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Abstract

Peer review of research proposals and articles is an essential element in R&D processes

world-wide. In most cases, each reviewer evaluates a small subset of the candidate proposals.

The review board is then faced with the challenge of creating an overall “consensus” ranking

on the basis of many partial rankings. In this paper we propose a branch and bound model

to support the construction of an aggregate ranking from the partial rankings provided by

the reviewers. In a recent paper we proposed ways to allocate proposals to reviewers so

as to achieve the maximum possible overlap among the subsets of proposals allocated to

different reviewers. Here, we develop a special branch and bound algorithm that utilizes

the overlap generated through our earlier methods to enable discrimination in ranking the

competing proposals. The effectiveness and efficiency of the algorithm is demonstrated with

small numerical examples and tested through an extensive simulation experiment.

Keywords: Peer review, branch & bound algorithms.
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1 Introduction

Peer review of research proposals and articles is an essential element in R&D processes

and the academic community world-wide. Surprisingly, the operational issues involved

in running a peer review process have drawn almost no attention from the operations

research/management science community. The few articles that touch this area do not

attempt to make the process work more effectively. Rather, they typically highlight the

potential deficiencies of the process, suggest alternative quantitative models to replace

it and compare their results to the outcomes of the peer review (e.g., Cardus et al.

1982, Hall et al. 1992).

In a recent paper (Cook et al., 2004) we argue that ordinal ranking of proposals

is a valid (and often more practical than cardinal ranking) technique to evaluate pro-

posals and developed methods to assign proposals to specific referees. In addition to

the obvious need to match the reviewers’ qualifications to the proposals, our methods

lead to the maximal possible overlap in the subsets of proposals assigned to different

referees. This overlap is essential when the reviewers are asked to provide their eval-

uations through pairwise ordinal rankings since otherwise, any overall ranking would

be arbitrary.

In this paper, we address the problem of combining the judgements of the reviewers

in a fair, objective and efficient manner. Over the past several decades various authors

have examined the problem of combining individual preferences to form a compro-

mise or consensus ranking. The manner in which preferences over the objects to be

ranked (proposals, in our particular case) are expressed, depends on the level of possi-

ble quantification. In some situations cardinal or quantitative data on each of various

attributes of the objects can be specified. In many practical applications, however,

it is not possible to explicitly quantify the utility or value in a full cardinal format,

and one must settle for the less specific ordinal specification. In some situations one

can specify a complete “ranking” of the n objects on an ordinal scale in vector format

A = (a1, a2, . . . , an), where aiε{1, 2, . . . , n} is the rank position occupied by object i.
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When such a ranking Ak is supplied by each member k of a committee of K members,

one can then define a consensus of opinions in terms of the median ranking as discussed

in Cook and Seiford (1978). From a practical point of view, if n is large, a full ranking

may prove difficult, and the most that one can expect is to obtain partial rankings of

subsets of the objects.

A common format for expressing preferences is to use ’pair-wise’ comparisons. This

mode of expression forces one to make a direct choice of one object over another when

comparing two objects rather than requiring one to compare all objects simultaneously.

As discussed in Cook and Kress (1991), consumer preferences over a set of products are

commonly elicited from respondents by way of pair-wise comparisons. The consumer

is generally asked questions of the form ‘in terms of flavor, do you prefer product a,

or product b?’. In many sporting events, such as round robin tournaments, outcomes

from the matches are, by definition, reported as pair-wise comparisons (e.g., a defeated

b). Thus, pair-wise comparisons provide a practical framework, in a wide variety of

settings, for collecting information on ordinal preferences. It is particularly attractive

when a comparison of all the objects is not possible and only a partial ranking may be

supplied. In the case that an individual voter or committee member can only express

preferences concerning a proper subset of the objects, then a partial ranking is the most

information that this person can provide. In such a situation, vector representations

as discussed above, make little practical sense, and one must then default to pair-wise

comparisons. A pair-wise method is clearly advantageous in the current application

where an individual reviewer will be asked to appraise only a subset of the proposals.

