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Abstract

Micro-structural parameters of the thoracic or lumbar spine generally carry insufficient accuracy and precision for
clinical in vivo studies when assessed on quantitative computed tomography (QCT). We propose a 3D convolutional
neural network with specific loss functions for QCT noise reduction to compute micro-structural parameters such as
tissue mineral density (TMD) and bone volume ratio (BV/TV) with significantly higher accuracy than using no or
standard noise reduction filters. The vertebra-phantom study contained high resolution peripheral and clinical CT scans
with simulated in vivo CT noise and nine repetitions of three different tube currents (100, 250 and 360 mAs). Five-fold
cross validation was performed on 20466 purely spongy pairs of noisy and ground-truth patches. Comparison of training
and test errors revealed high robustness against over-fitting. While not showing effects for the assessment of BMD and
voxel-wise densities, the filter improved thoroughly the computation of TMD and BV/TV with respect to the unfiltered
data. Root-mean-square and accuracy errors of low resolution TMD and BV/TV decreased to less than 17% of the initial
values. Furthermore filtered low resolution scans revealed still more TMD- and BV/TV-relevant information than high
resolution CT scans, either unfiltered or filtered with two state-of-the-art standard denoising methods. The proposed
architecture is threshold and rotational invariant, applicable on a wide range of image resolutions at once, and likely
serves for an accurate computation of further micro-structural parameters. Furthermore, it is less prone for over-fitting
than neural networks that compute structural parameters directly. In conclusion, the method is potentially important
for the diagnosis of osteoporosis and other bone diseases since it allows to assess relevant 3D micro-structural information
from standard low exposure CT protocols such as 100 mAs and 120 kVp.
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1. Introduction

Bone mineral density (BMD) explains around 70% of
bone stability under osteoporosis whereas the remaining
30% of information is believed to be explained by qualita-
tive micro-structural parameters [1]. BMD is invariant to
computed tomography (CT) noise and stable over a large
range of image resolutions. Qualitative micro-structural
parameters like tissue mineral density (TMD), bone vol-
ume ratio (BV/TV), trabecular separation, thickness, or
the structural model index are generally computed on a bi-
nary presentation of the volume. This segmentation into
bone and marrow is obtained by applying a global thresh-
old which is sensitive to CT noise and the low spatial
resolution. Hence, qualitative micro-structural parame-
ters are biased and less stable under in vivo conditions
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Email address: felix.thomsen@uns.edu.ar (Felix Thomsen)

and are therefore labeled as ”apparent” (e.g. app.TMD
or app.BV/TV) and only accessible under clinical high-
resolution quantitative computed tomography (HR-QCT)
but not under standard- or low-resolution QCT (LR-QCT).

There are two approaches to improve computation of
existing micro-structural parameters under in vivo condi-
tions. The first is to use novel algorithms that are im-
plicitly robust against noise, as for instance done for the
plate-to-rod ratio [1], trabecular number [2] or trabecular
separation [3]. These methods, that are generally diffi-
cult to design, can be achieved by either reformulating
the entire algorithm or by replacing the most fragile steps
of the standard algorithms with more stable alternatives.
The second approach is based on machine learning, in
particular convolutional neural networks (CNNs). CNNs
are widely used for segmentation, classification, denoising,
and super-resolution applications [4], and can also be ap-
plied in regression problems. Regression requires generally
less training data than classification since models can be
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Figure 1: Standard denoising for visual perceptible resolution versus
goal-driven denoising for particular properties only, for instance to
compute BMD, TMD or BV/TV. Achieving simultaneously both re-
quires much higher complexity and might generally be unattainable.

trained on small subsets of the data, and network architec-
tures for regression require less refinement than those of
classification problems. Neural networks for classification
are generally a combination of a convolutional and a fully
connected neural network [5]. The most direct application
of regression in CT imagery is noise removal or accentu-
ation of high frequencies [6], thus enhancing the original
CT volume to obtain a more suitable dataset to perform
certain desired tasks with higher accuracy and precision.
Approaches of this kind were trained for instance with the
root-mean-square error (RMSE) or the structural similar-
ity index [7] on a 3-layer CNN [8] or 7-layer auto-encoder
U-Net [9]. Those architectures obtained similar errors as
the Wavelet based ”Block Matching and 3D (or 4D) Filter-
ing Technique” (BM3D or BM4D) when applied on images
with a peak signal-to-noise ratio (PSNR) of around 30 dB.
More advanced generative adversarial networks have been
successfully used to transform volumes of tube current of
10 mAs into volumes corresponding to a visually percep-
tible quality of 50 mAs [10]. Combining two generative
adversarial networks additionally allowed to solve the in-
verse problem: synthesize scanner deterioration and thus
transform noise-free in silico phantoms into simulated in
situ scans [11].

