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Abstract

Periodic inspection and assessment are important for scoliosis patients. 3D ultrasound imaging has become an im-
portant means of scoliosis assessment as it is a real-time, cost-effective and radiation-free imaging technique. With
the generation of a 3D ultrasound volume projection spine image using our Scolioscan system, a series of 2D coronal
ultrasound images are produced at different depths with different qualities. Selecting a high quality image from these
2D images is the crucial task for further scoliosis measurement. However, adjacent images are similar and difficult to
distinguish. To learn the nuances between these images, we propose selecting the best image automatically, based on
their quality rankings. Here, the ranking algorithm we use is a pairwise learning-to-ranking network, RankNet. Then,
to extract more efficient features of input images and to improve the discriminative ability of the model, we adopt the
convolutional neural network as the backbone due to its high power of image exploration. Finally, by inputting the
images in pairs into the proposed convolutional RankNet, we can select the best images from each case based on the
output ranking orders. The experimental result shows that convolutional RankNet achieves better than 95.5% top-3
accuracy, and we prove that this performance is beyond the experience of a human expert.
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1. Introduction

Scoliosis is a lateral curvature of the spine greater
than 10 degrees in the coronal plane. It is a com-
mon spinal deformity occurring in adolescents aged be-
tween 10 and 18 years (Dunn et al., 2018), especially
in females Dunn et al. (2018); Konieczny et al. (2012).
Adolescent idiopathic scoliosis (AIS) accounts for over
80% cases if scoliosis Popko et al. (2018). During
growth, spine curve progression occurs in around 67%
of patients and increases the risk of pulmonary func-
tion disorder, severe scoliosis can be disabling Popko
et al. (2018). Therefore, before skeletal maturity, early
screening and treatment of scoliosis is recommended
Law et al. (2016).
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For the diagnosis of scoliosis, X-ray is a traditional
and typical way to detect spine deformity. However,
most scoliosis patients are children and adolescents who
require frequent routine care for diagnosis, monitoring,
and treatment Law et al. (2018, 2016); Larson et al.
(2019). For these repetitive measurements, whole spine
radiography has been the gold standard Hwang et al.
(2018). Young patients are more sensitive to radiation
than adultsHwang et al. (2018); Larson et al. (2019),
and the cumulative radiation exposure and dose will in-
crease their cancer risk. Studies showed that repeated
radiography will raise the lifetime risk of breast can-
cer and heritable defects, by approximately 2% and 3%,
respectively Hwang et al. (2018); Hui et al. (2016). Al-
though several methods were proposed to reduce radi-
ation exposure Geijer et al. (2003); Luo et al. (2015);
Ben-Shlomo et al. (2016), such as the EOS system Hui
et al. (2016); Wybier and Bossard (2013); Faria et al.
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Figure 1: The samples of nine 2D ultrasound coronal images in the
order of the depth increasing in a 3D spine volume.

(2013) (EOS Imaging, Paris, France), the radiation dose
and cancer induction risks still exists. It has also been
reported that the EOS system is highly costly, time con-
suming, and not easy to operate Lee et al. (2019); Lar-
son et al. (2019). Moreover, even though the Cobb’s
method Cobb (1948); Knott et al. (2014) has been the
gold standard for scoliosis assessment, the Cobb angle
measurement is affected by the intra-observer and the
inter-observer variations which can reach 3-5° and 6-9°,
respectively Pruijs et al. (1994).

Compared to X-ray measurement, radiation-free
technologies are more beneficial to scoliosis patients.
Magnetic resonance imaging (MRI) is a technique with
no radiation. MRI produces high-resolution spine im-
ages for diagnosis. However, it has been reported that
MRI is controversial due to its low detection rate of ab-
normalities for adolescent scoliosis Popko et al. (2018).
MRI is also an expensive and time-consuming tech-
nique Lee et al. (2019).

Alternatively, ultrasound imaging is relatively cost ef-
fective, is conducted in real-time, and is radition-free. In
our previous studies Zhou and Zheng (2015); Zhou et al.
(2017); Jiang et al. (2019), we proposed a radiation-
free, freehand 3D ultrasound system, Scolioscan, to de-
tect scoliosis using volume projection imaging (VPI).
From 3D volume rendering, nine 2D coronal images
are extracted with the depth increasing of the cut plane;
samples are shown in Fig. 1. As shown, those nine
2D images have different qualities but are very simi-
lar, especially the adjacent images. For spinal curvature
measurements and further assessment we need to select
good images, but as far as we know, selection has been
manually done by humans until now. Therefore, we pro-
pose selecting the best images using the most popular
technique available, artificial intelligence (AI), and we
are the first group to do spine ultrasound image selection
automatically.

