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Highlights
MD-SGT: Multi-Dilation Spherical Graph Transformer for Unsupervised Medical Image Regis-
tration
Kun TANG,Lihui WANG,Xingyu HUANG,Xinyu CHENG,Yue-Min ZHU

• A multi-dilation graph transformer (MD-SGT) was proposed for unsupervised medical image registration to deal with
the issues of the limited long-range spatial dependence and non-uniform attention spans in the existing methods.

• The features of each node of graph was updated by aggregating the information of its neighbors sampled from different
spherical regions with different dilation rates.

• A group-wise convolutional layer instead of patch merging was used to downsample the graph for introducing the
inductive bias of locality and transformation- equivariance into the graph transformer.

• The proposed MD-SGT outperforms the state-of-the-art registration methods, demonstrating that combining long-
range uniform attention span and inductive bias are beneficial for promoting the image registration performance.



MD-SGT: Multi-Dilation Spherical Graph Transformer for
Unsupervised Medical Image Registration
Kun TANGa, Lihui WANGa,∗, Xingyu HUANGa, Xinyu CHENGa and Yue-Min ZHUb

aEngineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis
and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University,
Guiyang, China
bUniversity Lyon, INSA Lyon, CNRS, Inserm, IRP Metislab CREATIS UMR5220, U1206, Lyon 69621, France

A R T I C L E I N F O
Keywords:
Deformable image registration
Convolutional neural network
Transformer
MD-SGT

A B S T R A C T
Deformable medical image registration is an essential preprocess step for several clinical applications.
Even though the existing convolutional neural network and transformer based methods achieved the
promising results, the limited long-range spatial dependence and non-uniform attention span of these
models prohibit further improving the registration performance. To deal with this issue, we proposed a
multi-dilation spherical graph transformer (MD-SGT), in which the encoder combined the advantages
of convolutional and graph transformer blocks to distinguish effectively the differences between the
reference and the template images at various scales. Specifically, the features of each voxel were
obtained by aggregating the information from its neighbors sampled from different spherical regions
with different dilation rates. The implicit convolution inductive bias and long-range uniform attention
span induced by such information aggregation manner made the features more representative for
registration. Through the qualitative and quantitative comparisons with state-of-the-art methods on
two datasets, we demonstrated that combining long-range uniform attention span and inductive bias
are beneficial for promoting the image registration performance, with the Dice score, ASD and HD95
being improved at least by 0.5%, 2.2% and 1.1%, respectively.

1. Inroduction
Deformable image registration (DIR) intends to align the

anatomical structures of two or more images by estimating
the optimal transformations between them. DIR is a fun-
damental processing step for various clinical applications,
such as image-guided treatment plan, prognosis evaluations,
and disease monitoring etc. Although traditional registration
methods (Avants et al. (2008); Modat et al. (2010); Heinrich
et al. (2013); Vercauteren et al. (2009); Beg et al. (2005);
Klein et al. (2009)) have achieved satisfactory performance,
its time-consuming iterative optimization process for each
individual pair data hindered its real-time applications. Re-
cent advances in deep learning allow inferring the spatial
transformations between any image pairs with a well trained
network, such simple forward process makes it run much
faster than conventional registration methods.

Currently, the deep learning based registration meth-
ods can be divided into the supervised and unsupervised
ones. In the supervised-learning based registration methods,
the ground-truth transformations between the reference and
template images are usually obtained with conventional
registration algorithms or spatial augmentation. With such
ground-truth transformations as the objective, Yang et al.
(2016) modeled a fully convolutional network (FCN) with
the U-Net like architecture to predict the deformation field
between different brain magnetic resonance (MR) volumes
and achieved promising performance. Cao et al. (2017)
proposed a similarity-steered convolutional neural network
(CNN) to predict the deformation fields between the paired
patches, with the patch similarity as the auxiliary contentual
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cue to guide the learning process, they obtained better
registration results on several brain datasets. Sokooti et al.
(2017) presented a RegNet which took a wide variety of
artificially simulated displacement vecotr fields (DVFs) as
the learning target and designed a patch-based multi-scale
CNN to infer the DVFs. Although RegNet can obtain a
satisfactory performance on CT images, due to the limits in
diversity of the synthesized DVFs, it is difficult to transfer to
the other dataset. To address this issue, Uzunova et al. (2017)
proposed a locality-based shape and appearance model to
generate huge amounts of image pairs and corresponding
realistic ground truth DVFs, and then used a FlowNet to
predict DVFs between 2D brain or cardiac MR images. They
demonstrated that their method outperformed CNNs trained
using either ground-truth DVF generated by conventional
registration methods or that obtained by randomly augment-
ing the dataset. Even though the supervised-learning based
registration methods have achieved much better registra-
tion results than conventional methods along with shorter
computation time, their registration performance is highly
dependent on the reliable ground-truth deformation fields
which are not trivial to obtain in practice.

The emerge of spatial transformer network (STN) (Jader-
berg et al. (2015)) makes it possible to implement image
registration with unsupervised learning models. Vos et al.
(2017) proposed a DIRNet which incorporated STN into
the CNN architecture for the first time to predict the con-
trol points of B-spline transformation in an unsupervised
manner. Subsequently, numerous STN-based unsupervised
registration models have been presented. For instance, the
group of Balakrishna et al. proposed a VoxelMorph model
and the corresponding variants (Balakrishnan et al. (2018);
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Dalca et al. (2018); Balakrishnan et al. (2019)), which used a
U-Net-like architecture to predict the deformation field, and
used a STN module to deform the template images, in ad-
dition, to guarantee the smoothness of DVFs and topology-
preserving property, a squaring and scaling layer (Arsigny
et al. (2006)) was designed before the STN module. Inspired
by VoxelMorph, various modified models have emerged.
Zhao et al. (2019a) proposed the recursive cascaded net-
works (RCN) for unsupervised medical image registration.
Using VTN (Zhao et al. (2019b)) or VoxelMorph as the
base network, the template image is warped successively
by cascading the base network several times. They demon-
strated that recursive cascaded networks can improve sig-
nificantly the registration performance. Kuang and Schmah
(2019) proposed a new registration algorithm FAIM, which
introduced a new regularization term into the VoxelMorph
to reduce the foldings in the DVFs. Subsequently, Mok
and Chung (2020) proposed a novel Laplacian pyramid
network (LapIRN) for deformable image registration, which
mimics the traditional multi-resolution strategy of align-
ing image pairs from coarse to fine scale, and achieved
promising registration results. Kim et al. (2021) proposed
a CycleMorph network, which used cycle consistency to
force the deformed image to return to the original image,
such cycle consistency can enhance the image registration
performance by preserving the original topology. Besides,
Luo et al. (2021) proposed an adversarial registration net-
work that contains two parts: one is the registrator for
predicting deformation field, and another is the discriminator
for determining whether two images’ anatomical segmenta-
tion is well aligned, and their registration framework was
proved to improve registration performance and training
stability. Recently, Zhang et al. (2023) proposed a symmetric
pyramid network for inverse consistent registration, which
progressively conducts the feature-level diffeomorphic reg-
istration, and gained promising results against other regis-
tration methods. These unsupervised learning-based models
have provided a promising mean to perform an end-to-end
image registration quickly, however, most of the CNN-based
models are not able to model the long-range dependency
between the distant voxels. To deal with this problem, using
atrous convolution instead of conventional convolution to
enlarge the receptive field becomes an alternative (Devalla
et al. (2018)). Nevertheless, the receptive fields of the low-
level convolutional layers are still small, which are restricted
by the kernel size. Moreover, Li et al. (2021) argued that
the influence of distant pixels decays rapidly when the CNN
becomes deeper. Therefore, the actual receptive fields of
CNN are much smaller than the theoretical ones, which will
hinder the CNNs from capturing differences between distant
anatomies.

Considering the superiority of transformer in capturing
the long-range spatial relationships, several DIR frameworks
combining the transformer and CNN were proposed. For
example, Chen et al. (2021) proposed a ViTVNet to perform
3D brain MR image registration, which incorporated ViT
(Dosovitskiy et al. (2020)) into the VNet (Milletari et al.

(2016)) model, enabling the model not only to capture the
long-range spatial information but also to extract multi-scale
representations. However, due to the high computational
complexity and huge amounts of parameters, the transformer
block can only be applied on the feature maps with small
size. To solve this problem, Ma et al. (2022) proposed a
symmetric transformer-based model (SymTrans), in which
the convolution-based multi-head self-attention was pro-
posed to reduce the parameters of the vanilla transformer,
it achieved promising registration results with high compu-
tational efficiency. In the same year, the research group of the
ViTVNet presented a hybrid transformer-CNN framework,
TransMorph (Chen et al. (2022)), in which, the shifted
window attention (Swin-transformer (Liu et al. (2021))) and
patch merging were used in the encoder to capture the
spatial correspondence between the reference and template
images, and CNN served as a decoder to infer the DVFs
from the output features of the encoder. To maintain the
localization information, the long skip connections between
encoder and decoder were deployed. They demonstrated that
such hybrid framework can further improve the registration
performance. Currently, shifted window self-attention is the
most popular way to reduce the computational complexity
of the vanilla transformer. However, as indicated by the
work of neighborhood attention transformer (Hassani et al.
(2022)), the attention span of each pixel (token or node) in
Swin-transformer is not uniform, especially for the corner
pixels in each window, which will influence the registration
performance.

