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Abstract

Organ motion poses an unresolved challenge in image-guided interventions.
In the pursuit of solving this problem, the research field of time-resolved volu-
metric magnetic resonance imaging (4D MRI) has evolved. However, current
techniques are unsuitable for most interventional settings because they lack
sufficient temporal and/or spatial resolution or have long acquisition times.
In this work, we propose a novel approach for real-time, high-resolution 4D
MRI with large fields of view for MR-guided interventions. To this end, we
trained a convolutional neural network (CNN) end-to-end to predict a 3D
liver MRI that correctly predicts the liver’s respiratory state from a live 2D
navigator MRI of a subject. Our method can be used in two ways: First,
it can reconstruct near real-time 4D MRI with high quality and high res-
olution (209 x 128 x 128 matrix size with isotropic 1.8 mm voxel size and
0.6 s/volume) given a dynamic interventional 2D navigator slice for guid-
ance during an intervention. Second, it can be used for retrospective 4D
reconstruction with a temporal resolution of below 0.2s/volume for motion
analysis and use in radiation therapy. We report a mean target registration
error (TRE) of 1.19 £ 0.74mm, which is below voxel size. We compare our
results with a state-of-the-art retrospective 4D MRI reconstruction. Visual
evaluation shows comparable quality. We show that small training sizes with
short acquisition times down to 2min can already achieve promising results
and 24 min are sufficient for high quality results. Because our method can
be readily combined with earlier methods, acquisition time can be further
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decreased while also limiting quality loss. We show that an end-to-end, deep
learning formulation is highly promising for 4D MRI reconstruction.
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1. Introduction

4D MRI is not easily available from a medical point of view. Part of
this is due to the significant amount of data needed to reconstruct differ-
ent breathing states. Development of 4D MRI methods is becoming more
advanced and could soon make 4D MRI readily available for use in clini-
cal scenarios like needle guidance during cancer intervention on a liver. We
can classify most of the proposed 4D MRI methods for large fields of view
(FOVs) and high temporal resolution along two lines. The first line dif-
ferentiates whether sequence programming and altered k-space sampling is
used, or whether readily available standard sequences are used. The second
line differentiates whether a ”representative”, i.e., single breathing cycle or
any sequence of breathing patterns, is reconstructed. Virtually all proposed
methods - either prospective or retrospective - are not able to acquire or
reconstruct a 4D MRI in real-time. In this work we focus on the recon-
struction of arbitrary sequences of breathing patterns in retrospection using
readily available clinical sequences. Furthermore, we show that our method
is capable of predicting real-time 4D MRI utilizing a 2D live navigator slice.

In 2007, von Siebenthal et al. [2I] proposed a 4D MRI reconstruction
method for arbitrary breathing sequences. They proposed to retrospectively
sort 2D cine, i.e., dynamic, MRI sequences of interleaved navigator and data
slices based on the navigator’s breathing state. Building upon that work, fur-
ther methods were proposed to improve image quality. To this end, Tanner
et al. [I8] predicted unseen data slices for navigator slices. Gulamhussene
et al. [6] improved reconstruction speed and robustness against out-of-plane
motion in the navigator by applying template updates. Other work focused
substantial effort on the reduction of acquisition time. In this respect, Celi-
canin et al. [2] simultaneously acquired navigator and data slices, cutting the
acquisition time in half. Karani et al. [10] predicted every second navigator
using a convolutional neural network (CNN), shortening acquisition time by
one fourth. Zhang et al. [24] also performed interpolation of navigators by
utilizing an intermediate motion field prediction using a CNN. Navest et al.
[13] used information always present in the raw MRI readout, eliminating



the need for acquisition of an actual navigator frame.

In contrast, other approaches propose to reconstruct one ”representative”
breathing cycle [II, 19) 14} 20} 16, 12, 22]. The notion of single representative
breathing cycles is common in radiation therapy planning and execution.
Another group of 4D MRI techniques used sequence programming and/or
altered k-space sampling [9, [4 &, [I5]. All of these reconstructed average,
i.e., representative, breathing patterns as well. Only in 2019 did Yuan et
al. [23] propose the first near real-time large FOV 4D MRI reconstruction
technique. They used sequence programming, attaining a high temporal
resolution (615ms) with moderate spatial resolution (128 x 128 x 56 matrix
size, 2.7 x 2.7 x 4.0mm? voxels).