However, there is no relative research on medical
imaging area. The most relative task is the image qual-
ity assessment (IQA) on computer vision. RankIQA Liu

et al. (2017) was proposed for the no-reference image
quality assessment (NR-IQA) utilizing the RankNet and
a backbone of VGG-16. The ranking method in that pa-
per was mainly used to augment dataset by artificially
adding Gaussian blur distortion to the images; the rank-
ing law between these artificial images becomes sim-
pler than with the natural images. Then, they fine-tuned
the learned network using the squared Euclidean dis-
tance to regress the image quality scores. Po et al. Po
et al. (2019) proposed to apply a variance-based weight-
ing for the original regression image quality scores to
avoid homogenous image patches for the network train-
ing and quality score estimation. Ahmad et. al Ahmed
and Asif (2019) proposed to use a learning rate sched-
uler to produce a set of suboptimal models. The final
ensemble CNNs were selected from them with weighted
averaging. Yan et. al Yan et al. (2018) designed a two-
stream CNN for the NR-IQA, where the inputs of two
streams are original image and gradient image, to ex-
tract more effective features of inputs in different levels
compared with one stream structure. However, com-
pared with our task, their databases have exact ground-
truth for each image, therefore, they used the regression
network to get the image quality scores for testing im-
ages. While for our task, the human expert only anno-
tated the best one, it is difficult to do regression. There
is another kind of IQA task, called aesthetic or attrac-
tiveness image ranking. Deep RankNet was applied to
the aesthetic ranking task Tian et al. (2018). They pro-
posed to use the visual similar-based method to generate
training pairs and use a dual CNNs to learn the rankings
of the images. Ma et. al Ma et al. (2019) proposed
a Bayesian ranking cost function for the deep ranking
network, DARN. DARN directly learned an attractive-
ness score mean and variance for each image, and all the
images are human labelled. The images they ranked are
aesthetic similar images, while our ultrasound images
are more similar in structures and have the same con-
tents and the same clarity. Moreover, we do not have
the exact human labelled score for each image. Hence,
our task is more challenging.

Nevertheless, inspired by the ranking idea, we pro-
pose to select the good images of each case by learning
their probability ranking scores of good images. Even
though we do not have the labelled score for each im-
age, we know which one is the best image in each case.
Then, we propose to label each image based on the
structure similarity index (SSIM) Wang et al. (2004)
score with the best image, and the score of the best im-
age is set to 1.0. The reason is that the SSIM score is
judging the structure similarity between two images and
is closer to the human’s subjective perception. How-



ever, we do not exactly regress these scores, we only
utilize them for obtaining the rankings of the images.
Accordingly, we propose to use a learning-to-rank algo-
rithm to solve it. We utilize the combination of RankNet
Burges et al. (2005); Cao et al. (2007); Burges (2010)
and the convolutional neural network (CNN) to rank
images. RankNet is a conventional pairwise learning-
to-rank algorithm, which trains the inputs in a paired
manner using a Siamese neural network to learn their
final rankings. As we know, traditional neural net-
work is a fully-connected network that each of the in-
put nodes is interacted with each of the output nodes,
and it is called shallow neural network since there are
generally one or two hidden layers. Especially, the in-
put images are generally large with thousands of pixels
in most of the tasks, therefore, there are huge number
of weights using traditional neural network and, which
causes the costly hardware memory and training time
but low performance LeCun et al. (1998). Compared
to it, CNNs typically adopt the sparse connections be-
tween the inputs and outputs by filters with much fewer
parameters, meanwhile, the parameter sharing mecha-
nism further reduce the numbers of parameters between
them LeCun et al. (2015). Even, CNNs usually have
deeper structures than the traditional neural networks,
when they have similar size of layers, CNNs are still
easier to train Krizhevsky et al. (2017). Furthermore, if
CNNs are initialized by learned features instead of ran-
dom initialization, which named as transfer learning, the
time required for model convergence is further reduced
Hussain et al. (2018). Therefore, we replace the neural
network of the conventional RankNet with CNN, which
has shown the more excellent performance and effec-
tiveness on computer vision and medical imaging.

