
A Bilinear Reduction Based Algorithm for Solving

Capacitated Multi-Item Dynamic Pricing Problems. ∗

Artyom G. Nahapetyan, Panos M. Pardalos †

Center for Applied Optimization

Industrial and Systems Engineering Department

University of Florida

Gainesville

September 26, 2006

Abstract

In a capacitated multi-item dynamic pricing problem one maximizes the profit

by choosing a proper production level as well as pricing policy, where the latter

depends on a satisfied demand. The objective function involves inventory, production

and setup costs, and revenue functions. The products are required to satisfy joined

production capacities. We consider a bilinear reduction of the linear mixed integer

formulation of the problem and prove that the problem is equivalent to finding a

global maximum of the bilinear problem. A heuristic algorithm is proposed, based

on the reduction technique. Numerical experiments confirm the efficiency of the

proposed technique.

Key Words: dynamic pricing, lot-sizing, supply chain, logistics.

∗Research was partially supported by NSF and Air Force grants.
†Email: artyom@ufl.edu, pardalos@ufl.edu

1

1 Introduction

Supply chain problems with fixed costs and production planning problems involving lot-

sizing have been active research topics during the last decades. Many research papers have

addressed single-item problems with additional important features such as backlogging,

constant and varying capacities, and different cost functions (see, e.g., Florian and Klein [9],

Gilbert [11], Hoesel and Wagelmans [14], and Laparic et al. [23] and [24]). It is well known

that uncapacitated problems can be reduced to a shortest path problem. Florian and M.

Klein [9] have studied the capacitated single-item problems, where they characterized the

optimal solution and proposed a simple dynamic programming algorithm for problems in

which the capacities are the same in every period. The algorithm also can be viewed as a

shortest path problem. The single-item problems with varying capacities are known to be

NP-hard. A classification of different problems and a survey on existence of a polynomial

algorithm for solving problems for different classes can be found in Wolsey [33], and Pochet

and Wolsey [30]. Tight formulations for polynomially solvable problems are discussed in

Miller and Wolsey [26], and Pochet and Wolsey [30].

Almost all practical problems involve multiple items, machines and/or levels, and poly-

nomial results for those problems are limited. Using binary variables, one can construct a

mixed integer linear programming (MIP) formulation of the problem. Different approaches

to solve fixed charge transportation problems using the branch-and-bound method are dis-

cussed by Barr et al. [1], Cabot and Erenguc [6], Gray [12], Kennington and Unger [17],

and Palekar et al. [29], where the authors employ penalty and decomposition techniques

using the special structure of the feasible region. Marchand et al. [25] discuss cutting plain

methods to solve general mixed integer problems. In addition, Cooper and Drebes [7],

Diaby [8], Khang and Fujiwara [18], Khun and Baumol [22], and Hoesel Wagelmans [13]

discuss approximate techniques based on linear problems. Kim and Pardalos [19] proposed

a dynamic slope scaling procedure to find an approximate solution to the fixed charge

network flow problem. In [20] the authors developed a variation of the procedure to solve

concave piecewise linear network flow problems.

2

In this paper we discuss a capacitated multi-item dynamic pricing (CMDP) problem

where one maximizes the profit by choosing a proper production level as well as pricing

policy for each product. In the problem, the demand is a decision variable, and in order

to satisfy a higher demand one needs to reduce the price of the product. On the other

hand, reducing the price can decrease the revenue, which is the product of the demand

and the price. In addition, the problem includes an inventory and production cost for

each product, where the latter involves a setup cost. The objective of the problem is to

find an optimal production strategy, which maximizes the profit subject to production

capacities that are “shared” by the products. Different profit maximization or pricing

variants of the single-item uncapacitated problem with deterministic demands are discussed

by Gilbert [11], Loparic et al. [24], and Thomas [32]. A capacitated single-item problem

with time invariant capacities is discussed by Geunes et al. [10]. The polynomial algorithms

proposed by the authors are based on the corresponding results for the lot-sizing problems.

In addition, there are some similarities between pricing problem discussed in this paper

and a scheduling problem in a power generating system discussed by Bertsekas et al. [5].

To solve the scheduling problem, the authors applied the Lagrangian relaxation method.

Recently we have proposed a bilinear reduction technique, which can be used to find an

approximate solution of concave piecewise linear and fixed charge network flow problems

(see [27] and [28]). However, because of a different structure of the objective function,

these methods cannot be directly applied to the CMDP problems. To solve the problem

we consider another bilinear reduction of the problem with a disjoint feasible region and

prove that solving the CMDP problem is equivalent to finding a global maximum of the

bilinear problem. Although there are several cutting plain algorithms to find a global

solution of general bilinear problems (see, e.g., Konno [21], Sherali and Shetty [31], and

Horst and Tuy [16]), they employ a procedure, which converges to a local optimum of

the problem, and overall performance of the procedures depends on the quality of found

local solutions. The bilinear reduction of the CMDP problem typically has numerous

local maxima; therefore, the algorithm may require many cuts. In this paper we propose a

3

heuristic algorithm for finding a global solution of the bilinear reduction using approximate

problems. In each iteration, the algorithm employs a well known iterative procedure to

find a local maximum of the approximate problem (see, e.g., [15] and [16]) and decreases

the approximation parameters. Numerical experiments on randomly generated problems

confirm the efficiency of the algorithm.

