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Abstract. Many successful methods developed for medical image analysis that 

are based on machine learning use supervised learning approaches, which often 

require large datasets annotated by experts to achieve high accuracy. However, 

medical data annotation is time-consuming and expensive, especially for seg-

mentation tasks. To solve the problem of learning with limited labeled medical 

image data, an alternative deep learning training strategy based on self-super-

vised pretraining on unlabeled MRI scans is proposed in this work. Our pretrain-

ing approach first, randomly applies different distortions to random areas of un-

labeled images and then predicts the type of distortions and loss of information. 

To this aim, an improved version of Mask-RCNN architecture has been adapted 

to localize the distortion location and recover the original image pixels. The ef-

fectiveness of the proposed method for segmentation tasks in different pre-train-

ing and fine-tuning scenarios is evaluated based on the Osteoarthritis Initiative 

dataset. Using this self-supervised pretraining method improved the Dice score 

by 20% compared to training from scratch. The proposed self-supervised learning 

is simple, effective, and suitable for different ranges of medical image analysis 

tasks including anomaly detection, segmentation, and classification. 

Keywords: Self-supervised learning, Image segmentation, Limited Annota-

tions, Musculoskeletal MRI. 

1 Introduction 

Accurate quantification of image-based biomarkers from medical images related to 

pathologies and inflammation are needed for an improved clinical management and for 

identifying novel targets for therapy. With the development of deep learning tech-

niques, an increased success in the automation of radiological assessments can be ob-

served [7]. Many of these techniques rely on supervised learning approaches, which 

often require large, accurate annotated datasets is key to their success. However, ac-

quiring “ground truth” labels for large datasets to train deep learning networks is ex-

pensive and time-consuming while learning from limited labeled data remains a funda-

mental problem. This requirement becomes even more complicated and challenging 
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when the aim is to identify medical image features and pathologies that are more com-

plex and require a higher level of expertise to generate ground truth data. For example, 

for effusion segmentation task in knee MRI scans, pockets of joint fluid (effusion) can 

exist in unexpected locations, and more expertise is needed to distinguish effusion from 

other fluids, and minimize risk of inattentional error [2]. Furthermore, the annotation 

cost increases exponentially with semantic segmentation, which requires pixel-by-pixel 

labeling. To solve the problem of training with limited or no data annotation different 

strategies have been reported including domain adaptation [8], data generation and aug-

mentation [3], knowledge distillation [28] and few-shot learning [22].  

Another approach to train a network with limited labeled data is using pre-trained 

networks and finetuning its parameters for the target task using limited labeled data. 

Two common pretraining approaches for this purpose include: (1) supervised pretrain-

ing on a large labeled dataset (e.g., ImageNet [4] and MS-COCO [18]), and (2) self-

supervised learning (SSL) pretraining on unlabeled data.  

Due to the large domain gap between natural images and medical images, the net-

works pretrained using natural image improve performance in the medical imaging do-

main [24]. Therefore recently, to learn more relevant representations, more of the med-

ical image analysis research has moved towards SSL which is useful to pretrain net-

works with unlabeled domain-specific images. More precisely, SSL first learns features 

from unlabeled datasets usually with pretext tasks (pre-designed tasks for networks to 

solve), and then transfers the knowledge to target tasks (Fig.  1. (a)). One of the main 

challenges with SSL algorithms is defining pretext tasks in a manner that relates to the 

final applications so that relevant features are identified in this stage. Most of the cur-

rent SSL methods learn image-level pretext tasks like predicting augmentations applied 

to an image or learning to discriminate between images [31]. However, as the segmen-

tation task requires pixel-level prediction, a self-supervised dense representation learn-

ing will be more suitable for segmentation tasks. 

To achieve this goal, we propose a self-supervised pretraining using the Mask R-

CNN (SS-MRCNN) approach for medical image segmentation with limited labels. In 

this method the network learns to perform three pretext tasks 1) localize distortions, 2) 

classify distortions type, and 3) recover the distorted area. During the pretraining dif-

ferent distortions are applied to random areas of the input images and the network is 

trained to recover the lost information, ensuring the network is receiving different in-

puts at each epoch even with few data points. Using this principle, SS-MRCNN can be 

trained with both small and large datasets. We demonstrate training on proposed pretext 

tasks provides a powerful objective for SSL pretraining to learn different levels of im-

age features. We perform a comparison between self-supervised and supervised pre-

training on a musculoskeletal (MSK) image segmentation task. Key contributions of 

this research include: 1) proposing a new simple multi-task SSL approach using Mask 