The non-uniform attention span mentioned above is
mainly caused by the fixed window partition method, that
means once the window was partitioned, for any pixel in
this window, no matter where it locates, its features can
be only updated by aggregating the information of other
pixels limited in this window. To deal with this issue, the
simplest way is to update the features of a given pixel using
the information of pixels sampled from its self-centered
regions. In the image space, window-variant self-attention
is not easy to implement. Considering the flexibility of
graph neural network in aggregating the neighboring in-
formation, such as in graph convolutional neural network
(GCN) Kipf and Welling (2016), it updates the features of
a given node by aggregating the transformed information
of other graph nodes through the adjacent matrix; in graph
attention network (GAT) Veličković et al. (2017), it updates
the features of a target node by aggregating the attention-
weighted information of its one-order neighbors. Once the
neighborhood in the graph space is defined appropriately
and uniformly, the problem of non-uniform attention span
can be easily solved. Inspired by this idea, we proposed a
multi-dilation spherical graph Transformer (MD-SGT) for
unsupervised DIR. Specifically, for each pixel, we first sam-
pled its neighbors with different dilation rates from multiple
spherical regions defined by different radii, and then updated
the features of each pixel by aggregating the information
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Figure 1: The architecture of MD-SGT network for image registration. MD-SGT has an encoder-decoder architecture, its encoder
is composed by a series of MD-GTB and MBConv modules, where MD-GTB is responsible to extract the useful features using
graph self-attention operations, and MBConv is used for downsampling the feature maps; its decoder is simply composed by
several successive upsampling and convolutional layers.

from its neighbors with graph self-attention. Such multi-
scale sampling and information aggregation mechanism al-
lows each pixel having a uniform and long range attention
span. At the same time, instead of the patch merging, we used
a group-wise convolutional layer to downsample the nodes
so that the inductive biases of the convolution, including
the locality and translation equivariance, can be introduced
into the graph transformer to further improve the registration
performance.

In the rest of this paper, the details of the proposed MD-
SGT are presented in section 2. The dataset along with the
preprocessing, and the experimental implementation details
are described in Section 3. Both qualitative and quantitative
comparisons as well as the ablation results are demonstrated
in Section 4. Finally, a thorough analysis about the results
and the limitations of this work are discussed in Section 5,
followed by a conclusion in Section 6.

2. Method
Given the reference image 𝐼𝑟, and the template 𝐼𝑡 which

needs to be deformed, the task of image registration is to
establish the anatomical correspondences between 𝐼𝑟 and 𝐼𝑡.To achieve this, we proposed a multi-dilation spherical graph
Transformer (MD-SGT) to learn the deformation field, as
illustrated in Figure 1(a). MD-SGT uses an encoder com-
posed with several convolution blocks and multi-dilation

graph transformer blocks (MD-GTB) to extract the semantic
features of both 𝐼𝑟 and 𝐼𝑡, as well as a decoder composed
with several upsampling layers and convolution layers to
infer the deformation field between 𝐼𝑟 and 𝐼𝑡. Finally, the
spatial transformation (ST) layer is applied for warping the
template image 𝐼𝑡 with deformation field. In the following
subsections, the structure of MD-GTB, the principle of ST
layer and the loss functions will be elaborated in detail.
2.1. Structure of MD-SGT

As illustrated in Figure 1, the reference image 𝐼𝑟 and
template image 𝐼𝑡 are firstly split into the paired patches
with a specific size of 𝑝 × 𝑝 × 𝑝. Subsequently, a linear
embedding layer is used to project each paired patch into
a 𝑑-dimensional feature vector. Denoting the paired image
patches as 𝑝𝑖 ∈ ℝ(2⋅𝑝⋅𝑝⋅𝑝)×1, with 𝑖 ∈ 1, ..., 𝑁 and 𝑁 being
the number of the patch pairs, which is equal to (𝐻 ×𝑊 ×
𝐷)∕𝑝3 if the image size is 𝐻 ×𝑊 ×𝐷, the resulting feature
vector 𝑧 ∈ ℝ𝑁×𝑑 for each pair of patches can be written as

𝑧𝑖 = 𝑀 ⊗ 𝑝𝑖. (1)
where 𝑀 ∈ ℝ𝑑×(2⋅𝑝⋅𝑝⋅𝑝) represents the learnable param-
eter matrix of a linear projection layer and ⊗ indicates
the matrix multiplication. Each paired patches expressed
by a 𝑑-dimensional feature vector can be taken as a node
distributed on a regular grid graph. To capture effectively

Kun TANG et al.: Preprint submitted to Elsevier Page 3 of 17



MD-SGT: Multi-Dilation Spherical Graph Transformer for Unsupervised Medical Image Registration

(a) General framework of MD-GTB

(c) The structure of multi-head graph self-attention (MHGSA)
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(b) Illustration for local graph construction (GC)
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Figure 2: Detailed structure of MD-GTB module. The general framework of MD-GBT is given in (a). It mainly consists of the
graph construction (GC) module (b) and multi-head graph self-attention (MHGSA) module (b). GC shows how to construct the
local graph form the input images and MHGSA illustrates the process of graph self-attention calculation.

and efficiently the correlations between different nodes, the
node features are input into the MD-GTB modules (Figure
2(a)), in which they pass through firstly a positional encoding
layer to generate a specific position vector 𝑝𝑜𝑠𝑖 for each node
𝑖. The dimension of 𝑝𝑜𝑠𝑖 is the same as that of node feature
vector 𝑧𝑖. After adding the positional vector, the feature of
each node becomes

𝑧𝑖 = 𝑧𝑖 + 𝑝𝑜𝑠𝑖. (2)
Subsequently, for each node, a local graph is constructed

by sampling its spherical neighboring nodes with different
dilation rates and radii. Specifically, let Ω𝑅 be a set of
coordinates in a region of a radius of 𝑅 around a given target
node 𝑡. Here, 𝑅 is much larger than the sampling radius 𝑟.
Sampling the nodes with a dilation rate of 𝑙 from Ω𝑅, with
the coordinates denoted as 𝑐𝑛 = (𝑐𝑡 + 𝑘 × 𝑙) ∈ Ω𝑅 (𝑘 is
an integer larger than 0), if the distance between the target
node and the sampling node is less than the sampling radius
𝑟, such node is considered as a neighbor:

𝑛 ∈ 𝑁{𝑡} if 𝑑(𝑐𝑛, 𝑐𝑡) ≤ 𝑟 (3)
where 𝑑(𝑐𝑛, 𝑐𝑡) represents the Euclidean distance between
the target node 𝑡 and sampling node 𝑛, 𝑁{𝑡} represents the
set of neighboring nodes of 𝑡. In this work, we used three
different dilation rates to sample the possible neighboring
nodes within three radii, to avoid repeated sampling, the
neighbors of target node 𝑡 are selected with:

𝑛1 ∈ 𝑁{𝑡} if 𝑑(𝑐𝑛1 , 𝑐𝑡) ≤ 𝑟1
𝑛2 ∈ 𝑁{𝑡} if 𝑟1 < 𝑑(𝑐𝑛2 , 𝑐𝑡) ≤ 𝑟2
𝑛3 ∈ 𝑁{𝑡} if 𝑟2 < 𝑑(𝑐𝑛3 , 𝑐𝑡) ≤ 𝑟3

(4)

where 𝑟𝑗 and 𝑙𝑗 are the 𝑗𝑡ℎ (𝑗 = 1, 2, 3) sampling radius
and dilation rate, respectively. The coordinates of possible

sampling nodes 𝑐𝑛𝑗 = (𝑐𝑡 + 𝑘 × 𝑙𝑗) ∈ Ω𝑅. The idea of local
graph construction can be seen in Figure 2(b).