We designed a convolutional RankNet for the spine
ultrasound image selection based on the following
ideas. Firstly, as there are several images with a large
number of similarities for each patient, it is difficult
to distinguish them using classification methods. In-
stead, we consider this as a ranking problem. By rank-
ing them in sequence from Ist to 9th (in descending
picture quality), it is easier to select the best image
according to the ranking result. Secondly, RankNet
traditionally requires a large amount of computational
power, as its network structure uses a conventional arti-
ficial neural network (ANN). Convolutional neural net-
works (CNNs) can reduce the computational require-
ments through their weight sharing strategies and ex-
tract features more effectively than ANN LeCun et al.
(1998, 2015); Krizhevsky et al. (2017). We design
a specific CNN architecture for the feature extraction.
Thirdly, for further discrimination of similar images, the

loss function we adopt is the hinge loss function rather
than the cross-entropy loss function in the conventional
RankNet. The hinge loss has more discriminating abil-
ity when the estimated output scores of two images are
very close. Above all, we solve this task by combining
the CNN and the principle of RankNet.

The subsequent sections are arranged as follows. In
Section 2, we introduce conventional RankNet and the
proposed convolutional RankNet in detail. Then, in
Section 3, we describe our data and the implementation
details of the experiment, presenting the experimental
results with several comparisons. Finally, we discuss
the testing result in Section 4.

2. MATERIALS AND METHODS

2.1. Data

The ultrasound spine images we used are collected by
the Scolioscan system (Model SCN801, Telefield Med-
ical Imaging Ltd, Hong Kong) which is developed us-
ing a 3D ultrasound imaging method to obtain spine
VPI for the assessment of scoliosis Zheng et al. (2016);
Cheung et al. (2013, 2015). The experimental proce-
dures involving human subjects described in this paper
were approved by the Institutional Review Board. The
subjects gave informed consent to their inclusion in the
study as required, the work adheres to the Declaration of
Helsinki. In this work, we have studied 400 cases of 400
patients. For each case, we select good images from the
nine 2D vertebral anatomical images at different imag-
ing depths. The generation method of the 2D coronal
projection images from Scolioscan is the narrow-band,
non-planar volume rendering algorithm which was in-
troduced in our previous work and named as volume
projection imaging (VPI) Cheung et al. (2015). An il-
lustration of the VPI method is shown in Fig. 2. All
the 2D images are in bitmap format. The original im-
age sizes of the 2D coronal images vary, but are around
640 x 2466. However, it is time-consuming to load such
high resolution images. Therefore, we resize them uni-
formly to the same size of 200 x 60. Although there is a
100 times resolution reduction, it has been shown exper-
imentally that the reduction does not decrease selection
accuracy. In addition, our labels of the best images are
marked manually by an experienced operator who based
on the criteria of a clear, dark line in the middle repre-
senting the spine profile, and also other spinal features
as clearly as possible in the image including transverse
processes and ribs.
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Figure 2: Illustration of the narrow-band, non-planar volume render-
ing algorithm for the generation of 2D projection images.

2.2. Why RankNet

For our further study, our task is to select the images
that have sharp, clear, continuous mid dark spine lines,
as well as clear transverse processes and ribs. Before
this study, we selected the best images using a human
expert. However, selection by a human expert is af-
fected by his/her experience and it is inevitably subjec-
tive. Moreover, the whole process of this type of selec-
tion is time-consuming. Therefore, we propose select-
ing them automatically using an artificial intelligence
(AD) technique.

In our ultrasound imaging system, a 3D ultrasound
volume is produced for each patient that can then be fur-
ther processed into nine 2D coronal images from differ-
ent imaging depths. The images at different depths have
different imaging qualities. As shown in Fig. 3, sev-
eral images have similarities with the best image when
they are adjacent, especially for the mid dark line. As
a result, it is difficult to discriminate them with a deep
classification model. Hence, we consider selecting them
based on their probability rankings to learn the nuanced
distinctions. Conventional RankNet is the classic pair-
wise learning-to-rank algorithm which has been widely
applied in search engines Burges (2010). In this work,
we combine RankNet with CNN to build a convolu-
tional RankNet for solving our problem; the former is
good at ranking, and the latter has great performance in
image processing.