RCNN, 2) investigating the benefit of SSL pretraining on medical image segmentation 

task with limited labeled data, 3) demonstrating that the proposed SSL pre-training is 

robust and generalizable for different training datasets sizes. 
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2 Related Work 

2.1 Transfer Learning for Medical Image Analysis 

Many previous studies have taken advantage of transfer learning strategies for medical 

image analysis. The majority of transfer learning methods use pretrained standard 

ImageNet architectures (e.g. ResNet) and fine-tune network weights based on the target 

task [19][21][14][29]. However, as Raghu et al. [24] demonstrated while this strategy 

can make convergence faster it may not provide significant improvement in medical 

image classification, mainly attributable to the domain gap between natural images and 

medical images. To alleviate this problem some previously described methods normal-

ized medical input images based on ImageNet statistics [20]. However, this approach 

is usually not practical for radiological images since they are grayscale images and have 

completely different data distribution.  

Using domain data provides an alternate solution for pre-trained networks in the medi-

cal domain [30][17][9]. Roy et. al. used auxiliary labels created from segmentation 

software for pretraining [9]. Karimi et. al. showed [16], as the size of the target dataset 

is reduced, transfer learning with medical domain data can have more positive effect. 

However, obtaining large labeled datasets in the same domain often is not feasible. In 

addition, the positive effects of transfer learning depend on similarity between the pre-

text and target tasks. He et al. [12] showed pretraining with classification tasks (e.g. 

ImageNet pre-training) has no benefit for target tasks that are sensitive to spatially well-

localized data like segmentation. 

2.2 Self-supervised Learning  

In SSL, image representations are acquired directly from the image pixels, without 

relying on semantic annotations, typically through learning pretext tasks such as apply-

ing a transformation and determining the transformation type from the transformed im-

age. A systematic analysis in medical imaging domain showed that SSL models out-

perform the models that make use of ImageNet supervised pretraining [13].  

Contrastive-Learning (CL) is one of the popular SSL methods, that provides a decent 

initialization to fine-tune a target task, particularly when limited annotations are avail-

able [28].The pretext task in CL is instance discrimination, with the objective to max-

imize the similarity between similar pairs (positive) and minimize the similarity be-

tween dissimilar (negative) pairs [25][28]. Within the medical image analysis domain, 

CL was successfully used along with federated learning for medical image segmenta-

tion [27]. Azizi et al. [1] proposed a multi-instance CL (MICL) framework pre-training 

for medical image classification. Nevertheless, CL algorithms have some issues, in-

cluding the challenge of choosing dissimilar pairs, which is critical to the quality of 

learned representations [28], the need for large amounts of memory to retain negative 

pairs, and the fact that they are designed for large-scale datasets with diversity [27].  

An alternative approach to CL is to mask some information of the input and define 

training the objective as recovering the original data. Some SSL methods use image 

inpainting and recovering corruption as the pretext tasks [23][5][15][26]. Feature 
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learning with context encoders and inpainting as pretext was one of the early SSL meth-

ods [23]. Wei et al. [26] proposed an SSL pretraining with the objective of predicting 

the Histograms of Oriented Gradients (HOG) of corrupted areas of the image using 

transformers. These methods are conceptually and practically simpler than CL-based 

methods and more preferable for learning dense image representation.  

 

Fig.  1. (a) SSL paradigm, (b) Dataflow of distortion block and different distortions: 1-blank, 2-

blurred, 3-mislocate, 4-salt&pepper noise, 5-rotate, 6-speckle noise, (c) proposed SSL pipeline 

3 Method 

The proposed SS-MRCNN framework uses an improved version of the Mask RCNN 

(IMaskRCNN [6]) architecture (Fig.  1). Similar to the Mask RCNN [11], the 

IMaskRCNN is constructed from a backbone (ResNet) for feature extraction, a region 

proposal network (RPN) for extracting the ROI bounding box, and two heads: the mask 

head for mask segmentation, and the classification head for extracted bounding box 

classification. Compared to the Mask R-CNN, pixel-wise prediction is improved in 

IMaskRCNN by adding a skip connection and an extra encoder layer to the mask head. 

3.1 Self-Supervised Pretraining 

 The IMaskRCNN [6] is adapted to perform pretext tasks, it receives distorted image as 

input (Fig.  1(b)) for the SSL training. The main objective of the SSL pretraining is to 

learn dense and semantic representation of the input image by three pretext tasks: 1) 

localize the distorted area, 2) identify distortions type, and 3) recover distorted areas.   

