Repairing MIP infeasibility through Local Branching

Matteo Fischetti* ${ }^{*}$ Andrea Lodi ${ }^{\circ}$, \dagger
* DEI, University of Padova, Via Gradenigo 6A - 35131 Padova - Italy
${ }^{\circ}$ T.J. Watson Research Center, IBM, Yorktown Heights, NY 10598, USA
† DEIS, University of Bologna, Viale Risorgimento 2-40136 Bologna - Italy
e-mail: \{matteo.fischetti@unipd.it, alodi@us.ibm.com \}

February 16, 2004; Revised September 3, 2005

Abstract

Finding a feasible solution to a generic Mixed-Integer Program (MIP) is often a very difficult task. Recently, two heuristic approaches called Feasibility Pump and Local Branching have been proposed to address the problem of finding a feasible solution and improving it, respectively. In this paper we introduce and analyze computationally a hybrid algorithm that uses the feasibility pump method to provide, at very low computational cost, an initial (possibly infeasible) solution to the local branching procedure which can indeed work also with infeasible solutions. The overall procedure is reminiscent of Phase I of the two phase simplex algorithm, in which the original LP is augmented with artificial variables that make a known infeasible starting solution feasible and then the augmented model is solved to iteratively reduce that infeasibility by driving the values of the artificial variables to zero. As such, our approach can also to used to find (heuristically) a minimum-cardinality set of constraints whose removal converts an infeasible MIP into a feasible one-a very important piece of information in the analysis of infeasible MIP models.

1 Introduction

In this paper, we consider the problem of finding a feasible solution to a generic Mixed-Integer Program (MIP) with $0-1$ variables of the form:

$$
\begin{array}{ll}
(P) \quad & \min c^{T} x \\
& \text { s.t. } \\
& A x \geq b, \\
& x_{j} \in\{0,1\}, \forall j \in \mathcal{B} \neq \emptyset \\
& x_{j} \geq 0, \text { integer }, \forall j \in \mathcal{G}, \\
& x_{j} \geq 0, \forall j \in \mathcal{C}, \tag{6}
\end{array}
$$

where A is a $m \times n$ input matrix, and b and c are input vectors of dimension m and n, respectively. Here, the variable index set $\mathcal{N}:=\{1, \ldots, n\}$ is partitioned into $(\mathcal{B}, \mathcal{G}, \mathcal{C})$, where $\mathcal{B} \neq \emptyset$ is the index set of the $0-1$ variables, while the possibly empty sets \mathcal{G} and \mathcal{C} index the general integer and the continuous variables, respectively. Note that we assume the existence of 0-1 variables, as one of the components of the method we actually implemented (namely, the local branching heuristic) is based on this assumption; our approach can however be extended to get rid off this limitation, as outlined in the concluding remarks of [9]. Also note
that constraints (3), though stated as inequalities, can involve equalities as well. Let $\mathcal{I}:=\mathcal{B} \cup \mathcal{G}$ denote the index set of all integer-constrained variables.

Heuristics for general-purpose MIPs include [3], [4], [5], [7], [11], [13], [14], [15],[16], [17], [19], [20], [21], and [24], among others. Recently, we proposed in [9] a heuristic approach, called Local Branching (LB), to improve the quality of a given feasible solution. This method, as well as other refining heuristics (including the recently-proposed RINS approach [7]), requires the availability of a starting feasible solution, which is an issue for some difficult MIPs. This topic was investigated by Fischetti, Glover and Lodi [10], who introduced the so-called Feasibility Pump (FP) scheme for finding a feasible (or, at least, an "almost feasible") solution to general MIPs through a clever sequence of roundings.

In the present paper, we analyze computationally a simple variant of the original LB method that allows one to deal with infeasible reference solutions, such as those returned by the FP method. Our approach is to start with an "almost feasible" reference solution \bar{x}, as available at small computational cost through the FP method. We then relax the MIP model by introducing for each violated constraint: (i) an artificial continuous variable in the constraint itself, (ii) a binary (also artificial) variable, and (iii) a constraint stating that, if the artificial variable has to be used to make the constraint satisfied, then the binary variable must be set to 1 . Finally, the objective function is replaced, in the spirit of the first phase of the primal simplex algorithm, by the sum of the artificial binary variables. The initial solution turns out now to be feasible for the relaxed model and its value coincides with the number of initial violated constraints. We then apply the standard LB framework to reduce the value of the objective function, i.e., the number of infeasibilities and a solution of value 0 turns out to be feasible for the initial problem. Note that, although a continuous artificial variable for each violated constraint could be enough, binary variables are better exploited by LB as it will be clear from Section 2 and discussed in detail in Section 3.

