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Abstract

When the processing times of jobs are controllable, selected processing times affect both the manufacturing cost and the scheduling
performance.A well-known example for such a case that this paper specifically deals with is the turning operation on a CNC machine.
Manufacturing cost of a turning operation is a nonlinear convex function of its processing time. We also know that scheduling
decisions are quite sensitive to the processing times. Therefore, this paper considers minimizing total manufacturing cost (F1) and
total completion time (F2) objectives simultaneously on identical parallel CNC turning machines. Since decreasing processing
time of a job increases its manufacturing cost, we cannot minimize both objectives at the same time, so the problem is to generate
non-dominated solutions. We consider the problem of minimizing F1 subject to a given F2 level and give an effective formulation
for the problem. For this problem, we prove some optimality properties which facilitated designing an efficient heuristic algorithm
to generate approximate non-dominated solutions. Computational results show that proposed algorithm performs almost equal with
the GAMS/MINOS commercial solver although it spends much less computation time.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There are many industry applications where the processing times are controllable. Controllable processing time for a
manufacturing operation imply a trade-off between the processing time and the manufacturing cost. Therefore, in order
to make appropriate processing time and scheduling decisions, we need to investigate the existing time/cost trade-off
between manufacturing cost objective and the scheduling objective under consideration. A well-known example for
controllable processing times is a CNC turning machine, which we specifically deal with in this study. Processing time
of a turning operation on a CNC machine can be controlled by setting the machining parameters: cutting speed and
feed rate. We can decrease its processing time by increasing the cutting speed and/or feed rate, which increases the
manufacturing cost of the operation. Most of the studies in the scheduling literature assume fixed processing times, i.e.
ignore the manufacturing cost performance, and focus on scheduling performance measures. Differently, we investigate
how to make scheduling and process planning decisions simultaneously while considering a scheduling objective and
manufacturing cost objective at the same time. In this study, we consider identical parallel CNC turning machines on
which we have two objectives to minimize: total completion time and total manufacturing cost.
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There is an extensive literature on process planning decisions for a turning operation. Different objectives were
considered such as minimizing processing time and minimizing manufacturing cost. Most of the studies consider the
manufacturing cost as a sum of tooling cost and operating cost. Tooling cost increases as the processing time is decreased
by increasing the cutting speed and/or feed rate. Operating cost of a job increases by the processing time since it is
the cost of running the machine for the given job. Kayan and Akturk [1] show that manufacturing cost of a turning
operation can be expressed as a nonlinear convex function of its processing time. They also provide a mechanism to
determine the upper and lower bound for the processing time of a turning operation. When manufacturing cost and
scheduling cost objectives are considered simultaneously, process planning and scheduling decisions affect each other.
Combining the process planning and scheduling decisions for CNC turning machines is an important contribution of
this paper.

In the scheduling literature, controllable processing times area was initiated by Vickson [2] where he considered
minimizing sum of total completion time and total processing cost on a single machine. He formulated the problem
as an assignment problem and showed that it can be solved in polynomial time. Most of the existing studies assumed
linear processing or compression cost functions. A nonlinear relation between processing time and used resource is
considered by Shabtay and Kaspi [3]. They deal with the problem of minimizing total weighted completion time on
a single machine under a maximal resource constraint where processing time of each job is a nonlinear function of
allocated resource to it. A review on controllable processing times in multi-objective scheduling is included in the
recent review by Hoogeveen [4].

In recent years, many researchers have been dealing with multi-objective scheduling on parallel machines. Some of
those studies consider fixed processing times. Gupta and Ruiz-Torres [5] considered the objectives of minimizing total
flow time and minimizing total number of tardy jobs simultaneously and proposed heuristic algorithms to generate
efficient solutions. Gupta and Ho [6] provided solution methods for the problem of minimizing makespan subject to
minimum flow time for two parallel machines. Cao et al. [7] considered the machine selection and scheduling decisions
together in order to minimize the sum of machine cost and job tardiness. Alagoz and Azizoglu [8] studied a problem
with the objectives of minimizing total completion time and minimizing number of disrupted jobs in a rescheduling
environment. Controllable processing times and time/cost trade-offs have also received increasing attention in the
recent parallel machine scheduling literature. The first study dealing with controllable processing times on parallel
machines is by Alidaee and Ahmadian [9] who solved the problem of minimizing sum of total completion time and
total processing cost by extending the Vickson’s [2] approach. They considered linear processing cost functions and
their approach was extended to nonlinear convex cost function case by Cheng et al. [10]. Jansen and Mastrolilli [11]
provided polynomial time approximation schemes for the problem of minimizing two objectives on identical parallel
machines: total processing cost and makespan.

In this study, we have two objectives to minimize: total completion time and total manufacturing cost. Since the
manufacturing cost of a job increases as the processing time is decreased, we cannot minimize both objectives at the
same time. Therefore, our focus will be on finding efficient solutions for this bicriteria problem. Then, we deal with
the problem of minimizing total manufacturing cost subject to a total completion time constraint. This problem is
more difficult than minimizing the sum of two objective functions which was usually done in the literature. For this
problem, we propose an effective formulation which can effectively be solved by commercial nonlinear programming
solvers. Using this formulation, we also give useful properties for the problem which allowed us to develop an algorithm
that can generate a large set of approximate efficient solutions in a short computation time. Although we specifically
discuss the CNC turning machine case, our results are applicable to the cases where nonlinear convex cost functions
are considered. Furthermore, our results are also valid for the problems considering linear cost functions which is not
also considered in the literature to the best of our knowledge.