In this work, we propose a novel approach that uses a CNN to solve two
distinct problems: First, it can be used to predict 3D full-liver MRIs with
high spatial resolution (209 x 128 x 128 matrix size, 1.8 x 1.8 x 1.8mm?
voxels) live and in near real-time (600ms). Second, it can be used as a
retrospective method to reconstruct 4D MRIs with high temporal resolution
(116ms) and the same spatial resolution for arbitrary physiological breathing
patterns extracted from 2D navigator sequences. Our method is capable of
reconstructing 3D liver MRIs even with drastically reduced training data,
cutting acquisition times to only a few minutes compared to onboard 4D
MRI techniques.

2. Material and methods

2.1. Training data

We published part of the data used in this work in a data repository
previously [5]. We acquired further data of 7 new subjects and made it also
publicly available for this work in a data repository [7]. The data contains
anonymised DICOM images as well as a detailed MRI acquisition protocol.
The data was acquired on a MAGNETOM Skyra MRI scanner (Siemens
Medical Solutions, Erlangen, Germany). In total, the data comprises MRIs
from 20 healthy volunteers. For each subject, a static 3D liver MRI, a 2D
navigator MRI reference sequence, and several interleaved MRI sequences
were acquired. The latter are sequences with alternating 2D navigator and
2D data slices, also called image slices. 3D volumes and 2D slices of the same
subject share common scanner coordinates. The volume was acquired with
a STAR VIBE sequence (320x320x72-88 matrix size, 3mm slice thickness,
1.19 x 1.19mm? voxels, 0% phase oversampling, 44.4% slice oversampling,



Figure 1: For each subject a static 3D volume was acquired with a STAR VIBE sequence
(seq.) with axial slice orientation. A reference sequence comprised only of navigator frames
was acquired using a TRUFI sequence and several interleaved sequences were acquired
using the same TRUFTI sequence, equidistantly sampling the liver in sagittal orientation.

380 mm FOV read, 100% FOV phase, 2.83mm TR, 1.48 ms TE, 9° flip angle,
7/8 slice partial Fourier). A STAR VIBE sequence allows for the imaging
of a still 3D MRI and is based off of an actually moving target, such as the
liver during free breathing.

Navigator and data slices were acquired with a TRUFT sequence (39.96 ms
TR, 3.33ms echo spacing, 1.49ms TE, 30° flip angle, 676 Hz/voxel readout
bandwidth, 176 k, base resolution, 80% phase resolution, 14 x 176 matrix size,
1.8 x 1.8 mm? in-plane resolution, 4 mm out of plane resolution, 255 x 320 mm?
FOV). For faster measurement, a partial Fourier was used sampling 5/8 of the
k-space asymmetrically in phase-encoding direction, i.e., roughly 60% of the
k, lines, resulting in 88 actually acquired lines. The acquisition takes place
with high speed (166 ms/slice), with contrast just good enough to detect the
respiratory motion. No body array coil was used, limiting acquisition to the
bore’s fixed receiver coil.

Reference and interleaved sequences will be described in the following. A
reference sequence is a 2D cine MRI sequence of so-called navigator frames,
where a slice is acquired every 166 ms. A schematic depiction can be found in
Fig. [ Navigator frames represent an image plane, in which the respiratory
motion is visible via vessel cross-sections. In our case, the navigator is a
sagittal slice that intersects the liver. This sequence is our reference for 4D
reconstruction. It contains a natural succession of different breathing cycles



and patterns, like shallow or deep, thoracic or abdominal breathing, and is
thus physiologically meaningful. In our case, the reference sequence always
comprises 513 time points, covering 85 seconds (typically about 20 breathing
cycles).

