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Abstract

Real-time augmented reality (AR) for minimally invasive surgery without extra
tracking devices is a valuable yet challenging task, especially considering dy-
namic surgery environments. Multiple different motions between target organs
are induced by respiration, cardiac motion or operative tools, and often must be
characterized by a moving, manually positioned endoscope. Therefore, a 6DoF
motion tracking method that takes advantage of the latest 2D target tracking
methods and non-linear pose optimization and tracking loss retrieval in SLAM
technologies is proposed and can be embedded into such an AR system. Specifi-
cally, the SiamMask deep learning-based target tracking method is incorporated
to roughly exclude motion distractions and enable frame matching. This algo-
rithm’s light computation cost makes it possible for the proposed method to
run in real-time. A global map and a set of keyframes as in ORB-SLAM are
maintained for pose optimization and tracking loss retrieval. The stereo match-
ing and frame matching methods are improved and a new strategy to select
reference frames is introduced to make the first-time motion estimation of every
arriving frame as accurate as possible. Experiments on both a clinical laparo-
scopic partial nephrectomy dataset and an ex-vivo porcine kidney dataset are
conducted. The results show that the proposed method gives a more robust and
accurate performance compared with ORB-SLAM2 in the presence of motion
distractions or motion blur; however, heavy smoke still remains a big factor that
reduces the tracking accuracy.
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1. Introduction

Minimally invasive surgery (MIS) in the abdomen, in which both visual sen-
sors such as a binocular or monocular laparoscope and surgical instruments are
introduced via small incisions, is gaining prevalence due to its reduced trauma
compared with open surgery (Bernhardt et al., 2017). However, it introduces
new difficulties associated with its limited field of view, lack of inner structure,
and lack of force feedback. Video see-through augmented reality (VST-AR)
(Nicolau et al., 2011) is a straight-forward idea which aims to supplement in-
traoperative endoscopy videos with visualizations of blood vessels, tumor, and
other sub-surface structures based on preoperative computed tomography (CT)
or magnetic resonance (MR) images, to reduce operation difficulties and make
surgery more safe, accurate and efficient. Though plenty of VST-AR systems
use extra devices such as optical or magnetic tracking system to obtain the
motion of the target, the intraoperative videos themselves provide the possi-
bilities for motion tracking.However, producing accurate and robust VST-AR
systems remains challenging in dynamic surgical environments. Firstly, tar-
get organs move due to respiration, cardiac motion or interaction with surgical
tools, and their motion usually differs from that of surrounding tissues because
of their different biomechanical characteristics. Secondly, motion of the surgical
tools within the field of view themselves bring more movement to the scene,
and these may also occlude the target organs. These factors lead to disordered
motion fields between neighboring frames. Image motion blur caused by quick
retraction/reinsertion of the laparoscope, illumination changes, and specular re-
flections introduced by light sources bring further difficulties. If the motions of
all parts of the target are consistent, only a 6DoF rigid transformation is re-
quired to register the preoperative CT model with surgical scene. Otherwise,
deformation must be considered.

In this paper, we focus on 6DoF motion tracking for dynamic stereo endo-
scope videos, and aim to utilize it in clinical VST-AR applications where the
deformation of target tissue is negligible. Our target clinical application is la-
paroscopic partial nephrectomy. Herein, locating the boundary between tumor
and normal kidney tissue at the beginning of the procedure is important, because
once the smooth membrane between those two is accurately located, it is simple
to remove the tumor from the kidney just following this membrane. Presently,
this boundary can only be estimated by comparing the model reconstructed
from preoperative CT images with intraoperative video images, which is men-
tally strenuous and difficult to perform accurately, especially when the tumor
is inside the kidney. In this process, the kidney’s deformation from interaction
with surgical instruments during the tumor localization process is negligible and
such a VST-AR system can heavily reduce the difficulty in locating the tumor
for surgeons. Accurate estimation even of only rigid motion (i.e. 6DoF pose) of
the target organ in this way is difficult because of the highly dynamic surgical
environment as mentioned above.

Though point clouds registration-based methods and template-based meth-
ods can deduce target motion directly, simultaneous localization and mapping



(SLAM) technologies are getting more attention because of their robustness
(Chen et al., 2017). SLAM methods can simultaneously estimate the camera’s
pose and build a map for the captured scene. Strategies for dealing with tracking
loss, and local and global pose optimization by bundle adjustment (BA) are also
available. Moreover, it is reported that BA-based pose estimation is more accu-
rate than ICP methods on pose optimization (Mur-Artal et al., 2015). Several
descriptions of VST-AR applications using ORB-SLAM directly for tracking
have been reported (Song et al., 2018b; Mahmoud et al., 2019, 2017b), however,
accuracy was limited because of the scene rigidity assumption of SLAM.

