i.e., location based condi-
tion). Extra time in MTS to sample target patches
for each source patch is, therefore, unavoidable un-
der these premises.

To accelerate the overall TAM’s computation,
we proposed and evaluated the one-time sampling
(OTS) scheme, where target patches are randomly
sampled only once for each MRI slice, hence aban-
doning the location based condition of the MTS
(Rachmadi et al., 2018c¢). In other words, age values
of all source patches from one slice were computed
against one (i.e. the same) set of target patches.
We named this combination of OTS scheme and
TAM one-time sampling TAM (OTS-IAM).

In this study, we propose to limit the number
of target patches to accelerate the overall compu-
tation, and we name our scheme limited one-time
sampling IM (LOTS-IM). The original TAM, which
runs on CPUs, uses an undefined large random
number of target patches which could range from
10% to 75% of all possible target patches, depend-
ing on the size of the brain tissue in an MRI slice.

In the present study, six numbers of target
patches are sampled and evaluated for the com-
putation of LOTS-IM, which are 2048, 1024, 512,
256, 128 and 64. We also propose a more system-
atic way to calculate the irregularity value where
the 1/8 largest distance values are used instead of
a fixed number of 100. The ratio of the 1/8 largest
distance values is used as it represents the second
half of the third quartile (Q3) of the samples, i.e.,
outliers. Thus, the 256, 128, 64, 32, 16 and 8 largest
distance values, deemed as outliers, are used to cal-
culate irregularity values for 2048, 1024, 512, 256,
128 and 64 target patches respectively.

Smaller number of target patches in the LOTS-
IM scheme enables us to implement it on GPU to
accelerate the computation. The limited number of
samples in power-of-two is carefully chosen to ease
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GPU implementation, especially for GPU memory
allocation.

4. Subjects and MRI Data

In this study, we use T2-Fluid Attenuation In-
version Recovery (T2-FLAIR) MRI from three
different data sets to investigate the robustness
and applicability of LOTS-IM. One data set com-
prises brain MRI data from mild cognitive impair-
ment(MCI) and early Alzheimer’s disease (AD) pa-
tients while the other two are from multiple sclerosis
(MS) patients.

The first data set used in this study contains
20 subjects from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (Mueller et al., 2005)
database®. Each subject had three brain MRI scans
obtained in three consecutive years. They were se-
lected randomly and blind to any clinical, imaging
or demographic information. All T2-FLAIR MRI
sequences have the same dimension of 256 x 256 x 35
pixels where each voxel is 3.69mm3. Full data ac-
quisition information appears described in (Rach-
madi et al., 2018b). Ground truth was produced
semi-automatically by an expert in medical im-
age analysis using the region-growing algorithm in
the Object Extractor tool in Analyze”™ software
guided by the co-registered T1-W and T2-W se-
quences. For more details on this data set, please
see (Rachmadi et al., 2017a) and data-share page®.
The investigators within the ADNI® contributed to
the design and implementation of ADNI and/or
provided data but did not participate in the analy-
sis or writing of this report.

The second data set contains brain MRI data
from 30 MS patients with different loads of MS
lesions, imaged in a 3T Siemens Magnetom Trio
MR system at the University Medical Center Ljubl-
jana (UMCL) (Lesjak et al., 2018). The data set is
publicly available from ¢ where co-registered T1-W,
T2-W, T2-FLAIR and MS lesions ground truth are
available. All MRI sequences for all subjects have
the same dimension of 192 x 512 x 512 pixels where
each voxel is 0.18mm?. Full data acquisition infor-
mation can be looked at in (Lesjak et al., 2018).

3http://adni.loni.usc.edu/
4nttp://hdl.handle.net/10283/2214
Shttp://adni.loni.usc.edu/wp-content/uploads/how_
to_apply/ADNI_Acknowledgement_List.pdf
Shttp://lit.fe.uni-1j.si/tools

The third data set is a set of longitudinal brain
MRI data from 10 treatment-free multiple sclerosis
(MS) patients, participants in the Future MS study:
a multicentre study of this disease”. Images were
acquired on a Verio 3T MRI scanner with a 20-
channels head coil. Two experts visually assessed
the images and identified the new lesions, enlarged
lesions, and rated the disease progression in none,
low, moderate or high. We compared the LOTS-IM
output with the expert assessments and explored
the applicability of this approach to studies of MS.

5. Other WMH Segmentation Methods used
for evaluation

As LOTS-IM is an unsupervised method, we
compare LOTS-IM’s performance with that from
other unsupervised segmentation method: the le-
sion growth algorithm from the Lesion Segmenta-
tion Tool (LST-LGA) (Schmidt et al., 2012). The
latter has been widely used as the main unsuper-
vised reference standard method (Guerrero et al.,
2018) for WMH and MS lesion segmentation, rep-
resenting the state-of-the-art unsupervised WMH
and MS lesions segmentation method. We used
LST-LGA’s kappa value of 0.05 for both WMH and
MS lesions segmentation, as in (Rachmadi et al.,
2017a).

In the first data set (i.e. from the ADNI
database), we also compare the performance of
LOTS-IM with that from several supervised ma-
chine learning algorithms that have been previously
tested and are commonly used for WMH segmen-
tation. This comparison aims to give broader in-
sight of LOTS-IM’s performance compared to other
machine learning WMH segmentation methods, es-
pecially those using deep learning. The super-
vised methods evaluated in this study are Sup-
port Vector Machine (SVM), Random Forest (RF),
Deep Boltzmann Machine (DBM), Convolutional
Encoder Network (CEN), patch-based 2D CNN
with global spatial information (DeepMedic-GSI-
2D), patch-based 2D UResNet (Patch2D-UResNet)
and patch-based 2D UNet (Patch2D-UNet). SVM
and RF are chosen to represent conventional ma-
chine learning algorithms commonly used for WMH
segmentation in many previous studies. DBM,
CNN, DeepMedic and U-Net based methods are

"https://future-ms.org/
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chosen to represent supervised deep learning meth-
ods commonly applied for WMH segmentation in
recent years.