Our hypothesis is that specific structural parameters
do not necessarily require a volume of general high vi-
sual detail. In other words, visual quality per se is not
of intrinsic diagnostic or clinical advantage in QCT. In-
stead, we implement a goal-driven denoising straight to
enhance computation of specific local micro-structural pa-
rameters (BMD, TMD and BV/TV, see Fig. 1). There
exist two approaches to enhance micro-structural compu-
tation with CNNs: First, an immediate estimation of local

micro-structural parameters with deep-learning, and sec-
ond, a goal-driven denoising for the subsequent assessment
of specific micro-structural parameters with conventional
(non-CNN) methods.

We employed here the second approach, a low-level vol-
ume filter which transforms the input volume into one that
allows micro-structural assessment with higher accuracy
and precision, thereby neither implementing explicit vi-
sual noise reduction nor computing implicitly the micro-
structural parameters. This approach allows the applica-
tion of different micro-structural parameters, thresholds,
and different noise levels with the same neural network
and in the same moment. It requires however the acqui-
sition of specific concurrently applicable smooth and local
loss functions for each micro-structural parameter. In this
prototype study, we chose TMD and BV/TV for several
reasons as parameters under investigation. They 1) are
commonly known and widely used, 2) contain simple con-
current implementations, 3) are not yet accurately accessi-
ble on LR-QCT, and 4) are of high importance on in vivo
studies to analyze the treatment of osteoporosis [12], to
quantify multiple myeloma [13] or to predict bone failure
load [14, 1]. We derive a sensible architecture of the neural
network and report the used hyper-parameters of network
architecture (learning rate, batch size, etc.) allowing to
repeat the analysis and to apply the method on further
micro-structural parameters.

2. Materials and Methods

In this section, we describe the sampling and scanning
procedure of the data (2.1), the architecture of the CNN
and its novel loss functions (2.2), and the experiments and
applied statistics (2.3). We used Python (v3.6) with Sim-
pleITK (v1.2.3) to import and register the DICOM vol-
umes, and PyTorch (v1.2) for the design and application of
the neural network. We trained the network on an NVidia
GP102 Titan XP graphics processing unit.

2.1. Sampling of patches

Twelve human vertebrae (T12 and L1) have been em-
bedded into epoxy resin without damaging any trabecu-
lae to become cylindrical vertebra phantoms that fit per-
fectly into an abdomen phantom (Model 235, Computer-
ized Imaging Reference Systems Inc, Norfolk, VA, USA)
allowing to simulate in vivo noise. The vertebra phantoms
have been scanned on a high-resolution peripheral QCT
(HRpQCT) with isotropic resolution of 82 µm, 59.4 kVp
and 900 µAs (XtremeCT I, Scanco Medical AG, Brüttisel-
len, Switzerland) and automatically calibrated to density
values. The spongiosa has been peeled from the cortex
with a semi-automatic procedure [15] and down-sampled
to 172 µm× 172 µm× 340 µm. For the purpose of reduc-
ing the cost and complexity of the main experiment, we
analyzed size, BMD, BV/TV and TMD of all segmented
vertebrae and identified a subset of five prototypes that
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Figure 2: a) Size and shape of input patch, VoI, offset and total
convolution size of the CNN. b) Ray-casting of a HRpQCT scan, the
peeled spongiosa (right) was used to extract patches (front left). c)
Same vertebra under HR- and LR-QCT without and d) after filtering
with NNSP.

contained the same information as the entire set of verte-
brae, see also discussion section.

For the main experiment we scanned the subset of five
vertebra phantoms with the abdomen phantom on a clin-
ical CT scanner (iCT 256, Philips, Amsterdam, Nether-
lands). We used three different noise levels by scanning
each phantom with low- (100 mAs, LR-QCT), mid-term-
(250 mAs, MR-QCT) and high-resolution tube currents
(360 mAs, HR-QCT), each with three repetitions and with-
out replacement to analyze simulated in vivo noise inde-
pendently of any positioning-artifacts. Other parameters
have been set to 120 kVp, pitch 1, slice thickness 0.67 mm,
standard bone kernel (YB) and field of view 88 mm, cor-
responding to a resolution of 172 µm× 172 µm× 340 µm.
A detailed description and figures of the setup but with a
different scanner can be found elsewhere [1, 16].