In a recent study, Shabtay and Kaspi [12] considered minimizing the total completion time subject to a maximal
resource constraint on parallel machines. They assume a nonlinear convex resource consumption function rj = wjp

k
j

where pj is the processing time of job j, rj is the amount of resource allocated to job j, wj is a job specific constant and
k is a negative exponent which is same for all jobs. This resource consumption function corresponds to a special case of
our tooling cost term in the manufacturing cost function such that all jobs require the same cutting tool type. However,
usually this is not the case in CNC machining, each job may require different cutting tool type and each job could have a
different nonlinear manufacturing cost function due to different operational and surface quality requirements. Another
difference in our case is that we have an upper bound on the processing time of each job at which the manufacturing
cost is minimum. This is because we have an operating cost term which balances the tooling cost at some point. This is
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a realistic approach since running a machine longer requires additional cost of energy and labor. Moreover, we have a
lower bound on the processing time of each job due to surface quality and CNC machine power requirements. All these
complicating issues make our problem more difficult and the analysis of Shabtay and Kaspi [12] cannot be extended
to our case.

In the next section, we give the problem definition and provide mathematical formulation for the problem. In
Section 3, we prove some useful properties for the problem. In Section 4, we propose an algorithm which generates
approximate efficient solutions for the problem. In Section 5, we discuss our findings on a numerical example, and
report the computational results in Section 6. Finally, we give concluding remarks in Section 7.

2. Problem definition

The notation used throughout the paper is as follows:

pi processing time of job i
pl

i processing time lower bound for job i
fi(pi) manufacturing cost function of processing time for job i
pu

i processing time level that gives the minimum manufacturing cost (fi(pi)) for job i
Co unit operating cost for CNC turning machines ($/min)
mi , ei tooling cost multiplier and exponent for job i

We have N jobs to be machined on M identical parallel CNC turning machines. Each job corresponds to a different
turning operation to be performed on one of the machines so that each job has different cutting properties such as
diameter, length, allowable surface roughness and cutting tool. Therefore, each job has a different fi(pi), and different
pl

i and pu
i . Since the machines are identical, fi(pi), pl

i and pu
i for job i are same for all machines. Each CNC machine

can perform one job at a time. The problem is to find the best schedule and processing times for each job in order to
minimize total manufacturing cost and total completion time.

The problem of selecting optimal machining parameters for a turning operation has been extensively studied in the
literature. The objective function to minimize is the sum of tooling and operating costs subject to tool life, surface
roughness and machine power constraints. Kayan and Akturk [1] proved that the surface roughness constraint is always
tight at the optimal solution and this allowed expressing the manufacturing cost function of job i as a function of pi as
follows:

fi(pi) = Copi + mip
ei

i .

The first term is the operating cost which is the cost of running the machine for job i and it is an increasing linear
function of pi . The second term is the tooling cost which is the cost of tool usage for job i and it is a nonlinear decreasing
function of pi . Since mi > 0 and ei < 0 always hold, fi(pi) is a nonlinear convex function. However, processing time
of job i is subject to a lower bound pl

i due to the technical constraints stated above. The manufacturing cost of a turning
operation is minimum at a processing time level pu

i . pu
i is either equal to the processing time level that minimizes

fi(pi) or equal to pl
i whichever is bigger. For a detailed discussion on how fi(pi) is formed and how pl

i and pu
i are

determined, we refer to Kayan and Akturk [1].
If we consider the minimization of total completion time as a single objective on identical parallel machines with

fixed processing times we can solve the problem by using the following properties:

Property 1. The shortest processing time first (SPT) rule is optimal.

The SPT rule as given in Pinedo [13] is to schedule the smallest job on machine 1 at time zero, schedule the second
smallest job on machine 2, and so on; the (M + 1)th smallest job follows the smallest job on machine 1, (M + 2)th
smallest job follows the second smallest job on machine 2, and so on. The second property, due to Conway et al. [14],
is as follows.

Property 2. One can interchange jobs in equivalent positions in sequence on different machines without having any
effect on the total completion time.
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Two positions on different machines are equivalent if the number of jobs succeeding these positions on the same
machines are equal. Property 2 implies the existence of many alternative optimal schedules for the problem.

Using Properties 1 and 2, we can determine how many jobs will be scheduled on each machine in the optimal
solution. Then, we can find number of positions on each machine and determine which positions on different machines
will be equivalent so that we can form sets of equivalent positions. Using this observation for the total completion time
problem with fixed processing times, we can formulate our bicriteria problem with controllable processing times as an
assignment problem of jobs to sets of equivalent positions.

In an optimal solution for the total completion time problem with fixed processing times, l machines will have
(�N/M� + 1) jobs where l ≡ (N mod M) with minimal l�0. The rest of the machines will have �N/M� jobs. We
define S(j) as the number of positions in set j. We define N(j) as the number of jobs succeeding each job in set j on the
same machine plus the job itself. We assume that position 1 is the first position on machine 1, position 2 is the first on
machine 2 and M is the first on machine M, position M + 1 is the second position on machine 1, M + 2 is the second
on machine 2 and so on. If l > 0 then there will be (�N/M� + 1) sets and set 1 will include position 1 to position l
so that S(1) = l and N(1) = �N/M�. Set 2 will include position (l + 1) to position (l + M) so that S(2) = M and
N(2) = �N/M� − 1 and, so on. If l = 0, then each machine will have equal number of jobs and there will be N/M

sets. Each set j will include M positions from position ((j − 1)M + 1) to jM. Then, we can determine N(j) for each
set j as follows:

N(j) =
⌈

N

M

⌉
− j + 1.

Then, a mathematical formulation for the bicriteria problem with controllable processing times is as follows, where
Xij is the binary variable which controls if job i is placed in one of the positions in set j.

min F1

N∑
i=1

fi(pi) =
N∑

i=1

Copi + mip
ei

i

min F2

N∑
i=1

∑
j

N(j)Xijpi

s.t.
∑
j

Xij = 1 i = 1, . . . , N , (1)

N∑
i=1

Xij = S(j) ∀j , (2)

pl
i �pi �pu

i i = 1, . . . , N , (3)

Xij ∈ {0, 1} ∀i, j . (4)

In the mixed integer nonlinear programming (MINLP) model above, the first objective function F1 is the total
manufacturing cost. F1 equals the sum of N nonlinear convex manufacturing cost functions, so it is a convex function.
The second objective function F2 is the total completion time. Total completion time is a nonlinear function since it is
a sum of nonlinear terms. Constraint set (1) forces each job to be assigned to a position set. Constraint set (2) fixes the
number of jobs to be assigned to each position set. In each set there are certain number of positions and the number of
jobs assigned to a set must be equal to the number of positions in the set. Constraint set (3) sets the processing time
lower and upper bounds for each job. In the next section, we define a single objective problem and give optimality
properties on it.