All supervised segmentation methods used in this
study were trained and tested using 5-fold cross
validation and evaluated on all 60 WMH labelled
ADNI MRI scans. For clarity, we do not further
elaborate on the implementation of the aforemen-
tioned algorithms. All of them were implemented
as per previous studies: configurations for SVM,
RF, DBM and CEN algorithms are described in
detail in (Rachmadi et al., 2017a), whereas con-
figurations and parameters for DeepMedic-GSI-2D,
Patch2D-UResNet and Patch2D-UNet can be found
in (Rachmadi et al., 2018b), (Guerrero et al., 2018)
and (Li et al., 2018) respectively.

6. Evaluation Metrics

Dice similarity coefficient (DSC) (Dice, 1945),
which measures similarity between ground truth
and automatic segmentation results, is used here
as the primary metric of evaluation. Higher DSC
score means better performance, and the DSC score
itself can be computed as follow:

2x TP

D =
5¢ FP+2x TP+ FN

(4)

where T'P is true positive, F'P is false positive and
F'N is false negative.

Additional metrics positive predictive value
(PPV), specificity (SPC) and true positive rate
(TPR) are also calculated. Non-parametric Spear-
man’s correlation coefficient (Myers et al., 2010) is
used to compute correlation between WMH vol-
ume produced by each segmentation method and
visual ratings of WMH. Visual ratings of WMH
are commonly used in clinical studies to describe
and analyse severity of white matter disease (Schel-
tens et al., 1993). Correlation between visual rat-
ings and volume of WMH is known to be high
(Herndndez et al., 2013). In this study, Fazekas’s
(Fazekas et al., 1987) and Longstreth’s visual rating
scales (Longstreth et al., 1996) are used for evalu-
ation of each automatic method, as per (Rachmadi
et al., 2017a).

Furthermore, two-sided Wilcoxon signed rank
test is performed to see whether the difference be-
tween the performance of two algorithms is signifi-
cant or not. The test produces two values; p-value
and h. The latter shows the result of testing the

null hypothesis that there is no significant difference
of performance between the two algorithms (i.e., if
h=1 the null hypothesis is rejected, and if h=0 the
null hypothesis is not rejected). In this study, if
p < 0.05 then the null hypothesis is rejected (i.e.,
h=1).

7. Experiments and Results

This section is divided into two subsections.
The first subsection presents the results from the
MCI/AD patient (ADNI) data set, and the second
subsection from the MS patients’ data sets. The
ADNI data set was used not only to evaluate appli-
cability of LOTS-IM for WMH segmentation but
also to evaluate different aspects of this method
(e.g., speed and its internal parameters of blend-
ing weights). The MS patients’ data sets were used
to evaluate the applicability of LOTS-IM for MS
lesion segmentation and progression analysis.

7.1. Results on MCI/AD (ADNI) Data Set

In this subsection, LOTS-IM is evaluated for
WMH segmentation, longitudinal WMH assess-
ment, and compared with supervised and unsuper-
vised methods. Amongst the latter are the original
TAM and OTS-IAM. In addition, in this subsec-
tion we evaluate LOTS-IM’s performance for scans
with different WMH burden and analyse its speed,
blending weights and random sampling.

7.1.1. LOTS-IM for WMH segmentation

Table 1 shows the performance of all methods
evaluated for WMH segmentation. Please note that
the original IAM is listed as TAM-CPU. Please also
note that different optimum thresholds (i.e. TRSH
in Table 1) were used to produce the best WMH
segmentation for each methods. The best values of
DSC, PPV, SPC and TPR evaluation metrics are
underlined.

From Table 1, we can see that the binary WMH
segmentations produced by all IM method configu-
rations (i.e., IAM, OTS-IAM and LOTS-IM meth-
ods) outperformed LST-LGA in mean DSC, PPV,
SPC and TPR metrics. Especially for LOTS-IM-
512, the best performer of all LOTS-IM methods,
the performance differed up to 16.92% compared to
LST-LGA. Furthermore, IAM/OTS-IAM/LOTS-
IM not only outperformed LST-LGA but also con-
ventional supervised machine learning algorithms
(i.e., SVM and RF). Also, some LOTS-IM imple-

mentations outperformed supervised deep learning
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Table 1: Experiment results of WMH segmentation based on Dice similarity coefficient (DSC), positive predictive value (PPV),
specificity (SPC) and true positive rate (TPR). Best values for each metrics are underlined. Column “+ (%)” shows relative
performance difference (mean of DSC) to the LOTS-IM-512. Two-sided Wilcoxon signed rank test (with 5% significance level)
is performed between LOTS-IM-512 and other methods to see whether the performance difference is significant or not. On the
other hand, “Speed increase” is relative to IAM-CPU. Abbreviations: “DL” for deep learning method, “#TP” for number
of target patches, “TRSH” for optimum threshold and “Train/Test” for training/testing time in minute (min).

