
 

A robust and lightweight deep attention multiple instance learning 

algorithm for predicting genetic alterations 

 

Author: Bangwei Guo1, Xingyu Li2, Miaomiao Yang3, Hong Zhang2*, Xu Steven Xu4* 

 
1Department of Applied Statistics, School of Data Science, University of Science and 

Technology of China;  
2Department of Statistics and Finance, School of Management, University of Science and 

Technology of China;  
3 Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 

Anhui, China; 
4 Data Science/Translational Research, Genmab Inc., Princeton, New Jersey, USA; 

 

 

Abstract 

Deep-learning models based on whole-slide digital pathology images (WSIs) become 

increasingly popular for predicting molecular biomarkers. Instance-based models has been the 

mainstream strategy for predicting genetic alterations using WSIs although bag-based models 

along with self-attention mechanism-based algorithms have been proposed for other digital 

pathology applications. In this paper, we proposed a novel Attention-based Multiple Instance 

Mutation Learning (AMIML) model for predicting gene mutations. AMIML was comprised of 

successive 1-D convolutional layers, a decoder, and a residual weight connection to facilitate 

further integration of a lightweight attention mechanism to detect the most predictive image 

patches. Using data for 24 clinically relevant genes from four cancer cohorts in The Cancer 

Genome Atlas (TCGA) studies (UCEC, BRCA, GBM and KIRC), we compared AMIML with 

one popular instance-based model and four recently published bag-based models (e.g., 

CHOWDER, HE2RNA, etc.). AMIML demonstrated excellent robustness, not only 

outperforming all the five baseline algorithms in the vast majority of the tested genes (17 out 

of 24), but also providing near-best-performance for the other seven genes. Conversely, the 

performance of the baseline published algorithms varied across different cancers/genes. In 

addition, compared to the published models for genetic alterations, AMIML provided a 

significant improvement for predicting a wide range of genes (e.g., KMT2C, TP53, and SETD2 

for KIRC; ERBB2, BRCA1, and BRCA2 for BRCA; JAK1, POLE, and MTOR for UCEC) as 

well as produced outstanding predictive models for other clinically relevant gene mutations, 

which have not been reported in the current literature. Furthermore, with the flexible and 

interpretable attention-based MIL pooling mechanism, AMIML could further zero-in and 

detect predictive image patches.  

  



 

Introduction 

  The detection of genetic alterations aims to achieve precision treatment of cancer1, 

including conventional chemotherapy and targeted therapies2,3. However, molecular and 

genetic tests can be time consuming, expensive, and difficult to implement at scale1. Automatic 

computer-aided diagnostics can reduce pathologists’ workloads and diagnosis mistakes4. 

Compared with genomics data, H&E-stained WSIs are ubiquitously available with the rise in 

whole slide scanner technology5, and can reflect morphological changes in tumor cells and 

their microenvironment in extremely detailed, gigapixel resolution6. Many studies5,7-9 have 

revealed that deep learning can learn unique morphological features just in WSIs to robustly 

infer the genotype and elucidate biological mechanisms of downstream effects of molecular 

alterations across many cancer types, such as lung cancer2, bladder cancer10, and colorectal 

cancer11-13. 

WSIs are large with Giga pixels2, so it is extremely challenging to process on a General 

Processing Unit (GPU) at once. Currently, WSIs are usually split into small image patches to 

train neural networks to predict gene mutations1,2,11,12,14. As a result, many image patches are 

present for each WSI, while only one mutation status is available for that patient (or slide). 

Therefore, features from multiple patches in a WSI must be aggregated to predict the mutation 

status for that WSI. 

The published aggregation strategies in the field of digital pathology are commonly done 

with the idea of Multiple Instance Learning (MIL). Each WSI is considered as a bag with 

multiple instances (image patches). The aggregation methods can be roughly divided into two 

general categories15-17: instance-base and bag-based methods, namely aggregating patch 

predictions and aggregating patch feature, respectively. So far, aggregating patch predictions 

has been the mainstream strategy for predicting genetic alterations using WSIs in the current 

literature1,2,12-14. In patch prediction aggregation, patch-level predictions are first obtained 

either via a fully trained deep Convolutional Neural Network (CNN) classifier from scratch1,2 

or transfer learning using pretrained models14,18, they are then aggregated into patient-level 

prediction using different statistics, including the average aggregation2, a majority vote1,13, 

quantile aggregation19, or selecting the top-ranked patches by iteration12. 

Aggregating patch features is an alternative strategy, which has been widely used in 

classification models in the field of digital pathology. This method usually achieved a better 

performance for tasks where global (i.e., bag-level) predictions are more important20. 