The problem of deriving a consensus among a set of ordinal preferences is one that

arises in a wide variety of settings. As discussed above, much of market research is

aimed at arriving at a consensus or compromise of opinions among a set of consumer

preferences. Both sophisticated and ad hoc methods have been developed over time

for deriving such a consensus. In a number of fields such as computer science, articles

submitted to major conferences are refereed prior to acceptance for inclusion in the

program. The submissions are sent to many reviewers, who return their evaluations

to the program committee which then meets for a number of days of deliberations to
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finalize the list of accepted papers. Reviewers generally do not treat these submissions

in the same way as they would treat a journal submission (that is, they are not will-

ing to invest the time and effort to do a full-fledged review). Hence, it is reasonable

to ask each reviewer to rank order a limited number of submissions, and then aggre-

gate the outcomes. Since the rankings serve only as raw-material to the committee

(who may overrule the order recommended by some reviewers), ordinal ranking, and

specifically, the use of pair-wise comparisons is a highly desirable approach. Finally,

another interesting application suggested by Beg and Ahmad (2003) involves rank ag-

gregation of partial rankings obtained through search engines on the World Wide Web.

The above examples serve to illustrate the wide applicability of ordinal ranking and

pairwise comparisons in practical settings.

The problem of deriving a consensus ranking from preferences provided in pairwise

format was first examined by Kemeny and Snell (1962) and later by Bogart (1975)

who extended the structure to partial orders. In neither case were possible solution

methods presented. The problem of consensus ranking in the case that preferences are

represented in vector (rank order) format has been investigated extensively by many

researchers including Cook and Seiford (1978), Kirkwood and Sarin (1985) and Cook

and Kress (1991), and various solution methods based on distance functions have been

studied. The consensus ranking problem has also been approached from the point of

view of various outranking methods such as that due to Roubens (1982). Further, a

somewhat related problem is the tournament ranking problem as studied in Ali et al.

(1986), Cook and Kress (1990), and Golany and Kress (1993).

Regardless of the representation used to elicit preferences, whether in vector or

pair-wise comparison format, one of the most commonly used criteria for developing a

compromise or consensus ranking is to minimize the number of “violations” (generally

called the minimum violations consensus ranking). The idea is to obtain an overall

ranking that displays the least number of cases where the opinions of the voters or

respondents are violated. E.g., if the voter prefers a to b, yet the consensus ranking

calls for b preferred to a, then a violation has occurred. While there are other criteria

for deriving a consensus such as the Spearman foot rule distance technique, it is the
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minimum violations method that is the most widely used in practice. For example,

the overall ranking of players in a round-robin tournament (see Ali et al. (1986),

and Cook and Kress (1990)) is intended to be one which deviates from the actual

competition outcomes to the least extent possible. Most of the practical tools for

aggregating consumer preferences are based on this idea. In the case, for example,

where preferences are specified in ranking-vector format, it is common to compute the

sum or average of ranks (across the set of consumer responses). The object with the

lowest sum or average is ranked in first place, and so on. This is the well known Kendall

scores method (Kendall (1962)), or the ‘method of marks’ due to Borda (1781). Cook

and Seiford (1982) show that the average (hence sum) of ranks is equivalent to the

minimum violations ranking in the `2 norm. Thus, even the ‘ad hoc’ techniques, such

as a sum of ranks, is based on the idea of minimum violations.

In this paper we develop a branch and bound algorithm for deriving a consensus

ranking of the proposals with minimum violations. We note that the minimum violation

problem is NP-hard due to its equivalence to the minimum feedback arc set problem

(see, e.g., Isaak and Narayan, 2004). Thus, using a branch and bound procedure is a

reasonable approach. While it may be necessary to determine only a winning proposal,

rather than a complete ranking of all the alternatives, the distance-based method that

we use requires (in general) that a complete consensus ranking be constructed before

a ’top ranked’ proposal is actually found. As will be illustrated, a ’winning’ proposal

may emerge before the algorithm reaches the complete ranking of all the alternatives.