Our approach also produces, as a byproduct, a small-cardinality set of constraints whose relaxation (removal) converts a given MIP into a feasible one-a very important piece of information in the analysis of infeasible MIPs. In other words, our method can be viewed as a tool for repairing infeasible MIP models, and not just as a heuristic for repairing infeasible MIP solutions. This is in the spirit of the widely-studied approaches to find maximum feasible (or minimum infeasible) subsystems of LP models, as addressed e.g. in $[2,6,12]$, but applies to MIP models-hence it may be quite useful in practice.

The paper is organized as follows. In Section 2 we review the LB and FP methods. In Section 3 we describe the LB extension we propose to deal with infeasible reference solutions. Computational results are presented in Section 4, where we compare the LB performance with that of the commercial software ILOG-Cplex on two sets of hard 0-1 MIPs, specifically 44 problems taken from MIPLIB 2003 library [1] and 39 additional instances already considered in [10].

2 Local Branching and Feasibility Pump

We next review the LB and FP methods; the reader is referred to [9] and [10] for more details.

Local Branching

The Local Branching approach works as follows. Suppose a feasible reference solution \bar{x} of (P) is given, and one aims at finding an improved solution that is "not too far" from \bar{x}. Let $\bar{S}:=\left\{j \in \mathcal{B}: \bar{x}_{j}=1\right\}$ denote the binary support of \bar{x}. For a given positive integer parameter k, we define the k-OPT neighborhood $\mathcal{N}(\bar{x}, k)$ of \bar{x} as the set of the feasible solutions of (P) satisfying the additional local branching constraint:

$$
\begin{equation*}
\Delta(x, \bar{x}):=\sum_{j \in \bar{S}}\left(1-x_{j}\right)+\sum_{j \in \mathcal{B} \backslash \bar{S}} x_{j} \leq k \tag{7}
\end{equation*}
$$

where the two terms in the left-hand side count the number of binary variables flipping their value (with respect to \bar{x}) either from 1 to 0 or from 0 to 1 , respectively. As its name suggests, the local branching constraint (7) can be used as a branching criterion within an enumerative scheme for (P). Indeed, given the
incumbent solution \bar{x}, the solution space associated with the current branching node can be partitioned by means of the disjunction

$$
\begin{equation*}
\Delta(x, \bar{x}) \leq k \quad(\text { left branch }) \text { or } \Delta(x, \bar{x}) \geq k+1 \quad(\text { right branch }) \tag{8}
\end{equation*}
$$

where the neighborhood-size parameter k is chosen so as make neighborhood $\mathcal{N}(\bar{x}, k)$ "sufficiently small" to be optimized within short computing time, but still "large enough" to likely contain better solutions than \bar{x} (typically, $k=10$ or $k=20$).

In [9], we investigated the use of a general-purpose MIP solver as a black-box "tactical" tool to explore effectively suitable solution subspaces defined and controlled at a "strategic" level by a simple external branching framework. The procedure is in the spirit of well-known local search metaheuristics, but the neighborhoods are obtained through the introduction in the MIP model of the local branching constraints (7). This allows one to work within a perfectly general MIP framework, and to take advantage of the impressive research and implementation effort that nowadays are devoted to the design of MIP solvers. The new solution strategy is exact in nature, though it is designed to improve the heuristic behavior of the MIP solver at hand. It alternates high-level strategic branchings to define solution neighborhoods, and low-level tactical branchings (performed within the MIP solver) to explore them. The result can then be viewed as a two-level branching strategy aimed at favoring early updatings of the incumbent solution, hence producing improved solutions at early stages of the computation. The computational results reported in [9] show the effectiveness of the LB approach. These have also been confirmed by the recent works of Hansen, Mladenovíc and Urosevíc [16] (where LB is used within a Variable Neighborhood Search metaheuristic [23]) and of Fischetti, Polo and Scantamburlo (where MIPs with a special structure are investigated).

Feasibility Pump

Let $P_{L}:=\left\{x \in \Re^{n}: A x \geq b\right\}$ denote the polyhedron associated with the LP relaxation of the given MIP, and assume without loss of generality that system $A x \geq b$ includes the variable bounds

$$
l_{j} \leq x_{j} \leq u_{j}, \quad \forall j \in \mathcal{I}
$$

where $l_{j}=0$ and $u_{j}=1$ for all $j \in \mathcal{B}$. With a little abuse of notation, we say that a point x is integer if $x_{j} \in Z^{n}$ for all $j \in \mathcal{I}$ (no matter the value of the other components). Analogously, the rounding \tilde{x} of a given x is obtained by setting $\tilde{x}_{j}:=\left[x_{j}\right]$ if $j \in \mathcal{I}$ and $\tilde{x}_{j}:=x_{j}$ otherwise, where [•] represents scalar rounding to the nearest integer. The (L_{1}-norm) distance between a generic point $x \in P_{L}$ and a given integer vector \tilde{x} is defined as

$$
\Phi(x, \tilde{x})=\sum_{j \in \mathcal{I}}\left|x_{j}-\tilde{x}_{j}\right|
$$