Consequently, it is very suitable for analyzing WSIs when researchers can only obtain slide-

level labels20. Coupling with deep learning, aggregating patch features have been used to 

identify informative patches of WSIs. Successive 1-D convolutional layers are commonly used 

to aggregate the features of a tile to derive a tile score21-24. It is well accepted that maximum 

scoring tiles often carry the most predictive information. Therefore, large number of the 

studies21,22,24,25 adapted max-pooling (maximum scoring patches) to identify predictive patches 

and further aggregate the tile level information for classification. Recently, Durand et al.23 

proposed WELDON, which selected and aggregated the highest and lowest scoring patches for 

classification, and demonstrated an improved performance when compared to max-pooling and 

mean-pooling. Furthermore, Courtiol et al. modified the WELDON model and proposed 



 

CHOWDER to classify breast cancer based on whole slide images22. Schmauch et al. 26 

proposed a simple variant of the max-pooling model called HE2RNA, which randomly 

sampled top-k scoring patches from a list of prespecified values to improve model 

generalization and prediction of RNA-seq expression. So far, despite of wide application of 

feature aggregation strategy in digital pathology in general, relatively limited work has been 

done using this strategy to predict genetic alterations. 

Another popular approach for aggregating patch features is the self-attention mechanism, 

which calculates an attention weight for each patch and assign higher weights to more 

informative patches. The patch features are then aggregated as a weighted sum to obtain slide-

level prediction (Ilse et al.27; Lu et al.28; Yao et al.4; Saillard et al.24). However, so far, relatively 

few attention-based algorithms have been developed to predict gene mutations. Anand et al.29 

used an attention-based DNN (deep neural network) model to predict BRAF mutation in 

thyroid cancer. Qu et al.30 extracted the features of tumor patches in breast carcinoma using 

ResNet101 and applied attention-based aggregation to predict genetic mutations and biological 

pathways. The main challenges for attention-based algorithms have been the model complexity 

and their data-hungry nature13,25. 

In this paper, we propose a novel, attention-based feature aggregation algorithm to predict 

gene mutations from WSIs. Our model was consisted of a decoder and a residual weight 

connection, which can restore the 1-D scores to features of a suitable dimension to reduce the 

potential loss of information caused by the 1-D convolutional layers used in the current existing 

algorithms and allow for incorporating attention mechanism that is impossible for a one-

dimensional score. Unlike other attention-based models, we only used a small number of 

representative patches through an encoder architecture. This can greatly reduce the complexity 

of attention-based models and consequently circumvent the challenges like long operation time 

and large GPU memory usage generally related to attention mechanism, and allow for easy 

implementation of attention mechanism for prediction models for genetic mutations. With the 

advantages of feature aggregation using 1-D scores and a lightweight attention mechanism, our 

model can further zero in on the most important patches of WSIs, and improve model 

interpretability. 

 

Method 

The workflow of our proposed algorithm is illustrated in Figure 1. Figure 1a and 1b 

show the data preprocessing, including feature extraction pipeline and optimal clustering, while 

Figure 1c illustrates the structure of our proposed algorithm, AMIML. 

 

Dataset 

Anonymized scanned WSIs of diagnostic tissue slides (FFPE tissue) stained with 

hematoxylin and eosin were downloaded in SVS format from The Cancer Genome Atlas 

(TCGA) project through the Genomic Data Commons Portal (https://portal.gdc.cancer.gov/) 

with matched genomic data. The WSIs for four solid tumor types: uterine corpus endometrial 

carcinoma (UCEC), breast invasive carcinoma (BRCA), glioblastoma multiforme (GBM), and 

kidney renal clear cell carcinoma (KIRC) were analyzed in this study.  



 

Feature extraction  

For each WSI, we first generated its thumbnail, then apply the OTSU31 algorithm, which 

could automatically generate the best segmentation threshold based on the image. Then we 

applied the U-Net32 structure to segment tissues of WSIs and exclude background areas. After 

that, WSIs were tessellated into non-overlapping patches with a size of 224 × 224 pixels. These 

patches were then color normalized using Macenko’s method33, which could improve classifier 

performance for mutation prediction1. 

We applied a fine-tuned Xception34 model which was a supervised trained CRC 

(Colorectal Cancer) tissues35 classifier and was proved very effective in our previous work36,37 

to extract features. Each tile input to the network was extracted as a 256-dimensional feature. 

The pipeline for feature extraction is illustrated in Figure 1a. 