The rest of the paper is organized as follows. In §2 we present an algorithm to

aggregate the partial matrices containing the pairwise evaluations of the reviewers

into a consensus ranking and illustrate the implementation of the algorithm through

a numerical example. In §3, we report on a large set of numerical examples used to

evaluate the procedure proposed in the previous section. Section 4 concludes the paper.
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2 Ranking Procedures

We start by formalizing some of the concepts that were already discussed in §1.

A complete ranking of a set of N proposals P = {p1, p2, . . . pN} is a permutation

R = (pj1 , pj2 , . . . pjN
) of P . A sub-ranking of R is an ordered set of some consecutive

proposals in R with the same order as in R. A suffix (prefix ) of a ranking R is a

sub-ranking of R that contains the last (first) proposal of R or an empty ranking. A

partial ranking of the set P is an ordered subset of P .

Our objective is to develop a method to derive a complete ranking based on partial

rankings provided by K reviewers. As described earlier, each reviewer will be assigned

a subset of the N proposals to evaluate, and is expected to provide a partial ranking

corresponding to this subset. For purposes herein, we assume that the preferences for

reviewer k are given by a binary pairwise comparison structure through the ranking

matrix Ak = (ak
pq), where

ak
pq =





1 if proposal p is preferred to q

−1 if proposal q is preferred to p

0 if p and q are not compared.

Since it is senseless to compare any proposal p to itself, we set ak
pp = 0 for all p and k.

We assume here that each reviewer expresses a clear preference of one proposal over

another when comparing two proposals. That is, we are assuming herein that tying

two proposals that are being evaluated is not a valid option for the reviewer.

Kemeny and Snell (1962) prove that in the presence of a natural set of axioms,

the unique distance function on the space of rankings is the absolute value functional.

Specifically, the distance d between any two ranking matrices A = (apq) and B = (bpq)

can be given by

d(A,B) =
1

2

N∑
p=1

N∑
q=1

|apq − bpq|.

Definition 2.1 Given a collection of partial rankings {A1, A2, . . . , AK} the consen-
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sus value of a ranking B (in matrix representation) is given by

M(B) =
K∑

k=1

d(Ak, B) =
1

2

K∑

k=1

N∑
p=1

N∑
q=1

|ak
pq − bpq|. (1)

In the sequel, we simplify notation by using the expression M(R) where the argument

R is a ranking (in vector representation) and not the matrix it induces.

Definition 2.2 A ranking R∗ is an optimal consensus ranking if it minimizes the

consensus value M(R) over all possible rankings R.

The pairwise comparison consensus ranking problem has, to the best of the authors’

knowledge, never been viewed previously from a strictly mathematical programming

perspective. The principal difficulty in deriving a mathematical programming structure

has to do with the requirement that the elements bpq in the corresponding ranking

matrix B satisfy requisite transitivity conditions.

One can express the problem as an integer programming formulation as follows.

Define a set of binary variables xpq for all p 6= q where xpq = 1 if proposal p is preferred

to proposal q and is 0 otherwise. Also, for each pair of proposals {p, q}, let the summary

statistics rpq be the number of reviewers who preferred q to p. Hence, rpq represents

the number of violations that will occur if p is ranked ahead of q in the final ranking.

Now, solve the binary integer programming problem.

max
∑

{p,q}∈P 2:p6=q

rpqxpq (2)

s.t.

xpq + xqs ≤ 1 + xps ∀{p, q, s} ∈ P 3 : p 6= q, p 6= s, q 6= s

xpq + xqp = 1 ∀{p, q} ∈ P 2

xpq ∈ {0, 1}
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It is important to point out that while one can theoretically derive a consensus

ranking by solving the above problem, size becomes a major issue. Specifically, the

number of constraints is given by N(N − 1)(N − 2) + 0.5N(N − 1), which for the

case of, say, 60 proposals yields approximately 207, 090 constraints. For this reason we

propose to solve this problem using a branch and bound algorithm. Again, we point

out that a number of procedures for the various ranking representations are discussed

in Cook and Kress (1991). However, no formal methodologies with accompanying

computational tests have been presented for the Kemeny and Snell (1962) consensus

method.