All simulated in vivo QCT reconstructions were sepa-
rately registered to the corresponding HRpQCT volumes
with a rigid 5-step-pyramid approach and B-Spline inter-
polation. We calibrated each QCT volume separately with
the per-voxel correlation between low-pass maps (Eq. 6
with d = 5mm) of QCT and calibrated HRpQCT vol-
umes. We extracted 2274 purely spongy patches from the
five phantoms with size 41× 41× 21 voxels (isotropic box
with diameter 7 mm) and regular offset 16× 16× 8 voxels

(2.752 mm) yielding with three repetitions for each of the
three tube currents a total of 20466 different HRpQCT-
QCT-pairs of patches for training and testing. Figure 2
shows sample projections of the HRpQCT, HR-QCT and
LR-QCT scans before and after applying the presented
filter method NNSP.

2.2. Design of the convolutional neural network

The CNN implements a denoising filter for the subse-
quent computation of structural parameters. It is defined
on a local neighborhood of 17 × 17 × 9 voxels, hence the
neural network consumes the border of the input patch and
remains only the center of 25 × 25 × 13 voxels (isotropic
box of 4.3 mm) for the application of structural parame-
ters. The number of convolutions per layer decreases in
the first half and increases again in the second with in to-
tal six convolution layers: two 5 × 5 × 3 layers followed
by four alternating 3× 3× 1 and 3× 3× 3 layers, all but
the last layer are followed by rectified linear units (ReLU),
Fig. 3. Omitting the activation function of the last layer is
required for regression problems [9] and not using padding
is sensible when training local filters [10]; for the applica-
tion to an entire vertebra in production mode we enabled
padding again. Application of this architecture to an en-
tire volume in production mode took less than 2 seconds.
Samples of the input- and output-patches are shown in
Fig. 2.

We implemented local structural parameters that re-
semble global parameters: bone mineral density (BMD),
bone volume ratio (BV/TV), and tissue mineral density
(TMD). BMD is the average density of the calibrated in-
put volume V . BV/TVt is the ratio of bone to total volume
when segmenting with threshold t and TMDt is the den-
sity of segmented bone. The standard (global) formulas
read

BMD(V ) =
1

n

∑
~x

V (~x), (1)

BV/TVt(V )=
1

n

∑
~x

H(V (~x)− t), and (2)

TMDt(V ) =

∑
~x H(V (~x)− t) V (~x)∑

~x H(V (~x)− t)
, (3)

with H(x) the Heaviside function, ~x a voxel index of the
global volume of interest (VoI) and n the number of voxels
of the VoI.

For the local parameters we needed to derive new for-
mulas that 1) allow computation on a very restricted local
VoI instead of a global VoI per-vertebra, and 2) are differ-
entiable to be applicable for back-propagation. Local and
weighted parameters have been computed from spherical
VoIs. Those VoIs were defined with convolution masks
Nd with diameter d and constant weight inside the en-
closed sphere. Spherical VoIs are superior to box-shaped
VoIs regarding shape-compactness (e.g unit surface-area-
to-volume ratio) and rotational invariance, thus micro-
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Figure 3: CNN with total mask size of 17 × 17 × 9 voxels. The loss for back-propagation is computed on a set of K structural parameters
that are obtained outside the CNN on a neighborhood of 25 × 25 × 13 voxels (isotropic box of 4.3 mm).

structural parameters of spherical VoIs are robust and in-
dependent of the alignment of the vertebrae [17, 16].

Smoothness was achieved by defining parameters that
are strictly monotone in t. We defined a) the softplus func-
tion plusε(x) that is a smooth version of max{0, x} param-
eterized with a fuzziness factor ε and with plusε(x) ≈ x for
x > 3.5 ε:

plusε(x) = ε ln
(

1 + exp
(x
ε
− 1
))

+ ε, (4)

and b) a fuzzy binarization Hσ(x−t) [18], a sigmoid version
of the Heaviside function H(x− t) with σ > 0:

Hσ(x− t) =

(
1 + exp

(
t− x
σ

))−1

. (5)

Local weighted texture maps read then

BMDd(V ) = (V ∗Nd) (6)

BV/TVd,t(V )= (Hσ(V − t) ∗Nd) , (7)

TMDd,t(V ) =

(
(V ·Hσ(V − t)) ∗Nd

plusε(Hσ(V − t) ∗Nd)

)
, (8)

with ∗ the convolution operator, · the point-wise multipli-
cation, ε = 10−4 a small number and σ = 10 mg/cm

3
a

fuzzy scale. Figure 4 (HRpQCT) shows samples of those

texture maps with t = 225 mg/cm
3

and d = 4.3 mm. We
additionally employed the local standard deviation [19]:

SDd(V ) =

√
(V 2 ∗Nd)− (V ∗Nd)

2

1−
∑
~xN

2
d(~x)

. (9)

An elementary loss function Lf based on the mean-square
error (MSE) was defined for each structural map. For
threshold independent parameters f ∈ {BMDd,SDd}, it
reads:

Lf = af MSE(f(x), f(y)) (10)

with x the input and y the ground truth data, replicated to
gain the same number of repetitions as x and af a normal-
ization factor to scale Lf in average to one when computed
over unfiltered data.