 

Pre-selection of patches 

Tumor tissues are usually selected for development of prediction algorithms for genetic 

alterations (Kather et al.1 and Coudray et al.2) since it is commonly assumed that tumor regions 

carry the most predictive information. Recently, we proposed an unsupervised clustering 

method to optimize the prediction of gene mutations, which could provide a better predictive 

performance compared to approaches solely based on tumor regions on the WSI slides38. 

Briefly, for each of the four cancer types, we used K-means method to group all the patches 

into four clusters according to the different morphologic features. Only WSIs which have more 

than 10 patches on each cluster were included in this study. In total, 1946 WSIs (UCEC:388, 

BRCA:728, GBM:507, KIRC:323) from 1647 patients (UCEC:388, BRCA:728, GBM: 214, 

KIRC:317) were included in this study. The cluster with the best predictive performance was 

selected for a particular gene. The workflow for patch selection using unsupervised clustering 

is illustrated in Figure 1b. 

 

MIL models description 

After features were extracted, we first applied the idea of MIL and packed the features of 

each patient’s WSIs into a “bag”-𝑛 ×256 feature matrix, and the 256-D feature of each tile was 

regarded as an instance. Traditional MIL aggregation defined a positive bag as having at least 

one positive instance and a negative bag as one with all negative instances16. However, WSI 

contains a large number of patches, and it is obviously unreasonable to use this traditional 

assumption, which is also demonstrated in our experiments. In general, some representative 

patches were taken in the bag and their output were aggregated as the final bag 

output21,22,24,27,36,39. 

We developed Attention-based Multiple Instance Mutation Learning (AMIML), for which 

the detailed framework is shown in Figure 1c. AMIML is comprised of four important 

components: (1) an encoder, (2) a decoder, (3) a residual weight connection, and (4) Attention 

mechanism as follows: 

(1) The encoder is successive 1-D convolutional layers, through which the 256-

dimensional features are sequentially reduced to 1-D scores. Then, according to the 

scores of the patches, the model selected the patches with the top R highest and lowest 

scores as CHOWDER does, and R is a hyperparameter. The encoder is illustrated below: 



 

𝜒𝑛𝑡𝑖𝑙𝑒𝑠×256
1D convolutional layers 
→                  𝐸(𝜒)𝑛𝑡𝑖𝑙𝑒𝑠×8

𝑠𝑐𝑜𝑟𝑒
→   𝐸(𝜒)𝑛𝑡𝑖𝑙𝑒𝑠×1

𝑠𝑒𝑙𝑒𝑐𝑡
→   𝐸(𝜒)2𝑅×1 

 

(2) The decoder is aiming to decode the features reduced to 1-D scores by the encoder into 

features of higher-dimensional features. We can explain it with a simple formula: 

𝐸(𝜒)2𝑅×1
𝐷𝑒𝑐𝑜𝑑𝑒𝑟
→     𝐷(𝜒)2𝑅×8. The score part gives not only the patches with the highest 

and lowest scores, but also the position indexes of these patches in the bag. This allows 

us to find a corresponding subset of 𝐸(𝜒)𝑛𝑡𝑖𝑙𝑒𝑠×8: 𝐸(𝜒)2𝑅×8 . In theory, perfect encoder 

and decoder will make sure that  𝐸(𝜒)2𝑅×8  = 𝐷(𝜒)2𝑅×8 , but it is not practically 

possible.  

(3) In order to make the result decoded by the decoder as close to 𝐸(𝜒)2𝑅×8  as possible, 

we use the idea of residual layer40 and introduce residual weight connection: 

𝐸(𝜒)𝑛𝑡𝑖𝑙𝑒𝑠×8
𝐸𝑛𝑐𝑜𝑑𝑒𝑟
→     𝐸(𝜒)2𝑅×1

𝐷𝑒𝑐𝑜𝑑𝑒𝑟
→     𝐷(𝜒)2𝑅×8

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛
→                      𝛼𝐷(𝜒)2𝑅×8

⊕𝐸(𝜒)2𝑅×8 

where 𝛼 is a hyperparameter weight that aims to reduce the impact of 𝐷(𝜒)2𝑅×8 on the 

overall result to make 𝛼𝐷(𝜒)2𝑅×8⊕𝐸(𝜒)2𝑅×8 and 𝐸(𝜒)2𝑅×8  as close as possible.  

(4) We use the self-attention mechanism consisting of three key weight matrices: query 

matrix Q, key matrix K and value matrix V41. We design three FC layers respectively 

to obtain the weight matrices and calculate the contribution weights of patches, and 

assign higher attention weights to important patches in the bag: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

Finally, we average the weighted two-dimensional vector of each instance and then make 

probability normalization with the SoftMax function to predict the mutation probability of the 

patient.  