Using such local graph, the feature of each target node
can be updated through multi-head graph self-attention
(MHGSA) module in Figure 2(c). Specifically, for each
target node 𝑡, its query 𝑞𝑡, key 𝑘𝑡, and value 𝑣𝑡 vectors can be
obtained through fully connection layers,

𝑞𝑡 = 𝑁𝑜𝑟𝑚(𝑧𝑡) ⋅𝑤𝑞
𝑘𝑡 = 𝑁𝑜𝑟𝑚(𝑧𝑡) ⋅𝑤𝑘,
𝑣𝑡 = 𝑁𝑜𝑟𝑚(𝑧𝑡) ⋅𝑤𝑣

(5)

where 𝑤𝑞 , 𝑤𝑘, 𝑤𝑣 are three linear transformation matrices
with size of 𝑑×𝑑, 𝑁𝑜𝑟𝑚(⋅) indicates the layer normalization
(Ba et al. (2016)), and ⋅ means dot product. Accordingly, the
weight score of the neighboring node 𝑖 for the target node 𝑡
is calculated by:

𝑤𝑖 = exp(
𝑞𝑡 ⋅ 𝑘𝑖
√

𝑑
) (6)

where 𝑘𝑖 is the key vector of node 𝑖, also calculated with (5).
According to the self-attention mechanism, the information
of all the neighboring nodes are aggregated on the target
node and then pass through a linear transformation to derive
the output of MHGSA,

𝑜𝑡 =
∑

𝑖∈𝑁(𝑡)𝑤
𝑖 ⋅ 𝑣𝑖

∑

𝑖∈𝑁(𝑡)𝑤𝑖 ⋅𝑤𝑜, (7)

where 𝑁(𝑡) is the neighboring nodes of target node 𝑡, 𝑣𝑖
is the value vector of the neighboring node 𝑖, and the 𝑤𝑜is the parameter matrix of the linear transformation layer
with dimension of 𝑑 × 𝑑. As illustrated in Figure 2(c), after
passing through two residual operations, layer normalization
and feed forward (FFD) layer, the final feature vector 𝑜𝑡_𝑓 of
a target node 𝑡 is formulated as:
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Algorithm 1: Performing self-attention on graph
Data: Input feature 𝑧𝑡 ∈ ℝ𝑑 for each node 𝑡 in

pre-defined graph
1 for each node 𝑡 in graph do
2 Calculate Query 𝑞𝑡, Key 𝑘𝑡, Value 𝑣𝑡 by

𝑞𝑡 = 𝑁𝑜𝑟𝑚(𝑧𝑡) ⋅𝑤𝑞 , 𝑘𝑡 = 𝑁𝑜𝑟𝑚(𝑧𝑡) ⋅𝑤𝑘, 𝑣𝑡 =
𝑁𝑜𝑟𝑚(𝑧𝑡) ⋅𝑤𝑣;

3 Calculate weight score 𝑤𝑖 of each neighbor
linked with 𝑡 by 𝑤𝑖 = 𝑒𝑥𝑝( 𝑞

𝑡⋅𝑘𝑖
√

𝑑
);

4 Aggregate the information of neighbors on 𝑡 by
𝑜𝑡 =

∑

𝑖∈𝑁(𝑡) 𝑤
𝑖⋅𝑣𝑖

∑

𝑖∈𝑁(𝑡) 𝑤𝑖 ⋅𝑤𝑜;
5 Update node feature 𝑜𝑡 with the following

operations: 𝑜𝑡𝑚𝑝 = 𝑧𝑡 + 𝑜𝑡;
𝑜𝑡_𝑓 = 𝑜𝑡𝑚𝑝 + 𝐹𝐹𝐷(𝑁𝑜𝑟𝑚(𝑜𝑡𝑚𝑝))

6 end

𝑜𝑡𝑚𝑝 = 𝑧𝑡 + 𝑜𝑡
𝑜𝑡_𝑓 = 𝑜𝑡𝑚𝑝 + 𝐹𝐹𝐷(𝑁𝑜𝑟𝑚(𝑜𝑡𝑚𝑝)). (8)

Updating the features of all the nodes will generate the
output of MD-GTB, the detailed process is given in the
Algorithm 1. As demonstrated in Figure 1, after each MD-
GTB group, motivated by the MaxViT (Tu et al. (2022)),
the grid nodes are down-sampled with a MBConv layer
with stride of 2. In addition, the radii and dilation rates
used in MD-GTB modules (from top to down) are set as
316293, 316293, 316293 and 81, respectively, in which 316293
indicates that the neighboring nodes are sampled from three
spherical regions with radii of 3, 6 and 9 respectively, the
corresponding dilation rates are set as 1, 2 and 3. For the last
MD-GTB module, the field of view (FOV) of grid nodes is
so small that all the nodes can be taken as the neighbors,
accordingly, the sampling radius is 8 and the dilation rate is
1.

Since the MD-GTB modules used in the encoder can
capture the long-range dependence between two distant vox-
els, and the first two MBConv layers in the encoder can
extract the local information, transmitting both local and
long-range information into the decoder is beneficial for
deriving the deformation field more accurately.
2.2. Spatial transformation layer

The deformation field and the template image are input
into the spatial transformation layer to perform coordinate
transformation and interplolation. In other words, defining
the template image intensity at location of 𝑝 as 𝐼𝑡(𝑝), the
output of the deformed image at the same location is defined
by:

𝐼𝑡◦𝜙(𝑝) = 𝐼𝑡(𝑝 + 𝜙(𝑝)) (9)

The values of deformation field are continuous, the
deformed location 𝑝 + 𝜙(𝑝) could be not integer, the in-
terpolation is therefore required to calculate the intensity
𝐼𝑡(𝑝 + 𝜙(𝑝)), that means,

𝐼𝑡(𝑝+𝜙(𝑝)) =
∑

𝑞∈𝑁(𝑝+𝜙(𝑝))
𝐼𝑡(𝑞)(1 − 𝑑(𝑝 + 𝜙(𝑝), 𝑞)) (10)

where 𝑁(𝑝 + 𝜙(𝑝)) includes eights neighboring voxels
around 𝑝+𝜙(𝑝), and 𝑑(𝑝+𝜙(𝑝), 𝑞)) represents the Euclidean
distance between the location 𝑝 + 𝜙(𝑝) and its neighboring
point 𝑞.
2.3. Loss function

The loss function used in this work is constituted of
two parts, as demonstrated in (11), 𝐿𝑠𝑖𝑚(⋅) is for measuring
the dissimilarity degree between the reference image 𝐼𝑟 and
the warped image 𝐼𝑡◦𝜙, and 𝐿𝑟𝑒𝑔(⋅) is for guaranteeing the
smoothness of the deformation field 𝜙, formulated as:

𝐿(𝐼𝑟, 𝐼𝑡, 𝜙) = 𝐿𝑠𝑖𝑚(𝐼𝑟,𝐼𝑡◦𝜙) + 𝛼 ∗ 𝐿𝑟𝑒𝑔(𝜙) (11)
where 𝛼 is the trade-off parameter used to balance the𝐿𝑠𝑖𝑚(⋅)and 𝐿𝑟𝑒𝑔(⋅). In this work, the negative normalized cross-
correlation (NCC) is used as 𝐿𝑠𝑖𝑚(⋅) loss, written as:

𝐿𝑠𝑖𝑚(𝐼𝑟,𝐼𝑡◦𝜙) = −𝑁𝐶𝐶(𝐼𝑟, 𝐼𝑡◦𝜙) =

−
∑

𝑝∈Ω

(
∑

𝑝𝑖 (𝐼𝑟(𝑝𝑖)−𝐼𝑟(𝑝))(𝐼𝑡(𝑝𝑖+𝜙(𝑝𝑖))−𝐼𝑡(𝑝+𝜙(𝑝))))
2

√

∑

𝑝𝑖 (𝐼𝑟(𝑝𝑖)−𝐼𝑟(𝑝))
2 ∑

𝑝𝑖 (𝐼𝑡(𝑝𝑖+𝜙(𝑝𝑖))−𝐼𝑡(𝑝+𝜙(𝑝)))
2

(12)

where Ω is the set of image voxels, 𝑝𝑖 represents any voxels
inside the neighborhood 𝑁(𝑝) of a given voxel 𝑝, 𝐼𝑟(𝑝)and 𝐼𝑡(𝑝 + 𝜙(𝑝)) indicate the mean intensity value of the
local region around 𝑝 in the reference and warped image,
respectively. As to the regularization loss 𝐿𝑟𝑒𝑔(⋅), we use the
diffusion regularizer to encourage the deformation field to
be smooth,
𝐿𝑟𝑒𝑔(𝜙) =

∑

𝑝∈Ω

‖

‖

𝜕𝜙𝑥(𝑝)‖‖
2 + ‖

‖

‖

𝜕𝜙𝑦(𝑝)
‖

‖

‖

2
+ ‖

‖

𝜕𝜙𝑧(𝑝)‖‖
2 (13)

where 𝜕𝜙𝑥(𝑝), 𝜕𝜙𝑦(𝑝), and 𝜕𝜙𝑧(𝑝) are the spatial gradients
of 𝜙 along 𝑥, 𝑦, 𝑧 axis respectively.