Unlike the previous work, we found that accuracy loss due to scene dy-
namicity of SLAM-based tracking methods for VST-AR applications can be
avoided if the motion inconsistencies caused by surgical tools or surrounding
tissues are excluded. Herein, the proposed 6DoF motion tracking method takes
advantage of the latest 2D target tracking methods and non-linear pose op-
timization and tracking loss retrieval in SLAM technologies. The SiamMask
deep learning-based target tracking and segmentation method is incorporated
to roughly exclude motion distraction from surgery tools or surrounding tis-
sues. The computation cost is light compared, for instance, with segmentation
approaches like mask R-CNN, which makes it possible for our tracking method
to run in real-time, which is critical for our clinical application. In contrast to
the frame-by-frame tracking methods, an ORB-SLAM-like global map and set of
keyframes are maintained for pose optimization and tracking loss retrieval. The
stereo matching and frame matching methods are improved and a new strategy
to select reference frame is introduced to make the first time motion estimation
of every arriving frame as accurate as possible. Loop closing is one component
in traditional SLAM technologies, which detects the images taken by the same
camera pose and is regarded as a signal for optimization of motion trajectory.
However, few loop closures could be detected on our experiments, mainly due
to the small endoscope field-of-view. As a result, loop closure is not part of our
system, which is more computationally efficient.

We evaluate the proposed system quantitatively on an ex-vivo porcine kidney
dataset, where the gold standard of target organ motion is acquired by an
electromagnetic tracking system. Qualitative results are also obtained from
experiments with a laparoscopic partial nephrectomy dataset to illustrate its
effectiveness further.

2. Related Work

Intraoperative motion tracking methods based on optical or magnetic track-
ing devices require artificial markers to be affixed to patient skin (Feuerstein
et al., 2008; Kong et al., 2017). Such tracking devices are usually expensive and
need calibration before surgery. For these reasons, pure visual tracking methods
which only utilize images or videos during surgery without any artificial mark-
ers are attractive. Markerless 6DoF motion tracking methods can be divided
into three categories, that is, point cloud registration-based, template-based and
visual SLAM-based methods.



In point cloud registration-based methods, 3D shapes from the surgery scene
at different frames, presented as dense or sparse sets of 3D points, are first re-
constructed from images using stereo reconstruction, shape from shading, or
shape from structure lighting (Lin et al., 2016). A point cloud registration al-
gorithm such as iterative closest points (ICP) (Besl and McKay, 1992) is then
used to estimate the relative pose between 3D shapes. Point correspondences
are often inferred by some 2D image feature tracking methods, for instance LK
optical flow (Allan et al., 2015; Plantefeve et al., 2016; Allan et al., 2018)(see
also (Bouguet, 2001)) or tracking by feature detection and matching (Kim et al.,
2012) to reduce computation costs. In Puerto-Souza et al. (2014) a feature track-
ing method which is robust to illumination change was used. Additional state
estimation frameworks, for instance Kalman filtering or particle filtering, some-
times are introduced to smooth the motion estimate. The authors claimed that
feature loss resulting from deformation, motion blur, or occlusion is inevitable,
regardless of the feature tracking method used. In response, they proposed a
feature matching based tracking retrieval strategy. Feature point based tracking
methods also always suffer heavily from accumulated error.

Template-based motion tracking approaches formulate 2D target segmenta-
tion and 6DoF motion tracking in a uniform framework. A pre-obtained 3D
model is projected onto the 2D image, then the projected silhouette is used as a
constraint for a level-set based target segmentation in the 2D image (Prisacariu,
2011). This approach is sensitive to image noise, and may fail if the contour of
the target in the image is ambiguous. Allan et al. (2014, 2018) used sparse and
dense optical flow respectively with this region-based method for a robust 6DoF
tracking of surgical instruments, but were unable to realize a real-time tracking.
Wang et al. (2018) proposed combined dense cues with this region-based ap-
proach, achieving a real-time performance with computation acceleration on a
GPU. However, the performance of such methods rely heavily on the selection of
the level-set function and inner parameters configuration of optimization, which
may need a cumbersome tuning for different models and scenes. Besides, this
method is prone to converge at a local minimum, especially when the contour
of the target image is insufficiently clear, or target movement is too fast. These
first two classes of methods focus on motion estimation between pairs of frames,
which is then repeated frame-by-frame.

Visual SLAM techniques can simultaneously locate a camera’s position and
build a map of the captured scene in real-time. In contrast to the foregoing meth-
ods, they also can relieve accumulated error and relocate after tracking failure.
The most representative approach is ORB-SLAM (Mur-Artal et al., 2015) and
its stereo and RGB-D version in ORB-SLAM2 (Mur-Artal and Tardos, 2017),
however, its rigid scene assumption hinders its direct application to medical
VST-AR systems. Some researchers have explored its feasibility nonetheless. In
Mahmoud et al. (2017a), ORB-SLAM was applied to tracking patient’s position
by regarding the surgery scene as static. Similar approaches can be found in
Chen et al. (2018); Qiu and Ren (2018); Mahmoud et al. (2019), but the latter
works pay more attention to reconstructing a denser map. As the assumption
of rigidity of the scene as a whole, as distinct from rigidity of individual struc-
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Figure 1: Overview of the proposed system, which contains four threads, namely, 2D target
tracking, motion tracking, map and pose optimization and visualization. The former three
share a global database which saves map points and keyframes, but only map and pose opti-
mization has both read and write permissions for this; other two have only read permissions.
All steps performed by each thread are also shown.