 

Comparison with Baseline Algorithms 

For comparison, we conducted experiments on the same data using five different methods: 

CHOWDER22, HE2RNA26, MIL mean-pool27, MIL max-pool27, and patches mean-pool 

aggregation method14. And these detail frameworks are shown in 0. 错误!未找到引用源。 

 

Patient-level cross-validation 

We randomly split the patient cohort into 5 partitions (training set: validation set: test set 

=3:1:1) for each gene, and both mutant and wild-type individuals follow this ratio to keep the 



 

target labels balanced between partition. The models for predicting mutations were trained on 

the training set, and the model with the lowest loss on the validation set was selected, 

subsequently evaluated on the test set. For tile-level training methods, we make sure that all 

patches inherited the mutation label of the corresponding patient. In addition, all the patches 

from a patient were assigned to either the training, validation, or test set. To address the problem 

of imbalanced number of classes, we used a weighted loss function.  

 

Neural network training and hyperparameter optimization 

We fixed R=100 and  𝛼=0.1 in the AMIML model and the CHOWDER model. The setting 

of hyperparameters during the training process was as follows. The initial learning rate is 0.01, 

and the learning rate was multiplied by 0.5 if the loss on the validation set did not decrease 

after 10 consecutive epochs; The batch size was 64; The initial epoch number was set to 300 

with the early-stopping strategy; Cross entropy loss function and Adam optimizer were used. 

We implemented the networks in PyTorch and trained them on an NVIDIA GeForce GTX 3090 

Ti GPU. 

Results 

 

Comparison with five baseline algorithms 

 

UCEC 

 

Figure 2 illustrates the average AUC values from the 5-fold cross validation for the 

AMIML algorithm and five baseline prediction models based on image patches from the TCGA 

UCEC cohort. AMIML apparently outperformed the five baseline algorithms and provided the 

best predictive performance for five out of the six clinically relevant genes for UCEC patients 

(i.e., MTOR, POLE, ATM, JAK1, and TP53). For PTEN mutation, although MIL-mean and 

Patch-mean approaches had the highest AUC (0.78), AMIML delivered decent predictive 

performance with an AUC value of 0.76. Generally, HE2RNA and MIL-max had inferior 

performance compared to all other algorithms, while the predictive performance of 

CHOWDER, MIL-mean, and Patch-mean varied from gene to gene.  

 

BRCA 

 

Figure 3 shows the average AUC values from the 5-fold cross validation for the TCGA 

BRCA cohort. Similarly, AMIML had the best predictive performance in the majority of the 

tested genes (four out of six) compared to the five baseline algorithms (i.e., BRCA1, BRCA2, 

ERBB2, and PIK3CA). For the other two genes (CDH1 and TP53), the performance of AMIML 

was close to best one (i.e., CDH1: 0.74 for AMIML vs. 0.75 for CHOWDER; TP53: 0.77 for 



 

AMIML vs. 0.78 for MIL-mean and Patch-mean). For the PTEN mutation, although MIL-mean 

and Patch-mean approaches had the highest AUC (0.78), AMIML delivered decent predictive 

performance with an AUC value of 0.76. Although CHOWDER demonstrated the best 

predictive performance in CDH1, its performance varied for different genes and was the worst 

in predicting BRCA2 mutation. Similarly, HE2RNA remained the worst in comparison with 

the other tested algorithms, while the predictive performance of MIL-max, CHOWDER, MIL-

mean, and Patch-mean varied for individual genes. 

 

GBM 

 

Figure 4 shows the average AUC values from the 5-fold cross validation for the TCGA 

GBM cohort. Probably due to the relatively small sample size of the GBM cohort, the 

predictive performance of all the tested algorithms appeared less stable compared to the other 

studied cancer types. Nevertheless, AMIML still demonstrated the best predictive performance 

in three of the six tested genes (AUCs: 0.72 for RB1, 0.83 for IDH1, and 0.78 for KMT2C). 

Once again, HE2RNA and MIL-max tended to produce suboptimal predictive performance. 

For example, HE2RNA had only an AUC of 0.38 for RB1 mutations in comparison of 0.72 for 

AMIML. Both MIL-mean and Patch-mean algorithms provided the worst performance in 

predicting ZFHX3 mutation in GBM. CHOWDER best predicted ZFHX3 (AUC = 0.73), 

KMT2C (AUC = 0.78), and TRRAP (AUC = 0.78). 