3. Experiments
Several comparison and ablation experiments are imple-

mented to evaluate the performance of the proposed MD-
SGT network. Particularly, we compare MD-SGT with state-
of-the-art registration methods including Affine, NiftyReg
(Modat et al. (2010)), deedsBCV (Heinrich et al. (2013)),
MIDIR (Qiu et al. (2021)), Recursive Cascaded Networks
(Zhao et al. (2019a)), CycleMorph (Kim et al. (2021)),
VoxelMorph (Balakrishnan et al. (2018)), LapIRN (Mok and
Chung (2020)), ViTVNet (Chen et al. (2021)), TransMorph
(Chen et al. (2022)) and symTrans (Ma et al. (2022)) on two
datasets. The description of the datasets, the implementation
details of all the models, the ablation settings and the quanti-
tative evaluation metrics will be elaborated in the following
subsections.
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3.1. Dataset and Preprocessing
In this work, two datasets corresponding to different

registration tasks, Atlas-to-Patient and Patient-to-Atlas reg-
istrations, were used.
3.1.1. Atlas-to-Patient brain MRI registration dataset

In Atlas-to-Patient registration, a public available dataset
was used, where 576 T1-weighted (T1w) MR brain images
in IXI dataset1 provided by Transmorph (Chen et al. (2022))
were used as references (Patient), and the atlas was provided
by CycleMorph (Kim et al. (2021)). All scans were prepro-
cessed with the FreeSurfer (Fischl (2012)) and cropped to
size of 160 × 192 × 224. Consistent with the Transmorph,
403, 58, and 115 scans were used as training, validation, and
test sets, respectively.
3.1.2. Patient-to-Atlas brain MRI registration dataset

For Patient-to-Atlas registration, we used the in-house
dataset, including 3D T1w MR images of 102 drug-addicts
and 10 healthy controls, which were acquired from Guizhou
Provincial People’s Hospital using a 3.0T MRI scanner (GE
3.0T Discovery 750W) with a 32 channel head and neck coil.
The imaging parameters are: repetition time (TR) = 8.464
ms, echo time (TE) = 3.248 ms, inversion time = 450 ms, flip
angle = 15◦, field of view (FOV) = 256 × 256 mm2, matrix
=256×256, slice thickness = 1.0 mm, and slice gap = 0 mm.
Additionally, the MR images were acquired in the sagittal
plane, yielding 188 continuous slices, with a resolution of
1.0 × 1.0 × 1.0. The skull was removed firstly with BET
method (Smith (2002); Jenkinson et al. (2005)) embedded
in FSL, and then the image intensity was normalized to
the range [0, 255], finally, the normalized images were
linearly aligned with the MNI152 template provided by the
McConnell brain imaging centre using FSL FLIRT method
(Jenkinson and Smith (2001); Jenkinson et al. (2002)), and
then resampled to the size of 128 × 128 × 128 .
3.2. Implementation details

The proposed method was implemented with PyTorch
(Paszke et al. (2019)) and DGL (Wang et al. (2019)). All
the learning-based comparison methods were trained on a
GPU of NVIDIA A100 (40GB) for 500 epoches using Adam
optimizer (Kingma and Ba (2014)), with batch size of 1
and learning rage of 0.0001. The detailed settings for each
method were given as follows:

1. NiftyReg (Modat et al. (2010)): To achieve its
best registration performance, the locally normalized
cross-correlation (LNCC) was replaced with the nor-
malized mutual information (NMI) as the objective
function, and bending energy was used as the regu-
larization with a weighting coefficient of 0.001. The
iteration number was 300.

2. deedsBCV (Heinrich et al. (2013)): The default set-
tings of deedsBCV were used in this work, in which
the objective function was set as the self-similarity
context (SSC), the weight of smooth regularization

1https://brain-development.org/ixi-dataset/

was set to be 0.4, and 5 scale levels with grid spacing
changing from 8 to 4 voxels for B-spline interpolations
were used.

3. MIDIR (Qiu et al. (2021)): The objective function of
MIDIR consisted of NCC and the L2 regularization
item (weight was set as 1) . The spacing of control
points used for B-Spline interpolation was 3.

4. Recursive Cascaded Networks (RCN) (Zhao et al.
(2019a)): Default similarity measurement and regular-
izations were used. Since the reference and template
images used in this work have already been aligned
with affine registration, thus in our implementations,
the affine registration module of RCN was removed,
and voxelMorph was selected as the basic cascade
network (cascade number was set as 5).

5. VoxelMorph (Balakrishnan et al. (2018)):
VoxelMorph-1 with the default settings was used in
this work.

6. CycleMorph (Kim et al. (2021)): The weighs of the
registration loss, cycle loss, identity loss and regular-
ization were set as 1, 0.1, 0.5, and 1, respectively, to
get the best performance.

7. LapIRN (Mok and Chung (2020)): Default settings of
the LapIRN were used in this work and the number of
levels was set as 3.

8. ViTVNet (Chen et al. (2021)): The default settings
of the ViTVNet architecture were used in this paper,
in which the patch size was 8 × 8 × 8, the number
of heads and the number of transformer layers were
12. As to the loss function, NCC followed with L2
regularization (weight was 1) was used.

9. TransMorph (Chen et al. (2022)): The same loss
function and weight as the VoxelMorph were used.
The patch size was 4, the window size of the Swin-
Transformer was 8, and numbers of heads for each
level were 4, 4, 8, and 8, respectively.

10. SymTrans (Ma et al. (2022)): The default settings of
SymTrans were used.

11. Proposed model: The patch size was 8 and the weight
of regularization item 𝛼 in Eq. (11) was 1.

3.3. Ablation studies
In the ablation studies, we investigated the effects of

several factors on the registration performance, detailed as
follows.
3.3.1. Effectiveness of MD-GTB and MBConv modules

To validate the effectiveness of the MBConv and the
proposed MD-GTB modules, we performed several ablation
studies. Specifically, we adopted the VoxelMorph-like ar-
chitecture as the baseline model (indicated by Base in the
Table 1), in which the MaxPooling along with one con-
volutional layer rather than MBConv or MD-GTB module
was used for downsampling feature maps in the encoder.
In addition, to make the fair comparison, the decoder was
kept the same as ours, and the number of channels for all
the layers was consistent with the proposed model. Based on
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Table 1
Effects of MBConv and MD-GTB modules.

Model MBConv MD-GTB
Base % %

Base+MBConv " %

Base+MD-GTB % "

Base+MBConv+MD-GTB " "

Table 2
Influence of the number of MD-GTB modules and the atten-
tion heads

Model
Embed.

Dimension
MD-GTB
numbers

Head
numbers

MD-SGT 96 {2, 2, 4, 2} {4, 8, 16, 32}
MD-SGT small 48 {2, 2, 4, 2} {4, 8, 16, 32}
MD-SGT large 128 {2, 2, 12, 2} {4, 8, 16, 32}
MD-SGT-NH1 96 {2, 2, 4, 2} {1, 1, 1, 1}
MD-SGT-NH4 96 {2, 2, 4, 2} {4, 4, 4, 4}
MD-SGT-NH8 96 {2, 2, 4, 2} {8, 8, 8, 8}

such baseline model, we replaced all the MaxPooling layers
in the encoder with the MBConv (Base+MBConv) and
MD-GTB (Base+MD-GTB) respectively, we then compared
these three models with our proposed method.
3.3.2. Effects of the model hyperparameters

The effects of model hyperparameters, including the
number of MD-GTB modules in each level of the encoder,
the number of attention heads in each MD-GTB module,
as well as the embedding dimension, on registration perfor-
mance were also investigated in this work. As demonstrated
in the top panel of Table 2, we varied the number of MD-
GTB modules in the fourth level of encoder from 4 to 12
and the embedding dimension from 96 to 128 to show the
performance difference between the small (MD-SGT small),
medium (MD-SGT) and large (MD-SGT large) models. In
addition, we changed the number of attention heads in the
MD-SGT model to show its influence, as listed in the bottom
panel of Table 2.
3.3.3. Influence of the Radius of Neighborhood

As illustrated in Figure 2(b), during the graph construc-
tion, the selection of radii of multi-dilation neighborhoods
will influence the number of neighbors of a given node
and then further affect the registration performance. Accord-
ingly, based on the MD-SGT model architecture, we have
varied the radius of the sampling area for different dilation
rates at three scales (except the last scale where the FOV is so
small that all the nodes are considered as the neighbors.), as
listed in Table 3, at each scale, corresponding to the dilation
rates of (1, 2, 3), the sampling radius changed from (1, 7, 9)
to (2, 5, 10) and (3, 6, 9). For the last scale, the radius and
dilation rate were always 8 and 1, respectively.
3.3.4. Influences of Neighbor Sampling Schemes

The neighbor sampling scheme proposed in MD-GTB
module can allow the graph transformer to have a uniform

Table 3
Effects of neighborhood radius in MD-GTB.