Threshold dependent parameters have been treated dif-
ferently. The choice of the threshold depends on vari-
ous factors such as the study design, image quality, pa-
tient’s size and condition. Common thresholds vary be-
tween 200 and 250 mg/cm

3
and one might either apply a

fixed threshold for an entire study, requiring some a-priori
analysis [13], or select individual thresholds depending on
the noise profile or by fixing BV/TV [1]. To gain threshold
independence for ft ∈ {TMDd,t,BV/TVd,t} we designed a

loss on multiple thresholds t ∈ {125, 150, · · · , 325}mg/cm
3
:

Lf = af
∑
t

bt MSE(ft(x), ft(y)) (11)

with x, y and af as chosen as in Eq. 10. The factor bt is

sampled from the normal distribution with σ = 100 mg/cm
3

and µ = 225 mg/cm
3

and normalized to
∑
t bt = 1 and

serves as an ad-hoc fuzzy range of the most reasonable
thresholds. The compound loss is the weighted sum of
individual losses {Lf1 , . . . , Lfk}

L =
∑
f

wf Lf (12)

with wf the contribution of Lf to the entire loss.
Back-propagation of the neural network was managed

with the Adaptive Moment Estimation optimizer [20] with
an initial learning rate of 10−3.5 and default adjustment
rates of β1 = 0.9 and β2 = 1− 10−3. During training and
for each adjustment of the neural network, the compound
loss has been computed over 64 pairs of HRpQCT and
filtered QCT patches, randomly taken from 16 HRpQCT
patches each with four of the nine available LR-, MR- or
HR-QCT patches.

The 20466 pairs of patches have been divided into 70%
training (14328 pairs), 10% validation (2043 pairs) and
20% test set (4095 pairs with 1365 for each of the three
tube currents) and by not sharing any of the 2274 different
physical coordinates between cohorts. We augmented the
training data by factor 16 to 229248 pairs by applying all
combinations of axial symmetric rotations and reflections
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that resulted in the same patch size, thereby encouraging
rotational invariant filter solutions. Validation and testing
have been performed without data-augmentation. Train-
ing was aborted when the loss, computed on the validation
set, did not improve for 20 epochs, yielding a total execu-
tion time of 6 − 8 hours and about 140 epochs per fold.
We repeated this procedure five times with disjoint train-
ing, validation and test-sets to employ a cross-validation
analysis with fixed hyper-parameters.

2.3. Experiments and statistical analyses

Three different denoising filters have been used: 1) We
trained a neural network NNSP specifically to achieve a
goal-driven denoising for the accurate computation of TMD
and BV/TV independently of the used tube current and
chosen threshold. This has been done with the multi-
threshold loss (Eq.11), and by using concurrently patches
of all three tube currents. To maintain accuracy of the
BMD and to support generalization of the noise reduc-
tion filter, we included also a loss of the BMD. For NNSP

we used VoIs covering the entire output-patches with d =
4.3 mm (bounding box of 25×25×13 voxels). Weights wf
were 0.64 for TMD, 0.32 for BV/TV and 0.04 for BMD,
see Eq.12, thereby optimizing twice as much TMD than
BV/TV, and dedicating only little to BMD.

2) A state-of-the-art 3D noise reduction algorithm, the
”Block Matching and 4D Filtering” (BM4D), has been de-
ployed. BM4D was reported to perform equally to a 3-
layer CNN for CT noise reduction [8] and only slightly
worse than a 7-layer U-Net [9], but both for data with less
noise. The implementation was obtained from the Tam-
pere University of Technology (http://www.cs.tut.fi/~f
oi/GCF-BM3D/). We used automatic Gaussian noise esti-
mation, normal noise profile and disabled Wiener filtering.

3) Since BM4D is designed for higher SNRs we alter-
natively trained the reported neural network architecture
with loss functions for pure denoising (NNBMD), thereby
using losses on BMD and SD but not on TMD and BV/TV.
The combination of losses on BMD and SD resembles in
parts the structural similarity loss which is sometimes used
for CT denoising [6]. We used the voxel-wise MSE and
VoIs with bounding boxes of 3 × 3 × 1 voxels (d1), 9 ×
9× 5 voxels (d2) and 17× 17× 9 voxels (d3). Weights for
the compound loss were w = 0.4 for the voxel-wise MSE,
w = 0.1 for the BMD-loss with d1 and d2, and w = 0.4 for
the SD-loss with d3, thereby focusing in particular on the
voxel-wise error and penalizing over-smoothing with the
SD-loss.