2.3. Overview of Conventional RankNet

The traditional RankNet Burges et al. (2005) is a pair-
wise learning-to-rank algorithm, its structure is based
on the traditional artificial neural network (ANN). The
main body of RankNet is a Siamese network that con-
sists of two streams of neural networks with shared
weights. They also use the same initialization and the
same gradient during the back-propagation process.
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Figure 3: Illustration of the similarity between the best image and its
adjacent images. (b) is the best image, we set its label as 1, (a) and
(c) are its adjacent similar images, the values at their bottoms are their
similarities with the best image, respectively, by SSIM.

For each pair of inputs x;, x;, their corresponding out-
put scores are s; = f{x;) and s; = f{x;), respectively. If s;
is larger than s, x; is ranked higher than x;. The predic-
tion probability that x; is ranked higher than x; is defined
as o
Cl+esi’ M
where s;; = f{x;) — f(x;), the difference of the outputs of
two branches. We can see that the prediction probability
is a sigmoid function of s;;.

The original loss function is cross entropy which is
defined as

ij

L(s;j) = =P;jlog Pij — (1 = P;)log(1 - P;)),  (2)

where P;; is the target probability. Then, the network
learns the ranking using a stochastic gradient descent
(SGD) algorithm.

The conventional RankNet has two main drawbacks
when solving our problem. On the one hand, as we
all know, compared with ANN, CNN is more power-
ful when extracting efficient features of the images and
has exponential reduction of trained parameters. On the
other hand, the prediction probability of RankNet is the
sigmoid function of the difference between a pair of in-
puts. However, when the difference is small, meaning
the data have great similarities, such as less than 0.1 in
our task, the prediction probabilities will be very close,
between around 0.475 and 0.525. Thus, it is hard to
distinguish between similar images. Meanwhile, in our
task, most of the images are quite similar to their neigh-
bors.

2.4. Convolutional RankNet

To tackle the above problems involving the conven-
tional RankNet, we extend the RankNet to a convo-
lutional RankNet by replacing the Siamese ANN with



a Siamese CNN as the backbone. The convolutional
RankNet is a combination of the CNN and the pairwise
learning-to-rank algorithm, which is much more able to
find small distances between images.

The backbone of the proposed convolutional
RankNet is shown in Fig. 4, which is a dual branched
CNN with shared weights. Each branch has six layers,
and the first 5 layers have the same components,
each layer consisting of a convolutional layer, a batch
normalisation layer and a max pooling layer. The
activation function we used are ReL.U. All the pooling
layers have the same filter size of 2, as well as a stride
of 2. In terms of the convolutional layers, they have the
same filter size of 3 and the same stride of 1, but the
numbers of the filters are different, as they are increased
exponentially from 23 to 2°. The last layer consists of a
convolutional layer, a batch normalisation layer, ReLU,
and a global average pooling layer. The parameters
of the convolutional layer are the same as those in the
fifth layer. Then, the global average pooling layer is
followed by a fully connected layer, the final score is
activated by Sigmoid function.

The whole process for image ranking is shown in Fig.
5. Firstly, the nine images of each case are paired with
each other, and each of the two images are only paired
once. Then, inputting them into the Siamese CNN in
pairs, each branch outputs a prediction score for each
input. The two streams of the Siamese CNN are sharing
weights. The loss function layer of the convolutional
RankNet uses a hinge loss function, which connects two
outputs together to train the network. After training, we
get the final training score for each image. For testing,
we input any new case of nine images to any one of the
two streams, and their corresponding output scores are
obtained. The images are ranked based on their scores
from highest to lowest, thereby selecting the best im-
ages.

Before introducing the loss function, we firstly show
how we get the target probabilities of good images. In
fact, we only created the label of the best image in
each group in the beginning. However, if we label the
best image as 1, and the others as 0, the most similar
image and the least similar image will have the same
score. The network may find it difficult to identify them.
Therefore, we set the target probability of the best image
as 1.0, and others are the similarity values with it. To
measure the similarity between two images, structural
similarity index (SSIM) is closer to the human prefer-
ences Wang et al. (2004). Subsequently, to overcome
the sensitivity of the SSIM to image distortions, such
as scaling, translation, and rotation of images, the com-
plex wavelet structural similarity index (CW-SSIM) is