Model Radii & Dilations
MD-SGT-179 {117293; 117293; 117293; 81}
MD-SGT-2510 {2152103; 2152103; 2152103; 81}
MD-SGT-369 {316293; 316293; 316293; 81}

attention span. To verify whether the uniform attention span
has the advantages in DIR, we first sampled the neighbors
for any target nodes in a fixed sphere (non-uniform attention
span) and also sampled the neighbors of a given target
node from self-centered sphere (uniform attention span),
as illustrated in Figure 3 (a). After that, to further validate
the effectiveness of the multi-dilation neighboring sampling
scheme in MD-GTB, we replaced the multi-dilations with
a single dilation, denoted as SD-GTB block. It means that,
during the graph construction, the neighboring nodes of
one target are only sampled from one sphere with fixed
radius, as illustrated in Figure 3 (b). In the comparison, all
the MD-GTB blocks in the proposed model applied at four
different scales are replaced with SD-GTB blocks, to avoid
the influence of the number of neighboring nodes, we set the
radii of spherical neighborhood of SD-GTB and MD-GTB
as {41, 41, 41, 81} and {316293, 316293, 316293, 81} respec-
tively, making sure that the number of neighbors in MD-
GTB and SD-GTB being almost the same. Finally, consid-
ering that our multi-dilation sampling strategy is similar
to atrous convolution, we also compared the performance
of MD-GTB module and atrous convolution by replacing
the MD-GTB modules in the proposed network with atrous
convolutions. For the fair comparison, we let the atrous
convolution and MD-GTB module have the same receptive
field size.

(a) Sampling with uniform and non-uniform attention spans (b) Sampling strategies with single dilaiton and multi-dilations

Non-uniform

Uniform

Non-uniform

Uniform

SD-GTB MD-GTB

Dilation=1

Dilation=2
Dilation=1

Dilation=1

Dilation=1

Dilation=2
Dilation=1

Dilation=1

SD-GTB MD-GTB

Dilation=1

Dilation=2
Dilation=1

Dilation=1

Figure 3: Illustration of different neighbor sampling schemes.
Sampling the neighboring nodes with uniform and un-uniform
attention spans (a), as well as sampling the same amount
of neighbors with single and multiple dilation rates (b),
respectively.

3.3.5. Effects of Graph Attention Manners
Given a target node, its neighboring nodes are sampled

from different field of views (FOVs), accordingly, the atten-
tions between the target node and neighboring nodes can
be calculated in different ways. The first one is to calculate
the attention maps between the target nodes and all the
neighboring nodes in different FOVs (Figure 4(a)), and then
the features of the target node are updated with attention-
weighted neighboring information, we called this manner as
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“integration”. The second one is to calculate the attention
maps at different FOVs respectively, it means that we update
the features of target nodes with the different neighboring
nodes for three times and then combine these three target
features through a convolution layer (Figure 4(b)), such man-
ner was named after “parallelly split”. The last one is also to
calculate the attention maps at different FOVs respectively,
but the features of target nodes are updated serially rather
than parallelly, which means the features of target node are
updated firstly with the neighboring nodes in FOV3, such
target features will be further updated with the neighboring
nodes in FOV2, as illustrated in Figure 4(c). In this work,
such manner was called as "serially split".

(a) (b) (c)

Conv

Neighboring 
nodes

l3

l2

l1

r3

r2

r1

FOV 1
FOV 2

FOV 3

Target node

Figure 4: Illustration of different attention manners. (a)
Integration manner, (b)Parallely split manner, (c) Serially split
manner.

3.4. Evaluation metrics
To quantitatively evaluate the registration performance

of each method, dice score (Dice), average surface distance
(ASD), and the Hausdorff distance (95%, HD95) were cal-
culated. Dice measures the overlap between two segmented
anatomical regions 𝐴𝑠𝑒𝑔 and 𝐵𝑠𝑒𝑔:

𝐷𝑖𝑐𝑒 = 2 ×
|

|

|

𝐴𝑠𝑒𝑔 ∩ 𝐵𝑠𝑒𝑔
|

|

|

|

|

|

𝐴𝑠𝑒𝑔
|

|

|

+ |

|

|

𝐵𝑠𝑒𝑔
|

|

|

(14)

The maximum value of Dice is 1, and larger Dice indicates
the higher overlap between the two regions.

ASD and HD are boundary-based measurements which
evaluate the closeness in boundaries between two regions,
defined as:

𝐴𝑆𝐷 =

∑

𝑥∈𝜕𝐵𝑠𝑒𝑔
𝑑(𝑥, 𝜕𝐴𝑠𝑒𝑔) +

∑

𝑦∈𝜕𝐴𝑠𝑒𝑔
𝑑(𝑦, 𝜕𝐵𝑠𝑒𝑔)

|

|

|

𝜕𝐴𝑠𝑒𝑔
|

|

|

+ |

|

|

𝜕𝐵𝑠𝑒𝑔
|

|

|

(15)

𝐻𝐷 = max{ max
𝑥∈𝜕𝐵𝑠𝑒𝑔

𝑑(𝑥, 𝜕𝐴𝑠𝑒𝑔), max
𝑦∈𝜕𝐴𝑠𝑒𝑔

𝑑(𝑦, 𝜕𝐵𝑠𝑒𝑔)} (16)

where 𝜕𝐴𝑠𝑒𝑔 and 𝜕𝐵𝑠𝑒𝑔 represent the gradient map of 𝐴𝑠𝑒𝑔and 𝐵𝑠𝑒𝑔 , respectively, 𝑥 and 𝑦 indicate an arbitrary voxel
in the gradient maps 𝜕𝐴𝑠𝑒𝑔 and 𝜕𝐵𝑠𝑒𝑔 , 𝑑(𝑥, 𝜕𝐴𝑠𝑒𝑔) and
𝑑(𝑦, 𝜕𝐵𝑠𝑒𝑔) are the corresponding minimum Euclidean dis-
tance between 𝑥∕𝑦 and set of surface voxels of 𝜕𝐴𝑠𝑒𝑔∕𝜕𝐵𝑠𝑒𝑔 .
Lower ASD or HD95 indicates better registration perfor-
mance.

In addition, we also reported the percentages of non-
positive values in the determinant of the Jacobian matrix
on the deformation fields to quantify the regularity of the
deformation fields.

4. Results
4.1. Atlas-to-Patient registration results with IXI

dataset
The qualitative results of atlas-to-patient registration on

IXI dataset obtained with different methods were given in
Figure 5, in the first column of which contains the reference
image (Ref.) and the linearly aligned template image (Aff.),
and in the rest columns, the warped images derived from dif-
ferent methods, along with corresponding deformation field
covered by deformed grid were illustrated. As shown in the
zoomed-in areas, the NiftyReg and the deedsBCV produce
erroneous shapes and over-smoothed deformation fields,
indicating that they cannot infer accurately the deformations
around this region. In other words, the two methods can
only roughly align two images but not the small structures.
In contrast, transformer-based methods can achieve better
alignment results, especially for the proposed MD-SGT
method which generates a warped image most similar to the
Ref. The performance of the CNN-based methods (except
CycleMoprh) is not better than deedsBCV on IXI dataset,
especially for the method of LapIRN, which achieves the
lowest Dice score. Moreover, as we can observe in the
deformed grid, the phenomenon of folding in deformation
field (cyan arrows) occurs in all the learning-based methods,
but the proposed method has the fewest folding, indicating
the superiority of proposed MD-SGT on aligning two images
along with more plausible deformations.

The quantitative evaluation metrics for atlas-to-patient
registration are listed in Table 4. In each row shows the
mean and standard deviation of the Dice, ASD, and HD95 of
each method in 29 anatomical structures for all the images
in the test set. We observed that the proposed method MD-
SGT achieves the highest mean Dice score and the second
lowest ASD and HD95 distances on IXI dataset. Comparing
with the state-of-the-art (SOTA) methods, TransMorph and
SymTrans, the Dice score, ASD and HD95 distance are
improved by 0.5% / 0.8%, 2.2% / 3.1%, and 1.1% / 3.6%
respectively. Even though the learning-based methods (ex-
cept VoxelMorph) have better performance than traditional
methods (NiftyReg and deedsBCV), the folding effects in
deformation field are more serious (i.e., higher values for
% of |𝐽𝜙|). As shown in Table 4, the mean determinant
of the Jacobian matrix on the deformation fields (|𝐽𝜙|) of
our method is the smallest one among the learning-based
methods, improved at least 4% comparing with the SOTA
methods. Such superiority can also be found in Figure 6,
where the curves of Dice score, ASD and HD95 for each
sample in test set are drawn. We notice that, among all
the learning-based methods, for almost all the samples, our
method (purple curves) produced the highest Dice scores
and the second lowest ASD and HD95 distances.
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Atlas-to-Patient Registration

Ref.

Aff.Aff.