‘ DSC ‘ ‘Wilcoxon ‘ PPV SPC TPR Train  Test Speed
Method ‘ DL ‘ #TP ‘ TRSH | mean (std) £ (%) [ h p | (mean) | (mean) ‘ (mean) | (min) (min) increase
LST-LGA X - 0.134 0.3037 (0.166) -16.92 | 1 0.000 0.3158 0.9946 0.3625 - 0.67 -
IAM (CPU) al X 5% 0.179 | 0.3930 (0.121)  -7.99 1 0.000 0.7001 0.9993 0.3757 - 217.18 -
OTS-IAM-CPU (LE X 75% 0.164 | 0.4297 (0.173)  -4.32 1 0.000 0.6994 0.9992 0.3827 - 173.50 1.26
LOTS-IM-2048 E X 2,048 0.178 0.4710 (0.182)  -0.19 0 0.051 0.6111 0.9984 0.4564 - 12.43 17.52
LOTS-IM-1024 m| X 1,024 0.178 | 0.4721 (0.183) -0.08 | 0  0.054 0.6082 0.9983 0.4607 - 3.82 56.85
LOTS-IM-512 % X 512 0.178 | 0.4729 (0.185) - - - 0.5918 0.9980 0.4710 - 1.87 116.14
LOTS-IM-256 % X 256 0.178 | 0.4711 (0.188) -0.18 | 0  0.225 0.5722 0.9977 0.4865 - 0.77 282.05
LOTS-IM-128 o X 128 0.178 0.4660 (0.192)  -0.69 0  0.556 0.5357 0.9970 0.5158 - 0.45 482.62
LOTS-IM-64 X 64 0.178 | 0.4539 (0.204) -1.90 | 0  0.752 0.4769 0.9952 0.5589 - 0.42 517.10
SVM X - 0.925 0.2630 (0.150) -20.99 | 1  0.000 0.0474 0.9869 0.1259 26 1.38 -
RF 5 X - 0.995 0.3633 (0.184) -10.96 | 1  0.002 0.0482 0.9860 0.1320 37 0.68 -
DBM Z v - 0.687 0.3235 (0.135)  -14.94 | 1 0.000 0.0642 0.9955 0.0542 1,341 0.28 -
CEN E v - 0.284 | 0.4308 (0.158) -4.21 1 0.009 0.5255 0.9975 0.4815 152 0.08 -
Patch2D-UResNet E v - 0.200 | 0.5277 (0.173) +5.48 | 1 0.000 0.5899 0.9970 0.5968 215 0.08 -
Patch2D-UNet a v - 0.200 | 0.5030 (0.149) +3.01 | 1 0.047 0.6480 0.9985 0.4886 211 0.08 -
DeepMedic-GSI-2D v - 0.801 0.5225 (0.169) +4.96 | 1 0.000 0.5950 0.9985 0.5276 392 0.45 -
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Figure 2: Top: Visualisation of original outputs produced by LOTS-IM (i.e., irregularity map) and other machine learning
methods such as CNN, UNet and UResNet (i.e., probability maps). Bottom: Visualisation of WMH segmentation by cutting
off the original values of irregularity /probability map. This figure shows that irregularity map not only nicely represents the
penumbra of WMH by retaining the original textures but also is able to segment WMH by cutting off its values.
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methods of DBM and CEN in DSC metric. Based
on the two-sided Wilcoxon signed rank test, the per-
formance of all LOTS-IM configurations were signif-
icantly different to LST-LGA, SVM, RF and DBM
with p < 0.05.

Figure 3: Large WMH visualised using irregularity map (IM)
produced by the proposed method LOTS-IM. Note how both
non-WMH and WMH regions, including the penumbra of
WMH, are well represented by irregularity values.

Visual appearance of the irregularity map (IM)
from LOTS-IM and probability maps produced by
other segmentation methods such as DeepMedic-
GSI-2D, and UNet/UResNet can be observed and
compared in Figure 2. Figure 2 (top) shows that
the IM produced by LOTS-IM retains the texture
information of both non-WMH and WMH regions,
including penumbra of WMH. IM can be used for
WMH segmentation by thresholding its values, as
shown in Figure 2 (bottom). Visualisation of the
IM on a scan with large WMH load can be seen
in Figure 3. Note how the penumbra of WMH
is well represented in the IM in Figures 2 and 3.
On the other hand, the probability maps produced
by DeepMedic-GSI-2D and UNet/UResNet lack the
ability to represent non-WMH regions and WMH
penumbra.

Figure 4 shows the DSC performance curves of
LOTS-IM and other WMH segmentation methods
by cutting off the irregularity/probability values on
different threshold values. LOTS-IM uses lower
threshold values than the other methods to pro-
duce better WMH segmentation as the IM gives

finer brain tissues details than the other methods
(see Figure 2 and 3).

7.1.2. LOTS-IM vs. IAM and OTS-IAM

Limited one-time sampling (LOTS) not only ac-
celerated the computation time but also improved
the overall performance, as shown in Table 1. Im-
plementation of LOTS-IM on GPU increased the
processing speed by 17 to 435 times with respect to
the original IAM which was implemented on CPU.
However, it is worth stressing that this increase
in processing speed was not only due to the use
of GPU instead of CPU, but also due to the lim-
ited number of target patch samples used in the the
computation of LOTS-IM. Furthermore, one of the
GPU implementations of LOTS-IM (i.e., LOTS-
IM-64) ran faster than LST-LGA. Note that the
testing time listed in Table 1 excludes registrations
and the generation of other brain masks used ei-
ther in pre-processing or post-processing steps. The
increase in speed achieved by the GPU implemen-
tation of LOTS-IM shows the effectiveness of the
proposed method in terms of computation time and
overall performance.