tures within the scene, is likely to be inaccurate in clinical applications, Song
et al. (2018a,b) have treated dynamic parts as outliers, and excluded them by a
random sample consensus (RANSAC) based iterative pose estimation process.
This strategy still cannot guarantee an accurate motion estimation especially in
highly dynamic surgery scenes. Identifying dynamic and static parts of images
may be helpful in generalizing SLAM techniques to dynamic scenes. Recently,
Bescos et al. (2018) proposed detecting dynamic objects by combining the deep
learning based object segmentation method Mask R-CNN (He et al., 2017) with
multi-view geometry, and demonstrated promising results for SLAM in dynamic
environments. Unfortunately, this approach cannot run at real-time speeds due
to the high computation cost of the selected object segmentation algorithm.

Object segmentation in video frames has more constraints than segmentation
of a single image since adjacent frames have many similarities. Wang et al.
(2019) thus proposed a deep learning based approach, named SiamMask. This
method can track and segment a selected target simultaneously, and achieves an
average frame rate of 55 fps. This technique presents new possibilities for the
6DoF motion tracking field. In this paper, we combine this deep learning based
target tracking method with traditional feature tracking. At the same time, we
introduce a keyframe management strategy from SLAM techniques to produce
a robust yet real-time 6DoF motion tracking method for highly dynamic surgery
environments depending only on stereo endoscope videos.

3. Proposed Method

To maximize compatibility with the clinical environment, the proposed 6DoF
motion tracking method is designed to be robust to motion distraction from
surrounding tissues or surgical tools, able to run at real-time speeds, and easily
embedded in a VST-AR system. By choosing the camera coordinate system



of the first intraoperative frame as world coordinate system (WCS), the rigid
transformation Ty, mapping preoperative CT model to WCS can be obtained
by registering the CT model with target 3D shape reconstructed from the initial
frame, which is described in 3.1. For any intraoperative frame k, if the camera
motion relative to WCS T, is solved, the CT model can be transferred to the
camera coordinate system of frame k by T;Twm, so that the CT model can
be projected to frame k and interior structures from preoperative images can
be fused. The proposed 6DoF motion tracking method is aimed at solving T.
As a feature point based 6DoF motion tracking method, it needs to be capable
of feature points detection and matching, motion estimation and optimization,
and elimination of additional motion interference. Rapid feature relocation is
also essential since tracking loss is inevitable in the presence of motion blur and
smoke. Therefore, the proposed method consists of four threads, namely: 2D
target tracking, motion tracking, local mapping, and visualization. An overview
of the proposed system is presented in Fig. 1.

The raw stereo images are first undistorted and rectified using camera pa-
rameters obtained by camera calibration. SiamMask is then used in initial and
relocation frames to predict a mask for the selected target which will enable ex-
clusion of other motion distraction in the scene. In the motion tracking thread
feature points on both stereo images are detected and matched, and combined
with the 2D target tracking result to infer the target’s 6DoF motion in the
current frame with respect to the selected reference frame. Relocation, where
needed, is also performed in this thread. The local mapping thread maintains
a set of map points and keyframes, and optimizes these points and pose of
keyframes using BA. For each current frame, a reference frame is selected from
these keyframes so as to minimize the cumulative error. Once the motion of
the current frame is obtained, preoperative CT models are projected into this
frame in the visualization thread.

3.1. Preprocessing of preoperative data and oblique-viewing laparoscope calibra-
tion

This subsection describes the preliminary steps required by our system,
which are CT model reconstruction and laparoscope calibration. Kidney and
tumor are segmented manually from their CT dataset by a medical expert us-
ing ITK-SNAP (Yushkevich et al., 2006). The corresponding surface models
are then reconstructed. Those reconstructed models are registered to the 3D
shape represented by a set of sparse points reconstructed from the first frame
by an affine-to-coarse point clouds registration method. The three major axes
are derived by principal component analysis associated with their centroids for
a coarse rigid registration. Then an ICP method is used to achieve a more
accurate rigid registration. As this point clouds registration method is not
sufficiently accurate, a further manual adjustment through our graphical user
interface is performed. We treat an automatic and accurate point clouds regis-
tration method as one of our future objectives to make the initialization process
fully automatic.