3. Optimality properties

As discussed earlier, we cannot minimize both objectives at the same time. Therefore, we need to find efficient
solutions for the problem. A solution Z to a bicriteria problem is efficient if there exists no other solution which is
better than Z in one of the criteria and not worse in the other. Since we have the SPT rule as an optimal strategy for
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the total completion time problem, we can determine the efficient solution Z1 with the minimum total completion time
K l and the maximum manufacturing cost by setting pi = pl

i for all i and by applying the SPT rule. Similarly, we can
find another efficient solution Z2 with the minimum manufacturing cost by setting pi = pu

i for all i and by applying
the SPT rule. We denote the total completion time at Z2 as Ku. Two solutions, Z1 and Z2, are the points that we can
find by just using the SPT rule on processing time lower and upper bounds, respectively. However, a decision maker
may find the manufacturing cost for Z1 too high to pay or may find the total completion time for Z2 too high. In order
to find the efficient solutions other than Z1 and Z2, we can consider F1 as a single objective to minimize subject to an
F2 constraint and formulate a single objective problem which we call SOP as follows:

SOP min F1

N∑
i=1

fi(pi)

s.t.
N∑

i=1

∑
j

N(j)Xijpi �K,

and (1), (2), (3), (4).

(5)

Constraint (5) guarantees that total completion time (F2) of the schedule is less than or equal to a predefined value K.
An alternative way of modeling the SOP is formulating it as an assignment problem of jobs to individual positions as
commonly done in the literature. Such a formulation would not be using the result in Property 2. It would require more
variables and constraints in the model. We can solve the SOP model by using MINLP solvers. Then, we can generate a
set of n efficient solutions between Z1 and Z2 by using the following algorithm denoted as the solver based approach
(SBA).

SBA algorithm
Step 1. Find solutions Z1 and Z2, and calculate Ku and K l by using the SPT rule for pu and pl values, respectively.
Step 2. Set � = (Ku − K l)/(n + 1).
Step 3. For k = 1 to n, solve the SOP for K = K l + k�.

We found the following useful properties for the SOP formulation above. These properties improved the SBA method
and provided a clearer interpretation of the problem.

Lemma 1. When K �Ku, constraint (5) on F2 must be tight at the optimal solution.

Proof. When K > Ku, total manufacturing cost can be minimized by setting pi =pu
i for all i and constraint (5) can be

satisfied by applying the SPT rule. In such a case, constraint (5) is loose. When K �Ku, if constraint (5) is loose, then,
it is sure that we have at least one job i such that pi < pu

i and by increasing pi we can decrease fi so that we could
improve F1. Therefore, when K �Ku, a solution cannot be optimal if constraint (5) is loose. �

In our single objective problem, we model the total completion time as a resource constraint to be used to minimize
total manufacturing cost. Therefore, Lemma 1 states that when this resource is scarce (K �Ku), we must fully utilize
it. Lemma 1 also implies that an optimal solution for the SOP must have the minimum total completion time for the
optimal processing times. This implies an optimal solution must satisfy the rules in Properties 1 and 2. To further
explore the problem we next consider the relaxed SOP where Xij ’s are allowed to take any values in the interval [0,1].
The next property is an extension of Lemma 1 for locally optimal solutions to the relaxed SOP.

Corollary 1. For the relaxed SOP, when K �Ku constraint (5) on F2 must be tight at locally optimal solutions.

Next property is an important one which states that any local optimal solution to the relaxed problem has binary
Xij ’s. Non-integer local optimal solutions may exist only if there are multiple jobs having identical processing times in
the solution. However, such non-integer solutions are alternative solutions for existing integer local optimal solutions.

Lemma 2. When K �Ku, in a local optimal solution for the relaxed SOP, a job cannot be assigned to multiple position
sets, i.e. a local optimal solution must have integer Xij ’s.
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Proof. Consider two jobs i1 and i2 placed to positions in different sets j1 and j2, respectively. Suppose that pi1 < pi2

and N(j1) > N(j2). Consider a local optimal solution Z for the relaxed problem. The assignment variables for jobs i1
and i2 and positions j1 and j2 in Z are as follows:

Xi1j1 = �1 and Xi2j1 = �2,

Xi1j2 = �1 and Xi2j2 = �2 where �1, �2, �1 and �2 are positive.

Total completion time calculated for Z is as follows:

F2(Z) =
N∑

i=1

∑
j

N(j)Xijpi

= � + N(j1)[�1pi1 + �2pi2 ] + N(j2)[�1pi1 + �2pi2 ]
= � + [N(j1)�1 + N(j2)�1]pi1 + [N(j1)�2 + N(j2)�2]pi2 ,

where � is a constant value. Suppose that without changing the processing times, we change the assignment variables
to get a new solution Z′. Setting � = min(�1, �2), new values for the assignment variables are as follows:

Xi1j1 = �1 + �, Xi2j1 = �2 − �,

Xi1j2 = �1 − � and Xi2j2 = �2 + �.

By this arrangement, we reallocate these two jobs to position sets j1 and j2 such that we increase job i1’s ratio in
the preceding position set j1 without disturbing the assignment constraints.

Total completion time of the solution after this arrangement is

F2(Z
′) = � + [N(j1)(�1 + �) + N(j2)(�1 − �)]pi1 + [N(j1)(�2 − �) + N(j2)(�2 + �)]pi2 .