We computed statistics per-voxel and on the local maps
of BMD, TMD and BV/TV of the raw and filtered data.
Standard statistics were the difference of averages with
HRpQCT (∆Avg), the standard deviation (SD), root-mean-
square error (RMSE) and adjusted R2. The peak-signal-
to-noise ratio was reported as:

PSNR = 20[log(3 SD(y))− log(RMSE(x, y))] (13)

with x the filtered or input data, y the ground truth data,
RMSE(x, y) the root-mean-square error and SD(y) the
standard deviation on y. The maximum possible range
of intensities, part of the common definition of PSNR, is
a rather arbitrary value for the considered specific trans-
formations, thus we replaced it with 3 SD(y).

Since our experiment contained repetitions, we were
able to derive accuracy and precision metrics. We ex-
tended standard metrics [21] for the application in machine
learning applications, in particular with small number of
repetitions. The accuracy error (AE) is a measure of the
average bias and the precision error (PE) is the uncer-
tainty of a particular instance. More precisely, AE is the
RMSE between the average repetition of the noisy data
and ground-truth, but corrected for the statistical uncer-
tainty of the average operator. PE is the square root of
the mean variance of repetitions normalized to the ground-
truth scale, hence corrected for small standard deviations
due to down-scaling. Both errors are expressed in the same
unit and scale as the ground-truth data:

PE=

√
Ep(Varr(x)) Varp(y)

Er(Varp(x))
, (14)

AE=

√
max

{
0,MSE(Er(x), y)− Ep(Varr(x))

N − 1

}
(15)

with x the input, y the ground truth data, Ep and Varp
the arithmetic mean and sample variance over all data
points of the same repetition, Er and Varr the arithmetic
mean and sample variance over N = 3 repetitions per
tube current (or N = 9 repetitions for all tube currents)
and MSE(x, y) the mean square error. We reported the
mean and half-range for each statistic, computed on a 5-
fold cross validation of the neural networks. Statistics of
the raw- and BM4D-filtered data have been computed on
the same 5 sets used for testing during cross-validation.

3. Results

Figure 4 shows sample outputs of the unfiltered and fil-
tered data. Structural maps are restricted to 4.3 mm VoIs
which fit entirely in the input volume, thus the structural
maps are 24× 24× 12 voxels smaller than the input or fil-
tered volumes (that were generated with padding). Effects
of BM4D are visually nearly undetectable. NNSP obtained
lowest errors of TMD and BV/TV. Both neural networks
performed better on the spongiosa than on the cortex and
sub-cortex which were excluded during training.

Means and half-ranges of the 5-fold cross-validation
analysis conducted over the transformations of the HR-
and LR-QCT data are shown in table 1 and 2 and refer-
ence HRpQCT values are reported in table 3 (by definition
the average per voxel is the same as for BMDs). For the
statistics per voxel and BMD, no specific filter showed defi-
nite improvement. However when considering only RMSE,
PE and PSNR and adj. R2, best values were obtained with
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(250 mAs) and absolute errors with HRpQCT of the structural maps BMD, TMD and BV/TV, dark regions are lowest errors.

6



Table 1: Statistics of HR-QCT data: mean ± half range of test sets of 5-fold cross-validation. In bold (except for SD): best values per setting.

Parameter Filter ∆ Avg SD RMSE AE PE PSNR adj.R2

per voxel

[mg/cm
3
]

− 1.61± 0.64 191.36± 0.36 199.43± 0.54 71.24± 1.36 114.50± 0.79 12.95± 0.14 7.14%± 0.32%
BM4D 1.61± 0.61 182.59± 0.35 191.45± 0.55 75.25± 1.23 113.41± 0.77 13.77± 0.14 7.65%± 0.34%
NNBMD 0.51± 1.04 101.01± 1.06 130.42± 1.01 98.38± 0.93 99.69± 1.06 21.45± 0.14 13.23%± 0.42%
NNSP 0.04± 0.60 130.96± 2.33 157.76± 2.42 95.06± 1.40 113.09± 2.29 17.64± 0.19 6.40%± 1.12%

BMD

[mg/cm
3
]