Both intrinsic and extrinsic parameters of a laparoscope are indispensable
in stereo reconstruction, however, its calibration process is somewhat different
from that of a normal camera because of its special physical structure. The
most commonly used binocular laparoscopes are oblique-viewing, which means
the scope cylinder axis is tilted from the camera viewing direction, so that the
imaging plane is not perpendicular to optical axis Z. of the mounted scope
(see Fig. 2). Therefore, it cannot be modelled as a standard pinhole camera.
Fortunately, we find this only stretches the image in the y; direction of the image
coordinates. The lengths y;s and y.s of corresponding line segments (see red and
green line segments in Fig. 2) aligned with the y-axes in the image and camera
coordinate systems, S; and S,, are related via the viewing direction angle 0 as:

Yes = Yis SINO (1)

Thus, simple oblique-viewing rectification by resizing captured images in the
y-direction to a scale using image interpolation will render the optical system
equivalent to a standard pinhole camera. It can then be calibrated using generic
camera calibration methods, such as Zhang’s method Zhang (2000) implemented
in Matlab or OpenCV.
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Figure 2: Schematic of two camera models: (a) the standard pinhole camera model, where axes
Xe¢,Ye of camera coordinate system S, are parallel to axes z; and y; of the image coordinate
system S;; (b) the oblique-viewing camera model, in which the red solid line segment denotes
distance of two points in the captured image along the y; direction, while the green line is the
size it should be in a standard pinhole camera model. Fig. 2(b) was modified from (Snaauw
(2017)).

8.2. 2D Target Tracking with SiamMask

Region location of the target is required in our proposed method at initial
frame and keyframes to exclude motion distraction from the surrounding envi-
ronment. We use SiamMask, as presented by (Wang et al., 2019), which takes
a selected initial bounding box of the target as input, and outputs a binary seg-
mented mask, a similarity score, and a bounding box for searching the image.
Essentially, the video target tracking problem is modelled as a template-based
class-agnostic object segmentation task. It adopts a popular Siamese-based ob-
ject tracking approach and adds a binary segmentation task to its loss function.



Figure 3: SiamMask 2D target tracking on two clinical surgery datasets (top and bottom rows,
respectively). Left images in each row are initial frames, where bounding boxes of targets are
manually selected. Middle and right images show targets tracking results in later frames.
Both tracking boxes and masks are shown.

Compared with other video instance segmentation methods, such as Mask R-
CNN, its biggest advantage is that it can run at about 40 fps on a GTX 1060
GPU with 3 GB memory, which makes it possible for our system to achieve
real-time performance.

Our experiment using a pre-trained model to track the kidney in laparoscopic
video shows its ability to predict a coarse location for the target. The model was
trained by the authors of SiamMask on three public datasets: YouTube-VOS
(Xu et al., 2018), COCO (Lin et al., 2014), and ImageNet-VID (Russakovsky
et al., 2015). Please refer to Fig. 3 for examples of tracking results.

3.3. Motion Tracking

In this section, the steps for 6DoF motion tracking, which retrieve the motion
of the camera relative to the WCS for each frame, are described. Though both
laparoscope and captured scene are, in general, in motion, it is still valid for
us to approach the tracking by regarding the target as static and camera as
moving, since the target is assumed to be without deformation and other motion
distractions are excluded.

8.8.1. Feature Points Detection and Matching
Feature points detection and matching plays an important role in both mo-
tion estimation and relocation. To detect enough feature points and ensure



a reasonably homogenous distribution, we utilized the same feature detection
solution as ORB-SLAM (Mur-Artal et al., 2015), where FAST corners of eight-
level image pyramid of each input image are detected, and detector threshold is
adopted to try to extract at least five corners per sub-grid of each image level.
We compute the ORB descriptor as the feature descriptor for every obtained
FAST corner. Feature matching between stereo image pairs, and between cur-
rent and reference frames are both required in our proposed method, yet the
matching methods have some differences. Stereo feature matching has an ad-
ditional epipolar constraint which requires left and right image locations of the
same 3D point to lie on the same horizontal line after stereo rectification and
undistortion. However, as some camera calibration error is inevitable, we relax
this epipolar constraint to a deviation of 2 pixels. Given a left image point
(ug,v;), we therefore define stereo matching as the process of finding its corre-
sponding point (u,,v,) in the right image based on feature descriptor similarity
and subject to the epipolar geometry constraint. This is done in two steps: 1) for
each (ug,v;), find the point with minimal feature descriptor Hamming distance
within the rectangle area u, € (u; — width/2,u; + width/2),v, € (v, — 2, v + 2)
as initial matching result; 2) use GMS algorithm proposed by Bian et al. (2017)
to detect and remove mismatches. This procedure is fast compared with other
outlier detection methods such as RANSAC. To further evaluate the quality
of stereo matching, a parameter ¢ = Ad + (1 — A\)d is defined, where § is the
normalized reciprocal of the difference of the y-axis and d is the normalized re-
ciprocal of the descriptor Hamming distance. After many trials, we found that
prioritizing the feature descriptor similarity, specifically with a value A = 0.2,
gives optimal performance in identifying stereo point pairs.

For feature matching between frames in a temporal sequence, the epipolar
constraint no longer exists, so A is set to 0. Initial matching is built by brute force
matching and followed by GMS to remove mismatches. The output may retain
features which do not belong to the target and would induce motion distraction.
Therefore, in the next subsection we introduce the method for combining 2D
target tracking and these matched features in time sequence frames.