Then, F2(Z
′) − F2(Z) = �(N(j1) − N(j2))(pi1 − pi2) < 0, since N(j1) > N(j2) and pi1 < pi2 . Then, since K �Ku

we can improve total manufacturing cost by increasing processing times. This proves that there exists an improving
feasible direction for solution Z so that Z cannot be a local optimal solution. When we generalize this result for all jobs
and position sets, we conclude that a solution with non-integer Xij ’s cannot be a local optimal solution for the problem.
However, for the cases of pi1 = pi2 we may have alternative non-integer local optimal solutions. �

This result is an extremely important one since it shows that although our problem is a MINLP problem, we can
employ nonlinear programming (NLP) solvers to solve its relaxed form and achieve integer solutions. This is critical
since NLP solvers are computationally more efficient than MINLP solvers. If the objective function is convex, in
general, NLP solvers can only guarantee to find local optimal solutions. However, if the feasible region for the problem
is a convex set, a local optimal solution is globally optimal. We next check if the feasible region for the problem is a
convex set to see whether NLP solvers can guarantee to find the global optimum for the problem.

Lemma 3. The feasible region for the relaxed SOP is not a convex set.

Proof. Consider two jobs i1 and i2 in a schedule called A1. They are assigned at positions in sets k and k+1, respectively.
Suppose that N(k) = r + 1 and N(k + 1) = r and the processing times are pi1 = s1 and pi2 = s2, where s1 < s2.

Further, suppose that F2(A1) = Q + (r + 1)s1 + rs2 = K , where Q is a constant.
Consider another schedule A2 which is identical to A1 except that job i1 is assigned to the position set k + 1

and i2 is assigned to the position set k with processing times pi1 = q1 and pi2 = q2, where q2 < q1. Suppose that
F2(A2) = Q + (r + 1)q2 + rq1 = K .
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Next, define a point A which is a convex combination of A1 and A2 as follows:
A= �A1 + (1 − �)A2, where 0 < � < 1. At point A, pi1 = �s1 + (1 − �)q1 and pi2 = �s2 + (1 − �)q2. Also, Xi1k = �,

Xi1(k+1) = (1 − �), Xi2k = (1 − �) and Xi2(k+1) = �.

F2(A) = Q + [(r + 1)� + r(1 − �)]pi1 + [(r + 1)(1 − �) + r�]pi2

= Q + �2[(r + 1)s1 + rs2] + (1 − �)2[(r + 1)q2 + rq1]
+ �(1 − �)[(r + 1)q1 + rq2] + �(1 − �)[(r + 1)s2 + rs1] > K ,

since s1 < s2 and q2 < q1. This shows that feasible region for the relaxed problem is not a convex set. �

This lemma indicates that NLP solvers may not be able to find global optimum, so they only guarantee to achieve
local optimal solutions. Although the complexity of the problem is open, this lemma supports the difficulty of the
problem since Murty and Kabadi [15] states that, in general, computing a global minimum in a non-convex NLP is an
NP-hard problem.

We showed that NLP solvers guarantee to find integer local optimal solutions for the SOP. A way of solving
this problem to global optimum is to solve for processing times for all possible job-position allocations which is
computationally inefficient except for small instances. In order to find the global optimal solution for the single
objective problem by using MINLP solvers, we next present a linearized single objective problem LSOP model below.
In this model, constraint (5) is replaced with constraint set (6)–(10) in which the term Xijpi is replaced with the variable
Yij . The parameter B in the following model denotes a large positive number:

LSOP min F1

N∑
i=1

fi(pi)

s.t.
N∑

i=1

∑
j

N(j)Yij �K , (6)

Yij �pi + (Xij − 1)B ∀i, j , (7)

Yij �pi + (1 − Xij )B ∀i, j , (8)

Yij �BXij ∀i, j , (9)

Yij �0 ∀i, j , (10)

and (1), (2), (3), (4).

By replacing the terms Xijpi with the variable Yij in constraint (5) we obtain constraint (6) in the above model.
To assure the equivalence of the term Xijpi and the variable Yij we add constraint sets (7)–(10) so that if Xij = 0
then Yij = 0 and if Xij = 1 then Yij = pi . However, Lemma 2 is no longer valid for this linearized model since the
linearization is only possible for binary Xij ’s, so we cannot use NLP solvers to solve the LSOP, instead we can use a
MINLP solver to find the global optimal solution.

In this section, we introduced the SOP model and proposed the SBA method to generate a set of efficient solutions. We
showed that NLP solvers can also be employed in SBA method to obtain approximate efficient solutions.We also gave the
LSOP model which can be solved to global optimum by the MINLP solvers. In the next section, we propose a heuristic
method which generates approximate efficient solutions for the bicriteria problem. Proposed method achieves almost
equal solution quality compared to commercial NLP and MINLP solvers although it spends much less computation
time.

4. A heuristic method to generate approximate efficient solutions

In this section, we first state a very important optimality property for the single objective problem. Different from the
properties in Section 3, this optimality property states a relationship that must hold between positions and processing
times of the jobs in a local optimal solution. Based on this property we propose a heuristic algorithm which generates a
set of approximate efficient solutions. A solution may be viewed as approximately efficient if it is efficient with respect
to a large set of known solutions for a given problem. Since we are using a heuristic approach to find the minimum
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manufacturing cost value, F1, for a given total completion time value, we denote these solutions as approximate efficient
solutions. That means these solutions do not dominate each other but there can be another solution generated by an
exact algorithm that could dominate any one of them.

Lemma 4. Let i1, i2 be a pair of jobs in a local optimum and nik = ∑
j XikjN(j), k ∈ {1, 2}. Then the optimal

processing times pi1 , pi2 must satisfy the following conditions:

(i) If pi1 > pl
i1

and pi2 > pl
i2

then

1

ni1

�fi1(pi1)

�pi1

= 1

ni2

�fi2(pi2)

�pi2

.

(ii) If pi1 = pl
i1

and pi2 > pl
i2

then

1

ni1

�fi1(pi1)

�pi1

� 1

ni2

�fi2(pi2)

�pi2

.