Each interleaved sequence (see Fig. [1)) consists of 300 to 400 data and
navigator slices (166 ms per slice). It can be thought of as a series of pairs
of these navigator and data slices. The navigator slices will be part of the
networks training input, and the data slices will be the training label images.
The training will be discussed in Sec. [2.3] The navigator slices are positioned
exactly as they are in the reference sequences. Each interleaved sequence is
imaged for one minute before moving the imaging plane of the data slice 4 mm
to the left, while keeping the navigator position fixed. This is repeated until
the entire liver is covered. This enables the CNN to learn spatial relations
between navigator and data frames to later reconstruct the whole liver volume
from a single navigator slice. The total number of training sequences per
subject ranges between 38 and 57, depending on the size of the subjects’
liver. Thus, the overall acquisition time for a subject ranged between 40
and 80min, excluding the time needed for imaging localizers, determining
the navigator position and setting up the interleaved sequences. The latter
averages to about 15min per subject. The Otto-von-Guericke-University
Magdeburg ethics board approves our study “Studies with healthy subjects
in 3 Tesla for methodological development of MRI experiments” (approval
number 172/12), stating they concluded that there are no ethical concerns
and that this approving assessment is made based on unchanged conditions.
Oral and written consent was obtained during the study.
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Figure 2: U-Net variant. Blue boxes are convolutions, grey arrows denote max pooling or
up sampling, pluses denote concatenations of feature maps.



2.2. U-Net CNN Architecture

Our CNN architecture, depicted in Fig. [2] is a U-Net [17]. The input to
the network is processed in an encoding and decoding path. The encoding
employs four blocks of 3 x 3 convolutional layers, each followed by a leaky
rectified linear unit (leaky ReLu) with a slope coefficient of 0.1. The convo-
lutions are padded to keep the size of feature maps and input. The second
convolutional layer in each block doubles the number of features, increasing
the network’s capacity. It is followed by a MaxPooling operation in the first
three blocks. The 128 x128x 3 input to the network is processed by 32 filters
in the first convolutional block and results in 512 filters in the latent feature
space. The decoding reconstructs the image from the latent space. To this
end, three transposed convolutional blocks upsample the features, each of
which consists of two convolutional layers with a dropout layer in between.
At each upsampling, the filter size is halved. At the end, a final 1 x 1 con-
volution layer outputs the reconstructed image. As with the original U-Net
architecture, skip connections are used to forward details from the encoding
path to the decoding path. In total, the network has about 6,8 million pa-
rameters, which get trained by an Adam optimizer [I1I]. We implemented
the network with Keras [3].

2.3. Training

First, we split the data set into training and validation data (16 subjects)
and test data (4 subjects). We want to predict a 3D volume from a navigator
slice. However, for each time point, we do not have ground truth for the whole
volume, just one single slice in that volume, which is the data slice following
the navigator in an interleaved sequence. Thus, we trained our U-Net to
predict 2D liver slices of a subject given a moving navigator frame and two
slices from a static 3D liver volume of that subject. Fig. |3|depicts an example
for the three channel input, the output and the training label. Vol. slice A
is a slice from the static 3D volume and acts as a still reference at navigator
position. Vol. slice B is a slice from the static 3D volume at the position for
which the network is to predict a liver slice that matches the breathing state
of the navigator. This way, the network is able to predict any slice position
within the liver and, by that, to slice-wise predict a full 3D liver volume
with the adequate breathing state and contrast. To be precise, because the
navigator slice is acquired 166 ms before the label data, the network predicts
data slices ahead of time.
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Figure 3: The network input consists of three channels. The first channel gets a navigator
slice that tells which breathing state to predict, i.e., the breathing state that follows the
navigator. The second channel gets a static volume slice (vol. slice A) at the navigator
position, to act as a still reference to the moving navigator. The third channel gets a static
volume slice (vol. slice B) that tells the network at which position to predict the new slice.

For training, the navigator slice is taken from the dynamic interleaved
sequences (see Fig. [I). The training label (ground truth) is the second
image of each pair in an interleaved sequence. The two static volume slices
are taken from the static STAR VIBE volume. The first static volume slice
is at navigator position, while the second is at data slice position, i.e., at
label position. The network can infer the breathing state from the first two
input channels, while it can detect and interpret the position from the third
input channel. Changing the first input channel changes the breathing state.
Changing the third input channel changes the slice position to be predicted.
This way, it is possible to slice-wise predict full liver volumes for a dynamic
sequence of navigator slices of arbitrary length.