Distortion block: The basic idea of the method proposed in this work is that in each 

iteration a random number of random distortions (3 to 7) is applied to randomly selected 

areas of the unlabeled image. The distortions are selected from the specified distortion 

pool ("blank", "blurred", "mislocate", "salt & pepper noise", "rotate", "speckle noise"). 

Identifying and recovering each distortion is equivalent to learning an image processing 

task and helps the network to learn different features regarding the input. For example, 

“blank” and “blurred” distortions are equivalent to image inpainting and super resolu-

tion tasks, respectively, which will be effective in learning the image structure and 
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dense representation. With “mislocate” and “rotate”, the network learns geometric in-

formation. By restoring information that has been lost by adding “salt & pepper noise” 

and “speckle noise”, the network learns about the data distribution and structure. 

Loss: The IMaskRCNN has a multitask learning loss (L) for each sampled ROI, which 

is the accumulation of the classification loss (𝐿𝑐𝑙𝑠), the bounding-box loss (𝐿𝑏𝑏𝑜𝑥), and 

the mask-loss (𝐿𝑚𝑎𝑠𝑘) (𝐿 =  𝐿𝑐𝑙𝑠  +  𝐿𝑏𝑏𝑜𝑥  +  𝐿𝑚𝑎𝑠𝑘). For the SSL training, the 𝐿𝑚𝑎𝑠𝑘  

is replaced with the 𝐿𝑅𝑒𝑠𝑡𝑜𝑟𝑒𝑑 , which is constructed from regression and similarity 

losses instead of Binary-cross-entropy. To measure the distance between the distribu-

tion of the real mask and the generated mask we defined 𝐿𝑅𝑒𝑠𝑡𝑜𝑟𝑒𝑑  as summation of 

RMSE (root means squared error), MAE (Mean Squared Error) and the Cosine Simi-

larity (CS) loss, 𝐿𝑅𝑒𝑠𝑡𝑜𝑟𝑒𝑑 = 𝐿𝑟𝑚𝑠𝑒 + 𝐿𝑚𝑎𝑒 + 𝐿𝐶𝑆. 

4 Experiments and Results 

In order to evaluate the added benefit of the proposed approach, we compare fine-tuning 

performance of using the proposed SSL pretraining (SS-MRCNN) to the network pre-

trained using MS-COCO dataset [18] (200K labeled images and 1.5 million instances) 

for the selected medical image segmentation tasks. 

4.1 Implementation: 

The proposed method was implemented in TensorFlow2 with Keras backbone and 

trained on a NVIDIA V100 GPU. For all experiments, input images were cropped/pad-

ded to 320×320 pixels. For the SSL pretraining models were trained for 200K itera-

tions with batch size 128 ( =32 for small dataset), using the Adam optimizer and 0.001 

learning rate. During the fine-tuning the model was trained for 100 epochs with a batch 

size of 16 using Adam optimizer and 0.001 learning rate. The weights from the pre-

trained network were used for the IMaskRCNN backbone for the segmentation task 

(target task), and only the IMaskRCNN heads were trained. Width and length of dis-

tortions were prescribed to be between 50 to 80 pixels.  

4.2 Application and datasets: 

For the experiments, we used seven different MRI sequences from the publicly avail-

able multicenter Osteoarthritis Initiative (OAI, https://nda.nih.gov/oai/) dataset. OAI 

contains thousands of MRI scans from 4796 subjects aged 45-79 years with 10 years 

annual knee assessments. Furthermore, to test generalizability of SS-MRCNN to un-

seen sequence from unseen body regions, we used 10 scans from a Clinical Hip Dataset 

that contains Short-TI Inversion Recovery (STIR) MRI scan (UofA HREB 

Pro00039139). To increase generalizability of the approach, different MRI sequences 

with varying view, matrix size, and field of view were used for SSL training (summa-

rized in Table 1). 
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As a practical application, we focused on segmenting joint effusion from the sagittal 

IW TSE (intermediate-weighted turbo spin echo) MRI which is becoming more im-

portant as osteoarthritis is increasingly recognized to have inflammatory components 

including joint effusion. Effusion regions were segmented by a trained MSK radiologist 

for a total of 31 scans using an interactive software developed in-house [10]. 