Proof. Suppose that in a solution (1/ni1)(�fi1(pi1)/�pi1) < (1/ni2)(�fi2(pi2)/�pi2) for jobs i1 and i2. Then,

lim
�p→0

(
fi1(pi1 + �p) − fi1(pi1)

ni1�p
− fi2(pi2) − fi2(pi2 − (ni1/ni2)�p)

ni2(ni1/ni2)�p

)
< 0,

lim
�p→0

(
fi1(pi1 + �p) − fi1(pi1) − fi2(pi2) + fi2(pi2 − (ni1/ni2)�p)

ni1�p

)
< 0.

Then, ∃ �p > 0 s.t. fi1(pi1 +�p)+fi2(pi2 − (ni1/ni2)�p)−fi1(pi1)−fi2(pi2) < 0, which means the current solution
can be improved by increasing pi1 by �p and decreasing pi2 by (ni1/ni2)�p. This proves that a local optimal solution
must satisfy the conditions above. �

This lemma states that there is a unique solution for the processing times of jobs which is optimal for a given
job-position set allocation. When a job-position set allocation is given, we can find the processing times of the jobs by
employing a search algorithm and using Lemma 4. Lemma 4 also implies that we cannot move from a local optimal
solution to another one without changing the job-position set allocation since there is a unique local optimal solution
for a certain job-position set allocation. It implies that we can find the global optimal solution for the problem by trying
all possible job-position set allocations and solve each case for optimal processing times.

Using the information in Lemma 4 we propose an approximation algorithm, which we call as the most profitable
job first (MPJ) algorithm, to find a set of approximate efficient solutions other than Z1 and Z2. MPJ algorithm starts
with the efficient solution Z1 which has the minimum total completion time but the maximum manufacturing cost.
To generate a new approximate efficient solution, we want to select a job and increase its processing time. This will
decrease the total manufacturing cost but increase the total completion time. Selecting the job to be perturbed is a very
critical decision, and hence we propose a new measure ti as follows:

ti = �fi(pi)/�pi

N(j)
.

We can interpret ti as the estimated cost change per estimated unit total completion time change when processing time
of job i is increased by one unit. This makes sense since we want to find efficient solutions by achieving maximum cost
decrease per unit total completion time increase. As we know from Lemma 4, in an optimal solution ti values must be
equal for the jobs whose processing times are higher than their lower bounds. By selecting the job with the minimum
ti value, we want to satisfy or at least be very close to satisfying Lemma 4 at each step. In each iteration of MPJ, we
increase the processing time of a selected job by a predefined value � so that we can improve total manufacturing
cost while giving up from the total completion time. After increasing the processing time of the selected job, we check
whether the SPT rule, specified in Property 1, is satisfied for the new schedule or not. If not, the SPT rule is applied. At
the end of each iteration, we achieve a new solution with a better manufacturing cost but a higher total completion time
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than the previous solution. The proposed MPJ algorithm generates a set of approximate efficient solutions as outlined
in the following:

MPJ algorithm
Step 1. Find the non-dominated solutions Z1 and Z2.
Step 2. Start with the solution Z1, set F new

1 = F1(Z1) and F new
2 = F2(Z1). While F new

2 < Ku do the following:
Step 2.1. Select job i with the minimum ti . If there are more than one such jobs, select the one with the longest

processing time.
Step 2.2. Set pi = pi + �.
Step 2.3. If the SPT rule is violated then resequence the jobs by the SPT rule.
Step 2.4. Update ti indices for the perturbed job and for all other jobs whose position in sequence is changed in

Step 2.3.
Step 2.5. Update F new

1 = F new
1 − [fi(pi) − fi(pi + �)] and recalculate F new

2 .
Step 2.6. If F new

2 < Ku, report the current schedule with F new
1 and F new

2 as a new approximate efficient solution.

The MPJ algorithm first finds two efficient solutions Z1 and Z2 in Step 1, then generates a new approximate efficient
solution in between these two points in each iteration as shown in the following.

Lemma 5. In each iteration of the MPJ algorithm, we generate a new approximate efficient solution.

Proof. At each iteration of the MPJ algorithm, processing time of a selected job is increased by � amount. Since the
total completion time is a regular scheduling measure, total completion time of new schedule is strictly higher than the
previous one. Similarly, this increase will strictly decrease the total manufacturing cost. This means new solution cannot
dominate previously generated solutions. Therefore, no two solutions generated by the MPJ algorithm can dominate
each other. �

The MPJ algorithm generates a set of approximate efficient solutions which cannot dominate each other as shown
above. We then utilize the set of these discrete points to approximate the efficient frontier. In the MPJ algorithm, �
is a very critical parameter which affects the quality of the solutions achieved. By using a smaller � value, the MPJ
algorithm can generate more solutions each of which is more close to satisfy the conditions given in Lemma 4. In the
next section, we will discuss the given properties and the algorithms on a numerical example.

5. Numerical example

In this section, we give a five jobs–two machines problem as an example to illustrate the properties and algorithms
that we have discussed above.As we have discussed before, due to different job and tool properties each job has different
pl

i and pu
i levels. In this numerical example we use the following manufacturing cost functions and processing time

bounds:

f1(p1) = 0.25p1 + 3.30p−1.29
1 where 1.65�p1 �3.45,

f2(p2) = 0.25p2 + 0.02p−1.71
2 where 0.20�p2 �0.48,

f3(p3) = 0.25p3 + 0.20p−1.22
3 where 0.42�p3 �0.99,

f4(p4) = 0.25p4 + 0.03p−1.22
4 where 0.18�p4 �0.43,

f5(p5) = 0.25p5 + 0.20p−1.40
5 where 0.36�p5 �1.05.

Since we have five jobs and two machines, we have three sets of equivalent positions. The first position is for
the shortest job which will be succeeded by two positions on the same machine. The second and third positions are
equivalent positions so they form a position set. Each one is succeeded by a single position. The fourth and fifth positions
form the last set of equivalent positions and each one is the last position on its machine. We can assume that positions
1, 3 and 5 are on machine 1 and positions 2 and 4 are on machine 2.