8.83.2. Reference Frame Selection and Outliers Rejection

Unlike common SLAM applications, which focus more on building an accu-
rate map for the surrounding scenario, the VST- AR focuses more on the accu-
racy of estimated camera pose in the current frame as it first arrives. Though we
designed an independent thread to optimize map and camera pose of keyframes,
it only helps to reduce the pose accumulative error of the subsequent images.
We found it is vital to choose an appropriate reference frame. Instead of set-
ting the previous frame automatically as reference for the current frame, as in
ORB-SLAM, we set the origin keyframe, the latest keyframe, and the previous
frame as three most likely reference frame candidates. We then set the target
bounding box on these frames as tracking target of SiamMask and current frame
as searching image. We choose the version with highest tracking score as final
reference frame. This is executed in three threads simultaneously.

Once the reference frame is selected, feature points matching between current



left frame and reference frame are calculated by performing temporal feature
matching. Most outliers are removed by the GMS algorithm. If the matched
features are sufficient, the tracking is deemed successful, and the pose of current
frame can be retrieved by a weighted ICP method introduced in the motion
estimation subsection 3.3.3. If tracking fails, we initially continue to the next
frame. If five consecutive frames fail to track, all keyframes are searched to
relocate.

3.3.3. Motion Estimation

For a given frame, the coordinates of observed feature points in the corre-
sponding camera coordinate system (CCS) can be solved by triangulating the
stereo pair X = (ug, vy, ur, v,). Here we choose the linear triangulate algorithm
proposed by Hartley and Zisserman (2003), which more accurate than the naive
triangulate method used in ORB-SLAM?2, because the latter assumes an ideal
epipolar constraint of stereo pairs. In our system, the CCS of the first input
frame is selected as the WCS, so that its observations also comprise the initial
global map. This global map is updated in each of the subsequent keyframe.
As mentioned, we seek the transformation T that maps the current frame to
the WCS. This is achieved by pointcloud registration between current obser-
vations(i.e. feature points observed in the current frame) and map points in
the selected keyframe. The situation is illustrated in Fig. 4. Current obser-
vations are indicated with green points and the map points belonging to the
keyframe are appear in blue. Red points are map points with a match identified
among current observations, and are thus the points of Interests. These cor-
responding points are identified using feature matching based on point feature
descriptors. Each such point has coordinates K, in the keyframe coordinate
system, M,, = TywxK, in the WCS, and the P,, in the current CCS, where
P, M, cR>andn=0,1,..,N —1, and N is the number of matched observa-
tions. The transformation Ty i from the keyframe to WCS is already known.
The sought transformation T from the current CCS to the WCS can be then
easily obtained by a weighted ICP, with the normalized feature matching quality
parameter ¢, as weights, for which the objective function is defined as:

N-1
{r,t} = argmin » _ g, [|M,, — 1P, — t|* (2)

’ n=0

where the r € SO(3) and t € R? are the rotation and translation component
of the rigid motion T € SE(3) that converts points in camera coordinate system
to WCS. This transformation is then used to guide fusion of the preoperative
CT model with the intraoperative current frame in the visualization thread.

If tracking is lost for five consecutive frames, other keyframes are searched to
match with the current frame and to relocate. This relocation may not succeed if
the current frame contains severe motion blur. In that case, we simply continue
to the next frame. It is acceptable for a few frames to be lost, since this has no
influence on the subsequent tracking, and the loss can not even be noticed by
human eyes with a normal frame rate.
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Figure 4: Illustration of coordinate systems and points used in motion estimation. Blue points
are map points appearing in the selected keyframe, green points are current observations
(points identified in the current frame), and red points are common observations across the
two frames which have been identified using feature matching. These feature-matched points
have coordinates Py, and K, in the current and keyframes, respectively, and M,, = Ty k Kn in
the WCS. The transformation 7" between the current frame and WCS is computed by rigidly
registering the matched points.

8.4. Mapping and Pose Optimization

As mentioned in 3.3.3, our method relies on a set of 3D points in the WCS,
called the map points and their corresponding feature descriptors in the refer-
ence frame to estimate current motion of the camera. In this section we describe
how to maintain the set of map points, and the database of candidate reference
frames; that is, the keyframe database. Compared with outdoor application
scenarios of ORB-SLAM2, the surgical scenario in our application is usually
small and no scale error exists in our weighted ICP based motion estimation.
We found there is therefore no need to perform loop detection for keyframes in
our system, which saves memory and computation resources.

3.4.1. Map Management

The initial map is built using the first stereo frame pair. The target bounding
box is manually selected in the left frame, and this frame is then set as the
searching image for SiamMask. Only features inside the resulting target mask
are reserved to match with features in the right image. The matched features
are then triangulated and saved as map points (see Fig. 5). For each map point,
the following data are recorded: 3D coordinates M,, in WCS; quality score g,;
number N,, of observations; IDs f,, of frames in which the point is observed;
and the point’s IDs I,, in each frame f,,. The last two parameters are vectors,
since the point may be detected in multiple keyframes. Once a new keyframe is
inserted, tracked feature points inside its tracked mask are added into the map.
N, is updated for all points after every successful tracking. Those map points
whose N,, and ¢, are more than three standard deviations from the means of

11



Feature points detection and|stereo matching

Reconstructed 3D shape

Figure 5: The reconstruction process of initial map.

all map points, or for which the related keyframes are deleted are themselves
deleted to save memory.