7.1.8. Speed vs. quality of LOTS-IM

The biggest contribution of this work is the in-
crease in processing speed without compromising
the quality of the results, achieved by LOTS-IM im-
plemented on GPU, compared to the original IAM
and OTS-TAM. The first iteration of IAM can only
be run on CPU because it uses multiple-time sam-
pling (MTS). OTS-TAM samples patches only once,
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Figure 4: Mean of dice similarity coefficient (DSC) score
for LST-LGA, SVM, RF, DBM, CEN, Patch2D-UResNet,
Patch2D-UNet, DeepMedic-GSI-2D and LOTS-IM-512 in re-
spect to all possible threshold values.
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Figure 5: Speed (min) versus quality (mean of DSC) of dif-
ferent settings of LOTS-IM (extracted from Table 1). By
implementing LOTS-IM on GPU and limiting the number
of target patch samples, computation time and result’s qual-
ity are successfully improved and retained.

but still uses a high number of target patches to
compute the IM. Through this study, we show that
using a limited number of target patches leads not
only to faster computation but also to achieve small
to none quality degradation.

The relation between speed and quality of the
output (mean DSC) produced by IAM, OTS-IAM
and all configurations of LOTS-IM is illustrated in
Figure 5. Note that Figure 5 is extracted from Ta-
ble 1. Also, it is worth mentioning that the use of
more target patches in LOTS-IM produced better
PPV and SPC evaluation metrics than when less
target patches were used (i.e. also in LOTS-IM).
The TPR metric, on the contrary, is better when
less target patches are used compared to when the
number of target patches is higher.

The two-sided Wilcoxon signed rank test also
shows that there was no significant difference be-
tween LOTS-IM methods (i.e. p > 0.05). Thus,
LOTS-IM is more flexible than other methods in
terms of speed as its computation speed can be
adjusted as needed without compromising the out-
put’s quality.

7.1.4. Analysis on LOTS-IM’s blending weights

LOTS-IM has four internal parameters used to
blend four irregularity maps, hierarchically pro-
duced by four different sizes of source/target
patches, to generate the final IM (see Equation 2
in Section 2.4). In this experiment, different sets of
blending weights in LOTS-IM’s computation were
evaluated.

We tested 7 different sets of blending weights,
which are listed in Table 2. The first 4 sets only
use one of the irregularity maps (i.e., either the IM
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Figure 6: Curves of mean dice similarity coefficient (DSC)
produced by using different settings of blending weights.
LOTS-IM used in this experiment is LOTS-IM-512, and all
weights are listed in Table 2.

from 1 x 1, 2 x 2, 4 x4 or 8 x 8 pixels). On the
other hand, the last 3 sets blend all four irregularity
maps with different blending weights. The effect of
different sets of blending weights is illustrated in
Figure 6.

Table 2: Mean and standard deviation of DSC produced
by using different settings of blending weights. Plots corre-
sponding to settings listed in this table can be seen in Figure
6. The LOTS-IM tested in this experiment is LOTS-IM-512.

Blending Weights DSC

Name } 1x1 2x2 4x4 8x8 } TRSH } mean std
LST-LGA - - - - 0.134 | 0.2936 0.1658
IM-1000 1 0 0 0 0.128 | 0.4555 0.1774
IM-0100 0 1 0 0 0.267 | 0.3995 0.1646
IM-0010 0 0 1 0 0.376 | 0.3439 0.1627
IM-0001 0 0 0 1 0.495 | 0.2594 0.1289
IM-balanced | 0.25 0.25 0.25 0.25 | 0.287 | 0.4158 0.1754
IM-4321 0.40 0.30 0.20 0.10 | 0.228 | 0.4486 0.1776
IM-default 0.75 0.19 0.05 0.01 | 0.179 | 0.4692 0.1820

From Figure 6 and Table 2, we can see that
blending irregularity values from different irregu-
larity maps produced better WMH segmentation
results. Also, the IM produced by 1 x 1 pixels of
source/target patches influences the WMH segmen-
tation more than the others (i.e. those of dimen-
sions 2x 2, 4x 4 and 8x 8 pixels). The skewed blend-
ing weights of 0.75, 0.19, 0.05 and 0.01 produced
the best DSC score. The skewed blending weights
come from the ceiling operation of normalising by
a power of two (i.e., 26/85, 24/85, 22 /85 and 2°/85
where 85 = 26 + 2% 4 22 4 20). Based on the two-
sided Wilcoxon signed rank test, the performances
of the skewed blending weights to the IM produced
by 1 x 1 pixels of source/target patches were sig-
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nificantly different to the others (i.e. p < 0.05).
As the skewed blending weights of 0.75, 0.19, 0.05
and 0.01 produced the best DSC score in this ex-
periment, we made this blending set to become the
default blending set for the LOTS-IM. Also, note
that this default blending set was used for all other
experiments in Section 7.1 (i.e., Subsections 7.1.1,
to 7.1.8) and Section 7.2 (i.e., Subsections 7.2.1 and
7.2.2).

Through this experiment, we see that it is neces-
sary to consider not only the intensity of the indi-
vidual pixels but also those from the group of pixels
(textons, which convey the textural information).
Combining irregularity maps produced by differ-
ent sizes of non-overlapping sources is also similar
to calculating IM using overlapping source patches.
Furthermore, it is also useful to reduce pixellation
or discretisation of IM due to voxel-wise compu-
tation. Nevertheless, this experiment shows that
individual pixel intensities constitute the strongest
feature for irregularity detection.

7.1.5. WMH burden scalability test

In this experiment, all methods were evaluated to
see their performances on segmenting WMH in MRI
scans with different burden of WMH. The DSC
metric is still used, but the data set is grouped into
three different groups according to each patient’s
WMH burden. These groups are listed in Table
3, and the results of this experiment can be seen in
Figure 7 and Table 4. Please note that LOTS-IM is
represented by LOTS-IM-512 as the best performer
amongst the LOTS-IM methods (see Table 1).

Table 3: Three groups of MRI data based on WMH volume.