(notice that the continuous variables $x_{j}, j \notin \mathcal{I}$, if any, are immaterial) and can be modeled as

$$
\Phi(x, \tilde{x}):=\sum_{j \in \mathcal{I}: \tilde{x}_{j}=l_{j}}\left(x_{j}-l_{j}\right)+\sum_{j \in \mathcal{I}: \tilde{x}_{j}=u_{j}}\left(u_{j}-x_{j}\right)+\sum_{j \in \mathcal{I}: l_{j}<\tilde{x}_{j}<u_{j}}\left(x_{j}^{+}+x_{j}^{-}\right),
$$

where the additional variables x_{j}^{+}and x_{j}^{-}require the introduction into the MIP model of the additional constraints:

$$
\begin{equation*}
x_{j}=\tilde{x}_{j}+x_{j}^{+}-x_{j}^{-}, \quad x_{j}^{+} \geq 0, x_{j}^{-} \geq 0, \quad \forall j \in \mathcal{I}: l_{j}<\tilde{x}_{j}<u_{j} . \tag{9}
\end{equation*}
$$

It then follows that the closest point $x^{*} \in P_{L}$ to \tilde{x} can easily be determined by solving the LP

$$
\begin{equation*}
\min \{\Phi(x, \tilde{x}): A x \geq b\} \tag{10}
\end{equation*}
$$

If $\Phi\left(x^{*}, \tilde{x}\right)=0$, then $x_{j}^{*}\left(=\tilde{x}_{j}\right)$ is integer for all $j \in \mathcal{I}$, so x^{*} is a feasible MIP solution. Conversely, given a point $x^{*} \in P_{L}$, the integer point \tilde{x} closest to x^{*} is easily determined by just rounding x^{*}.

The FP heuristic works with a pair of points $\left(x^{*}, \tilde{x}\right)$ with $x^{*} \in P_{L}$ and \tilde{x} integer, that are iteratively updated with the aim of reducing as much as possible their distance $\Phi\left(x^{*}, \tilde{x}\right)$. To be more specific, one starts with any $x^{*} \in P_{L}$, and initializes a (typically infeasible) integer \tilde{x} as the rounding of x^{*}. At each FP iteration, called a pumping cycle, \tilde{x} is fixed and one finds through linear programming the point $x^{*} \in P_{L}$ which is as close as possible to \tilde{x}. If $\Phi\left(x^{*}, \tilde{x}\right)=0$, then x^{*} is a MIP feasible solution, and the heuristic stops. Otherwise, \tilde{x} is replaced by the rounding of x^{*} so as to further reduce $\Phi\left(x^{*}, \tilde{x}\right)$, and the process is iterated.

The basic FP scheme above tends to stop prematurely due to stalling issues. This happens whenever $\Phi\left(x^{*}, \tilde{x}\right)>0$ is not reduced when replacing \tilde{x} by the rounding of x^{*}, meaning that all the integer-constrained components of \tilde{x} would stay unchanged in this iteration. In the original FP approach [10], this situation is dealt with by heuristically choosing a few components \tilde{x}_{j} to be modified, even if this operation increases the current value of $\Phi\left(x^{*}, \tilde{x}\right)$. A different approach, to be elaborated in the next section, is to switch to a method based on enumeration, in the attempt to explore a small neighborhood of the current "almost feasible" \tilde{x} (that typically has a very small distance $\Phi\left(x^{*}, \tilde{x}\right)$ from P_{L}).

3 LB with Infeasible Reference Solutions

The basic idea of the method presented in this section is that the LB algorithm does not necessarily need to start with a feasible solution - a partially feasible one can be a valid warm start for the method. Indeed, by relaxing the model in a suitable way, it is always possible to consider any infeasible solution, say \hat{x}, to be "feasible", and penalize its cost so the LB heuristic can drive it to feasibility.

The most natural way to implement this idea is to add a continuous artificial variable for each constraint violated by \hat{x}, and then penalize the use of such variables in the objective function by means of a very large cost M. We tested this approach and found it performs reasonably well on most of the problems. However, it has the drawback that finding a proper value for M may not be easy in practice. Indeed, for a relevant set of problems in the MIPLIB 2003 [1] collection, the value of the objective function is so large that it is difficult to define a value for M that makes any infeasible solution worse than any feasible one. Moreover, the way the LB method works suggests the use of a more combinatorial framework.