We can find the solutions Z1 and Z2 given in Table 1 as discussed in Section 2. At Z1, total completion time is
3.73 (ideal total completion time) and total manufacturing cost is 4.40. At Z2, total completion time is 8.79 and total
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Table 1
Schedules at Z1 and Z2

Position Z1 Z2

Job i pi fi(pi) ti Job i pi fi(pi) ti

1 4 0.18 0.29 −0.56 4 0.43 0.19 0.0
2 2 0.20 0.34 −1.22 2 0.48 0.19 0.0
3 5 0.36 0.93 −1.50 3 0.99 0.45 0.0
4 3 0.42 0.68 −1.42 5 1.05 0.45 0.0
5 1 1.65 2.14 −1.10 1 3.45 1.53 0.0

F1(Z1) = 4.40 F1(Z2) = 2.81

Table 2
Results of the first seven iterations of MPJ algorithm

Iteration Job i pi Sequence t1 t2 t3 t4 t5 F2 F1

0 4 2 5 3 1 −1.1 −1.22 −1.42 −0.47 −1.50 3.73 4.40
1 5 0.46 4 2 3 5 1 −1.1 −1.22 −0.71 −0.47 −1.56 3.89 4.18
2 5 0.56 4 2 3 5 1 −1.1 −1.22 −0.71 −0.47 −0.88 3.99 4.07
3 2 0.30 4 2 3 5 1 −1.1 −0.32 −0.71 −0.47 −0.88 4.19 3.93
4 1 1.75 4 2 3 5 1 −0.93 −0.32 −0.71 −0.47 −0.88 4.29 3.83
5 1 1.85 4 2 3 5 1 −0.79 −0.32 −0.71 −0.47 −0.88 4.39 3.75
6 5 0.66 4 2 3 5 1 −0.79 −0.32 −0.71 −0.47 −0.51 4.49 3.68
7 1 1.95 4 2 3 5 1 −0.67 −0.32 −0.71 −0.47 −0.51 4.59 3.61

manufacturing cost is 2.81 (ideal cost). Z1 and Z2 have different job-position allocations. In Table 1, we also give the
ti values for each job. At Z1, (�f5(p

l
5)/�p5) = −3.0 and it is succeeded by a single job, then t5 = −3.0

2 = −1.5. Since
�fi(p

u
i )/�pi = 0 for all i at Z2, we see that ti = 0 for all i.

In Table 2, we give the first seven iterations of the MPJ algorithm for the example problem. In the first iteration we
consider the efficient solution Z1. At Z1 in Table 2, t5 is minimum so we select job 5 to perturb (Step 2.1). We increase
p5 by � = 0.1 from 0.36 to 0.46 (Step 2.2). Since the SPT order is violated we resequence the jobs and this results
pairwise interchanging jobs 3 and 5 (Step 2.3). We update the ti’s for jobs 3 and 5 (Step 2.4). For the new sequence,
t5 = −1.56. Next, we report the achieved solution at the end of iteration 1 as given in Table 2 (Step 2.5). Still t5 is the
minimum, we increase p5 again in iteration 2 and achieve a new schedule. The algorithm continues until it meets the
total completion time level of Ku.

We use the estimated cost change and total completion time data to make decisions, so using smaller � would always
give a better approximation. If we use a smaller � in our example, the sequence change that occurred in iteration 1
might occur in the next iteration or a different job may be selected in iteration 2 which may imply achieving different
schedules. � also affects the number of iterations such that smaller � implies more iterations which means generating
more solutions.

To compare the solution that MPJ achieved at the end of iteration 1, we solved the single objective problem by the
NLP solver GAMS/MINOS for K = 3.89. The result achieved by MINOS and the result achieved by MPJ are given in
detail in Table 3. Total manufacturing cost achieved by MINOS is 4.20. From Table 2, we know that MPJ achieved the
total manufacturing cost of 4.18. This is a case where MPJ performed better than MINOS. The reason for this situation
can be seen in Table 3. Two solutions are different in terms of job sequence and processing times. This means MINOS
stuck to a local optimal solution, but MPJ achieved a better solution at a different job sequence. If the sequences were
the same, MINOS would achieve a better solution since it can change all jobs’ processing times while MPJ changes
the processing time of a single job at a time. Furthermore, we solved the LSOP model for the example for K = 3.89 by
using the MINLP solver GAMS/BARON and achieved the global optimum which is the same as the solution achieved
by MPJ. We solved LSOP model for all the F2 levels of solutions achieved by MPJ. In Fig. 1, we present the set
of efficient solutions (including Z1 and Z2) found by the MPJ and corresponding efficient (global optimal) solutions
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Table 3
Schedules generated by different methods at iteration 1

Schedule by MPJ Schedule by MINOS

Position Job i pi ti fi (pi) Position set Job i pi ti fi (pi)

1 4 0.18 −0.47 0.29 1 4 0.18 −0.47 0.29
2 2 0.20 −1.22 0.36 2 2 0.21 −1.10 0.34
3 3 0.42 −0.71 0.68 2 5 0.41 −1.10 0.8
4 5 0.46 −1.56 0.71 3 3 0.46 −1.10 0.63
5 1 1.65 −1.10 2.14 3 1 1.65 −1.10 2.14
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Fig. 1. A set of non-dominated solutions for the numerical example.

achieved by GAMS/BARON for the example problem. For this small example, F1 levels of solutions achieved by MPJ
are very close to global optimum and there are many cases in which they are equal.

In Table 3, we see that solution by MINOS satisfies Lemma 1 and gives an integer local optimal solution to the NLP
model as stated in Lemma 2. This example further shows that it is possible to achieve better solutions than MINOS
since MINOS cannot guarantee global optimality due to Lemma 3 which states the non-convex nature of the problem.
When we check the MINOS solution in Table 3, we see that ti values are equal for all jobs that have pi > pl

i , except t1

for which p1 = pl
1. This is an example that illustrates the optimality conditions stated in Lemma 4.