NiftyReg deedsBCV MIDIR VoxelMorph CycleMorph ViTVNet TransMorph OursSymTransRCN LapIRN

Figure 5: Qualitative comparison between the reference and the warped images obtained with different methods on the IXI
dataset. The first column contains the reference image (Ref.) and the linearly aligned template image (Aff.), and each of the rest
columns contains the warped image along with the corresponding deformation field covered by deformed grid. The cyan arrows
indicate the folding in the deformation field.

Table 4
Average DICE, ASD and HD95 scores for different methods performing atlas-to-patient registration.

Atlas-to-Patient
Method Dice↑ ASD↓ HD95↓ % of |𝐽𝜙| ↓
Affine 0.386±0.195 2.800±0.865 6.771±1.460 -
NiftyReg (Modat et al. (2010)) 0.634±0.169 1.834±1.014 5.683±3.513 0.006±0.016
deedsBCV (Heinrich et al. (2013)) 0.733±0.126 1.163±0.666 3.751±2.559 0.052±0.066
MIDIR (Qiu et al. (2021)) 0.742±0.128 1.050±0.465 3.352±1.936 < 0.0001
RCN (Zhao et al. (2019a)) 0.724±0.120 1.324±0.767 4.234±2.824 0.369±0.190
VoxelMorph (Balakrishnan et al. (2018)) 0.729±0.129 1.179±0.626 3.967±2.468 1.573±0.336
CycleMorph (Kim et al. (2021)) 0.737±0.123 1.165±0.654 3.918±2.595 1.701±0.378
LapIRN (Mok and Chung (2020)) 0.625±0.160 1.621±0.580 4.662±1.611 2.061±0.672
ViTVNet (Chen et al. (2021)) 0.734±0.124 1.162±0.603 3.939±2.453 1.590±0.316
TransMorph (Chen et al. (2022)) 0.753±0.126 1.091±0.640 3.756±2.536 1.497±0.341
SymTrans (Ma et al. (2022)) 0.751±0.127 1.102±0.649 3.854±2.599 1.673±0.350
MD-SGT (Ours) 0.757±0.125 1.068±0.635 3.714±2.574 1.392±0.342

To further evaluate the registration performance in dif-
ferent brain regions, Figure 7 shows the boxplots of Dice,
ASD and HD95 obtained with different methods in 17 brain
ROIs, including brain stem, thalamus, cerebellum cortex
(CC), cerebral white matter (CWM), cerebellum white mat-
ter (CeWM), putamen, ventralDC, pallidum, caudate, lateral
ventricle (LV), hippocampus, 3rd-ventricle, 4th-ventricle,
amygdala, cerebral cortex (CeCo), CSF and choroid plexus
(CP). We noticed that, the proposed method achieves the
highest median Dice scores and the narrowest interquartile
range in the most brain regions, indicating that the brain
regions warped with our method can align well with the
corresponding reference regions.
4.2. Patient-to-Atlas registration results with

in-house dataset
To compare visually the performance of different meth-

ods on patient-to-atlas registration task, the registration re-
sults of one randomly selected slice in the test set of in-
house data were demonstrated in the top of Figure 8, and
the corresponding deformation grids as well as the displace-
ment vector fields were shown in the bottom, where the
red arrows indicated the irregular or folded deformation
field. We observed that NiftyReg, deedsBCV, and MIDIR

cannot deal with the shape change of the lateral ventricle
well. Moreover, the conventional algorithms and most of the
learning-based methods cannot account for the deformation
in the area zoomed-in on the middle bottom, but generally,
the learning-based methods generated better warped images
than conventional methods, especially for our method and
LapIRN. As highlighted in the green rectangles, the LapIRN
can retain well the structure details in the warped image
and without folding effect. Even though there are still some
irregular deformations in the displacement vector filed of the
proposed method (indicated by the red arrows), in contrast
to the rest learning-based methods, the deformation field
obtained by our method is much smoother.

The quantitative evaluation metrics for patient-to-atlas
registration are given in Table 5, where the mean and stan-
dard deviation of the Dice, ASD and HD95 of each method
in 58 anatomical regions for all individuals in the test set
are demonstrated. We observed that, in the conventional
methods, deedsBCV obtained the best registration results in
terms of three evaluation metrics, which were even better
than the learning-based method (MIDIR). In addition, the
standard deviations of all the evaluation metrics for the
conventional methods were much lower than the learning-
based methods, indicating that the non-deep-learning-based
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Figure 6: Curves of Dice (a), ASD (b), and HD95 (c) for all samples in test set obtained with different methods on the IXI
dataset, with different colors indicating different methods. For better visualization, the y-axis of three curve plots is broken due
to the large gap in metrics bettween the NiftyReg and others.

registration algorithms are more stable. Except for LapIRN,
we noticed that almost all the transformer-based models
were better than convolution-based models, demonstrating
that the long-range dependencies in transformer is beneficial
for promoting the image registration performance, especially
for our proposed MD-SGT network, it achieved the second
highest Dice (0.782) (a little lower than that of LapIRN
(0.786)), as well the lowest ASD (0.571) and the second
lowest HD95 (1.429), which are improved by 1.4%, 4.9% and
5.7% respectively by comparing the suboptimal transformer-
based model (SymTrans). Moreover, the standard deviations
of all the evaluation metrics obtained by the proposed MD-
SGT network were the smallest among the transformer-
based methods, although it did not outperform the traditional
methods and LapIRN, its stability was greatly improved
comparing with transformer-based methods.
4.3. Ablation experimental results

The registration results for all the ablation studies are
shown in Figure 9 and the corresponding radar plots of the
quantitative evaluation metrics are given in Figure 10. For
better visualization, some regions with obvious differences
between different ablation studies are zoomed-in in Figure 9,
and in the radar plots, the negative ASD and HD95 distances,
as well as the Dice score are normalized to the range of [0.6,

1], the larger the area enclosed by the triangle, the better
the registration performance. As demonstrated in Figure
9(a), both MBConv and MD-GTB modules are beneficial
for aligning the warped images with reference, especially
using them simultaneously can better match the contours
of the warped hippocampus and thalamus with those in the
reference. Such improvements are also clearly demonstrated
in the Figure 10(a), comparing with the base model (green
triangle), introducing both MBConv (cyan triangle) and
MD-GTB (blue triangle) modules can improve the Dice
Score, ASD and HD95 distances. Specifically, introducing
MBConv can decrease mean ASD/HD95 distances from
1.111/3.872 to 1.098/3.809, and increase the mean Dice
score from 0.752 to 0.753, verifying that the stride con-
volution used in MBConv can overcome the problem of
maxpooling in missing some information, therefore, it is
able to extract useful features for promoting the registration
performance; while introducing MD-GTB module can de-
crease the mean ASD/HD95 distances from 1.111/3.872 to
1.072/3.700 and increase the mean Dice score from 0.752
to 0.755, which indicates that MD-GTB is more useful
than MBConv for registration. Combining the MBConv and
MD-GTB modules (red triangle) can further promote the
registration performance, the mean Dice score, ASD and
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Figure 7: Boxplots of Dice scores (top), ASD (middle) and HD95 (bottom) distances for different brain areas using the proposed
MD-SGT and the state-of-the-art registration methods.

Patient-to-Atlas Registration
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Figure 8: Qualitative comparison between the reference and the warped images obtained with different methods on the in-house
dataset. The red arrows indicate the folding in the deformation field.
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Table 5
Quantitative comparisons among different methods on patient-to-atlas registration.

Patient-to-Atlas
Method Dice↑ ASD↓ HD95↓ % of |𝐽𝜙| ↓
Affine 0.626±0.066 0.994±0.252 2.382±0.517 -
NiftyReg (Modat et al. (2010)) 0.702±0.009 0.724±0.028 1.930±0.080 0.175±0.052
deedsBCV (Heinrich et al. (2013)) 0.751±0.011 0.631±0.022 1.613±0.086 < 0.0001
MIDIR (Qiu et al. (2021)) 0.748±0.043 0.660±0.112 1.677±0.314 < 0.0001
RCN (Zhao et al. (2019a)) 0.740±0.030 0.665±0.070 1.702±0.190 0.220±0.010
VoxelMorph (Balakrishnan et al. (2018)) 0.760±0.039 0.627±0.095 1.580±0.255 0.172±0.030
CycleMorph (Kim et al. (2021)) 0.763±0.040 0.617±0.100 1.579±0.284 0.145±0.050
LapIRN (Mok and Chung (2020)) 0.786±0.010 0.574±0.020 1.325±0.080 < 0.0001
ViTVNet (Chen et al. (2021)) 0.763±0.045 0.621±0.120 1.581±0.334 0.158±0.027
TransMorph (Chen et al. (2022)) 0.767±0.046 0.611±0.122 1.553±0.324 0.191±0.028
SymTrans (Ma et al. (2022)) 0.771±0.037 0.599±0.093 1.511±0.284 0.239±0.026
MD-SGT (Ours) 0.782±0.024 0.571±0.060 1.429±0.174 0.149±0.020

Comparing the attention spans Comparing the MD-GTB and Atrous Conv.