In order to initiate a branch and bound algorithm we define uk as the number of

proposals which reviewer k evaluates. We note that the values of rpq and uk are all the

information needed to calculate the consensuses value M(R) for any ranking R.

M(R) =
∑

{p,q}∈P :pÂRq

rpq +
1

2

K∑

k=1

(
N − uk

2

)
. (3)

Where p ÂR q denotes the fact that p precedes q in the ranking R. The first summa-

tion in (3) counts the number of cases where a reviewer prefers p over q but q is ranked

in a higher position in the ranking R. Each such case contributes 1 to M(R). The

second summation counts the cases where a reviewer expresses no preference between

p and q (since he did not review both of these proposals). Each such case contributes

1
2

to the consensus value. We note that the second summation is uniquely defined by

the values of N and u1, . . . , uk which remain constant for all rankings. Therefore, a

ranking that minimizes

M(R) =
∑

{p,q}∈P :pÂRq

rpq. (4)

also minimizesM(R). Hence, from here on we shall consider the minimization of M(R)

instead of M(R).

Proposition 2.1 (Separability property) Consider an optimal consensus ranking

R∗ of a set of proposals P . Let R1, . . . , Rm be a partition of R∗ into m consecutive
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sub-rankings which divide P into P1, . . . , Pm. Then R1, . . . , Rm are optimal consensus

rankings of P1, . . . , Pm with respect to the same reviewers’ preferences.

Proof. Consider the value of the ranking R∗,

M(R∗) =
∑

{p,q}∈P :pÂRq

rpq =
m−1∑
i=1

m∑
j=i+1

∑
p∈Pi,q∈Pj

rpq +
m∑

i=1

∑

{p,q}∈Pi:pÂRq

rpq . (5)

Now, assume by contradiction that for some i there exists an R′
i (a ranking of the

proposals of Pi) such that M(R′
i) < M(Ri). Replacing Ri by R′

i affects only the ith

term in the second summation in (5) and so the optimality of R∗ is contradicted. ¥

Definition 2.3 [Eligible Prefix (EP)]: A prefix R = (q1, ..., qs) is said to be eligible if

the following conditions hold

1.
∑

q∈P\R rqs,q ≤
∑

q∈P\R rq,qs.

2.
∑s−1

i=a rqs,qi
≥ ∑s−1

i=a rqi,qs for all a = 1, ..., s− 1.

3.
∑s−1

i=a rqi,qa ≥
∑s−1

i=a rqa,qi
for all a = 1, ..., s− 1.

4.
∑s−1

i=a rqs,qi
>

∑s−1
i=a rqi,qs for all a = 1, ..., s− 1 such that qa > qs.

Proposition 2.2 Any prefix of an optimal ranking admits conditions 1–3 of Definition

2.3

Proof. Consider a ranking R = (q1, ..., qs, ..., qn). If condition 1 is violated for the prefix

(q1, ..., qs) then the ranking (q1, ..., qs−1, qs+1, ..., qn, qs) is better than R. To see this,

note that by moving qs to the end, the consensus measure is increased by
∑

q∈P\R rq,qs

because of the reviewers that prefer qs over the proposals {qs+1, . . . , qn} but it decreases

by
∑

q∈P\R rqs,q because of the reviewers that prefer these proposals over qs.

For similar considerations, if condition 2 is violated then the ranking (q1, ..., qa−1,-

qs, qa, ..., qs−1, qs+1, ..., qn) is better than R. If the third condition is violated then the

ranking (q1, ..., qa−1, qa+1, ..., qs−1, qa, qs, ..., qn) is better. ¥
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Proposition 2.3 An optimal ranking that admits condition 4 for all its prefixes exists.