Before converting to image arrays during the training pipeline, the MRIs
were re-sampled using scanner coordinates. Re-sampling was done to har-
monize the network input. The slices were re-sampled to 128 x128 voxels
with a size of 1.8 x 1.8 mm?. The STAR VIBE volume was re-sampled to
209x 128 x 128 voxels with a size of 1.8 x 1.8 x 1.8 mm?.

To facilitate robustness, we augmented the training data in physiolog-
ical plausible ranges in-plane with random translation of up to £10 voxel
(£18.18 mm), random rotation of up to +3° and random scaling within
[0.8,1.2]. We evaluate the augmentation in Sec. (3| Furthermore, we whiten
image intensities I for each subject using

I—pu 1
Lnorm = d 2(1 j — 27 T | > 1
oy an 0 adj = Max (O’ W) (1)
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where I, are the whitened (normalized) intensities, p is the average in-
tensity for all slices of one subject. Likewise, 02,4; is the standard deviation,
which was adjusted by a reasonable lower bound that depends on the number
of voxels #voxels available for that subject.

We trained a network for each of the 16 subjects. To this end, we split
the available samples of each subject into 8,811 training and 180 validation
samples (roughly 4 validation samples per slice position). The networks
were trained for 200 epochs using the mean squared error (MSE) between
prediction and label image as loss function.

3. Experiments and Results

We can utilize the network in two ways. First, we can use the network to
predict 3D liver MRI in near real-time for any navigator image during inter-
ventions. Second, we can use the network to reconstruct a 4D liver MRI from
a sequence of navigator slices. In both cases, an input batch is constructed,
where each entry of the batch corresponds with a slice position in the recon-
structed volume. This allows us to infer all slices for a 3D volume in a single
forward pass. After inference, the predicted 2D slices are concatenated to a
volume using the scanner coordinates of the STAR VIBE volume. Note that
within one batch all inputs have the same navigator slice (first channel), while
all third channels show different positions of the static liver volume. This
process may be repeated several times to form any 4D breathing sequence.
The approach can suffice with 2min to 24 min of training data (acquisition
time), which will be shown later in this section, and the computation time
for one 3D prediction is 0.6s. We compare acquisition and reconstruction
times with state of the art methods in table [l Note that our method can
be combined with the last three methods, which would lower the acquisition
times further.

We computed the target registration error (TRE) of manually tracked
vessel cross-sections for all four test subjects. The TRE is a medically crucial
metric for accuracy. Vessel cross-sections were tracked within slice positions,
which were at different distances to the navigator. Per subject, we chose four
slice positions, i.e., four interleaved sequences, at roughly —3 ¢cm, —2 cm, 0 cm
and 3 cm distance to the navigator (signs indicate left or right of navigator).
For each of these 16 interleaved sequences (4 subjects x 4 slice positions)
one random breathing cycle (exhale to exhale, between 8 to 17 time points)
was used to track one to six vessel cross-sections (depending on visibility) in



Figure 4: Sample breathing cycle (prediction and ground truth) for TRE calculation with
tracked vessels (arrows) and their traces (dashed lines). Red lines serve as reference for the
breathing depth. For compactness, only every second time point is shown. The network
input to the first time point is shown in Fig. [3] Slice position is 3.8 cm left of the navigator.

method acquisition time reconstruction time

ours 2min to 24min  0.6s

Yuan et al. [23] * 0.615s

von Siebenthal et al. [2I] 15min to 60 min 73s

Gulamhussene et al. [6]  15min to 60 min 24s

Tanner et al. [1§] 9min to 12min -

Celicanin et al. [2] 1/2 -

Zhang et al. [24] 1/4 1/2 (for sorting approaches)

Table 1: Comparison of acquisition time (of training or stacking data) and reconstruction
time (per time point), if reported. * Method two reconstructs during acquisition.