− 1.49± 0.32 34.12± 0.56 8.31± 0.19 6.38± 0.27 4.96± 0.16 50.34± 0.79 94.37%± 0.48%
BM4D 1.49± 0.32 34.11± 0.57 8.28± 0.20 6.39± 0.27 4.91± 0.16 50.42± 0.81 94.41%± 0.48%
NNBMD 0.15± 1.00 33.78± 0.96 6.71± 0.24 5.76± 0.30 3.23± 0.16 54.65± 1.03 96.24%± 0.37%
NNSP −0.12± 1.06 33.74± 1.02 6.85± 0.26 5.78± 0.29 3.46± 0.27 54.21± 0.75 96.10%± 0.24%

TMD

[mg/cm
3
]

− 5.37± 0.63 19.30± 0.50 28.82± 0.36 27.48± 0.36 12.43± 0.25 22.66± 0.61 15.90%± 3.34%
BM4D −1.57± 0.63 18.85± 0.55 27.72± 0.38 26.34± 0.36 12.66± 0.28 23.44± 0.66 18.03%± 3.53%
NNBMD −44.94± 2.61 18.62± 3.14 49.71± 2.24 49.23± 2.28 10.28± 1.55 11.77± 1.44 50.14%± 2.80%
NNSP −0.05± 3.75 23.90± 0.73 17.70± 1.10 14.35± 1.32 11.97± 0.71 32.42± 1.19 65.30%± 4.66%

BV/TV
[%]

− 11.02± 0.09 6.58± 0.18 11.51± 0.08 11.41± 0.07 1.48± 0.06 11.39± 0.67 76.88%± 1.03%
BM4D 10.10± 0.08 6.81± 0.19 10.63± 0.08 10.51± 0.08 1.48± 0.06 12.98± 0.65 77.47%± 1.00%
NNBMD −3.39± 0.35 7.56± 0.19 4.23± 0.36 4.03± 0.39 1.05± 0.06 31.47± 2.00 89.07%± 0.93%
NNSP 0.38± 0.38 6.70± 0.15 2.16± 0.12 1.81± 0.14 1.09± 0.06 44.90± 0.90 90.46%± 0.95%

Table 2: Statistics of LR-QCT data: mean ± half range of test sets of 5-fold cross-validation. In bold (except for SD): best values per setting.
Parameter Filter ∆ Avg SD RMSE AE PE PSNR adj.R2

per voxel

[mg/cm
3
]

− 1.47± 0.83 332.26± 0.86 338.67± 1.14 ≤ 87.45± 0.59 123.68± 0.84 2.36± 0.17 1.97%± 0.15%
BM4D 1.41± 0.89 314.44± 0.90 321.42± 1.16 ≤ 87.21± 0.58 123.33± 0.82 3.41± 0.18 2.15%± 0.16%
NNBMD 0.14± 1.76 100.47± 1.53 141.99± 1.10 104.43± 1.28 112.61± 0.94 19.75± 0.17 5.67%± 0.30%
NNSP −0.82± 1.28 129.65± 0.98 165.00± 1.19 100.22± 1.61 118.91± 1.41 16.75± 0.05 3.03%± 0.33%

BMD

[mg/cm
3
]

− 2.07± 0.37 34.29± 0.57 11.48± 0.59 5.76± 0.59 9.19± 0.37 43.91± 0.97 89.46%± 1.01%
BM4D 2.00± 0.37 34.26± 0.59 11.38± 0.59 5.76± 0.58 9.10± 0.37 44.07± 0.98 89.60%± 1.00%
NNBMD 0.30± 1.21 32.19± 0.81 8.36± 0.38 6.59± 0.40 5.08± 0.14 50.23± 0.68 94.26%± 0.54%
NNSP −0.44± 1.35 32.87± 0.96 8.48± 0.41 6.51± 0.38 5.26± 0.16 49.95± 0.96 94.00%± 0.49%

TMD

[mg/cm
3
]

− 119.08± 0.72 30.53± 0.64 125.54± 0.92 124.66± 0.97 13.42± 0.25 −6.77± 0.57 1.73%± 0.87%
BM4D 104.97± 0.70 29.03± 0.67 111.79± 0.89 110.84± 0.94 13.84± 0.26 −4.45± 0.57 2.12%± 0.91%
NNBMD −43.68± 5.51 15.49± 3.18 49.99± 4.75 49.39± 4.89 13.93± 2.63 11.68± 1.40 34.28%± 5.02%
NNSP 0.56± 2.49 22.97± 0.92 21.53± 0.86 17.68± 0.89 14.76± 0.61 28.50± 1.43 48.67%± 6.23%

BV/TV
[%]