(d) Influence of neighbor sampling schemes

Comparing the MD-GTB and SD-GTB

Reference Uniform Non-uniform Reference MD-GTB SD-GTB Reference MD-GTB Atrous Conv.

(c) Influence of the radius of neighborhood 

MD-SGT-369 MD-SGT-2510 MD-SGT-179Reference

(a) Effectiveness of MD-GTB and MBConv module

Base+MG Base+MC BaseReference Base+MG+MC

Integration Paral. split Seri. splitReference

(e) Effects of attention manners in MD-GTB

(b) Effectiveness of the model hyperparameters

Influence of number of MD-GTB Influence of the number of attention heads 

MD-SGT-NH1 MD-SGT-NH4 MD-SGT-NH8ReferenceMD-SGT MD-SGT Sm. MD-SGT La.Reference

Figure 9: Qualitative comparison between the reference and warped images of ablation studies on the IXI dataset. Boundaries of
several anatomical structures were overlaid on the warped images.

HD95 distances are improved by about 1%, 4%, and 4%,
respectively, relative to the base model.

The number of MD-GTB modules, the feature embed-
ding dimensions used in MD-GTB, and the number of
attention heads are the main factors that influence the model
size and accordingly affect the registration performance.
As demonstrated Figure 10(b), we notice that increasing
simultaneously the number of MD-GTB modules and the
feature embedding dimensions cannot improve the registra-
tion performance (comparing MD-SGT large (blue triangle)
and MD-SGT (green triangle)), with the mean Dice score de-
creasing a little bit from 0.757 to 0.756, and the ASD/HD95
distance increasing from 1.068/3.714 to 1.084/3.749, respec-
tively. However, keeping the number of MD-GTB modules
unchanged and increasing the feature embedding dimensions
from 48 to 96 (comparing MD-SGT small (red triangle) and

MD-SGT (green triangle)), the mean Dice score is increased
by 0.5% (from 0.753 to 0.757), ASD and HD95 are decreased
by 2.1 % (from 1.090 to 1.068) and 1.8% (from 3.781 to
3.714), respectively. Such findings can also be reflected by
the qualitative registration results, as shown in Figure 9(b),
comparing with MD-SGT small and MD-SGT large, MD-
SGT achieves the best registration results, with the outline of
the warped thalamus (blue) being closest to the ground-truth
(orange outline) in the reference image.

As to the influence of attention heads, we fixed both
the number of MD-GTB modules and feature embedding
dimensions and then changed the number of attention heads,
the registration results were shown in Figure 9(b) and the
corresponding quantitative comparison was given in Figure
10(b). We noticed that, Dice score is almost uninfluenced by
the the numbers of attention heads (changing from 0.756 to
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(a) Effectiveness of MD-GTB 

and MBConv module
(b) Effectiveness of the model hyperparameters

(c) Influence of the radius 

of neighborhood

(e) Effects of attention 

manners in MD-GTB
(d) Influence of neighbor sampling schemes

Figure 10: Radar plots of ablation studies on the IXI dataset. Note that the negative ASD and HD95 distances, as well as the
Dice score are normalized to the range of [0.6, 1]. The larger the area of the triangle, the better the registration performance.

0.757 when the number of attention heads varies from 1 to
8), but the ASD and HD95 distances improve gradually, with
ASD decreasing from 1.081 to 1.054 and HD95 decreasing
from 3.737 to 3.678. These findings indicate that increasing
the attention heads is useful for improve the match degree
of region boundaries and surfaces between the reference and
warped images, as shown in the zoomed-in regions of Figure
9(b).

In this work, the MD-GTB module is the key element
of the proposed registration network, in which the graph
neighbor sampling schemes, the sampling radius, as well as
the attention calculation manners are the dominant factors
that affect the registration performance. As shown in Figure
9(c), we found that when the sampling radii at three scales
are set as 3, 6 and 9 (MD-SGT-369) respectively, the model
achieves the best performance, with the highest dice score
(0.757) and the lowest ASD (1.068) and HD95 distances
(3.714), meanwhile, the contours of hippocampus and thala-
mus in the warped image are closest to those in the reference
image. As the sampling radii at three scales are changed
to 1, 7, 9 (MD-SGT-179) and 2, 5 ,10 (MD-SGT-2510),
the registration performance decreases quickly, as shown
in Figure 10(c). In addition, from Figure 9(c) and Figure
10(c), we observed that there is no significant difference
in performance between MD-SGT-179 and MD-SGT-2510,
suggesting that the sampling radius is not the immediate
cause that influences the performance, but the number of
neighbor nodes determined by different radii affects the
registration accuracy. In model MD-SGT-369, the number
of neighbor nodes are 317, however, in model MD-SGT-179
and MD-SGT-2510, the number of neighbor nodes are 251

and 259 respectively. The more the neighboring nodes, the
better the registration performance.

Keeping the number of neighboring nodes unchanged,
Figure 9(d) shows the influence of different neighboring
nodes sampling strategies, namely sampling neighbors with
non-uniform and uniform attention spans, as well as with
multi-dilations (MD-GTB) and single dilation (SD-GTB)
at four scales, respectively. We found that the uniform at-
tention span achieved the better registration results, with
the outline of the warped thalamus (blue) and hippocampi
(pink) being closest to the ground-truth (orange and yellow).
Generally, using the uniform attention span, the mean Dice
score increases from 0.753 to 0.756, and the ASD/HD95
distance decreases by 2.9% and 2%, respectively. When
comparing the sampling strategies with multi-dilations and
single dilation (the middle image in Figure 9(d)), we no-
ticed that sampling the nodes from different spheres (multi-
dilations) can effectively promote the registration perfor-
mance, with some small region structures aligning well with
the reference. This can also be intuitively revealed by the
radar plots (Figure 10(d)), the Dice score, ASD and HD95
distances of MD-GTB are improved by 0.4%, 2.8% and 1.9%
respectively comparing against with SD-GTB. Even though
the idea of MD-GTB sampling strategy is similar to that
of atrous convolution, its performance is much better than
atrous convolution, especially in hippocampi and thalami
regions (blue and pink regions in the right image of Figure
9(d)), with the Dice increased by 0.5%, and ASD and HD95
decreased by 2.1% and 1.6% respectively.

Besides the sampling radii at different scales and the
sampling strategies, how to calculate the attention maps
between the target node and the corresponding neighboring
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nodes sampled from different FOVs also affects the registra-
tion results. As demonstrated in Figure 9(e) and Figure 10(e),
calculating the attention maps with parallelly or serially
splitting manners produced worse registration performance
than with integration manner, with all the evaluation metrics
decreased and the boundaries of some anatomical structure
not well aligned with the reference.

5. Discussion
In this work, we proposed a novel deep learning model,

MD-SGT, for unsupervised deformable medical image reg-
istration, in which the multi-dilation graph Transformers
(MD-GTB) and convolutional blocks were combined en-
abling the model to benefit from the long-range learning
ability of self-attention mechanism as well as the convo-
lution inductive bias. Through the comparisons with the
conventional and state-of-the-art learning-based methods on
two datasets, we demonstrated that such hybrid network
can deal with the problem of non-uniformed attention span
occurred usually in transformer-based registration models,
achieving an outstanding performance.

It is well known that the transformer-based models can
learn more useful features due to their abilities of modeling
long-range spatial dependencies and aggregating adaptively
the context information, therefore, they may achieve better
registration performance than convolution-based methods
(Figure 5 and Table 4). To further validate that the long-
range spatial dependence is indeed useful for deformable
image registration, we plotted the effective receptive field
maps of different registration methods obtained with the
gradient back-propagation(Luo et al. (2016)) We observed
that, MIDIR, RCN, VoxelMorph, and CycleMorph meth-
ods have the small receptive field size, while the LapIRN,
ViTVNet, TransMorph, SymTrans and our method have
the large receptive filed of almost the same size with the
input image. By comparing their Dice scores, it can be
seen that most of the methods with large receptive filed
size outperforms those with small receptive field on both
datasets. This can be explained that larger receptive filed
can be aware of the boundary of the skull (just as shown
in Figure 11), which may provide beneficial constraints on
the deformation field. Even though the CNN-based method
LapIRN and the transformer-based method ViTVNet can
also achieve the large receptive field, their performances are
worser on IXI dataset while better on in-house dataset. This
illustrates that these two methods are sensitive to the image
size or the texture information. This can be understood in
terms of the nature of these registration methods. In LapIRN,
it proposes a coarse-to-fine registration strategy by feeding
the coarse velocity field into the registration framework of
the next scale and adding the velocity fields at different
scales to derive the final one. If the velocity field at the coarse
scale is not accurate, the error will be propagated into the
fine scales and therefore influences the results. In addition,
the contributions of the velocity fields derived from different
scales for the final velocity field should be different, adding

them directly will also bring some bias. If the image size is
small or the image texture is relatively simple, the error in
velocity field at coarse scale is not significant, accordingly,
the effect of error propagation is not obvious, that is why
LapIRN performs better on in-house dataset with smaller
image size. In ViTVNet, the transformer block is applied on
the bottleneck layer, although it can reduce the computation
complexity and enable the model has long-range spatial
dependence, using the coarse attention coefficients calcu-
lated at the bottleneck layer to infer the dense predictions
of velocity field is easy to generate errors. The larger the
original image size or the more complex the image texture,
the greater the difference between the attention coefficients
calculated by the bottleneck layer and those calculated by the
original image. Since in IXI dataset, the image size is much
larger than that of in-house dataset, the influence of the bias
in attention coefficients is accordingly more significant, this
is why the ViTVNet performs worse on IXI dataset.