Image, 200 x 60

3x3 conv, s1, 32f

i

2x2 max pool, s2

3x3 conv, sl, 64f

Ie

2x2 max pool, s2

3x3conv, s1, 128f

¢I¢

2x2 max pool, s2

3x3 conv, s1, 256f

i

2x2 max pool, s2

3x3 cony, s1, 512f

i

2x2 max pool, s2

3x3 conv, s1, 512f

€I€

Global avg pool, s2
v

[ 300-dimension neurons ]

Output neuron

I

Output Score

Figure 4: The backbone architecture of the proposed convolutional
RankNet. The rectangles present the convolution layers. 3x3 is the
filter size, and conv is the logogram of convolution + Batch normal-
ization + ReLU. sl means the convolution stride is one, and the *f
means *features are generated. All the first 5 pooling layers use a
2x2 max pooling with a stride of 2. The final convolution layer is
followed by a global average pooling layer to summarize the features.
The rounded rectangle is the fully-connected layer with 300 neurons.
Finally, the corresponding output score of the input image is obtained.

proposed and performs better for the distorted images
Sampat et al. (2009); Wang and Simoncelli (2005). De-
spite the images we used are scaled, the purpose of mea-
suring their similarities is to rank them instead of ob-
taining more accurate similarity scores. Moreover, ex-
perimentally, we can obtain the same ranking by using
any of two indexes. Hence, we adopt the most widely
used SSIM to calculate the similarity values of images,
which is defined as

Quz iz, + c1)20z,, +2)
24l +c))of+0l +c)
3)
where 7.5 1S the best image, and z; is one of the oth-
ers in this case. ., o, presents the average and vari-
ance of *, respectively. o, is the covariance of z;

SSIM(Zi, Zpest) =
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Figure 5: An illustration of the proposed convolutional RankNet for a spine ultrasound image selection process. Each case of images are trained in
pairs to get the ranking order. Then, the new data are inputted into one of the two CNNs, and can be ranked based on the prediction scores using

the trained model for the selection of good images.

and zp.5. 1 and ¢, are two constants to avoid dividing
by zero, where ¢; = (k|L)?, ¢c; = (kpL)*. L is the dy-
namic range of the pixel value, and kj, k, are usually
defaulted as 0.01 and 0.03. The reason we adopt SSIM
is that, compared with other similarity assessment in-
dexes, SSIM is closer to the human’s subjective percep-
tion since our reference of the best image is given by
the human expert. By learning the SSIM scores, we can
obtain a more reasonable ranking order for all the im-
ages and their scores are within a range of (0.0, 1.0).
The higher output score, the better image. Also, we can
rank the images one by one rather than by simply bifur-
cating them into the best or not.

However, as mentioned in Section II b, it is indistin-
guishable when the probabilities of two images are very
close by using the cross-entropy loss function. Hence,
we choose the hinge loss as our loss function, which is
widely used in SVM. Given a pair of input images x;, x;,
we can assume that x; is ranked higher than x;, which
can be presented as x; > x; Burges et al. (2005). The
hinge loss function is defined as

L(x;, x;) = max{0,m + o; — 0;}, 4)

where o0; and o; are the projections of the two branches
of the network, and m is the margin. That means that
when the gap between the two outputs 0; — 0; is lager
than the margin, the loss is zero. Supposing that the
system produces N images for each patient, we would
set the images of each case as a batch, and there would

be a total of NZT_N pairs of inputs for each batch. The

final ranking hinge loss for a training batch size of H is

calculated as
H N

1 2
Lmnk,hinge = Em hZ:; -

N
Z max(0,m+0; — o).

=
=

®)

Eventually, we select the good images based on the

ranking scores. However, different from other ranking

problems, we do not need to rank all the images cor-

rectly as we only select the top k images for each case.

Furthermore, we only need the top k images to include
the best one since they are very similar.

3. RESULTS

We randomly divide the 400 groups of data into train-
ing and testing sets of 200:200, and all the data are nor-
malised. With regard to the training images, we pre-
process them before training through a 1.5-times con-
trast enhancement and a 0.8-times colour saturation re-
duction. As we only compare any pair of images once,
there are a total of 36 pairs of images for each batch.