− 19.99± 0.08 4.15± 0.09 20.42± 0.09 20.36± 0.09 2.36± 0.05 −0.07± 0.69 66.12%± 2.00%
BM4D 19.28± 0.09 4.36± 0.09 19.70± 0.10 19.64± 0.10 2.35± 0.05 0.64± 0.68 66.83%± 2.04%
NNBMD −4.18± 0.62 7.54± 0.47 5.03± 0.45 4.79± 0.47 1.27± 0.05 28.02± 2.29 86.66%± 1.24%
NNSP −0.02± 0.43 6.38± 0.24 2.48± 0.14 2.04± 0.12 1.38± 0.09 42.14± 0.92 86.86%± 1.20%

Table 3: Avg (SD) from HRpQCT of the 2274 analyzed patches,
TMD and BV/TV are computed with t = 225 mg/cm3.

per voxel[mg/cm
3
] BMD[mg/cm

3
] TMD[mg/cm

3
] BV/TV[%]

115.90 (118.57) 115.90 (35.14) 334.54 (29.73) 17.30 (6.93)

NNBMD (and nearly as good with NNSP on LR-QCT). In
particular BMD statistics computed on the filtered LR-
QCT data were close to those computed on raw HR-QCT.
On the other hand, accuracy errors were generally lower
on the un-filtered or BM4D-filtered data, than after filter-
ing with the proposed neural networks, specifically for the
per-voxel statistics.

Statistics of TMD and BV/TV were more evident: We
obtained notably lower errors with NNSP from LR-QCT
than from HR-QCT without filtering. NNSP reduced the
RMSEs of TMD by factor 39% (HR-QCT) and 83% (LR-
QCT) and the RMSE of the filtered LR-QCT was still
by 25% reduced in comparison to the RMSE of raw HR-
QCT. PSNRs of TMD increased by 9.76 (HR-QCT) and
35.27 dB (LR-QCT) with a difference of 5.84 dB between

filtered LR-QCT and raw HR-QCT. NNBMD on the other
hand improved statistics of TMD only on LR-QCT. Simi-
larly, both neural networks improved estimation of BV/TV
with lowest RMSEs and AEs and highest PSNRs on NNSP.
Precision of TMD did not clearly improve nor decline for
any of the considered filters but both neural networks de-
creased precision errors of BV/TV.

Figure 5 (a-d) shows normalized error metrics of the

training and test set of each epoch for t = 225 mg/cm
3
,

averaged over all nine repetitions of LR-, MR- and HR-
QCT. Errors per voxel (a) and per BMD (b) have been
not or only slightly improved when comparing to initial
errors, but TMD (c) and BV/TV (d), for which NNSP was
mainly designed, show both a noticeable error reduction
already on early epochs. Differences between errors (c-
d) computed on the training- and test-test were small or
nearly undetectable. We observed even cases with smaller
errors on the test than on the training set (for instance
PE on TMD), showing that no over-fitting took place but
optimum capacity to generalize instead.

Figure 5 (e-h) shows normalized histograms, a visual
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Figure 5: Error metrics and histograms for statistics per voxel, BMD, TMD and BV/TV for NNSP. (a-d): RMSE, AE and PE on training
and test set. (e-h): Normalized (norm. pdf) and cumulative histogram (norm. cdf) of input, target and output samples.

representation of the global distribution of each parameter
map. All histograms of the filtered data coincide mostly
with those of the target data. In particular the histogram
of the direct output (e) transforms the rather Gaussian-
like histogram of the input data to one that contains the
characteristic right tail of HRpQCT resolution. Notewor-
thy, BMD (f) has already been computed with high pre-
cision and accuracy on the raw data, explaining the small
error reduction with NNSP (b). TMD and BV/TV con-
tained, in contrast to the voxel-wise metrics and BMD, a
tube-current-dependent offset in the raw data which was
compensated by the neural network.

4. Discussion and Conclusion

We demonstrated the feasibility to compute TMD and
BV/TV with high accuracy and precision on high- and
low-resolution QCT. Accurate computation of TMD can
be considered impossible on unfiltered low or mid-resolution
QCT, and maybe still on HR-QCT (adj. R2: 1.73 to
15.90%). After filtering with the presented method, we
obtained adjusted coefficients of determination of 48.67%
to 65.30%, that means filtered low-resolution QCTs re-
vealed more information than unfiltered high resolution
QCT, though is still affected with errors when comparing
to HRpQCT. A similar error reduction has been observed
for BV/TV over the entire range of conducted statistics.
We obtained an error reduction of up to 83% for TMD
and 88% for BV/TV when applied on low-resolution QCT,
which is an important improvement for those parameters
on low-resolution QCT. Two denoising filters of compar-
ison, the BM4D filter and a neural network, performed
for TMD only similar or even worse than the unfiltered
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volume. We showed that TMD and BV/TV require, at
least for LR-QCT, a specific and dedicated goal-driven fil-
ter since general denoising methods or unfiltered volumes
are only of limited use here.