No.  Group WMH Vol. (mm3) # MRI Data
1 Small WMH < 4500 27
2 Medium 4500 < WMH < 13000 25
3 Large WMH > 13000 8

From Figure 7, it can be appreciated that LOTS-
IM-512 performed better than LST-LGA in all
groups. LOTS-IM-512 also performed better than
the conventional supervised machine learning al-
gorithms (i.e. SVM and RF) in “Small” and
“Medium” WMH burden groups. Whereas, LOTS-
IM-512’s performance was at the level, if not better,
than the supervised deep learning algorithms DBM
and CEN. However, LOTS-IM-512 still could not
beat the state-of-the-art supervised deep learning
algorithms in any group.
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Figure 7: Distributions of dice similarity coefficient (DSC)
scores for all methods tested in this study in respect to WMH
burden of each patient (see Table 3).

To make this observation clearer, Table 4 lists
the mean and standard deviation values that cor-
respond to the box-plot shown in Figure 7. From
both Figure 7 and Table 4, it can be observed that
the standard deviation of LOTS-IM’s performances
in “Small” WMH burden is still relatively high com-
pared to one from the other methods evaluated.
However, LOTS-IM’s performance is more stable
in “Medium” and “Large” WMH burdens.

Table 4: Mean and standard deviation values of dice simi-
larity coefficient (DSC) score’s distribution for all methods
tested in this study in respect to WMH burden of each pa-
tient (see Table 3). Note that LOTS-IM-512 is listed as
LIM-512 in this table.

TRSH ‘ DSC - Small ‘ DSC - Medium ‘ DSC - Large

Method ‘

| Mean  Std | Mean Std [ Mean  Std
LST-LGA 0.138 | 0.2335 0.1785 | 0.3524  0.1208 | 0.4645 0.1399
LIM-512 0.179 0.4682  0.2278 | 0.4660 0.1331 0.4940  0.0932
SVM 0.925 | 0.1792 0.0958 | 0.3360  0.1284 | 0.4966 0.0377
RF 0.995 0.2512  0.1298 | 0.4150 0.1662 0.6055  0.0559
DBM 0.687 0.3127  0.1432 | 0.3442 0.1350 0.4014 0.1474
CEN 0.284 0.4359  0.1802 | 0.4474 0.1485 0.4896 0.1122
Patch2D-UResNet 0.200 0.5007 0.2064 | 0.5403 0.1432 0.6064  0.0579
Patch2D-UNet 0.200 | 0.4872 0.1596 | 0.5079  0.1697 | 0.5447 0.0574
2D Patch-CNN 0.801 0.5230 0.1722 | 0.5118 0.1340 0.6053  0.0341

7.1.6. Analysis on LOTS-IM’s random sampling
To automatically detect T2-FLAIR’s irregular
textures (i.e., WMH) without any expert super-
vision, LOTS-IM works on the assumption that
normal brain tissue is predominant compared with
the extent of abnormalities. Due to this assump-
tion, random sampling is used in the computation
of LOTS-IM to choose the target patches. Also,
note that by using random sampling, the distribu-
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tion of sampled target patches will follow the un-
derlying distribution of brain tissues in a particular
slice. However, it raises an important question on
the stability of LOTS-IM’s performance to produce
the same level of results for one exact MRI data,
especially using different number of target patches.

In the first experiment, we randomly chose one
MRI data out of the 60 MRI data that we have and
ran LOTS-IM 10 times using different number of
target patches. Each result was then compared to
the ground truth and listed in Table 5. From this
experiment, we can see that each setting produced
low standard deviation values which indicates that
the results are closely distributed around the cor-
responding mean values. However, there is an in-
dication that higher deviations are produced when
using fewer number of target patches.

Table 5: Distribution metrics (mean and standard deviation)
based on DSC for each LOTS-IM’s settings. Each LOTS-IM
setting is tested on a random MRI data 10 times.

No Method TRSH DSC
mean std
1 LOTS-IM-2048 | 0.178 | 0.5681 0.0041
2 LOTS-IM-1024 | 0.178 | 0.5901 0.0018
3  LOTS-IM-512 0.178 | 0.5922 0.0033
4  LOTS-IM-256 0.178 | 0.5925 0.0075
5  LOTS-IM-128 0.178 | 0.5848 0.0092
6  LOTS-IM-64 0.178 | 0.5852 0.0141

In the second experiment, we chose three random
MRI data from each group of WMH burden (i.e.,
“Small”, “Medium” and “Large”) based on Table
3, ran LOTS-IM-512 10 times, and compared the
results with the ground truth. The results are listed
in Table 6. Similar to the first experiment, low
standard deviation values were produced for each
subject, regardless of the WMH burden.

The two experiments done for this analysis in-
dicate that LOTS-IM produces stable results of
WMH segmentation in multiple test instances re-
gardless of WMH burden while employing a simple
random sampling scheme. However, of course, more
sophisticated sampling method could be applied to
make sure patches of normal brain tissue are more
likely to be sampled.

7.1.7. Longitudinal test on MCI/AD patients
In this experiment, we evaluated spatial agree-
ment between the produced results in three con-

secutive years. For each subject, we aligned Year-
2 (Y2) and Year-3 (Y3) MRI to the Year-1 (Y1)

12

Table 6: Distribution metrics (mean and standard deviation)
based on DSC for subject with different WMH burden. Each
subject is tested 10 times using LOTS-IM-512.

WMH Burden | Subject DSC
mean std

S1 0.2481 0.0148

“Small” S2 0.1998 0.0038
S3 0.5516  0.0067

S4 0.6301  0.0058

“Medium” S5 0.3044 0.0013
S6 0.2907  0.0039

S7 0.5659  0.0037

“Large” S8 0.3623  0.0045
S9 0.5671  0.0051
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Figure 8: Quality of spatial agreement (mean of DSC) of the
produced results in longitudinal test. Longitudinal test is
done to see the performance of tested methods in longitudi-
nal data set of MRI (see Table 7 for full report).