Table 1. Information of the deployed MRI sequences for SSL training, SSL evaluation and 

Segmentation (SAG = sagittal, COR= coronal, AX = Axial) 

 3D 

DESS 
IW TSE MPR 

T1-3D 

FLASH 

T1-

THIGH 

T2-

MAP 

MP 

Locator 
STIR 

View SAG SAG COR AX COR COR AX SAG - COR 

Body Part Knee Knee Knee Knee Knee Knee Knee Knee Knee Hip 

Pixel size 𝑚𝑚2 0.364 0.357 0.364 0.364 0.364 0.312 0.976 0.312 0.39 0.91 

Matrix 384×384 444×448 384×384 384×384 384×384 512×512 512×256 384×384 512×512 512×512 

SSL 
Train Yes Yes Yes Yes No Yes Yes Yes No No 

Eval. No Yes Yes Yes Yes No No No Yes Yes 

Segmentation No Yes No No No No No No No No 

4.3 Evaluation Criteria and Experiment Setup 

Evaluation was performed for the underlying SSL and the target segmentation tasks. 

For the SSL task we computed similarity measures by comparing the original image 

(𝐼𝑜𝑟𝑔), and recovered image (𝐼𝑠𝑠𝑙) and the original image (𝐼𝑜𝑟𝑔) and distorted image 

(𝐼𝑑𝑖𝑠𝑡), to determine the amount of lost information than SS-MRCNN can recover. The 

similarity measurements included: Structural Similarity Index (SSIM), Peak Signal to 

Noise Ratio (PSNR) and Cosine similarity (CS). The evaluation metrics used for the 

instance segmentation task included precision (= TP/(TP + FP)) and recall (= TP/(TP + 

FN)) for detection, as well as the Dice similarity score (= 2×TP/(2×TP +FP +FN)) for 

segmentation. For all metrics higher values indicate better performance. 

To assess the effectiveness of SS-MRCNN in relation to the size of the pretraining input 

data, we performed pretraining in different setups in un-labeled dataset sizes: 1) Ultra 

large dataset (with 247K training data), and 2) large target dataset (28k dataset used for 

downstream task), 3) small target dataset (100 slices from target data).  

To investigate effect of pretraining for segmentation task, we compared fine-tuning us-

ing the three SSL pretrained weights with MS-COCO weights and with no pretraining. 

Furthermore, we assessed performance of the network on training data size with the 

labeled dataset (sagittal IW TSE MRI scans) in three sizes, a) 700 slices from 23 scans, 

and b) 100 slices from only 3 scans c) 10 slices. For the validation and test purposes, 

one scan (23 slices) and 7 scans (200 slices) have been used, respectively. 

4.4 Results and Discussion 

SSL Representation learning: Results show higher similarity measures between the 

full-sized original image and the recovered image (𝐼𝑜𝑟𝑔 , 𝐼𝑠𝑠𝑙) in compared to similarity 

measures between the original image and distorted image (𝐼𝑜𝑟𝑔 , 𝐼𝑑𝑖𝑠𝑡) (𝐼𝑑𝑖𝑠𝑡  with 6 
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distortions) pair. This improvement was more than 5 dB for PSNR, 3%-6% for SSIM, 

and 1%-4% for Cosine similarity (Table 2). This indicates that the SS-MRCNN frame-

work recovered part of the lost information. Meaning the network learned dense repre-

sentation and is generalizable since it recovered distorted images of unseen MRI se-

quences. Furthermore, as can be observed in Fig.  2, the network learned to localize and 

differentiate the distortions indicating that it learned semantic and geometric infor-

mation.  

Table 2. Similarity measures between the (𝐼𝑜𝑟𝑔, 𝐼𝑑𝑖𝑠𝑡), and the (𝐼𝑜𝑟𝑔, 𝐼𝑠𝑠𝑙), and their difference  

∆ = 𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌(𝐼𝑜𝑟𝑔 , 𝐼𝑠𝑠𝑙) − 𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌(𝐼𝑜𝑟𝑔, 𝐼𝑑𝑖𝑠𝑡) . The * and ** sequences were not seen by 

SS-MRCNN training, and ** is from unseen MSK structure.  
Measures SSIM PSNR (dB) CS 

Sample Sequences (𝐼𝑜𝑟𝑔, 𝐼𝑑𝑖𝑠𝑡) (𝐼𝑜𝑟𝑔, 𝐼𝑠𝑠𝑙) ∆ (𝐼𝑜𝑟𝑔, 𝐼𝑑𝑖𝑠𝑡) (𝐼𝑜𝑟𝑔, 𝐼𝑠𝑠𝑙) ∆ (𝐼𝑜𝑟𝑔, 𝐼𝑑𝑖𝑠𝑡) (𝐼𝑜𝑟𝑔, 𝐼𝑠𝑠𝑙) ∆ 
SAG_IW_TSE 0.79 0.84 0.05 19.50 27.13 7.63 0.79 0.81 0.02 
COR_IW_TSE 0.76 0.83 0.07 14.34 20.99 6.65 0.87 0.89 0.02 