Proof. Consider an optimal ranking R1 = (q1, ..., qn) in which the prefix (q1, ..., qs) is

the shortest sub-ranking that demonstrates violation of condition 4 for some a′ < s

and let a be the minimal such index with respect to s. Note that since R is an optimal

ranking then condition 2 holds and so the inequality of condition 4 is violated with

equality. That is,
∑s−1

i=a rqs,qi
=

∑s−1
i=a rqi,qs . Now, by moving qs to the location before

qa we create a new optimal ranking R2 = (q1, ..., qa−1, qs, qa, ..., qn). If the ranking R2

still violates condition 4 we can apply the same procedure again and so on. Since

the number of possible ranking (and in particular optimal ranking) is finite there are

only two possibilities to consider. Either this procedure is ended in Rk that admits

condition 4 or this is a cyclic procedure and so for some k we have Rk = R1. Assume

by contradiction that the procedure may be cyclic. Let b be the “highest“ location in

the ranking that is changed during the cycle R1, ..., Rk. That is any proposal that is

ranked above qb in R1 preserves it location throughout the cycle. Let us review the

sequence of proposals that are ranked as highest throughout the cycle. Note that any

such proposal must admit lower index than it predecessor in the bth location. Other-

wise, it can not violate condition 4. Hence the procedure can not be cyclic and we are

done. ¥

In the algorithm below we start with an empty partial ranking R. For each proposal

p which has not yet been ranked and is an eligible immediate successor of R, we

construct a lower bound. If this lower bound is lower than the value of the best known

solution, we append proposal p to the partial ranking and store this ranking as a new

node in our branch and bound tree. Next, we run a probing heuristic, described below,

to extend the obtained prefix into a complete ranking in order to construct an upper

bound. If this upper bound is lower than the value of the currently known best solution,

we take it as a new incumbent best known solution.
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A lower bound on all the rankings with prefix R is given by,

M(R) =
∑

{p,q}⊆P1:pÂRq

rpq +
∑

p∈P1,q∈P2

rpq +
∑

{p,q}⊆P2

min{rpq, rqp} (6)

where P1 is the set of proposals ranked by R and P2 is the complementary set of the

other proposals. We also note that if R′ is a ranking created by appending a single

proposal p to a ranking R (at the bottom) then

M(R′) = M(R) +
∑
q∈P2

{rpq −min{rpq, rqp}} . (7)

Thus, updating the lower bound after extending a given partial ranking is easier than

calculating it from scratch.

An upper bound can be calculated by extending the partial ranking at each node

using some fast heuristic method. Below we describe how a majority rule is iteratively

applied to carry out this task.

A Probing Heuristic

Input: a set of proposals P , with reviewers preferences summery statistics {rpq}.
Output: A complete ranking with R as prefix and the resultant consensus measure.

Initialization Let P be the set of proposals not in R.

Iteration While P 6= ∅, find a proposal p ∈ P with minimum ratio
∑

q∈P1 rpq∑
q∈P rpq+

∑
q∈P rqp

.

Add p to R as the last proposal, remove it from P and repeat.

Output Return the ranking R.

We note that this procedure can be replaced by any sound heuristic including

neighborhood search heuristics. However since the procedure is to be employed in any

node inserted to our branching tree it should be a quick one.

We are now ready to present the main algorithm to generate an optimal consensus

ranking.
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Main Algorithm - Optimal Consensus Ranking

Input: Set of proposals P and summary statistics of reviewer decisions {rpq} for all

{p, q} ⊆ P .

Step 0 (Initialization): Find dominating and dominated partial rankings with re-

spect to the set of all proposals. Set these proposals as top and bottom propos-

als, T and B, respectively and remove them from P . Let R0 be the initial empty

ranking. Use (6) to calculate its lower bound M(R0) and store it as the root node

of the branch and bound tree. Define this node as an active one. Use the probing

heuristic to obtain an initial best known ranking and store its consensus measure

as upper bound Y . If the lower bound of the root node equals this upper bound

go to Step 3.

Step 1 (Selecting the node to branch from): Choose from the set of active nodes

of the branch and bound tree the one with the lowest lower bound. In case of

ties, select the node of the longest partial ranking. Denote the ranking of the

selected node as Rc. Deactivate the selected node. If its lower bound M(Rc) is

lower than the current best known solution go to Step 3.