For the proposed convolutional RankNet, due to its
output of each branch being within a range of 0.0 to 1.0,
the final output is activated using the sigmoid function.
Before the output layer, there are 300 dimensions out-
puts in the fully connected layer. Moreover, in this net-
work, we use the dropout below the flatten layer and the
fully connected layer with a keep ratio of 80%. More-
over, the hyperparameter margin in the ranking hinge



function is experimentally set to 0.1, and the network is
updated using the Adam optimizer. The initial learning
rate of the network is 0.001. We train the model for 200
epochs.

In the testing period, we directly input 9 images for
each batch and choose the outputs of one of the branches
as the final output. In fact, the outputs of two branches
are the same due to the shared weights. Then, based on
the outputs, we can easily select the good images.

The experiment is implemented in Python code using
Tensorflow and Tensorlayer deep learning libraries, run-
ning on a Mars cluster of the University of Technology
Sydney ARCLab, which has a 16GB Nvidia Quadro
P5000 GPU.

We evaluate the ability of the proposed convolutional
RankNet to select spine ultrasound images in three as-
pects. First, we show how the proposed convolutional
RankNet is different using different kinds of labels: the
0 and 1 labels, and the similarity labels. Then, we
present the comparison results using different loss func-
tions: cross entropy, and ranking hinge loss functions.
Finally, we evaluate the selection performance by mak-
ing comparisons with different backbones.

The evaluation indices we use are the top-1 and
top-3 accuracies and the normal used two indexes in
ranking tasks, Normalized Discounted Cumulative Gain
(NDCG) Jdrvelin and Kekéldinen (2000), the Spear-
man Rank Order Correlation Coefficient (SROCC) My-
ers et al. (2013) to assess our ranking algorithm. The
top-k accuracy signifies whether the labelled best im-
age ranks in the top k position(s). The reason for this
is that in those tasks, they mainly concern the ranking
orders with respect to the target orders. However, our
main purpose using RankNet is not for the whole exact
ranking orders, we aims to select the high quality of the
ultrasound images to undergo further process. Based
on the experiment and evaluated by clinical experts, the
most top-3 2D VPI images are recommended high qual-
ity images for further assessment. Thus, in the next sec-
tion, we are investigated to select the top-3 VPI images
using the proposed ConvRankNet.

3.1. Comparison of different kinds of labels

The different performances of the binary outcomes
and the similarity labels trained by the proposed method
are shown in Table I, which are presented by the top-1
and top-3 accuracies with the confidence limits in 95%
confidence level. The accuracies by using similarities
are significant higher than binary labels. The top-3 ac-
curacy using similarity label is greater than binary out-
comes. This obviously indicates that it is difficult to
select the good images if the targets are only O and 1,

meaning 8 of the 9 images in each group have the same
target scores. However, for a series of images which
need to be ranked correctly, giving them labels based
on similarities offers more objectivity than even humans
could provide.

3.2. Comparison of Different Loss Functions

The conventional loss function in the traditional
RankNet is the cross entropy loss function Burges et al.
(2005). However, the samples from the previous tasks
do not have great similarities as ours do. Therefore,
as shown in Table II, using the hinge loss function in
our ranking network is better than using the cross en-
tropy loss function, where the performances are also
presented by the top-1 and top-3 accuracies with the
confidence limits in 95% confidence level. It reveals
that the hinge loss function has more discriminative
power for the pairwise similar images in our task.

3.3. Comparison with Different Backbones of the Net-
work

We compare the proposed backbone with the classic
pre-trained VGG-16 Simonyan and Zisserman (2014)
and DenseNet Huang et al. (2017). However, we can-
not use the original models directly as there are only a
total of 200 X9 images for training. We optimize the hy-
perparameters and reduce some layers of the two mod-
els, thus obtaining the best accuracies of the pre-trained
VGG-16 and DenseNet. This is shown as Table III. Due
to our image size being different from that used in the
pre-trained VGG-16, the pre-trained layers we use are
from conv1_1 to conv3_1. We are able to obtain the best
result, and the fully connected layer is also 300 neu-
rons, which is the same as that of the proposed network.
For the DenseNet, the growth rate we use is 8, and we
only build 3 dense blocks, 2 transition layers, and also
300 neurons’ fully connected layer. The 3 dense blocks
have 6, 8, and 12 bottlenecks, respectively. Even though
it has been proven that the VGG-16 and DenseNet have
outstanding performance in many tasks, in terms of our
problem, our proposed architecture is more powerful.
Then, we compared the NDCG and SROCC indexes
of using different backbones, the larger of two values
means the better ranking result. It can be seen that the
proposed convolutional RankNet also achieves the best
ranking result, not only in top 3 images, among three
kinds of backbones.