3.4.2. Keyframes Management

Since our application scenario is relatively small in space, a small number
of keyframes is enough; we set the maximum number of keyframes to 10. The
first frame, in which the target bounding box is selected, is inserted as a fixed
origin keyframe and never culled or updated. Any later successfully tracked
frame is inserted as a keyframe only if it meets the following criteria: 1) more
than 20 frames have passed from the last keyframe insertion; 2) number of
tracked points is <80% of number of map points in its reference frame; and
3)number of successful stereo feature pairs generated in its target area which
are then triangulated as new map points is >50. Once a frame becomes a
keyframe, target tracking is executed on it by setting the target box in its
reference frame as its tracking target. The output bounding box is saved, and
feature points inside its output mask after outliers rejection are added to the
map. The frame pose T with respect to WCS, the corresponding features point
x = (ug,v;,1) and feature descriptor on left image of every new map point are
also saved as properties of the keyframe. To keep a fixed maximum number

12



of keyframes, those keyframes with <40 map points remaining, or for which
> 80% of their map points have been observed in other keyframes are deleted.
All the values of parameters mentioned here have been chosen through trial and
error to ensure enough keyframes are maintained while keeping computational
resources affordable.

8.4.3. Map and Pose Optimization

For each new current frame, a reference frame with respect to which pose is
estimated is selected from among the set of keyframes. The accumulative error
resulting from this selection should be as small as possible. BA is an efficient
method to optimize both map points and frame poses by minimizing the re-
projection error of all map points on their observed frames. That is, for every
map point M,, with N,, > 1 , the pose of the observed keyframe and related
feature point are T}, and x* respectively, where k = 0,1,..., N,, — 1. The BA
objective function can be expressed as:

{MmTk}zalf/Igmian(HX'Z—W(Tk_laMn)H;) (3)

ns Tk n,k

where p is the robust Huber cost function, 7 (Tk_l, Mn) is the function that
is the function that projects M,, to the image plane of the camera with pose
T, and ¥ is the covariance matrix associated with matching quality of the
key point. This optimization is solved using the Levenberg—Marquardt method
implemented in g2o (Kiimmerle et al., 2011) after a new keyframe is added.
Non-updated keyframes and map points which are added while the optimization
is running are updated according to their reference frame once optimization is
finished.

4. Experiments and Results

Experiments on both ex-vivo tissue phantom and clinical datasets were car-
ried out to evaluate the performance of our proposed method. The system was
implemented using C++, with the help of open-source libraries OpenCV, g2o,
Pytorch and VTK. All experiments were run on a desktop computer with an
Intel CPU (Intel@ Core’TM i7-7700 CPU @ 3.60 GHz) and an NVidia GTX
1060 GPU with 3 GB memory. Further results, described in relevant sections
below, are provided as supplementary materials.

4.1. Experiments on Tissue Phantom Dataset

In tissue phantom experiments, a pair of porcine kidneys were used to simu-
late the target organ during surgery. The kidneys were scanned using a clinical
CT scanner, with resulting image size 512 x 512 x 368 and voxel spacing 0.6
mm X 0.6 mm x 0.5 mm, which is comparable to preoperative CT images dur-
ing clinical surgery. These images were then segmented and used to build the
preoperative 3D models.

13
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Figure 6: Comparison of the proposed method and ORB-SLAM2 on middle-level distraction
videos of the tissue phantom dataset. Several representative frames are selected, with frame
numbers indicated across the top. Row 1: feature points (green circles) and SiamMask seg-
mentation (green region) identified with our method; row 2: resulting AR projections for our
method, showing preoperative model points (blue), tumour surface (yellow), and vasculature
(red); row 3: feature points identified with ORB-SLAMZ2; row 4: resulting AR projections
for ORB-SLAM?2 (same structures as for row 2).The obvious differences of the projections of
these two methods can be seen inside the cyan boxes of raw 2 and raw 4.

Videos of the kidneys were captured by a USB binocular camera KS8A17-
3.0AF produced by Shenzhen Kingsen Technology co., Ltd with a 5 cm baseline
and 2560 x 960 frame size to imitate clinical binocular laparoscopes. To simulate
the real operation environment as much as possible, 12 videos were captured.
Each video contained about 8000 frames. Two of the videos recorded scenes in
which only the kidney was moving, to simulate target motion in surgery due
to respiratory or cardiac motion. Four videos contained motion of both the
kidney and the surgical tools. Motion distractions from both surgical tools and
surrounding tissues were present in the remaining videos.