6. Computational analysis

In this paper, we presented an efficient formulation for the single objective problem of minimizing total manufacturing
cost subject to a total completion time constraint. We proposed two approximation algorithms SBA and MPJ to generate
a set of approximate efficient solutions. We coded the SBA algorithm in GAMS 2.5 and implemented it by using the
solver MINOS 5.51. GAMS is a well-known commercial mathematical modeling tool with many different solvers
attached to it (Brooke et al. [16]). MINOS is the oldest NLP solver available with GAMS and is still the NLP solver that
is used the most frequently. MINOS has been developed at the Systems Optimization Laboratory at Stanford University
and it is still being improved. We coded the MPJ algorithm in C language and compiled with Gnu C compiler version
3.2. All codes were run on the operating system Mandrake 10.0 with Linux 2.6.3 on a computer with 1294 MB memory
and Pentium III 1133 MHz. CPU. In this section, we discuss the results of the computational study.

We considered four experimental factors which are given in Table 4. The first two factors, number of jobs and number
of machines, define the problem size. The third factor is the machine type. CNC turning machines may have different
technical characteristics. An important one is the maximum applicable cutting power H which affects the pl levels.
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Table 4
Experimental design factors

Level Experimental factors

N M Machine type Tool cost (Ct)

1 50 3 Co = 1, H = 5 U[6, 10]
2 100 6 Co = 2, H = 10 U[15, 19]
3 150 Co = 4, H = 20
4 200

Table 5
Performance measures for different step size levels

� Measure Mean Min Max Std. dev.

0.01 R 0.000282 −0.002119 0.001213 0.000318
MINOS CPUs 78.92 1.96 323.35 91.37
MPJ CPUs 0.08 0.01 0.20 0.05
MPJ set size 5559.16 1323 12459 3012.14

0.03 R 0.002764 0.000178 0.010918 0.002654
MINOS CPUs 79.45 2.26 327.91 92.13
MPJ CPUs 0.03 0.00 0.08 0.02
MPJ set size 1857.03 443 4159 1005.58

A machine with higher H level allows lower pl
i’s. Usually, machines with higher cutting power are more expensive

which means they have higher operating cost level (Co). We consider three types of machines with different H and
Co levels. The last experimental factor is the tooling cost level Ct , which affects the multiplier mi in the tooling cost
term of the manufacturing cost function. We generated Ct for each tool type as given in Table 4 where U [a, b] is a
uniform distribution in interval [a,b]. For each experimental setting, we solved for five replications resulting in 240
randomly generated problems. For each replication we generated cutting specifications (diameter, length, depth of cut
and required surface roughness) of jobs randomly. For each job we randomly used one of the tool types out of 10 types
of cutting tools with different technical coefficients given in Kayan and Akturk [1]. Furthermore, to test the effect of �
on the results we tried two levels of �, namely 0.01 and 0.03.

For each replication we first apply the MPJ method to the problem and generate a set of efficient solutions. Out of this
set, we select 50 solutions, other than Z1 and Z2. To be able to compare solution quality of MPJ and SBA, we applied
the SBA method for the F2 levels of the selected solutions. In order to test the algorithms on different regions of the
efficient frontier, we selected those 50 points such that each successive point pair has equal or almost equal separation.
We considered the performance measure R = (F MPJ

1 − F SBA
1 )/F SBA

1 which is the relative difference between F1 level
achieved by the MPJ algorithm and F1 level achieved by the SBA method for the same K value.

In Table 5, we give the results for R, CPU time required by SBA to solve 50 instances and CPU time required by MPJ
to generate a set of efficient solutions for both levels of �. We also include the size of the solution set generated by MPJ.
We would like to emphasize the mean R level, which is less than 0.0003 and indicates that MPJ achieves almost equal
cost performance as MINOS. Even for � = 0.03, the mean R is around 0.3%. The minimum R is negative for � = 0.01
which shows that MPJ can achieve better results than MINOS due to Lemma 3. The maximum level and standard
deviation show that R values do not deviate much from the mean, and even the worst R is 0.1%. The next important
criterion to compare two approaches is the computational requirements. Despite employing MINOS for just 50 points
out of thousands generated by MPJ, in Table 5, we see that CPU time requirement of MINOS is incomparably high
with respect to MPJ. On the average MPJ produces 5559 solutions, so MPJ can generate many alternative solutions
in a very short computation time. When we increase �, we see that R is increased but CPU time required by MPJ is
decreased as expected. However, even for �= 0.01, the required CPU time is 0.08 s on the average, so we can decrease
� even further and it would still not require much CPU time and would give a better approximation in terms of solution
quality and number of alternative solutions.
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Table 6
Average performance measures for different N and M levels when � = 0.01

N M R MINOS CPU MPJ CPU

50 3 0.000216 6.16 0.03
6 0.000308 3.62 0.03
Total 0.000262 4.89 0.03

100 3 0.000298 34.44 0.06
6 0.000285 16.76 0.05
Total 0.000291 25.60 0.05

150 3 0.000294 108.88 0.09
6 0.000266 48.47 0.09
Total 0.000280 78.67 0.09

200 3 0.000298 292.62 0.14
6 0.000291 120.43 0.14
Total 0.000294 206.53 0.14
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Fig. 2. Behavior of R on different regions of the efficient frontier.

Table 6 gives R and CPU time measures for different levels of number of jobs and number of machines. As N
increases, we do not observe a significant decrease or increase on R. The CPU time required by MINOS is strongly
affected by N, which increases rapidly from 4.89 to 206.53 (almost 40 times), when N is increased from 50 to 200. On
the other hand, the CPU seconds required by MPJ increased slightly from 0.03 to 0.14. This shows that as N increases,
CPU time increase rate for MINOS is higher than CPU time increase rate for MPJ. Although we tried 200 jobs at most,
we can solve larger instances by using MPJ within acceptable CPU time levels. When we check the change on R with
respect to M, we see that it increases for 50 jobs case and decreases for the others. Also, the CPU time required by
MPJ is not affected by the level of M. However, CPU time required by MINOS is significantly affected by M. As M
is increased for a given N, CPU time required by MINOS is reduced. This is because as we increase the number of
machines, the number of equivalent position sets decrease and this makes the problem easier for MINOS since it copes
with less alternatives of job-position set allocations.