Let T be the set of the indices of the constraints $a_{i}^{T} x \geq b_{i}$ that are violated by \hat{x}. For each $i \in T$, we relax the original constraint $a_{i}^{T} x \geq b_{i}$ into $a_{i}^{T} x+\delta_{i} y_{i} \geq b_{i}$, where $\delta_{i}:=b_{i}-a_{i}^{T} \hat{x}$ is the positive amount of violation computed with respect to \hat{x}, and y_{i} is a binary artificial variable attaining value 1 for each constraint violated by \hat{x}. Finally, we replace the original objective function $c^{T} x$ by $\sum_{i \in T} y_{i}$, so as to count the number of violated constraints. It has to be noted that the set of binary variables in the relaxed model is $\mathcal{B} \cup \mathcal{Y}$, where $\mathcal{Y}:=\left\{y_{i}: i \in T\right\}$, hence the structure of the relaxation turns out to be particularly suited for the LB approach, where the local branching constraint affects precisely the binary variables (including the artificial ones).

An obvious drawback of the method above is that the original objective function is completely disregarded, thus the feasible solution obtained can be arbitrarily bad. A way of avoiding this situation could be to put a term in the artificial objective function that takes the original costs into account. However, a proper balancing of the two contributions (original cost and infeasibility penalty) may not be easy to achieve. As a matter of fact, the outcome of a preliminary computational study is that a better overall performance is obtained by using the artificial objective function (alone) until feasibility is reached, and then improving the quality of this solution by using a standard LB or RINS approach.

4 Computational Results

In this section, we report on computational results comparing the proposed method with both the FP heuristic and the commercial software ILOG-Cplex 9.0.3. In our experiments, we used the "asymmetric" version of the local branching constraint (7), namely

$$
\begin{equation*}
\Delta(x, \bar{x}):=\sum_{j \in \bar{S}}\left(1-x_{j}\right) . \tag{11}
\end{equation*}
$$

Indeed, as discussed in [9], this version of the constraint seems to be particularly suited for set covering problems where LB aims at finding solutions with a small binary support-which is precisely the case of interest in our context.

Our testbed is made up of $440-1$ MIP instances from MIPLIB 2003 [1] and described in Table 1, plus an additional set of 39 hard 0-1 MIPs described in Table 2 and available, on request, from the second author. (The 0-1 MIPLIB instance stp3d was not considered since the computing time required for the first LP relaxation is larger than 1 hour, while 11 instances, namely fixnet6, markshare1, markshare2, mas74, mas76, modglob, pk1, pp08a, pp08aCUTS, set1ch and vpm2 have been removed because all tested algorithms found a feasible solution within 0.0 CPU seconds.) The two tables report the name, total number of variables (n), number of $0-1$ variables $(|\mathcal{B}|)$, and number of constraints (m) for each instance.

Name	n	$\|\mathcal{B}\|$	m	Name	n	$\|\mathcal{B}\|$	m
10teams	2025	1800	230	mod011	10958	96	4480
A1C1S1	3648	192	3312	modglob	422	98	291
aflow30a	842	421	479	momentum1	5174	2349	42680
aflow40b	2728	1364	1442	net12	14115	1603	14021
air04	8904	8904	823	nsrand_ipx	6621	6620	735
air05	7195	7195	426	nw04	87482	87482	36
cap6000	6000	6000	2176	opt1217	769	768	64
dano3mip	13873	552	3202	p2756	2756	2756	755
danoint	521	56	664	pk1	86	55	45
ds	67732	67732	656	pp08a	240	64	136
fast0507	63009	63009	507	pp08aCUTS	240	64	246
fiber	1298	1254	363	protfold	1835	1835	2112
fixnet6	878	378	478	qiu	840	48	1192
glass4	322	302	396	rd-rplusc-21	622	457	125899
harp2	2993	2993	112	set1ch	712	240	492
liu	1156	1089	2178	seymour	1372	1372	4944
markshare1	62	50	6	sp97ar	14101	14101	1761
markshare2	74	60	7	swath	6805	6724	884
mas74	151	150	13	t1717	73885	73885	551
mas76	151	150	12	tr12-30	1080	360	750
misc07	260	259	212	van	12481	192	27331
mkc	5325	5323	3411	vpm2	378	168	234

Table 1: The 44 0-1 MIP instances collected in MIPLIB 2003 [1]
The framework described in the previous section has been tested by using different starting solutions \hat{x} provided by FP. In particular, we wanted to test the sensitivity of our modified LB algorithm with respect to the degree of infeasibility of the starting solution, as well as its capability for improving it. Thus, we executed the FP code for 0,10 and 100 iterations and passed to LB the integer (infeasible) solution \hat{x} with minimum distance $\Phi\left(x^{*}, \hat{x}\right)$ from P_{L}. (The case with 0 iterations actually corresponds to starting from the solution of the continuous relaxation, rounded to the nearest integer.) The resulting three versions of the modified LB are called $\mathrm{LB}_{0}, \mathrm{LB}_{10}$, and LB_{100}, respectively.