 

KIRC 

 

Figure 5 shows the average AUC values from the 5-fold cross validation for the TCGA 

KIRC cohort. AMIML remained the most robust algorithm in KIRC, and provided the best 

predictive performance in five (i.e., ATM, SETD2, BAP1, KMT2C, and TP53) out of the six 

selected genes among the studied algorithms. For PBRM1, the AUC based on AMIML was 

only 0.02 points lower than the best algorithm (AUC = 0.65 for MIL-mean). HE2RNA and 

MIL-max remained the worst prediction algorithms for gene mutations for KIRC. For SETD2 

mutation, both HE2RNA and MIL-max could not identify any association between H&E image 

features and the mutation probability (AUC = ~ 0.5), while using AMIML, the prediction AUC 

was 0.7, suggesting a strong correlation. Similar situation happened for KMT2C as well, where 

HE2RNA only produced an AUC of 0.56, whereas AMIML delivered an outstanding AUC of 

0.73. The predictive performance of CHOWDER was generally comparable to or slightly lower 

than that for MIL-mean and Patch-mean in KIRC. 

 

 

Comparison with the published models 

For the studied genes, we compared the predictive performance of AMIML with the 

published results based on TCGA cohorts. Table 1 illustrates the average AUC values based 

on AMIML and reported by current literature. For the BRCA dataset, current publications did 

not find any clinically useable predictive values of H&E images for both BRCA1 and BRCA2 

genes as the reported AUC was merely above 0.51,30. AMIML drastically improve the 



 

prediction of BRCA1 and BRCA2 from the vicinity of 0.5 to 0.73 and 0.65, respectively. In 

addition, AMIML significantly improved the prediction for ERBB2 mutation, i.e., the AUC 

based on AMIML was 0.72, compared to approximately 0.63 reported in the current 

literature1,30. The prediction of PIK3CA mutation in BRCA cohort was also slightly better for 

AMIML than reported data1,30. 

For the TCGA-KIRC dataset, Kather et al. reported the AUC values for five out of the six 

selected clinically relevant gene mutations based on a deep-learning model (Table 1)1. AMIML 

provided marked improvement of prediction for three genes (KMT2C, TP53, and SETD2). For 

KMT2C and TP53, the AUC was improved from approximately 0.6 to 0.7, representing an 

improvement of ~17%. No literature data are currently available for BAP1 mutation. AMIML 

provided an admirable prediction of BAP1 mutation with an AUC of 0.7. The AUC values for 

ATM and PBRM1 were similar between AMIML and reported deep-learning models. 

With regards to UCEC, Hong et al.42 reported deep-learning models for gene mutations 

based on combined TCGA and CPTAC datasets. Our AMIML model had apparently a higher 

AUC value (0.71) for predicting JAK1 mutation than that from Hong’s model (0.61). In 

addition, AMIML models for POLE and MTOR provided a better prediction than reported 

models. The predictions based on AMIML for PTEN and ATM mutations were similar between 

AMIML and reported models, whereas Hong’s model for TP53 appeared to have higher AUC 

(0.87) than AMIML (0.76).  

Few studies have been conducted for gene mutations in GBM. Cui et al43 developed a 

model for IDH1 mutation using both GBM and LGG datasets. Both Cui’s model and our 

AMIML provide an outstanding prediction for IDH1 mutation with an AUC around 0.83. In 

addition, our study reveals that AMIML-based deep-learning models could provide excellent 

predictions (AUC > 0.72) for several clinically important gene mutations in GBM (i.e., TRRAP, 

KMT2C, ATEX, RB1, and ZFHX1). No deep-learning models based on H&E images for 

prediction of mutation of these genes have been developed.  

 

Attention-detected relevant patches 

Attention mechanism is designed to assign higher weights to the patches that are more 

relevant to the outcome. This feature allows us to identify predictive image patches. For 

illustration purpose, we exhibit two examples for IDH1 gene in GBM (错误!未找到引用源。) 

and BAP1 gene in KIRC (错误!未找到引用源。7).  

 

IDH1 gene is an important tumor molecular marker in glioblastoma44. For patients with 

IDH1 mutations, AMIML detected morphologic features like cellular abundance, nuclear 

pleomorphism, and active mitotic activity, as well as identified important patches showing 

complex and disordered proliferative vascular components or coagulation-type tumor necrosis 

(Figure 6), consistent with the morphological features reported for IDH1-mutant tumor45. In 

addition, IDH1-mutant glioblastoma can develop from IDH1-mutant anaplastic astrocytoma. 

The patches of high attention weights also exhibited similar histology. For IDH1 wild-type 

patients, the selected image patches showed smaller cancer cells. 