the label slice of each time point, i.e., the second slice of a navigator-data
pair. By that, we generated a ground truth representing the positions of
vessel cross-sections in 16 breathing cycles. We then reconstructed the same
16 breathing cycles (2D sequences) using our CNN approach and manually
tracked the same vessel cross-sections again in each prediction. That way,
we generated a total of 1566 data points in both ground truth and prediction
that were used for TRE evaluation. Fig. {4 shows an example breathing cycle
and its prediction used for TRE calculation. Note how the network enhances
the image quality compared to the label and even predicts vessels correctly
that are barely visible in the ground truth label. The input to the prediction
of time point one is the same as shown in Fig. [3| The inputs to the other time



slice distance to navigator
subject 3cm 0cm —2cm —3cm | all positions
S1 0.70£0.38 | 0.53+0.37 | 0.92£0.62 | 1.21 +0.65 | 0.84 =0.50
S2 0.66 +0.40 | 0.64+0.47 | 0.80+0.49 | 0.80£0.54 | 0.72 £+ 0.47
S3 0.44+0.27 | 0.454+0.34 | 0.60£0.30 | 0.94+0.55 | 0.61 +£0.36
S4 0.45+£0.27 | 0.31 +£0.21 | 0.53£0.38 | 0.58 £0.33 | 0.47+£0.37
S1-S4 | 0.56+0.33 | 0.48 £0.35 | 0.71+0.45 | 0.88 £0.52 | 0.66 +0.41

Table 2: Presented are TREs for all test subjects. Columns 2-5 show TREs per slice
position, the last column shows mean TREs per subject, i.e., over all four slice positions.
The last row shows mean TREs over all test subjects. All TREs are given in voxel.

points look similar to the first, only the navigator changes as it advances in
time. By calculating the mean difference in tracked vessel positions between
ground truth and prediction, we computed the TRE per subject and slice
position, i.e., interleaved sequence, for a total of 16 calculated TREs shown
in table . All reported TREs are below voxel size, with one exception (S1
column 5). All subjects have a similar over all TRE. The mean TRE for all
test subjects is 0.66 £ 0.41voxel (1.19 4 0.74mm). One can also see that, in
general, the TRE is smaller near the navigator than further away from the
navigator.

baseline

exhale

inhale

Figure 5: Example reconstruction of baseline and our CNN-based method, presented
as axial, sagittal and coronal slices at identical temporal and spacial position, for an
exhale-state (a,c) and inhale-state (b,d). Red lines indicate liver dome position of baseline
reconstruction.

We wvisually assessed reconstruction results of our method by analyzing
the 4D liver MRIs for all subjects predicted from the reference sequences.
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We compare our results against a state of the art method. To that end,
we used the reconstruction method of Gulamhussene et al. [6] as baseline.
All reconstructions were visually plausible when compared with the baseline
reconstruction. In Fig. [5| we present the same subject from the test data
set that was used in Fig. [3] and [ to illustrate the reconstruction results.
More precisely, the reconstructed end-exhale and end-inhale time points are
shown for the baseline and our CNN-based reconstruction. For both the ex-
hale and inhale baseline reconstructions (a,b), we observe that blood vessels
and liver boundaries are continuous and smooth in axial and coronal views.
Please note that both methods, the baseline reconstruction and our CNN-
based method, are performed slice-wise from sagittal slices. Additionally, in
our CNN exhale and inhale reconstructions (c,d), the liver dome and ves-
sels are continuous along all view axes. The major vessels are present and
smooth. In-plane details are well reconstructed, however some smaller vessels
are missing or do not show the correct trajectory in axial orientation, espe-
cially in slices further away from the navigator. The breathing depths match
excellently between baseline and our method. Note that, to a limited de-
gree, our proposed method is capable of reconstructing regions of the thorax
and abdomen left and right that it never saw during training. The baseline
method (or any other sorting method) cannot reconstruct these regions.

We evaluated the reconstruction quality w.r.t. the training data size. Fig.
[6] shows the baseline reconstructions (leftmost column) as well as reconstruc-
tions from six networks (other columns) with decreasing amounts of training
data (98% to 5%). The acquisition times range between 47 min (8431 sam-
ples) and 2min (430 samples). As can be seen, our method is capable of
reconstructing full-liver volumes with different breathing states while cap-
turing major and minor vessels. We observe that 2 min of training data yield
promising results. Note that with a standard MRI acquisition it would take
roughly that time to capture only one 3D volume with comparable quality.
We further observe that 50% of the training data yields nearly as good results
as when 98% of the data are used.

Also, in Fig. we observe that increasing the training data size be-
yond 50% does not improve the loss further, as the latter plateaus at 0.075,
indicating that a fraction of the acquisition time would be sufficient for a
satisfactory reconstruction.