In our experiments, we avoided any parameter tuning-FP was implemented exactly as in [10], and for the modified LB code we used a time limit of 30 CPU seconds for the exploration of each local-branching neighborhood. As to the value of the neighborhood-size parameter k in LB, we implemented an adaptive procedure: at each neighborhood exploration, we try to reduce the number of violated constraints in the current solution by half, i.e., we set $k=\left\lfloor\left|T^{\prime}\right| / 2\right\rfloor$, where $\left|T^{\prime}\right|$ is the value of the current solution. (Since the support of the solution also takes into account non-artificial binary variables, when the number of violated constraints becomes less than 20 we fix $k=10$, i.e., we use the value suggested in [9] for the asymmetric version of the local branching constraint.). The motivation for this choice is that the number of violated constraints in an initial solution can be extremely large, in which case the use of a small value of k would result in a very slow convergence.

Name	n	$\|\mathcal{B}\|$	m	source	Name	n	$\|\mathcal{B}\|$	m	source
biella	7328	6110	1203	[9]	blp-ar98	16021	15806	1128	[20]
NSR8K	38356	32040	6284	[9]	blp-ic97	9845	9753	923	[20]
dc1c	10039	8380	1649	[8]	blp-ic98	13640	13550	717	[20]
dc1l	37297	35638	1653	[8]	blp-ir98	6097	6031	486	[20]
dolom1	11612	9720	1803	[8]	CMS750_4	11697	7196	16381	18]
siena1	13741	11775	2220	[8]	berlin_5_8_0	1083	794	1532	[18]
trento1	7687	6415	1265	[8]	railway_8_1_0	1796	1177	2527	[18]
rail507	63019	63009	509	[9]	usAbbrv.8.25_70	2312	1681	3291	[18]
rail2536c	15293	15284	2539	[9]	manpower1	10565	10564	25199	[25]
rail2586c	13226	13215	2589	[9]	manpower2	10009	10008	23881	[25]
rail4284c	21714	21705	4284	[9]	manpower3	10009	10008	23915	[25]
rail4872c	24656	24645	4875	[9]	manpower3a	10009	10008	23865	[25]
A2C1S1	3648	192	3312	[9]	manpower4	10009	10008	23914	[25]
B1C1S1	3872	288	3904	[9]	manpower4a	10009	10008	23866	[25]
B2C1S1	3872	288	3904	[9]	ljb2	771	681	1482	[7]
sp97ic	12497	12497	1033	[9]	ljb7	4163	3920	8133	[7]
sp98ar	15085	15085	1435	[9]	ljb9	4721	4460	9231	[7]
sp98ic	10894	10894	825	[9]	1 lb 10	5496	5196	10742	[7]
bg512142	792	240	1307	[22]	$\underline{\text { ljb12 }}$	4913	4633	9596	[7]

Table 2: The additional set of 39 0-1 MIP instances

All codes are written in ANSI C and use the ILOG-Cplex callable libraries. They are available, on request, from the second author. The three modified LB codes ($\mathrm{LB}_{0}, \mathrm{LB}_{10}$, and LB_{100}) are compared with FP and ILOG-Cplex 9.0.3 in Table 3 for the MIPLIB-2003 instances, and in Table 4 for the additional set of instances. Computing times are expressed in CPU seconds, and refer to a Pentium M 1.6 GHz notebook with 512 MByte of main memory. A time limit of $1,800 \mathrm{CPU}$ seconds was provided for each instance with each algorithm and the computation was halted as soon as a first feasible solution was found.

For each instance, we report in both tables: for ILOG-Cplex, the number of nodes (nodes) needed to find an initial solution and the corresponding computing time (time); for FP, the number of iterations (FPit) and its computing time (time); for each of the three variants of LB, the computing time spent in the FP preprocessing phase (FP time), the initial number of violated constraints $(|T|)$, the number of LB iterations (LBit), and the overall computing time (time). Note that, we define an LB iteration as the exploration, generally within a time limit, of the neighborhood of the current solution. Moreover, the time reported is the sum of the time of the FP initialization plus the LB time, thus it can be larger than $1,800 \mathrm{CPU}$ seconds. When one of the algorithms was not able to find a feasible solution in the given time limit, we wrote $\left({ }^{*}\right)$ in column "nodes" (for ILOG-Cplex) or "FPit" (for FP), or wrote (μ) in column " $|T|$ " near the number of initial infeasible constraints (for LB), where μ is the number of violated constraints in the final solution.

As expected, the degree of infeasibility of the starting solution plays an important role in the LB methodsthe better the initial solution, the faster the method. In this view, the FP approach seems to fit particularly well in our context, in that it is able to provide very good solutions (as far as the degree of infeasibility is concerned) in very short computing times. Among the three LB implementations, LB_{0} was at least as fast as the other two in 40 cases, LB_{10} in 47 cases, and LB_{100} in 58 cases. Overall, LB_{100} qualifies as the most effective (and stable) of the three methods. (The figures above include the instances removed from Tables 3 and 4 because all algorithms required 0.0 CPU seconds).