Table 7: Mean and standard deviation values produced in
longitudinal test (see Figure 8). LOTS-IM-GPU-512 is listed
as LIM-512 in this table. The best values are written in bold
while the second-best values are underlined. In this longitu-
dinal test, LIM-512 outperformed LST-LGA while competed
with the supervised deep learning methods.

Dice Similarity Coefficient (DSC)
Grow ‘ Stay ‘ Shrink
Method Mean  Std | Mean  Std | Mean  Std
LST-LGA 0.1301  0.0350 | 0.2343 0.0199 | 0.2706  0.0058
LIM-512 0.2260 0.0084 | 0.4585 0.0104 | 0.3715 0.0018
Patch2D-UNet 0.2242  0.0125 | 0.4207 0.0125 | 0.3675  0.0242
Patch2D-UResNet | 0.2523 0.0199 | 0.4664 0.0211 | 0.3912 0.0044
2D Patch2DCNN 0.1440  0.0228 | 0.4066 0.0298 | 0.3660 0.0129
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using niftyReg through TractoR (Clayden et al.,
2011), performed subtraction between the aligned
WMH labels of baseline/previous year and follow-
up year(s) (i.e.,, Y2-Y1, Y3-Y2, and Y3-Y1), and
then labelled each voxel as either “Grow”, “Shrink”
or “Stay”. The voxel is labelled “Grow” if it
has value above zero after subtraction, labelled
“Shrink” if it has value below zero after subtrac-
tion, and labelled “Stay” if it has value of zero af-
ter subtraction and one before subtraction. This
way, we can see whether the method captures the
progression of WMH across time.

Figure 8 depicts the results of longitudinal test
listed in Table 7 for all methods (i.e., LST-LGA,
LOTS-IM-512, Patch2D-UNet, Patch2D-UResNet
and DeepMedic-GSI-2D). In this longitudinal test,
LOTS-IM-512 is the second-best performer (under-
lined) on “Grow”, “Shrink” and “Stay” regions seg-
mentation task evaluated using DSC metric after
Patch2D-UResNet (written in bold). This, again,
confirms that the LOTS-IM shows comparable per-
formance with the state-of-the-art supervised deep
learning methods (i.e., Patch2D-UNet, Patch2D-
UResNet and DeepMedic-GSI-2D).

7.1.8. Correlation with visual scores

In this experiment, we want to see how close
TAM’s results correlate with visual rating scores of
WMH, specifically Fazekas (Fazekas et al., 1987)
and Longstreth’s visual scores (Longstreth et al.,
1996).

We calculated Spearman’s correlation coefficient
1) between the total Fazekas score (i.e., the sum
of periventricular and deep white matter hyper-
intensities) and manual/automatic WMH volumes
and 2) between Longstreth’s total score and man-
ual/automatic WMH volumes. The results are
listed in Table 8.

Table 8 shows that, although not much better,
all LOTS-IM methods are highly correlated with
visual rating clinical scores. It is also worth to men-
tion that LST-LGA produced WMH segmentation
results which are highly correlated with visual rat-
ings but produced the lowest DSC metric of all (see
Table 1). On the other hand, LOTS-IM produced
high values of DSC metric and high correlation with
visual scores at the same time. Visual inspection of
the LOTS-IM results revealed systematic false pos-
itive detection in the cerebellum, aqueduct, Sylvian
fissure and some cortical regions. These errors are
consistent with those reported by other WMH seg-
mentation methods (Herndndez et al., 2010).
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Table 8: Non-parametric correlation using Spearman’s cor-
relation coefficient between WMH volume and Fazekas and
Longstreth visual ratings.

Visual Rating | Fazekas (Total) | Longstreth

Spearman’s Corr. | Spearman’s Corr.

Method
P P | » P
Manual label 0.7562 1.04 x 1 12 [0.7752 1.45 x 10~ 12
LST-LGA 0.5718 3.38x 6 12 [0.4813 1.50x 10 7
LIM-2048 0.4727 2.05 x 10~* | 0.4579 3.42 x 10~*
LIM-1024 0.4892 1.13x 1074 | 0.4849 1.32x 10~4
LIM-512 0.5010 7.19 x 10~° | 0.5065 5.82 x 10~*
LIM-256 0.5009 7.22 x 10~% | 0.5085 5.37 x 10~%
LIM-128 0.4505 4.38 x 10™* | 0.4946 9.22 x 10~*
LIM-64 0.4393 6.30 x 10~* | 0.4858 1.28 x 10~*
SVM 0.4062 1.70 x 10~2 [ 0.3602 5.90 x 10~3
RF 0.2447 6.66 x 1072 | 0.2128 1.12x 10~ !
DBM 0.2436 6.79 x 102 | 0.1659 2.17 x 10~1
CEN 0.2359 7.74 x 10~2 | 0.3618 5.70 x 103
Patch2D-UResNet | 0.3602 5.90 x 103 | 0.5171 3.80 x 10~°
Patch2D-UNet 0.4618 2.99 x 10~* | 0.5140 4.33 x 10—°
DeepMedic-GSI-2D | 0.7054 9.01 x 1010 | 0.8664 3.19 x 10~18

7.2. Results on MS Patients

In this section, LOTS-IM’s performance for MS
lesion segmentation and analysis of progression are
presented and discussed.