To evaluate the accuracy of the motion estimation, a magnetic tracking
system was used to record the motion of the kidney when capturing the videos.
A sensor of the magnetic tracking system was attached to the kidney, and the
organ motion so captured was considered as gold standard. Both magnetic
tracking system and binocular camera remained still during filming, so that
recovery of target motion only could be assessed. The transformation between
camera and magnetic tracking coordinate systems was found by aligning the
point clouds of the target organ obtained by each system.

Here, we compared the performance of the stereo version of ORB-SLAM2

14



Figure 7: Comparison of the proposed method and ORB-SLAM?2 on high-level distraction
videos of the tissue phantom dataset. Several representative frames are selected, with frame
numbers indicated across the top. Row 1: feature points (green circles) and SiamMask seg-
mentation (green region) identified with our method; row 2: resulting AR projections for our
method, showing preoperative model points (blue), tumour surface (yellow), and vasculature
(red); row 3: feature points identified with ORB-SLAMZ2; row 4: resulting AR projections for
ORB-SLAM?2 (same structures as for row 2). The obvious differences of the projections of
these two methods can be seen inside the cyan boxes of raw 2 and raw 4.

with that of our proposed method since there are some similarities between
them. Both the parameters related to ORB feature points detection algorithm,
which include the number of features, the minimal and maximal threshold of
FAST corner detection, and number of image pyramid levels are set to the
same. The initial registration transformation from both ORB-SLAM2 and the
proposed method of the same video are also set as the same.

Since the predicted transformation T., € SF(3) and the gold standard
transformation Tét € SE(3) from magnetic tracking system are in different
coordinate systems, the rigid transformation S converting T¢, to Tét is solved
by Horn’s method Horn (1987). The Absolute Trajectory Error (ATE) T%, can
be then calculated as:

Ei = (Ti,)  STi,
where i = 0,1, ...,C, and C is the number of frames in video.

We compute the root mean squared error (RMSE) of translation component
of E and rotation angles around three axes (X, Y, Z) as final metrics. The
errors of both our method and ORB-SLAM?2 compared with the gold standard
are given in Table 1. As we can see, the proposed method outperforms ORB-
SLAM2 by a large margin in the highly dynamic environment scenario, while
the difference is small when no motion distraction is present. This is reason-
able, because ORB-SLAM?2 already performs well in scenarios without motion
interference, so little improvement can be made.
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Table 1: The motion estimation errors of our proposed method and of ORB-SLAM2 on our
tissue phantom datasets. In this table, “OUR” indicates our proposed method and “ORB”
indicates ORB-SLAM?2.

Errors | Angle X(deg) | Angle Y(deg) | Angle Z(deg) Translation(mm)

Sequenc OUR | ORB | OUR | ORB | OUR | ORB | OUR | ORB
Without 168 | 2.8 | 250 | 295 |335 |228 |231 |255
Distraction

Middle-level | o) - | o7 | 186 | 148 | 4.82 | 346 | 343 | 3.90
Distraction

High-level 1o 7\ gos | 902 | 476 | 335 |315 | 356 | 689
Distraction

For an intuitive comparison, we show the results of the key step, that is
the feature points used to estimate the motion. Several typical frames from
each different level videos are selected in this paper, which contains the surgical
instruments interact with the target organ, occlusions from surrounding tissues.
In Fig. 6 and Fig. 7 we list the images with the features used to estimate
the motion together with the tracked region of target of our method and that
of features detected and used in ORB-SLAM2. Moreover, the projection of
preoperative models guided under the estimated motion are also showed as a
quantitative metric. Compare the projections (the blue points) inside the cyan
boxes, it can be seen that the projections of our method is more close to the
boundary of the kidney on the images. The readers are suggested to zoom the
figures for a more clear view. We can see that the region tracking method provide
a good target region estimation even at the present of occlusion from surgical
instruments or surrounding tissues. All the feature in our method are detected
in this target erea, so that we get a more dense feature points distribution
compared with ORB-SLAM2 when we set the same number of feature to detect.
And the corresponding videos are provided as supplement materials.

Fig. 8 shows the trajectories of center point of tumour from gold standard,
our proposed method, and ORB-SLAM2 for an example highly dynamic sce-
nario. The ORB-SLAM?2 trajectory represents the initial motion estimate for
each frame, rather than the trajectory saved after global optimization, since the
former are the values applicable to real-time fusion with the CT model, during
the operation. Our proposed method clearly achieves a more robust trajectory
estimation and has better motion consistency.

4.2. Qualitative experiment with clinical datasets

Clinical datasets were obtained from Shanghai Renji hospital. The IRB ap-
proval was obtained from the IRB board of School of Medicine, Shanghai Jiao
Tong University, and its reference number is SH9H-2019-TK323-1. A set of im-
ages of a calibration chessboard were captured just before capturing the surgical
environment, and all laparoscope parameters were then fixed during the surgery.
These images were used to calibrate the laparoscope by the method described in
3.1. The surgery scene in which surgeons were finding and estimating the tumor
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Figure 8: Trajectories of camera from gold standard, our method and ORB-SLAM?2 for one
high dynamic environment.

boundary was captured. These clinical datasets contain both the preoperative
CT images and the corresponding intraoperative endoscope videos. The intra-
operative videos contain fast camera motion, surgical instruments interaction
with the target organ, and smoke generated during tumor ablation. We tested
our method and ORB-SLAM?2 on these clinical datasets, focusing especially on
comparing their performance on those cases involving motion blur, motion dis-
traction from surgical tools, and smoke. As there is no gold standard, only
qualitative visualization results are provided.