A comparison of ILOG-Cplex and LB_{100} shows that the latter is strictly faster in 44 cases, while the opposite holds in 21 cases. Moreover, ILOG-Cplex was not able to find any feasible solution (within the 1,800 -second time limit) in 4 cases, whereas LB_{100} was unsuccessful 3 times. As expected, the quality of the initial ILOG-Cplex solution (not reported in the tables) is typically better than that provided by the LB methods.

name	ILDG-Cplex 9.0.3		FP		LB_{0}				LB_{10}				LB_{100}			
	nodes	time	FPit	time	FPtime			time	FPtime				FPtime		LBit	it time
10teams	335	8.4	70	11.7	0.1	75	29	667.7	1.1	18	11	177.4	11.7			11.7
A1C1S1	150	4.1	8	3.8	0.1	63	5	0.8	3.8	-	-	3.8	3.8			3.8
aflow30a	0	0.1	18	0.1	0.0	29	4	3.0	0.1	29	4	0.3	0.1			0.1
aflow 40b	370	5.9	6	0.3	0.1	40	5	57.6	0.3		-	0.3	0.3			0.3
air04	40	8.6	6	74.7	3.4	125	24	671.8	74.7			74.7	74.7			74.7
air05	70	3.4	25	83.8	0.8	208	12	135.0	22.8	14	3	25.0	83.8			83.8
cap6000	0	0.2	2	0.2	0.1	1	1	0.2	0.2			0.2	0.2			0.2
dano3mip	0	67.7	2	86.3	65.0	946 (105)	31	1,865.0	86.3			86.3	86.3			86.3
danoint	40	1.7	23	1.5	0.1	125	6	16.9	0.6	120	5		1.5			1.5
ds	0	55.0	133 (*)	1,800.0	54.5	656	16	582.8	229.9	350	8	302.1	1,358.6	133		$61,385.0$
fast0507	0	39.0		46.7	43.4	148	1	45.8	46.7	-		46.7	46.7			- 46.7
fiber	0	0.1	2	0.0	0.0	41	5	0.5	0.0			0.0	0.0			0.0
glass4	5389	1.6	124	0.3	0.0	52	5	0.9	0.0	45	4	0.1	0.2	45		$4 \quad 0.3$
harp2	0	0.0	654	5.0	0.0	9	3	0.9	0.1	6	1	0.1	0.8	6		10.8
liu	0	0.1	0	0.1	0.1	-	-	0.1	0.1			0.1	0.1			- 0.1
misc07	67	0.2	78	0.4	0.0	135	7	1.7	0.1	81	6	0.6	0.4			0.4
mkc	0	0.2	2	0.2	0.1	9	3	2.2	0.2			0.2	0.2			0.2
mod011	0	0.2	0	0.1	0.1	-	-	0.1	0.1	-	-	0.1	0.1	-	-	0.1
momentum1	314 (*)	1,800.0	502	1,329.6	1.8	697 (106)		1,801.8	42.6	895 (15)	58	1,842.6	178.8	895 (15)		8 1,978.8
net12	203 (*)	1,800.0	1	4.6	1.8	406	14	246.2	12.9	239	7	16.8	21.8	239		725.5
nsrand_ipx	0	0.5	507	225.0	11.3	390	8	14.1	225.0	-	-	225.0	225.0			- 225.0
nw04	0	4.9	4	0.9	0.3	6	2	6.8	0.9	-	-	0.9	0.9			- 0.9
opt1217	117	0.1	${ }^{0}$	0.0	0.0		-	0.0	0.0	-	-	0.0	0.0			- 0.0
p2756	0	0.1	150023 (*)	1,800.0	0.0	41	6		0.1	19	1	0.2	1.2	19	1	11.3
protfold	190	640.9	367	502.0	2.7	37 (37)		1,802.7	16.1	13 (1)	50	1,816.1	125.6	7 (1)	55	$51,925.6$
qiu		0.2			0.1	132	1		0.3			0.3	0.3			0.3
rd-rplusc-21	10978(*)	1,800.0	401 (*)	1,800.0	3.9	119021 (7094)	23	1,803.9	36.8	119017 (1)	71	1,836.8	449.5	119017 (2)	75	5 2,249.5
seymour	0	3.5	7	3.6	3.0	921	1	3.8	3.6			3.6	3.6			- 3.6
sp97ar	0	3.4	4	4.2	2.9	222	1	3.8	4.2	-	-	4.2	4.2			- 4.2
swath	0	0.2	49	2.9	0.1	20	6	124.6	1.0	20	6	70.8	2.9			2.9
${ }^{\text {t1717 }}$	710	301.0	40	814.8	10.7	445 (50)		1,810.7	133.2	108 (5)	35	1,933.2	814.8			814.8
tr12-30	179	0.9	8	0.1	0.0	348	8	0.6	0.1			0.1	0.1		-	0.1
van	0	872.8	10	300.5	27.4	192 (128)		1,827.4	300.5	-	-	300.5	300.5	-	-	- 300.5