AX_MPR 0.81 0.87 0.06 18.25 25.45 7.20 0.87 0.90 0.03 

COR_MPR* 0.84 0.87 0.05 19.37 25.46 6.09 0.82 0.83 0.01 

MP LOCATOR* 0.78 0.81 0.03 17.50 22.61 5.11 0.92 0.94 0.02 
COR T1 (Hip MRI) 

** 
0.79 0.83 0.04 18.58 24.13 5.55 0.76 0.80 0.04 

 

 

Fig.  2. Result of SSL task result, (a) original Image, (b) distorted Image, (c) ground truth mask, 

(d) predicted mask, (e) and (f) location and type of distortions in ground truth (e) and detected 

by SSL (f) [1- blank, 2- blurred, 3-mislocate, 4- salt & pepper noise, 5- rotate, 6- speckle noise], 

(g) recovered image. 

SSL Pretraining Effect: Results of performing the segmentation and detection tasks 

in different settings (Table 3) shows, that pretraining with the SSL-pretraining as well 

as MS-COCO pretraining have a positive effect when comparatively small samples of 

labeled data are available for the downstream task and can boost the Dice score by 27%. 

However, comparing the two pre-training approaches shows that this positive effect is 

larger for SSL pre-training compared to MS-COCO pre-training as the size of the la-

beled dataset decreases. Table 3 clearly shows that as the labeled dataset size is reduced 

from 700 slices to 100 slices to 10 slices, the performance gap between the two pre-

training methods increases. For the Dice similarity metric, this gap is 2%, 6%, and 21%, 

respectively. The Dice similarity metric for the MS-COCO pretraining is even lower 

when compared to the results when no pretraining is used for few-labeled data (10 
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slices). The visual analysis of the results (Fig.  3) supports the quantitative results. More 

precisely, it was found that the MS-COCO pretraining was not successful in defining 

correct edges around the effusion. In contrast, SSL-pretraining has a positive effect on 

recall as well, whereas high recall suggests that less effusions were missed by the net-

work. However, the precision metric also shows that pretraining had no effect on re-

ducing the number of false positives. 

Table 3. Quantitative results of effusion segmentation. 

Pretraining Method 
No 

Pretrain 
MS-COCO 

SSL 
(Ultra large) 

SSL 
(Large target) 

SSL (small 

target) 

Labeled Data size 700 100 10 700 100 10 700 100 10 700 100 10 100 10 

Detection 
Recall 0.83 0.66 0.47 0.95 0.82 0.45 0.97 0.90 0.69 0.94 0.90 0.69 0.85 0.68 

Precision 0.51 0.44 0.44 0.36 0.53 0.53 0.47 0.45 0.41 0.51 0.44 0.42 0.27 0.41 

Segmentation Dice 0.54 0.51 0.46 0.73 0.65 0.40 0.78 0.71 0.61 0.74 0.71 0.69 0.61 0.60 

 

 

Fig.  3. Result of segmentation task for fine-tuning with 700 slices, green-dashes network 

segmentation, red dashes ground truth (FN=false negative, FP=false positive) 

5 Conclusion 

In this paper, we proposed SS-MRCNN which is a simple and effective SSL that learns 

both semantic and pixel level information for medical image segmentation. The SS-

MRCNN uses a single network without requiring multi-view input, unlike CL methods 

that require multiple views of each training sample for positive pairs. The SS-MRCNN 

pre-training opens an avenue for extracting relevant information from large clinical 

MRI databases for which no annotations are available. The SS-MRCNN is a self-su-

pervised pretraining method that is trained by adding distortion to images and learning 

to detect, classify, and restore these distortions. Effectiveness of SS-MRCNN pre-train-

ing was examined for effusion segmentation, which is challenging due to the class im-

balance problem. The SS-MRCNN outperformed MS-COCO pretraining, and was 

shown to be effective for a medical image segmentation task with datasets of different 

sizes, even with small pretraining dataset, and few labeled data. By performing multiple 

pretext tasks, SS-MRCNN learns dense features in addition to semantic representations, 

which is crucial for pixel-wise prediction in segmentation and has not been explored in 

most of the previous studies. In compared to some other methods, the SS-MRCNN does 

not need to store extra information (e.g., negative pairs in CL), and does not need data 

augmentation, as it receives new samples in each iteration.  The SS-MRCNN is easily 

transferable to different domains making it suitable to use few target data for pretrain-

ing, and has the potential to increase performance of networks trained with few labels.  
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