Fig. 9 gives the performances of both methods when motion blur occurs.
Here “OUR” means the proposed method and “ORB” represents ORB-SLAM2.
The effective features points (that is, the projections of the visible map points
in current frame) observed on current frame of both method are drawn on the
original image in little green circles. Besides, the region tracking results of the
proposed method are also drawn together with the feature points as light green
mask. “AR” means augmented reality effects, which are actually the projection
of the preoperative models guided by the estimated motion on current frame.
Each row contains these four items of the same column image with its frame id
on the top. While comparing items of the first row with that of the third row, we
can find that the proposed method utilizes less features that don’t belong to the
target region while estimating the motion. The AR effect results (the second
and the last row), especially the image parts inside the cyan box shows the
boundary of the projections (blue points) of our method are fitted better with
the kidney boundary on the images, which as a result, gives us a direct sense
that the proposed method is more accurate than OBR-SLAM?2. The readers are
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Figure 9: Comparison of the proposed method and ORB-SLAM2 on the clinical dataset in
the presence of motion blur. Several representative frames are selected, with frame numbers
indicated across the top. Row 1: feature points (green circles) and SiamMask segmentation
(green region) identified with our method; row 2: resulting AR projections for our method,
showing preoperative model points (blue) and tumour surface (yellow); row 3: feature points
identified with ORB-SLAM?2; row 4: resulting AR projections for ORB-SLAM2 (same struc-
tures as for row 2). The differences of the projections of these two methods can be seen inside
the cyan boxes of raw 2 and raw 4.

suggested to zoom the figures for a more clear view. From the first row of Fig.
9, we can also see that the target tracking results may contain some areas which
don’t belong to the surface of the target organ. However, the points maintained
in the map dataset are used as candidate matches for current detected features,
it’s a natural process to further removing the features that are not belong to
the target. As a result, the proposed don’t rely on a 100 percent accurate target
region tracking. The worst situation is that there are too little region or even no
region are tracked, in these case the motion estimation will fail. If the number of
consecutive last frames reaching the threshold, the system will try to relocate.
Several frames of the performances for both methods with the presentation
of motion distraction from surgical tools and smokes are shown in Fig. 10.
As shown in the first row, the region tracking only givens a part of the target
organ surface, however, it still estimate a relative accurate motion compared
with ORB-SLAM2 when comparing the second and the last row. Comparing
the AR effects of the proposed method on frame 0089, 0402 and 0461, we can
find that the smoke do damage the accuracy of motion estimation, though it’s
more obvious on ORB-SLAM2. We found the main reason is that once the
smoke occurs or becomes dense, less features can be matched with those in the
map points dataset since the image patches around the feature points varied a
lot. Besides, the smoke always persists longer, which would frequently trigger
the relocation process or even reset the tracking system. We regard solving this
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Figure 10: Comparison of the proposed method and ORB-SLAM?2 on the clinical dataset
with surgical tools and smoke appearing in the scene. Several representative frames are
selected, with frame numbers indicated across the top. Row 1: feature points (green circles)
and SiamMask segmentation (green region) identified with our method; row 2: resulting AR
projections for our method, showing preoperative model points (blue); row 3: feature points
identified with ORB-SLAM2; row 4: resulting AR projections for ORB-SLAMZ2, showing
preoperative model points. The differences of the projections of these two methods can be
seen inside the cyan boxes of raw 2 and raw 4.

problem as a future work.

5. Conclusion

In this paper, we proposed a real-time motion tracking method aiming to
achieve robust and long term tracking in highly dynamic surgery environments.
The proposed method can be regarded as a special version of ORB-SLAM that
is tailored for rigid VST-AR applications in minimally invasive surgery. Our
system comprises four threads running in parallel: 2D target tracking, motion
tracking, map and pose optimization, and visualization. A computationally effi-
cient target tracking and segmentation method SiamMask is used to keep focus
on the target region and to exclude motion distractions from surroundings. The
reference frame selection strategy is redesigned compared with ORB-SLAM to
achieve more accurate motion estimation for the first calculation of each arriv-
ing frame. As our application environment is much smaller than the outdoor
scenarios for which ORB-SLAM is designed, we found it is acceptable to keep
only a small number of keyframes and to delete the loop closing, saving much
computation. Our proposed method is tested on both ex-vivo tissue phantom
datasets and clinical surgery datasets with the presence of motion blur, surgical
instruments interference, and smoke. Both quantitative and qualitative results
reveal an encouraging performance. However, longer persisting smoke within
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the scene reduces the robustness of the proposed method, which we will tackle
in future research.
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