7.2.1. LOTS-IM for MS lesion segmentation

In this experiment, LOTS-IM-512, LOTS-IM-
256, LOTS-IM-128 and LOTS-IM-64 were chosen
to represent LOTS-IM as they are comparable with
LST-LGA in terms of speed while having no sig-
nificantly different performance to LOTS-IM-1024
and LOTS-IM-2048. Furthermore, unlike in previ-
ous experiments, only the Dice similarity coefficient
(DSC) metric and the two-sided Wilcoxon signed
rank test were used to evaluate LOTS-IM’s perfor-
mance for MS lesion segmentation.

Table 9 shows the performance of LOTS-IM
and LST-LGA for MS lesion segmentation in the
dataset 2. The table provides both results for the
whole data set (i.e. 30 MRI scans from the UMCL)
and in the three groups of MS lesions burden (i.e.,
“Small”, “Medium” and “Large” based on Table
10).

As Table 9 shows, LST-LGA performed better
than LOTS-IM methods in terms of DSC metric.
However, the differences between both methods’
performance were not significant as per the two-
sided Wilcoxon signed rank test with 5% signif-
icance level. Similar results are observed in MS
lesion segmentation per MS lesion burden where
the differences between these two methods’ perfor-
mances are small in term of DSC metric and not
significant in all groups. Thus, we can say that
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Table 9: Experiment results produced by LST-LGA and LOTS-IM on MS patients from the data set 2. The results are based
on the Dice similarity coefficient (DSC) where the best value is underlined. Two-sided Wilcoxon signed rank test is performed
between LST-LGA and different settings of LOTS-IM to determine whether the performance of these two methods significantly

differ from one another or not Abbreviations:
values.

“TRSH” for optimum threshold while “h” and “p” for Wilcoxon’s output

Method TRSH DSC - All Scans Sp(?ed DSC - Small DSC - Medium DSC - Large

mean (std) [ h P (min) [ mean [ h p mean [ h p mean [ h p

LST-LGA 0.564 | 0.5145 (0.241) | - - 45.12 | 0.1651 | - - 0.5131 | - - 0.6793 | - -
LOTS-IM-512 0.128 0.4941 (0.248) | 0 0.4174 | 30.44 | 0.1386 | 0 0.6406 | 0.5400 | 0 1.0000 | 0.6506 | 0 0.5540
LOTS-IM-256 | 0.138 | 0.4935 (0.248) | 0 0.3812 | 14.29 | 0.1386 | 0 0.3828 | 0.5437 | 0 1.0000 | 0.6486 | 0 0.5540
LOTS-IM-128 0.148 0.4908 (0.251) | 0 0.3147 9.54 0.1317 | 0 0.4609 | 0.5266 | 0 0.8750 | 0.6514 | 0 0.5540
LOTS-IM-64 0.168 | 0.4842 (0.254) | 0 0.1631 9.35 0.1211 | 0 0.1484 | 0.5165 | 0 0.8750 | 0.6476 | 0 0.5528

Table 10: Three groups of MS patients based on MS lesions
load.

No.  Group MS Lesions Vol. (mm?®) # MRI Data
1 Small Lesions < 4500 8

2 Medium 4500 < Lesions < 13000 4

3 Large Lesions > 13000 17

LOTS-IM performs similar to LST-LGA for MS le-
sion segmentation in this data set. However, LOTS-
IM is more flexible than LST-LGA in term of speed
as LOTS-IM can be set to run faster than LST-LGA
by using less number of target patches while having
small to none degradation in performance.

Furthermore, it is also worth to mention that
this experiment shows that LOTS-IM is more ro-
bust than LST-LGA when applied to different data
sets. Note that ADNI data set has smaller resolu-
tion than MS data set and the T2-FLAIR hyperin-
tensities are mainly thought to be from different ae-
tiologies (i.e., WMH of presumable vascular origin
vs MS lesions). While LOTS-IM performed stable
without big differences on both ADNI and MS data
sets, LST-LGA’s performance dropped significantly
in the ADNI data set.

7.2.2. Applicability to assess MS lesion progression

The evolution of interval or enlarging lesions
on T2-dependent imaging are key criterion for as-
sessing MS disease activity, which informs clinical
decision-making and as a surrogate endpoint for
clinical trials of therapeutic agents. We coregis-
tered the raw (i.e. not post-processed) LOTS-IM
output obtained from the baseline and follow-up
FLAIR images from the data set 3, to a mid-space
and subtracted both maps. Then, we performed 3d
connected component analysis to the “positive” and
“negative” regions of the subtracted maps, being
these regions comprised by the voxels with modu-
lar values higher than 0.18. We followed the same

thresholding criterion as the one followed to extract
the WMH to neglect subtle differences due to mis-
registrations, cortical effects, or differences in image
contrast not related to the disease. We counted the
“positive” spatial clusters (i.e. connected compo-
nents) with IM values (i.e. in at least one voxel)
higher than 0.7 and labelled those spatial clusters
as “New or enlarged lesions”. We summed the areas
(in number of voxels) covered by all the “positive”
and “negative” spatial clusters weighted by their
mean IM value, separately and subtracted them to
determine the overall change and rated it in none-
low (less than 25% of the “positive” areas), low-
moderate (between 25 and 50% of the “positive”
areas) and moderate-high (more than 50% of the
“positive” areas. Two expert raters, independently
and blind to any quantitative analysis, visually as-
sessed the baseline and follow-up images and identi-
fied the number of new and/or enlarged MS lesions,
and rated the disease progression. Discrepancies
among raters were discussed and a final result was
agreed. Table 11 shows the results from both as-
sessments.