We evaluated the performance of our method per predicted position. We
used the CNN50 (50% of the subject data used) models for this analysis.
Fig. shows the loss as a function of the distance of the prediction to
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Figure 6: Reconstruction results depending on training data size. Reconstructed are an
inhale and exhale state. The training data size in samples (spl.) is depicted at the top. For
each volume reconstruction three slices are presented: two sagittal slices, one at navigator
position (nav. pos.), one 4 cm left of the navigator and one coronal slice.

the navigator slice. Blue and green boxes represent the validation and test
data losses respectively. For visualization, the distances were binned into
12mm bins (3 slice positions per bin). We observe that the test data loss
is comparable with validation data loss. Two effects are visible for both
data sets. First, our network performs better on the left of the navigator
(subjects’ right) and worse on the right (subjects’ left). Second, our network
performs better when being closer to the navigator. This is consistent with
the observation made above in the analysis of the TRE.

We performed a hyper parameter search across the 16 subjects of the
training and validation data to find the following best settings: learning rate
(0.000413), drop out ratio (0.15), data shuffling (true) and batch normaliza-
tion (false). We also tested the augmentation parameters and found them to
improve the reconstruction results for all subjects irrespective of the exact
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Figure 7: Test data losses (y-axis) as a function of the amount of available training data
(x-axis), starting with 5% and ending with 98%.
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Figure 8: Loss as function of the distance of prediction to navigator position. Blue box
plots are validation data losses (16 subjects). Green box plots are test data losses (4
subjects).

range of any single parameter.

4. Discussion and Conclusion

In this work, we present a novel method in which a trained CNN is used to
reconstruct high quality 4D full-liver MRI end-to-end in near real time. Our
method can solve the presented problem in two distinct ways: First, it can
predict a live 3D liver MRI from a live 2D navigator slice in near real-time
(0.6s) and second, it can reconstruct a 4D liver MRI from a 2D navigator
MRI sequence with high temporal resolution (0.166s) in retrospection. The
reconstruction quality is comparable to the state-of-the-art. Our TRE is
well below voxel resolution with 0.66 + 0.41voxel (1.19 £ 0.74mm), which is
medically sufficient.
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We showed that, with our method, acquisition times could be halved
from 47 min (8431 training samples) to 24 min (4302 samples) without losing
reconstruction quality. They can even be reduced to 2min (430 samples)
while losing some image quality. Some of the earlier proposed methods report
acquisition times between 9 and 60 min, while others report acquisition time
reductions between 1/4 and 1/2. Because our new method complements these
methods, it can be used in conjunction to multiply the reduction effects.
Thus, a combined acquisition time reduction of up to 3/4 without loss of
reconstruction quality seems achievable. In practice, to reconstruct breathing
sequences of arbitrary length, this would mean acquisition times of around
6 min, which is a reasonable time in clinical practice. Overall, our work shows
promising results which could motivate further research in this direction.
We believe our method shows a way for predicted true real-time 4D MRI
techniques and provides a solution to reduce the acquisition time and effort
for retrospective reconstruction approaches.

Summarily, the three key strengths of our method, from a medical point
of view, are high reconstruction accuracy, high image quality and resolution,
and high speed in both acquisition and reconstruction. The main contribu-
tion of this paper is to prove the possibility of applying end-to-end deep learn-
ing on the problem of 4D MRI reconstruction to achieve these key strengths.

In the following, we discuss the limitations of our method and motivate
future work. Because our network is 2D, it cannot acquire full knowledge
of 3D relations between navigator and data slices. The further away the
data slice is from the navigator, the looser the 3D relations become, and the
poorer the reconstruction quality end up. To mitigate this effect, one could
potentially divide the volume into distance ranges and train one network for
each range, thus reinforcing knowledge for 3D relations over larger distances.
We expect that an ensemble of such networks will provide a considerable
gain in quality for a fixed level of training data or constant quality for less
training data.

Additionally, in our method, one model is trained for each subject. In
future work, we want to investigate the possibility of having only one model
that abstracts not only beyond seen breathing states, but also beyond seen
subjects, or adapts quickly to new subjects. We believe that this is achiev-
able using transfer learning strategies which, in turn, will further reduce the
amount of necessary training data.
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