Another observation we obtain from the computational results is related to the relative performance of MPJ on
different parts of the efficient frontier. In our experiments, we evaluated the R values for 50 efficient solutions except Z1
and Z2 for each replication. Let us denote the first found efficient solutions right after Z1 as Group 1, and so on, then,
we have 50 solution groups for each replication. When we compare the average R value for each group, we observe that
the average R is decreasing as we go from the first group to the last group as shown in Fig. 2. For example, R is higher
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Table 7
Comparison with the global optimal solutions

N Measure Min Max Mean Std. dev.

7 R(MPJ–BARON) 0.000007 0.009724 0.001373 0.002429
R(MINOS–BARON) 0.0 0.004609 0.000610 0.001310
BARON CPUs 11.86 29.24 19.48 4.40

10 R(MPJ–BARON) 0.000025 0.004111 0.000693 0.000853
R(MINOS–BARON) 0.0 0.009073 0.001682 0.002630
BARON CPUs 875.87 2377.93 1412.34 404.34

for the total completion time levels closer to Z1. As we get closer to Z2, R gets smaller and smaller. This relationship
is also shown to be statistically significant by the ANOVA results. We think that this is related to the behavior of the
manufacturing cost functions. As we get closer to Z2, we work on flatter parts of the cost functions where the decision
making based on slope information as in the MPJ algorithm is more reliable.

We next analyzed the absolute performance of MPJ and SBA against the global optimal solutions achieved by
the MINLP solver BARON 7.2.3 by solving the LSOP models given in Section 3. Branch And Reduce Optimization
Navigator (BARON) is a well-known MINLP solver and it is hooked up to GAMS modeling system. BARON combines
constraint propagation, interval analysis, and duality for efficient range reduction with rigorous relaxations constructed
by enlarging the feasible region and/or underestimating the objective function. Due to CPU time requirement we could
only solve 7 jobs and 10 jobs cases for three machines for the same experimental settings. For each replication, we
selected five efficient points out of the set generated by the MPJ algorithm and solved the LSOP and the relaxed SOP
models by the solvers BARON and MINOS, respectively. By this way, we tested these three approaches on 300 points.
Table 7 shows the relative difference values for the MPJ method versus SBA using BARON, and SBA using MINOS
versus SBA using BARON. Results show that both MPJ and MINOS find solutions very close to global optimum.
There are cases where MINOS achieves the global optimal solution. We also see from Table 7 that when we increase
the number of jobs from 7 to 10, the CPU time required by BARON increases by a factor of 140.

Up to this point we have discussed the pointwise solution quality and computational requirements for both methods.
At this point we analyze the results with a multi-objective optimization point of view to compare two approaches.
We want to compare the performance of two approximate efficient solution sets generated by different methods. We
used the performance measure proposed by Hansen and Jaszkiewicz [17], which consists of measuring the probability
P(A, B) that an algorithm A, gives a better solution than some other algorithm B. It is calculated as P(A, B) =∫
u∈[0,1] C(A(u), B(u)) du, where

C(A(u), B(u)) =

⎧⎪⎨
⎪⎩

1 f (A(u)) < f (B(u)),
1

2
f (A(u)) = f (B(u)),

0 f (A(u)) > f (B(u)),

and f (A(u)) = minx∈A {max(uF ′
1(x), (1 − u)F ′

2(x))}, where F ′
1(x) = (F1(x) − F1(Z2))/(F1(Z1) − F1(Z2)) which

is a normalization of F1. Here u is the weight of the normalized objective function F1 for the decision maker. The
method basically tries a number of u values between 0 and 1 and estimates the decision maker’s probability to choose
a solution generated by method A.

Table 8 includes P(MPJ , MINOS) results for different values of �. When � = 0.01 we see that probability of
decision maker to prefer a solution generated by MPJ is 98% on the average. This is due to the fact that the MPJ method
generates significantly higher number of efficient solutions than the GAMS/MINOS solver. When � is increased this
falls to 82% since pointwise solution quality and number of generated points decreases. The results show that MPJ is
a powerful method from the multi-objective optimization point of view.

In this section, we gave the computational results of proposed approaches and discussed the results from several
points of view. We saw that by using the optimality properties for the problem we could develop an algorithm which
can compete with a commercial software in terms of solution quality but gives better results in terms of computational
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Table 8
Comparison of the approximation algorithms

� P (MPJ, MINOS)

Mean Min Max

0.01 0.975 0.870 0.999
0.03 0.816 0.430 0.970

requirements. This highlights the importance of extracting and using the problem specific information when dealing
with a problem.

7. Conclusions

In this study, we proposed alternative approaches to provide efficient solutions for the problem of minimizing
the objectives of total manufacturing cost and total completion time on identical parallel machines. We specifically
considered the nonlinear manufacturing cost functions on CNC turning machines but the results are applicable to any
case with convex processing cost functions. Our results are important to any decision maker who deals with controllable
processing times. The results are easily applicable especially on CNC turning machines where the processing time of an
operation can be easily set by adding a single line of code to its CNC program. We first considered the single objective
problem of minimizing total manufacturing cost subject to a total completion time constraint. For this MINLP problem,
we provided an efficient formulation whose relaxed form can be solved to integer by NLP solvers. We showed that
NLP solvers can just guarantee to find local optimal solutions for the problem. We also proved optimality conditions
that must hold between processing times of jobs at optimality. By the help of these properties, we developed a heuristic
algorithm which generates a set of approximate efficient solutions for the problem. Computational results proved that
the heuristic algorithm performs as good as well-known commercial GAMS/MINOS NLP solver with significantly
less computational effort.
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