Table 11: Visual expert vs. LOTS-IM longitudinal MS lesion
assessments in 10 treatment-free MS patients (data set 3)

Visual expert assessment LOTS-IM output
Patient New or New or
enlarged Dis. progres. | enlarged Dis. progres.
lesions lesions
1 0 None-Low 0 None-Low
2 1 None-Low 3 Moderate-High
3 0 None-Low 2 None-Low
4 1 Moderate-High 5 Low-Moderate
5 0 None-Low 1 None-Low
6 2 Moderate-High 3 Moderate-High
7 5 Moderate-High 6 Low-Moderate
8 3 Moderate-High 1 None-Low
9 2 Moderate-High 5 Moderate-High
10 6 Moderate-High 2 Moderate-High

The agreement between LOTS-IM and the ex-
pert assessment in rating the disease progression
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Figure 9: Two examples (i.e. A and B) of WMH change captured by LOTS-IM that do not represent actual disease progression
from the neuroradiological perspective. A-1 and B-1 are the baseline FLAIR axial slices and A-2 and B-2 are the corresponding

follow-up FLAIR slices.
the two “new”
hyperintense at follow-up. In B, the
the splenium of the corpus callosum.

«.

was 80%. The criterion followed to count the new
or enlarged lesions from the LOTS-IM needs to be
revised though, as the automatic count does not
reflect actual disease change in some cases. MS le-
sions which are active at one imaging time point
and subsequently quiescent frequently decrease in
size; summed volume measures may therefore not
identify active disease when some lesions are en-
larging and others are shrinking. The automatic
processing of LOTS-IM output as described above,
identified changes produced by CSF flow artifacts
in the choroid plexus, temporal poles and junction
between the septum and the callosal genu or sple-
nium (Figure 9). These, although genuine signal
changes, are not related to the disease. Instead,
these are particular confounders in MS where gen-
uine lesions frequently abut ventricular margins. In
addition, the centre of T1-weighted “black holes”,
not hyperintense in baseline FLAIR images but hy-
perintense in the follow-up FLAIR, which maybe
due to variation in efficacy of fluid signal suppres-
sion, was also counted as new lesion (Figure 9). Al-
though initial results are promising, post-processing
to correct these “false” positives and negatives will
be necessary for applying LOTS-IM to clinical re-
search in MS.

8. Conclusion and Future Work

In this study, we have presented the use of LOTS-
IM for WMH segmentation, MS lesion segmenta-
tion and analysis of MS lesion progression. We have
also shown that the optimisation of the irregular-
ity map method presented (LOTS-IM) accelerates
processing time by large margin without excessive
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The “new” lesions captured by LOTS-IM are represented in red on the “change” LOTS-IM. In A,
lesions are void regions on the baseline FLAIR, in the centre of two neighbouring hyperintensities, which are
new” lesion is in reality a CSF flow artefact in the intersection between the septum and

quality degradation compared with the previous it-
erations (IAM and OTS-IAM). LOTS-IM speeds up
the overall computation time, attributable not only
to implementation on GPU, but also to the use of
a limited number of target patch samples. In addi-
tion, we have evaluated LOTS-IM in different sce-
narios, which was not done in previous studies.

Unlike other WMH segmentation methods,
LOTS-IM successfully identifies and represents
both non-WMH regions and WMH regions us-
ing irregularity map, including the “penumbra” of
WMH. Despite not being a WMH segmentation
method per se, LOTS-IM can be applied for this
purpose by thresholding the value of the irregular-
ity map. Being unsupervised confers an additional
value to this fully automatic method as it does
not depend on expert-labelled data, and therefore
is independent from any subjectivity and inconsis-
tency from human experts, which typically influ-
ence supervised machine learning algorithms. Our
results show that LOTS-IM outperforms LST-LGA,
the current state-of-the-art unsupervised method
for WMH segmentation, conventional supervised
machine learning algorithms (SVM and RF), and
some supervised deep learning algorithms (DBM
and CEN). Our results also show that LOTS-IM has
comparable performance with the state-of-the-art
supervised deep learning algorithms DeepMedic,
UResNet, and UNet.

On MS lesion segmentation, LOTS-IM’s perfor-
mance is similar to the LST-LGA. While LOTS-
IM could not outperform LST-LGA on MS lesion
segmentation, LOTS-IM is more flexible than LST-
LGA as its computation speed can be accelerated
by using less target patches. LOTS-IM is also
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more robust than LST-LGA as it performed sta-
ble (i.e., without any big difference) in both ADNI
and MS patient data sets. This contrasts to LST-
LGA where its performance dropped significantly
on ADNI data set when dealing with WMH seg-
mentation. Furthermore, LOTS-IM also performed
well in assessing MS lesion progression where the
agreement between LOTS-IM and experts’ visual
assessment was 80%.

One limitation of LOTS-IM is the influence that
the quality of brain masks (i.e., CSF and NAWM)
has in its performance. We have shown that ran-
dom sampling has a small impact to the final re-
sult on WMH segmentation, but more sophisticated
sampling could be used as well. Some improve-
ments also could be done by adding or using dif-
ferent sets of brain tissues masks other than CSF
and NAWM, such as cortical and cerebrum brain
masks.

We believe that the irregularity map could pro-
vide unsupervised information for pre-training su-
pervised deep learning, such as UResNet and UNet.
In (Rachmadi et al., 2018a), UNet successfully
learned the irregularity map produced by LOTS-
IM. Progression/regression of brain abnormalities
also can be achieved with LOTS-IM(Rachmadi
et al., 2018a). Due to its principle, it could be appli-
cable to segment brain lesions in CT scans or differ-
ent brain pathologies, but further evaluation would
be necessary. Further works could also explore its
implementation on a multispectral approach that
combines different MRI sequences. The implemen-
tation of LOTS-IM on GPU is publicly available on
the following GitHub page®
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