We also show the computational complexities of us-
ing different backbones of the convolutional RankNet,
which is evaluated by the widely adopted floating-point
operations (FLOPs). We also present the number of



Table 1: Comparison Results of Different Kinds of Labels

Top-3 Acc (%) + Confidence limits (%)

Label Type Top-1 Acc (%) + Confidence limits (%)
Binary outcomes 16.60 + 2.26
Similarities (this work) 44.95 + 0.86

36.80 + 2.67
89.80 + 0.28

Table 2: Comparison Results of Different Loss Functions

Loss Function

Top-1 Acc (%) + Confidence limits (%)

Top-3 Acc (%) + Confidence limits (%)

43.15+£0.76
44.95 + 0.86

Cross Entropy
Hinge (this work)

88.35 £ 0.52
89.80 + 0.28

parameters and the training speed, the average num-
ber of images trained per second, for reference. The
details are shown in Table 3. Compared with the pre-
trained VGG-16 backbone, our model performs better
with lower computational complexity, higher speed and
only using less than 1/13 parameters. For the DenseNet
backbone we used, despite fewer FLOPs and the num-
ber of parameters than the proposed approach, however,
it is trained more than 3.4 times lower and with lower
accuracies. Moreover, when we enlarge the DenseNet
to more layers the accuracies decline. Therefore, it indi-
cates that the proposed convolutional RankNet is more
efficient than the compared backbones.

3.4. Comparison with a Human Expert

As introduced above, there is a total of 21 cases that
our proposals are fallen out the top-3 ranking for the all
200 testing cases using our proposed method. We call
these the failed matched cases. Following our discus-
sion, we find that there are three main reasons, for this:
the Al problem, the quite close similarity problem, and
the human expert problem. The Al problem means our
approach cannot find a good image at all, the similarity
problem means the prediction results are so similar to
the target best image that we believe that both of them
are acceptable, and the human expert problem means
the prediction results using Al are better that the targets
given by a human expert. As shown in Table IV, these
three situations cause 4, 5 and 12 failed cases, respec-
tively. Therefore, we obtain a 95.5% top-3 accuracy
if only the human problem is accounted for. However,
if we only exclude the Al problem, we can achieve a
98% top-3 accuracy. Analogically, we assume that these
problems also occur when getting the top-1 ranking, and
it is even more severe. Namely, the performance of our

proposed ultrasound image selection network based on
the qualities ranking goes beyond that of a human ex-
pert.

Above all, the proposed convolutional RankNet
shows the state-of-the-art performance in the scoliosis
ultrasound image selection task. Using the Al technique
to select a good image greatly saves time for any subse-
quent assessment.

4. Discussion

In this section, we analyse and discuss the details
of the outputs given by our proposed convolutional
RankNet for the mismatched cases. We discover the
reasons behind the three potential problems mentioned
before: the Al problem, the human expert problem, and
the problem involving a high similarity. During the
analysis, we first invited two human experts to select the
good images in each case blindly. Then, we compared
and summarised the results given by the human experts
and our results given by the proposed algorithm. The
conclusion regarding what kind of problem that each
case belongs to is drawn by the principle shown in Table
V.

First, we address the Al problem. The proposed net-
work cannot select good images correctly for 4 cases.
After analysis, there are two kinds of situations. One is
as shown in Fig. 6(a); the imaging quality is bad, and
the middle dark lines are all unclear and damaged dur-
ing the imaging process. Even the best image given by
the human expert also does not have a clear middle line.
However, the Al gives the higher scores for the two im-
ages that have worst middle lines for the compared 4
images. It indicates that the large noises influence the
discretion of the Al. For this case, we finally prefer P4



Table 3: Comparison Results of Different Backbones

Backbone Top-1 Acc (%)  Top-3 Acc (%) NDCG SROCC  FLOPs (x10°)  No. Param (M) Images/s
Pre-trained VGG-16
Simonyan and Zisserman (2014) 32.5 80.50 0.9802 0.7578 25.46 58.16 44.44
DenseNet Huang et al. (2017) 39.50 82.50 0.9832 0.7977 2.41 0.27 16.67
this work 44.00 89.50 0.9859 0.8307 9.58 443 57.14
Table 4: The Comparison Result with the Human Expert
Methods Total Number of the Mismatched Cases Top-3 Acc (%) Top-3 Acc (%)
Number of Failed Cases ~ Number of Similar Results  (similar results excluded)  (similar results included)
Human Expert 12 5 91.50 94.00
Al (this work) 4 95.50 98.00