Noise reduction or recovery of fine scale information is
only possible in a limited range of signal-to-noise ratios.
Decades of research did eventually find near optimum so-
lutions of general noise reduction of images with standard
noise levels. A comparison of state-of-the art image noise
reduction filters [9] on images with PSNRs around 30 dB,
including BM3D and three neural networks, showed 3 to
23% (0.2 to 2.25 dB) better performance on neural net-
works than filtering with BM3D. The volumes we used in
this study contained low PSNRs between 2.36 to 12.95 dB
and BM4D gained only small improvements here. By using
NNBMD we obtained an increase of 8.5 to 17.39 dB (PSNR
per voxel). Those numbers demonstrate the strength of
neural networks in particular for in vivo CT imaging which
is due to the correlation of ray exposure and image quality
prone to low SNRs.

We conducted a-priori some tests to design the re-
ported architecture of the neural network and to find its
used hyper-parameters. These parameters were then fixed
for all consecutive analyses of the final network. 1) We
selected the reported architecture after evaluating designs
based on convolution masks between 3×3×1 and 9×9×5
voxels and networks with equal, increasing or decreasing
numbers of convolutions per layer and those with a de-
creased or increased number in the center layer. 2) We
tested as well loss functions based one the precision and
accuracy errors or the structural similarity index [6], also
the Kullback-Leibner distance could be used. Since perfor-
mance did not improve significantly we used the more com-
mon MSE-loss. 3) The reported learning rate and batch
size per weight adjustment have been derived after apply-
ing a two dimensional grid search as those least prone for
over-fitting or -generalizing.

Additionally to NNBMD and NNSP we analyzed neu-
ral networks trained only with one loss of BMD, TMD or
BV/TV, we obtained in particular on the network trained
with the TMD-loss higher errors on TMD than with NNSP,
that means that the additional BV/TV-loss used in NNSP

served as a regularization function that influenced not only
errors of BV/TV but also of TMD. We analyzed then neu-
ral networks not to perform denoising but to immediately
compute maps of BMD, TMD and BV/TV, those showed
to be prone for over-fitting. Neural networks for the direct
computation of structural maps are neighborhood (d) and
threshold (t) specific, since they implement an instance
of a certain local structural parameter (e.g. TMDd,t(V ),
see Eq. 8). In contrast, these parameters were multi-
ple times involved when training NNSP (multi-threshold
and/or multi-neighborhood), but only once when comput-
ing TMD directly. Thus the application of multiple in-
stances of loss functions is likely an important constraint
of regularization that applies only for neural networks of
denoising.

The data set of this prototype study was designed 1)
to obtain a sufficiently large set of patches with a realistic
variance (structural information) 2) to study the interac-
tion between noise and bone structure using repetitions of
each phantom and 3) to analyze the influence of noise lev-
els from different tube currents. The vertebra phantoms
were considered as a pile of textural patches serving for
local structural analyses. In order to reduce the work-load
of the study and to exclude unnecessary error-sources, we
reduced the number of vertebrae phantoms from twelve to
five prototype phantoms, thereby reducing the number of
scans from 120 to 50 but maintaining the structural in-
formation of the entire set of phantoms: Fig. 6 shows the
structural variance of sample patches, and the distribution
BV/TV vs. TMD of a sparse subset of all twelve phantoms
that were initially scanned on the HR-pQCT device. When
considering parameters of the entire vertebrae (big sym-
bols), all twelve could be interpolated from the five selected
ones (colored symbols). Prototype patches (small colored
symbols) occupied each a specific area in parameter space
but their variance per-vertebra was high enough to fill gaps
between vertebrae. Only 0.5% of all patches were outside
the convex hull of prototypes (green line). In conclusion,
adding further prototype phantoms would not allow to as-
sess more patch-wise structural information but instead
unnecessarily increase the complexity and error-proneness
of the experiment. However, further experiments that al-
lowed to leave out entire vertebrae phantoms for testing
might be sensible before applying the method in medi-
cal practice. Since typically twenty or more vertebrae are
used for such a per-vertebra analysis, the entire experi-
ment required a massive effort when including addition-
ally repetitions, variations of tube currents and different
CT scanners. Alternatively, generative methods [22] could
soon offer a virtually infinite number of realistic in-silico
patches. These could be used to enlarge the training set
and leaving the costly real scans for fine-tuning and testing
only.
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