Step 2: For all eligible immediate successors of Rc, p ∈ S(Rc):

Step 2a(Branching): Construct a candidate partial ranking Rn with Rc fol-

lowed by p.

Step 2b (Bounding): Use (7) to calculate a lower bound M(Rn). If this lower

bound is not lower than the currently best known solution go to Step 3.

Step2c (Create new node): Add Rn as an active node to the tree and store

M(Rn) with this node.

Step2d (Probing): Use the probing heuristic to extend this partial ranking

into a complete one Re
n. Use (7) [or (4)] to calculate the consensus measure

M(Re
n). If this measure is lower than the value of the currently best known
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solution, store it as the new incumbent best known solution and deactivate

all nodes whose lower bounds are greater than the new upper bound.

Step 3 (Termination) : If there are still active nodes, return to Step 1. Otherwise,

stop and return the incumbent ranking preceded by T and followed by B.

It is important to note that one may encounter alternate optima when applying

the algorithm provided herein. In such instances, it may make sense to incorporate a

secondary objective function that would select from the alternative optimal solutions,

one which is “the most balanced” in terms of distributing the violations as uniformly

as possible across the reviewers. In this way, the result would be seen by reviewers as

being a fair representation of their opinions. Such a mechanism might be a meaningful

way of resolving ties in optimal solutions to the problem. However, implementing such

a mechanism requires a major algorithmic undertaking. Hence, in the current paper we

have not attempted to address this issue. This may be the subject of future research.

2.1 A Numerical Example

Consider an example with N = 6 proposals, and K = 5 reviewers:

Reviewer Proposals Ranking

1 {1, 2, 3, 5} 1 Â 3 Â 2 Â 5

2 {1, 2, 4, 6} 2 Â 1 Â 4 Â 6

3 {3, 4, 5, 6} 4 Â 3 Â 5 Â 6

4 {1, 4, 5, 6} 6 Â 1 Â 4 Â 5

5 {1, 2, 5, 6} 6 Â 2 Â 3 Â 1
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The table below summarizes the data for the proposal pairs:

rpq =




0 2 1 0 0 2

1 0 1 0 0 1

1 1 0 1 0 1

2 1 0 0 0 1

2 1 2 2 0 1

1 1 1 2 1 0




Algorithm results

Initialization: We start by identifying dominating and dominated partial rankings.

Note that for all p ∈ P = {1, . . . , 6} we have r2p ≤ rp2 and so we can set T = (2)

and remove {2} from P . Next, we identify proposal 5 as a dominated one and so

we set B = (5) and P = {1, 3, 4, 6}. With the new P , proposal 3 is also dominated

and so we add it to B (B = (3, 5)) and remove it from P (P = {1, 4, 6}). At this

point, no dominating or dominated proposals are left. For example, proposal 1 is not

a dominating proposal with respect to P since r16 > r61 and it is not a dominated one

since r14 < r41. The remaining reviewers’ evaluation matrix is now given by:

rpq =

(1) (4) (6)

(1) 0 0 2

(4) 2 0 1

(6) 1 2 0

Next, we calculate a lower bound for all the rankings (of the remaining proposals)

using (6) and obtain M(empty ranking) = 2. To obtain an upper bound, we use the

probing heuristic. We first calculate majority indices M1 = 2
2+3

= 0.4, M4 = 2
2+3

= 0.4,

M6 = 3
3+3

= 0.5. We obtain the ranking 1 Â 4 Â 6 and store it as incumbent solution.

Using (4) we calculate the consensus measure of this ranking M(1 Â 4 Â 6) = 2+1 = 3.

This is the upper bound for now.
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Branching: We process the root node with the empty ranking. Since all the proposals

in P = {1, 4, 6} are eligible successors of this ranking, we check them all.

• Adding proposal 1: We are left with P = {4, 6} where proposal 4 dominates

proposal 6 and so we obtain the ranking 1 Â 4 Â 6 with M(1 Â 4 Â 6) = 2+1 = 3.