name	ILOG-Cplex 9.0.3		FP		LB_{0}				LB_{10}				LB_{100}			
	nodes	time	FPit	time	FPtime	$\|T\|$	LBit	time	FPtime	$\|T\|$	LBit	time	FPtime	T	LBit	time
biella1	594	108.4	4	2.8	2.3	1193	9	18.2	2.8	-	-	2.8	2.8	-	-	2.8
NSR8K	$5(*)$	1,800.0	3	195.5	185.8	5488 (5488)	1	1,985.8	195.5	-	-	195.5	195.5	-	-	195.5
dc1c	4749	474.0	2	12.7	11.6	1483	11	81.6	12.7	-	-	12.7	12.7	-	-	12.7
dc1l	0	80.8	2	16.2	14.0	1567	1	14.8	16.2	-	-	16.2	16.2	-	-	16.2
dolom1	367	504.4	22	22.6	11.9	1410	12	277.1	17.7	632	8	49.4	22.6	-	-	22.6
siena1	600	1,371.5	3	43.7	40.6	1750	12	271.2	43.7	-	-	43.7	43.7	-	-	43.7
trentol	340	276.8	7	11.0	9.3	603	8	22.6	11.0	-	-	11.0	11.0	-	-	11.0
rail507	0	32.8	2	8.7	6.5	218	1	7.4	8.7	-	-	8.7	8.7	-	-	8.7
rail2536c	0	16.8	1	15.2	14.3	2008	1	14.9	15.2	-	-	15.2	15.2	-	-	15.2
rail2586c	0	63.9	1	8.3	7.6	1871	1	7.9	8.3	-	-	8.3	8.3	-	-	8.3
rail4284c	0	204.9	2	56.7	53.5	3305	1	54.2	56.7	-	-	56.7	56.7	-	-	56.7
rail4872c	0	186.4	2	19.3	17.5	3254	1	18.3	19.3	-	-	19.3	19.3	-	-	19.3
A2C1S1	0	0.1	5	4.7	0.1	60	1	0.2	4.7	-	-	4.7	4.7	-	-	4.7
B1C1S1	0	0.1	6	5.0	0.1	208	1	0.2	5.0	-	-	5.0	5.0	-	-	5.0
B2C1S1	0	0.1	7	4.7	0.1	217	1	0.3	4.7	-	-	4.7	4.7	-	-	4.7
sp97ic	0	2.4	3	3.1	1.7	173	1	2.4	3.1	-	-	3.1	3.1	-	-	3.1
sp98ar	0	3.8	3	5.2	3.5	260	7	23.6	5.2	-	-	5.2	5.2	-	-	5.2
sp98ic	0	2.1	2	2.6	1.8	147	6	6.0	2.6	-	-	2.6	2.6	-	-	2.6
blp-ar98	8300	158.3	835	122.9	0.5	212	8	31.7	2.5	204	7	16.4	15.7	205	7	25.9
blp-ic97	1120	16.2	8	1.3	0.3	59	5	5.5	1.3	-	-	1.3	1.3	-	-	1.3
blp-ic98	1570	33.6	3	1.5	0.9	76	5	5.0	1.5	-	-	1.5	1.5	-	-	1.5
blp-ir98	1230	8.1	4	0.4	0.1	37	4	1.3	0.4	-	-	0.4	0.4	-	-	0.4
CMS750_4	940	27.2	16	6.5	0.7	2446	1	9.2	3.3	2441	1	11.7	6.5	-	-	6.5
berlin_5_8_0	152	0.4	13	0.2	0.0	170	20	275.4	0.1	167	1	0.2	0.2	-	-	0.2
railway_8_1_0	350	1.3	12	0.3	0.1	374	17	358.4	0.2	373	1	0.5	0.3	-	-	0.3
usAbbrv.8.25_70	274581	1,371.5	31	0.7	0.1	400	1	0.6	0.3	376	1	0.8	0.7	-	-	0.7
bg512142	0	0.3	0	0.2	0.2	-	-	0.2	0.2	-	-	0.2	0.2	-	-	0.2
dg012142	0	1.0	0	0.8	0.8	-	-	0.8	0.8	-	-	0.8	0.8	-	-	0.8
manpower1	154	1,800.0	30	18.8	8.4	1142	15	108.7	13.4	336	9	52.0	18.8	-	-	18.8
manpower2	150	364.6	92	137.5	39.5	1181	30	774.2	73.6	309	13	394.8	137.5	-	-	137.5
manpower3	181	326.9	42	76.2	27.1	1160	23	534.7	55.5	427	17	363.3	76.2	-	-	76.2
manpower3a	181	925.1	293	294.1	30.6	1327 (7)	57	1,830.6	53.3	369	18	491.2	114.8	9	2	372.1
manpower4	185	671.0	208	138.9	14.3	1105	34	1,010.8	41.8	604	19	427.7	80.5	40	8	383.8
manpower4a	194	1,039.9	308	289.2	36.4	1226	37	814.8	69.1	483	18	440.0	159.3	7	4	206.2
ljb2	30	0.2	0	0.0	0.0	-	-	0.0	0.0	-	-	0.0	0.0	-	-	0.0
ljb7	100	3.8	0	0.6	0.6	-	-	0.6	0.6	-	-	0.6	0.6	-	-	0.6
ljb9	180	7.0	0	0.8	0.8	-	-	0.8	0.8	-	-	0.8	0.8	-	-	0.8
ljb10	90	5.9	0	1.1	1.1	-	-	1.1	1.1	-	-	1.1	1.1	-	-	1.1
$\underline{\text { ljb12 }}$	110	5.8	0	0.7	0.7	-	-	0.7	0.7	-	-	0.7	0.7	-	-	0.7