To deal with the above-mentioned problem of ViTVNet
and to reduce also the computation complexity of the trans-
former applied on whole image, in TransMorph and Sym-
Trans, the window-based attention is used. However, the
attention span of the window-based attention is not uniform,
which will limit the model to effectively extract the useful
features for registration. As illustrated in Figure 3(a), in
window-based attention, the target node in a given window
can only aggregate the information from the other nodes in
this window, which means that for the different target nodes
in a window, the location distribution of their neighboring
nodes are totally different. For instance, the neighbors of the
red target node in Figure 3 (a) are mostly from its bottom
right region, while the neighbors of the blue target node are
mostly from its top left region. However, in our proposed
MD-GTB, the neighbors of any target node are from its self-
centered regions (Figure 3 (b)), allowing the model to update
the target node information in a uniform manner. In addition,
in MD-GTB, to enlarge the receptive filed size, the neighbor-
ing nodes are sampled from the several spheres with multiple
dilation rates. Therefore, with the help of large receptive
field size and uniform attention span, the performance of the
proposed method is better than TransMorph and SymTrans
(Figure 5 and Figure 8).

Although the multiple spherical neighborhood sampling
strategy can promote the registration performance, its im-
provement is determined by the sampling radius for different
dilation rates. From the ablation study (Figure 10(c)), we
surprisingly found that, corresponding to the dilation rates
of (1, 2, 3), our model achieved the best performance when
the sampling radius are set as (3, 6, 9), rather than (1, 7, 9)
and (2, 5, 10). That means, when sampling with low dila-
tion rates (1 and 2), increasing the corresponding sampling
radius can improve the registration performance. This can
be intuitively explained, such sampling manner can sample
more neighbors for each target node, accordingly, the target
node can aggregate more useful information. When keeping
the number of neighboring nodes unchanged but varying the
sampling regions, which means sampling the same amount
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Figure 11: The effective receptive field maps of different registration methods obtained with salience map of a given voxel in
bottleneck layer of each model.

of neighbors from a small region with dilation rate of 1 (SD-
GTB) or from a bigger region with multiple dilation rates
(MD-GTB), we found that MD-GTB performs better since
it can capture long range dependence or more global context
information.

It is well known that transformer is not the unique way
to enlarge the receptive field. In the work of Jia et al.
(2022), they proposed a large kernel UNet (LKU-Net) to
implement the registration, they found that increasing the
convolution kernel size can increase the receptive field and
therefore be able to promote the registration performance,
but it is difficult to control the kernel size to derive the
appropriate receptive field size. If the kernel size is too
small, the receptive field is not large enough to derive the
accurate deformation field, while if the kernel size is too
large, the receptive filed is much larger than the input image
which may degrade the registration results. In contrast, there
is no such problem in transformer-based architecture, the
global operation in transformer enables us to see the whole
image information, therefore it is not necessary to choose
the appropriate kernel size to derive the right receptive
field. Besides the large-kernel convolutions, using atrous
convolution can also realize the long-range spatial depen-
dence. We notice that the sampling strategy used in MD-
GTB is like that of atrous convolution, but the performance
of MD-GTB is much better (Figure 10(d)). This can be
explained by their information aggregation manner. In MD-
GTB, thanks to the attention mechanism, the information
of each node can be adaptively updated according to the
neighboring information, however, in the atrous convolution,
the information of all the nodes (voxels) is updated in a fixed
way (convolution kernels are shared everywhere), therefore,
MD-GTB may capture more useful information than atrous
convolution, accordingly, achieving the better performance.

Besides, we also take a deeper look into the effects of
different attention manners used in MD-GTB on registration
performance. As illustrated in Figure 4, we observed that in
integration attention manner, the target node (red point) si-
multaneously grabs information from different FOVs, while
for the other two manners, the target node aggregates infor-
mation from different FOVs either in parallel or sequentially,
resulting in the information of some neighboring nodes is
utilized multiple times, such redundancy information de-
ceases therefore the registration performance.

Even though the comparative experimental results have
demonstrated the effectiveness of the proposed MD-GTB,

how to set the hyper-parameters of MD-GTB is not trivial.
As indicated by the ablation results (Figure 9), we noticed
that some settings of MD-GTB significantly influenced the
registration performance. First of all, the number of MD-
GTB modules and the feature embedding dimensions used in
MD-GTB are the determinative factors in model size which
in turn affects the registration performance directly. Gen-
erally, the larger model size produces better performance.
However, in our work, increasing the model size at the begin-
ning, the registration performance improves (changing from
MD-SGT-small to MD-SGT), but as increasing the model
size continually, the registration performance decreases in-
stead (changing from MD-SGT to MD-SGT-large). This
phenomenon can be explained with the under-parameterized
regime proposed by Nakkiran et al. (2021), in which the
authors argued that the variation of model performance
with the model size follows the U-like behavior, that means
increasing model complexity will increase performance first,
and then decrease it when the model complexity passes a
certain threshold, that is why the performance of MD-SGT-
larger is not better than MD-SGT as expected. In addition,
increasing the number of attention heads in MD-GTB will
also increase the model size, but in this work, increasing
the attention heads from 1 to 8 does not make model com-
plexity pass the threshold mentioned above. Meanwhile, as
indicated by Vaswani et al. (2017), multi-head attentions
enable the model extracting rich information from differ-
ent representation subspaces at different positions, therefore
increasing the number of attention heads can improve the
registration performance.

All the comparison and ablation results demonstrated
that the proposed MD-SGT is more advantageous for de-
formable registration than the existing CNN-based and
Transformer-based models. However, there are still several
limitations need to be addressed in the future. First, in the
proposed MD-GTB module, only the distance between the
target node and potential neighboring nodes was considered
when constructing the local graph, although it is simple
and efficient, it overlooks the features of each node. There-
fore, using some node-feature guided similarity measures to
construct the local graph may be our future work. Second,
considering that the distance between the nodes may also
influence the information aggregation, thus taking account
the distance into the self-attention mechanism of a multi-
dilation graph is also our interest. Third, the neighboring
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nodes used in this work were sampled uniformly from dif-
ferent spherical regions, how to adaptively sampling the
neighbors to further improve the registration performance
also need to be considered. Finally, although the proposed
model solved the problem of non-uniform attention span of
the window-attention based methods, as well as the issues
of coarse attention map in transformer used on bottleneck
layer, the computation complexity and the model parameters
are much larger, as illustrated in Figure 12. In MD-GTB,
graph attention was calculated in a node-by-node manner to
achieve the uniform attention span. That means each node
has its own local graph, and the number of the local graphs
is determined by the number of voxels in each feature map,
such huge graph numbers and the attention calculations for
each graph increase undoubtedly the computation time and
learning parameters. How to retain the superiority of such
local graph attention with uniform attention span, as well as
to reduce the computation complexity of the MD-SGT will
be of interest.

(a) (b)
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Figure 12: The comparisons among different learning-based
registration models in terms of computation complexity on
IXI dataset and number of learning parameters. FLOPs or
GMACS, giga multiply–accumulate operations was used as the
metric to reflect the computation complexity. TM:TransMorph,
CM:CycleMorph, VM: VoxelMorph, ViTV: ViTVNet, and ST:
symTrans.

6. Conclusion
To deal with the problems of the limited long-range

spatial dependence and non-uniform attention span in the
existing registration models, we proposed a multi-dilation
spherical graph transformer (MD-SGT) for unsupervised
deformable medical image registration, in which the differ-
ences between the reference and the template images at vari-
ous scales were fully extracted by combining the convolution
inductive bias and long-range uniform attention span of
graph transformer in the encoder, and then the final deforma-
tion filed was estimated from such feature differences using
a decoder. By comparing the proposed model with the state-
of-the-art methods for two registration tasks, atlas-to-patient
and patient-to-atlas registrations, on different datasets, we
demonstrated the superiority and effectiveness of MD-SGT,
the DICE, ASD and HD95 were improved at least by 0.5%,

2.2% and 1.1%, respectively. Comparing with the SOTA
methods, its stability is the best.
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