Table 5: The Principle of the Conclusion

Our Topl OurTop2 &3  Target Conclusion
X - v Al problem
vV - vV Similar result
v - X Human expert problem
X vV X Human expert problem

and P5. Another situation is that the middle dark lines
are not as sharp and striking as in the other cases shown
in Fig. 6(b). Our method also provides a bad suggestion
of P3; P3 has the worst quality both in the middle and
the end parts of the middle line of these 4 images. How-
ever, after discussion, P6 is also accepted, and we finally
prefer P5 and P6. In general, it can be seen that the gen-
eralization ability of the proposed method is affected by
the cases that have bad qualities for all the images, and
this would need to be improved in future work.

Secondly, there is the human problem. The given tar-
gets are not better than the predicted images after our
discussion. This problem is more complex, and there
are four main situations. Firstly, the images in some
cases are quite similar, so sometimes the human expert
may be influenced by subjectivity, as shown in Fig. 7(a).
Also, some images have bad qualities, as shown in Fig.
7(b), and at the same time they are so similar that the
human expert would find it hard to identify the best im-
age. For some other cases, the human’s selection is af-
fected by the noise interference in the surrounding area
of the middle lines, such as the marked area in Fig. 7(c).
There are also some mistakes when the human expert

selects the best images, such as a lack of rib informa-
tion and the fact that their middle lines are not better
than the selection images from the Al, as shown in Fig.
7(d), the good image probability of the target image is
only 0.108. Compared with the Al, the human expert
has subjectivity and fatigability. Therefore, when facing
the images with high similarities or low identifications,
he/she may give discrepant labels for different cases.

Thirdly, there is the close similarity problem. There
are 5 failed cases where the output results are very sim-
ilar to the target best image. Although the results given
by the AI do not include the labelled best image from
the human expert, they are so similar that we believe that
both of them are acceptable (see the P5 and P4 shown in
Fig. 8(a)). In fact, in some cases there are more than 3
good images, especially in terms of the middle dark line
of the spines, such as the 4 images shown in Fig. 8(b).
We also calculate the average similarity between the Al
proposals and the human expert’s recommended image
in each case, reaching 0.854, which also indicates that
these images are highly similar. Hence, although the
target best image is not selected correctly, the predic-
tion results are good enough to be used in our further
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Figure 6: Samples of mismatched cases provided by Al. The serial
number beyond the images is named according to their corresponding
depths from PO to P8 for each case. The bottom of the images are
the prediction probabilities using our proposed ranking network, and
the higher value signifies a better image. Furthermore, for both (a)
and (b), the left three images are the best three good images selected
by our deep learning approach, and the right hand image is the best
image recommended by the human expert. The parts inside the red
rectangles are the main differences between the images.

tasks.

To sum up, the main impacts on good image selection
are the image quality, the noises surrounding the middle
dark line, and the close similarity. Therefore, there are
two aspects we need to improve in future. On the one
hand, the imaging process is supposed to improve so as
to obtain a better image quality and to reduce the noise.
On the other hand, the generation ability of our method
should be enhanced, especially for complex cases.

To select the ultrasound spine images with good qual-
ities for any further scoliosis assessment study, in this
paper, we use an Al technique to select them automati-
cally. Since the coronal 2D images produced by a single
3D volume have really high similarities and are difficult
to distinguish, we firstly regard this task as a ranking
problem. Therefore, we propose a convolutional pair-
wise learning-to-rank approach to solve the problem,
which is a combination of the CNN and the traditional
ranking method. Furthermore, we replace the cross-
entropy loss function in the conventional RankNet to
the hinge loss function, and the result is improved. Sur-
prisingly, the proposed method performs better than the
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Figure 7: The samples of mismatched cases caused by the human
expert. (a), (b), (c) and (d) are 4 situations where the mistakes were
caused by the human expert.

human expert in the selection results. In the future, we
will firstly evaluate the proposed network on more data
and improve its generation ability.
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Figure 8: The samples of mismatched cases caused by close similarity.
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