This is a complete ranking which is not better than our current optimal solution

so there is no need to add it to the branch and bound tree.

• Adding proposal 4: We are left with P = {1, 6} where proposal 6 dominates

proposal 1 and so we obtain the ranking 4 Â 6 Â 1 with M(4 Â 6 Â 1) = 4. This

is a complete ranking which is not better than our current optimal solution so

there is no need to add it to the branch and bound tree.

• Adding proposal 6: We are left with P = {1, 4} where proposal 4 dominates

proposal 1 and so we obtain the ranking 6 Â 4 Â 1 with M(6 Â 4 Â 1) = 5.

This is a complete ranking which is again not better than our current optimal

solution.

We are now left with no active nodes in our branch and bound tree and so we declare

the current best known solution as the optimal ranking of P = {1, 4, 6}. Finally, we

“merge” the dominating and dominated rankings, obtained at the initialization step,

to this ranking to obtain the optimal solution 2 Â 1 Â 4 Â 6 Â 3 Â 5.

3 Numerical Experiments

Here we demonstrate the applicability of the ranking algorithm presented in the pre-

vious section. Our testing platform was a Pentium 4, 2Ghz with 512Mb RAM that

run under Windows XP. We coded the algorithm in C++ with the aid of LEDA (see

Mehlhorn and Näher, 1999) and compiled it with Microsoft Visual C++ 6.0. We con-

structed five classes, each with 25 test problems, with different numbers of proposals

and pairwise reviewers as shown in Table 1.
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Class # of proposals # of pairwise comparisons

A 20 253

B 20 316

C 30 380

D 40 360

E 60 3150

Table 1: Five classes of test problems

For each of the 125 problems described in Table 1 we created 3 different sets of

reviewer decision matrices using the following procedure. A so called “objective grade”

was drawn from a normal distribution N(75, 10) for each proposal. For all the proposals

that are actually checked by each reviewer (according to the heuristic solution obtained

at the previous subsection) we generated a reviewer grade which is the sum of the

objective grade and a normally distributed noise N(0, σ2) with σ = 1, 4 or 9. The

ranking of each reviewer (given as input to our algorithm) was constructed based

on these grades. The C++ code and our test problems with detailed solutions can

be downloaded from “http://iew3.technion.ac.il/Home/Users/golany/Download”. In

Table 2 we present the average and worst case running time (in seconds) for each of

the five classes and three levels of noise. In addition we present the percentage of the

problems that could be solved within the time limit of 1800 seconds. Recall that for

each class we have 25 instances, so we solved 25× 4× 3 = 300 problems.

The table demonstrates the fact that we are able to obtain an optimal ranking for

most problem instances with up to 40 proposals.

It is apparent from the table that the level of noise adversely affects the processing

time. However, any process of ranking is based on the belief that the reviewers are

capable of delivering nearly objective rankings. Moreover, we note that a consistent bias

of a reviewer (e.g., a tendency to assess all proposals as better than what they “really”

are) does not affect our procedure. This is because our algorithm uses only relative

ranking as input. This is a fundamental advantage of our procedure as compared to

some traditional procedures where the reviewers are asked to quote an absolute grade
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σ = 1 σ = 4 σ = 9

Avg. (max) % solved to Avg. (max) % solved to Avg. (max) % solved to

Class running time optimality running time optimality running time optimality

A < 0.01 (< 0.01) 100 < 0.01 (0.02) 100 0.02 (0.06) 100

B < 0.01 (< 0.01) 100 < 0.01 (0.02) 100 0.02 (0.9) 100

C < 0.01 (0.02) 100 0.27 (1.52) 100 6.48 (29.33) 100

D 0.01 (0.11) 100 4.68 (36) 100 332 (1800) 96

E 0.08 (0.20) 100 1714 (3600) 72 - -

Table 2: Running time of the ranking algorithm and percentage of the problems solved

within 1800 seconds (3600 seconds for class E).

for each proposal and the ranking is based on the average grade of the proposals.