 

 

For kidney cancer (renal cell carcinoma in particular) patients, BAP1 gene mutations are 

associated with high-grade tumors and poor prognosis46, the tumor tissues with mutations of 

the BAP1 gene (e.g., loss of BAP1) were more likely to present with high-grade tumors and 

showed specific features: abundant acidophilic cytoplasm, eccentric nuclei and prominent 

macronucleoli46(0), whereas lower-grade cancer cells often exhibit more transparent cytoplasm 

and smaller nucleoli47. Not surprisingly, these features have been captured by AMIML in the 

patches of high attention weights. BAP1 mutants presented features similar to those for high-

grade tumors while BAP1 wild types had characteristics resembling the low-grade cancer. 

 

Discussion 

 

Gene mutation detection by digital WSIs is an important problem in computational 

pathology. In recent years, many studies have demonstrated that deep learning can extract 

subtle visual features from histological images, which can be used to predict molecular 

alterations. The existing deep-learning algorithms are mainly instance-base methods (i.e., 

aggregating patch predictions) despite that bag-based models (aggregating patch feature) using 

1-D convolutional layers (e.g., WELDON, CHOWDER, and HE2RNA, etc.) have been 

proposed for other digital pathology applications. In addition, although self-attention 

mechanism-based models become increasingly popular, their complexity and data-hungry 

nature pose a significant challenge on its utility in predicting genetic alterations13.  

 

In this paper, we proposed a lightweight attention-based MIL model (AMIML) to predict 

gene mutations in H&E-stained whole-slide images. Unlike the traditional bag-based models 

(e.g., WELDON, CHOWDER, and HE2RNA, etc.) that utilize successive 1-D convolutional 

layers, our model integrated the 1-D convolutional encoder with a decoder and a residual 

weight connection, so that the encoded 1-D scores can be restored back to features to mitigate 

the potential loss of information during 1-D convolutional encoding process for the traditional 

bag-based models. In addition, the restored features with reduced dimension allowed for further 

integration of a lightweight attention mechanism in the model following the 1-D encoding, and 

thereby not only reducing the computational complexity for attention-based models but also 

facilitating further identification of relevant patches related to target mutations. We compared 

our proposed AMIML with five published popular algorithms using mutation data for 24 

clinically relevant genes from four TCGA cancer datasets (i.e., UCEC, BRCA, GBM and 

KIRC). In addition, the prediction performance of AMIML (AUC values) was compared with 

that reported in the recent literature.  

 

The present study demonstrated the robustness of our proposed AMIML algorithm. 

AMIML provided the best prediction for the vast majority of the tested genes (17 out of 24 

studied genes). For the other 7 genes, even though AMIML did not provide the best prediction, 

its performance was usually still in the neighborhood of the best approaches, demonstrating 



 

excellent robustness. On the other hand, our study revealed that max pooling algorithms such 

as MIL-max and HE2RNA generally produced inferior performance, and therefore are not 

recommended for predicting gene mutations. Although CHOWDER, mean-based approaches 

like MIL-mean and Patch mean algorithms often produce acceptable predictions, they still 

occasionally failed to provide a satisfactory prediction performance (e.g., the lowest AUC 

values among the tested algorithms).  

 

Compared to the existing mutation models for the genes from the four cancer types, our 

AMIML algorithm resulted in significant improvement for predicting a wide range of genes in 

these cancers. For the KIRC dataset, AMIML markedly improved prediction of three genes 

(KMT2C, TP53, and SETD2). In kidney cancer, TP53 is the most frequently mutated tumor 

suppressor gene (32%), while SETD2 gene is located on the same short arm of chromosome 3 

where the VHL gene is also located, and is associated with more aggressive disease and poor 

prognosis46. In breast cancer, BRCA1 and BRCA2 mutations are highly predictive of treatment 

effect of PARP inhibitors such as olaparib and rucaparib, the response rate tended to be higher 

in patients with BRCA1/BRCA2 mutations, and testing of BRCA1/BRCA2 is NCCN 

recommended48. So far, none of the existing models have been able to predict mutations for 

BRCA1 and BRCA2 (AUC ~ 0.5; 1). AMIML drastically improved the prediction of BRCA1 

and BRCA2 mutations from an AUC of 0.5 to 0.73 and 0.65, respectively. In addition, AMIML 

significantly improved the prediction for ERBB2 mutation from an AUC of 0.63 in the current 

literature1,30 to 0.72. In endometrial cancer, AMIML outperformed existing models for 

prediction of JAK1, POLE, and MTOR mutations42. Furthermore, we also developed AMIML-

based deep-learning models using H&E images for the prediction of mutations that have not 

been reported in the current literature including BAP1 in kidney cancer, and TRRAP, KMT2C, 

ATEX, RB1, and ZFHX1 for GBM. AUC of 0.7 or higher was achieved for all these genes. 