Table 4: Convergence to a first feasible solution on the additional set of 0-1 MIP instances

Acknowledgements

This work was partially supported by MIUR and CNR, Italy, and by the EU project "ADONET". Thanks are due to the anonymous referees for their helpful comments.

References

[1] T. Achterberg, T. Koch, A. Martin. The mixed integer programming library: MIPLIB 2003. http://miplib.zib.de.
[2] E. Amaldi, M.E. Pfetsch, L.E. Trotter, On the Maximum Feasible Subsystem Problem, IISs and IISHypergraphs. Mathematical Programming 95, 3, 533-554, 2003.
[3] E. Balas, S. Ceria, M. Dawande, F. Margot, G. Pataki. OCTANE: A New Heuristic For Pure 0-1 Programs. Operations Research 49, 207-225, 2001.
[4] E. Balas, C.H. Martin. Pivot-And-Complement: A Heuristic For 0-1 Programming. Management Science 26, 86-96, 1980.
[5] E. Balas, S. Schmieta, C. Wallace. Pivot and Shift-A Mixed Integer Programming Heuristic. Discrete Optimization 1, 3-12, 2004.
[6] J. Chinneck. Fast Heuristics for the Maximum Feasible Subsystem Problem. INFORMS Journal on Computing 13 (3), 210-223, 2001.
[7] E. Danna, E. Rothberg, C. Le Pape. Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming 102, 71-90, 2005.
[8] Double-Click sas. Personal communication, 2001.
[9] M. Fischetti, A. Lodi. Local Branching. Mathematical Programming 98, 23-47, 2003.
[10] M. Fischetti, F. Glover, A. Lodi. The Feasibility Pump. Mathematical Programming 104, 91-104, 2005.
[11] M. Fischetti, C. Polo, M. Scantamburlo. A Local Branching Heuristic for Mixed-Integer Programs with 2-Level Variables. Networks 44, 2, 61-72, 2004.
[12] J. Gleesonand, J. Ryan. Identifying Minimally Infeasible Subsystems of Inequalities. ORSA Journal on Computing 2 (1), 61-63, 1990.
[13] F. Glover, M. Laguna. General Purpose Heuristics For Integer Programming: Part I. Journal of Heuristics 2, 343-358, 1997.
[14] F. Glover, M. Laguna. General Purpose Heuristics For Integer Programming: Part II. Journal of Heuristics 3, 161-179, 1997.
[15] F. Glover, M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston, Dordrecht, London, 1997.
[16] P. Hansen, N. Mladenovíc, D. Urosevíc. Variable Neighborhood Search and Local Branching. Technical Report G-2004-54, Les Chahiers du GERAD, June 2004 (to appear in Computers and Operations Research, 2005).
[17] F. S. Hillier. Effcient Heuristic Procedures For Integer Linear Programming With An Interior. Operations Research 17, 600-637, 1969.
[18] G.W. Klau. Personal communication, 2002.
[19] T. Ibaraki, T. Ohashi, H. Mine. A Heuristic Algorithm For Mixed-Integer Programming Problems. Mathematical Programming Study 2, 115-136, 1974.
[20] A. Løkketangen. Heuristics for 0-1 Mixed-Integer Programming. In P.M. Pardalos and M.G.C. Resende (ed.s) Handbook of Applied Optimization, Oxford University Press, 474-477, 2002.
[21] A. Løkketangen, F. Glover. Solving Zero/One Mixed Integer Programming Problems Using Tabu Search. European Journal of Operational Research 106, 624-658, 1998.
[22] A.J. Miller. Personal communication, 2003.
[23] N. Mladenovíc, P. Hansen. Variable Neighborhood Search. Computers \mathcal{G} Operations Research 24, 1097-1100, 1997.
[24] M. Nediak, J. Eckstein. Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed Integer Programming Research Report RRR 53-2001, RUTCOR, Rutgers University, October 2001.
[25] E. Rothberg. Personal communication, 2002.