The fact that classes A and B take a similar amount of time to process (both with

20 proposals and with 50 and 60 reviewers, respectively) implies that our algorithm is

insensitive to the number of reviewers. This is not surprising since the heuristic works

on a summary statistics of the reviewers responses’ rather than on the actual responses.

In fact, we expect that large number of reviewers will reduce the inconsistency of the

rankings obtained by majority rule and hence will make the problem easier to solve.

In order to evaluate the contribution of our probing heuristic to the performance of

the algorithm, a version of the algorithm that uses a naive upper bound was created.

Here, the prefix in each node is arbitrarily extended by the remaining proposals instead

of using the majority rule. We present the results of this experiment in the table below.

By comparing Table 2 with Table 3, one can observe that the probing heuristic does

reduce the running time. The effect is particulary dramatic for the larger instances

with low or medium noise levels where the probing heuristic is likely to catch optimal

solutions at high levels of the branching tree.

We compared our method with the performance of the commercial Integer Pro-

gramming Solver MOSEK using the formulation we presented above. It turns out that

MOSEK was capable of solving all of our test problems but with significantly larger
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σ = 1 σ = 4 σ = 9

Avg. (max) % solved to Avg. (max) % solved to Avg. (max) % solved to

Class running time optimality running time optimality running time optimality

A < 0.01 (0.02) 100 0.01 (0.08) 100 0.03 (0.11) 100

B < 0.01 (0.02) 100 0.01 (0.09) 100 0.03 (0.11) 100

C 0.07 (1.08) 100 1.78 (12.95) 100 8.94 (28.19) 100

D 1.16 (23) 100 26 (573) 100 444 (1800) 88

Table 3: Running time of the ranking algorithm with naive probing heuristic and

percentage of the problems solved within 1800 seconds.

running times for the low noise instances. For example the 60 proposals problems of

class E with low noise were solved in 678 seconds on average and the moderate noise

instances (σ = 4) were solved in over 1000 seconds on average.

4 Conclusions

The process of reviewing, evaluating and finally ranking research or research-related

manuscripts (e.g., submissions to academic competitions, research proposals) is an

integral part of academia. This process is based on peer review by researchers who

usually perform this task on a voluntary basis. In many cases the submissions are

numerous and diverse in their subject topics and therefore require a large and diversified

group of reviewers or judges. Given the reviewers’ partial evaluations in pairwise-

comparison format, the problem addressed in this paper is how to produce a fair and

robust aggregate ranking of the submissions.

The pairwise-comparison representation of preferences is common in a wide range of

practical applications, where opinions from respondents (voters, reviewers, consumers)

can be obtained only in an ordinal format. In the current application, where each

reviewer sees only a subset of proposals, hence only a partial ordering can be provided

by each, this preference representation format is ideal. The theoretical issue of deriv-

ing a consensus of reviewers’ opinions, as expressed by the supplied partial pairwise
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comparisons, has been studied extensively in the literature, dating back to the original

work of Kemeny and Snell (1962). Despite the wide applicability of the consensus idea,

and the accompanying criterion of minimizing the number of violations (in regard to

reviewers’ preferences),however, little effort has been placed on the actual development

of effective algorithms for finding such a consensus. The principal difficulty lies in the

requirement that the matrix of final preferences must be transitive.

The current paper develops the requisite theoretical basis for deriving a minimum

violations consensus ranking. We present a branch and bound algorithm for computing

a consensus among a set voter responses, and demonstrate its solution capability for

a range of problem sizes, in terms of the numbers of reviewers and proposals. This

provides the user with a clear indication of the types of real world problems that can be

solved using this methodology. The algorithm and accompanying software described

herein are, thus, important tools for solving large scale consensus ranking applications.

The methodology developed herein applies to complete or strong ranking structures

only. An important area for further research is that of deriving a consensus ranking

allowing for tied preferences. This problem of weak rankings will be the subject of

future investigation.

Acknowledgment: The authors wish to thank an anonymous referee who suggested

a variation of integer programming formulation (2).
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