AMIML also showed a good predictive performance on the TP53 gene in pan-cancers, which 

is an important gene with a high mutation rate in various cancers and closely related to 

prognosis18,49. The predicted AUCs of the TP53 gene mutation in UCEC, BRCA, and KIRC 

are 0.758, 0.767, and 0.731, respectively. 

 

The AMIML workflow proposed in this work is consisted of three mechanisms to identify 

predictive image patches. First, an unsupervised clustering was utilized in the pre-processing 

step to detect image patches that can better predict the mutation of individual genes. In addition, 

similar to WELDON and CHOWDER, AMIML selected the patches with the top R highest and 

lowest scores for a prediction model development. These image patches with the highest and 

lowest scores are believed to carry the most predictive information. Moreover, with the flexible 

and interpretable attention-based MIL pooling mechanism, AMIML can further zero in on the 

patches and ROIs that are more relevant for predicting mutations for further analysis by 

pathologists. 
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Figure 1. (a) The workflow of data preprocessing (I) Images of four cancers were first 

downloaded from TCGA in the SVS format; (II) Each whole-slide H&E image was 

preprocessed to remove the background areas using a U-net, split into non-overlapping tiles 

with a size of 224 x 224 pixels, and color normalized; (III) A fine-tuned Xception model-based 

feature extractor was used to generate patch features; (IV) The features of each patient were 

sampled into a bag. (b) The optimal clustering method proposed in our previous work38. 

Features of all patches were clustered into four clusters by the k-means method, and the cluster 

with the best AUC was selected. (c) The architecture of AMIML for predicting gene 

mutations. AMIML is comprised of four important components: (1) an encoder, (2) a decoder, 

(3) a residual weight connection, and (4) a self-attention mechanism. Through the encoder 

structure similar to Chowder, our model selected the R patches with the highest and lowest 

scores for predicting mutation status. Then, through the decoder and residual weight connection 

structure, these scores were reduced to corresponding higher-dimensional representative 

features, and through the self-attention module our model calculated the contribution weight 

of patches to the bag output and finally aggregated them into the patient-level prediction. This 

figure describes the case of R=2. More detailed description is shown in the Method section. 

 

Figure 2. Comparison of the proposed AMIML algorithm with five baseline prediction 

models based on image patches from the TCGA UCEC cohort. This bar plot shows the 

AUC values of the 5-fold cross-validations for six models. The lengths of the color bars shown 

on the right-hand sides represent the average AUC values of 5-fold cross-validations, and the 

error bars represent the standard deviations of the AUC values of the 5-fold cross-validations. 

 

Figure 3. Comparison of the proposed AMIML algorithm with five baseline prediction 

models based on image patches from the TCGA BRCA cohort. Refer to the caption of 

Figure 2 for detailed descriptions. 

 

Figure 4. Comparison of the proposed AMIML algorithm with five baseline prediction 

models based on image patches from the TCGA GBM cohort. Refer to the caption of Figure 

2 for detailed descriptions. 

 

Figure 5. Comparison of the proposed AMIML algorithm with five baseline prediction 

models based on image patches from the TCGA KIRC cohort. Refer to the caption of Figure 

2 for detailed descriptions. 

 

Figure 6. Attention mechanism highlights patches important for the classification between IDH1-

mutate and IDH1-wild patients in GBM. For all IDH1-mutate patients in GBM, we selected top 

four patches with the highest attention weights for patient with top predicted probability of 

mutation then repeated the same process for wild-type patients. (a) We visualize them by 

combining WSI thumbnails, scatterplots of best clusters, and Attention weight heatmaps in 

figure on the left. The purple scatter points represent the patches in the optimal cluster, and the 

scatter points in the heat bar represent the attention weights of the representative patches 

selected by the model. The redder the color, the higher the weight. (b) The four different color 



 

scatter plots in the middle represent the scatter points of the four clusters. (c) The four figures 

on the right are top four patches with the highest attention weights, which were annotated and 

analyzed by a pathologist. 

 

Figure 7. Attention mechanism highlights patches important for the classification between BAP1-

mutate and BAP1-wild patients in KIRC. Refer to the caption of Figure 6 for detailed descriptions. 

 

Table 1. Analysis result of AMIML and some existing methods for several candidate genes 

based on TCGA cohorts.



 

Figure 1.     

(a) 

 

(b)  

 

 

 

 

 

 

 

 

 

 

 

 



 

(c) 

 



 

Figure 2.  

  

 

 

 

 

 

 

 



 

 

Figure 3.  

 

 

 

 

 

 

 



 

 

Figure 4.  

 

 

  



 

Figure 5.  

 

 

 

 

 

 

  



 

 

Figure 6.  

 
(a) (b) (c) 

IDH1 Mutant C1 C2 Tumor Tumor 

 

    

C3 C4 Tumor Tumor 

    

IDH1 Wild Type C1 C2 Tumor Tumor 

 

    

C3 C4 Tumor Tumor 

    

 

 

 

 

 

 

 

 

 



 

Figure 7.  
 

 

 

 

  

(a) (b) (c) 

BAP1 Mutant C1 C2 Tumor Tumor 

 

 

    

C3 C4 Tumor Tumor 

    

BAP1 Wild Type C1 C2 Tumor Tumor 

 

    

C3 C4 Tumor Tumor 

    



 

Table 1.  

 Gene AMIML Existing methods 

 Total Mutant Wild Type AUC Total Mutant Wild Type AUC Reference 

UCEC 

TP53 388 147 241 0.76 361+98   0.87 Hong et al.42 

PTEN 388 250 138 0.76 361+98   0.77 Hong et al. 

JAK1 388 53 335 0.72 361+98   0.61 Hong et al. 

ATM 388 71 307 0.65 361+98   0.65 Hong et al. 

POLE 388 62 326 0.70 361+98   0.66 Hong et al. 

MTOR 388 43 345 0.66 361+98   0.61 Hong et al. 

Note: Hong et al. used a combined dataset of TCGA and CPTAC, Sample size of TCGA+CPTAC=361+98 

BRCA 

TP53 728 249 479 0.77 995 325 670 0.78 Kather et al.1 

985 338 647 0.75 Noorbakhsh et al.18 

CDH1 728 85 643 0.74 659 65 594 0.78 Qu et al30 

BRCA1 728 20 708 0.73 995 26 969 0.56 Kather et al. 

ERBB2 728 23 705 0.72 995 27 968 0.64 Kather et al. 

659 24 625 0.63 Qu et al 

PIK3CA 728 258 470 0.66 995 322 673 0.63 Kather et al. 

659 203 456 0.58 Qu et al 

BRCA2 728 19 708 0.65 995 28 967 0.52 Kather et al. 

GBM 

TRRAP 214 16 198 0.79 Deregulation of this gene may play a role in several types of cancer including glioblastoma multiforme. 

KMT2C 214 15 199 0.78 This gene is a member of the myeloid/lymphoid or mixed-lineage leukemia (MLL) family 

IDH144 214 14 200 0.83 LGG+GBM 682 slides 439 slides 0.84 Cui et al.43 

ATRX50 214 20 194 0.73  

RB144 214 23 191 0.72 The protein encoded by this gene is a negative regulator of the cell cycle and was the first tumor suppressor 

gene found. 

ZFHX1 214 14 200 0.73 This gene is reported to function as a tumor suppressor in several cancers 

KIRC 

KMT2C 317 13 304 0.73 481 14 467 0.63 Kather et al.1 

TP53 317 8 309 0.71 481 11 470 0.62 Kather et al. 



 

BAP146 317 32 285 0.70 481 … … …  

SETD2 317 39 278 0.66 481 47 434 0.62 Kather et al. 

ATM 317 15 302 0.70 481 12 469 0.69 Kather et al. 

PBRM1 317 135 182 0.63 481 147 33 0.63 Kather et al. 
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Supplementary Figure 1 The architecture of baseline algorithms. (a) The architecture of 

patches mean-pool aggregation method. In the first step, the features of each patch are input into 

a simple multilayer perceptron (MLP) to predict patch-level prediction; In the second step, the 

patient-level prediction is obtained by averaging the outputs of patches of this patient. (b) The 

architecture of the CHOWDER method in the case of R = 2. (c) The architecture of the MIL mean-

pool method. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Supplementary Figure 2. Representative Image patches for each cluster for UCEC. In order 

to find the most representative patches in each cluster, we used the K-means method to cluster 

each cluster into 4 subclusters, and identified the patch closest to the center of each subcluster. 

Four representative patches were obtained for each cluster in this method. These patches were then 

annotated by a pathologist. 
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Supplementary Figure 3. Representative Image patches for each cluster for BRCA. 
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Supplementary Figure 4. Representative Image patches for each cluster for GBM. 
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Supplementary Figure 5. Representative Image patches for each cluster for KIRC. 
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Supplementary Figure 6. The visualization of clustering results by t-SNE. For each cancer, 

5,000 patches were randomly selected from each of the four clusters and displayed using t-

distributed stochastic neighbor embedding (t-SNE) dimensionality reduction representation. 

 