For the remainder, Section 2 provides a linear mixed integer formulation of the problem

and discusses a bilinear reduction of the problem. We prove that solving the CMDP

problem is equivalent to finding a global maximum of the bilinear reduction. In Section 3

we propose a heuristic algorithm for solving the bilinear problem. Numerical experiments

on the algorithm are provided in Section 4, and finally, Section 5 concludes the paper.

2 Problem Description

In this section we provide a nonlinear mixed integer formulation of the problem. Using some

standard linearization techniques, the problem can be simplified. To solve the problem, we

propose a bilinear reduction technique and prove some properties of the bilinear problem.

Let P and ∆ represent the set of products and discrete times, respectively. In addition,

let f(p,j)(d) denote the price of product p at time j as a function of the demand d, and

g(p,j)(d) = f(p,j)(d)d, i.e., g(p,j)(d) represents the revenue obtained from selling d amount of

product p at time j. In the problem, we assume that f(p,j)(d) and g(p,j)(d) are nonincreasing

and concave functions, respectively (see Figures 1). If f(p,j)(d) is a concave function, then

it is easy to show that concavity of g(p,j)(d) follows.

Let x(p,i,j) denote an amount of product p that is produced at time i to satisfy the

demand at time j, and y(p,i) represent a binary variable, which equals one if product p is

produced at time i and zero otherwise. Assume that inventory costs, cin
(p,i,j), production

costs, cpr
(p,i), and setup costs, cst

(p,i), as well as production capacities, Ci, are given, where p, i,

and j represent the product, producing time, and selling time, respectively. The following

is the mathematical formulation of the CMDP problem.

4

CMDP :

max
x,y,d

∑
p∈P

∑
j∈∆

g(p,j)


 ∑

i∈∆|i≤j

x(p,i,j)


−

∑
p∈P

∑

i,j∈∆|i≤j

[
cin
(p,i,j) + cpr

(p,i)

]
x(p,i,j) −

∑
p∈p

∑
i∈∆

cst
(p,i)y(p,i)

∑
p∈P

∑

j∈∆|i≤j

x(p,i,j) ≤ Ci, ∀i ∈ ∆,

∑

j∈∆|i≤j

x(p,i,j) ≤ Ciy(p,i), ∀p ∈ P and i ∈ ∆,

x(p,i,j) ≥ 0, y(p,i) ∈ {0, 1}, ∀p ∈ P and i, j ∈ ∆.

The objective function of the problem maximizes the profit, which is the difference

between the revenue and the costs. The latter includes the inventory as well as the pro-

duction costs. The first constraint ensures the satisfaction of the capacity restrictions,

and the second one makes sure that y(p,i) equals one if
∑

j∈∆|i≤j x(p,i,j) > 0. In the above

formulation,
∑

i∈∆|i≤j x(p,i,j) represents the demand of product p that is satisfied in the

period j.

Although the above formulation belongs to the class of nonlinear mixed integer pro-

grams, using standard techniques one can approximate the revenue function by a piecewise

linear one and linearize the objective function. Doing so, observe that from the concavity of

the revenue function it follows that there exists a point, d̃(p,j), where the function reaches

its maximum (see Figure 1). As a result, producing and selling more than d̃(p,j) is not

profitable, and at optimality
∑

i∈∆|i≤j x(p,i,j) ≤ d̃(p,j). To linearize the revenue function,

divide
[
0, d̃(p,j)

]
into N intervals of equal length. Let dk

(p,j) denote the end points of the

intervals, i.e., dk
(p,j) = kd̃(p,j)/N , ∀k ∈ {1, . . . , N}⋃{0} = K

⋃{0}, and gk
(p,j) represents the

value of the revenue function at the point dk
(p,j), i.e., gk

(p,j) = g(p,j)(d
k
(p,j)) = f(p,j)(d

k
(p,j))d

k
(p,j).

Using those parameters, construct the function

g̃(p,j)(λ(p,j)) =
N∑

k=0

gk
(p,j)λ

k
(p,j) =

N∑

k=1

gk
(p,j)λ

k
(p,j),

where it is required that

∑

i∈∆|i≤j

x(p,i,j) =
N∑

k=0

dk
(p,j)λ

k
(p,j) =

N∑

k=1

dk
(p,j)λ

k
(p,j), ∀p ∈ P and j ∈ ∆,

5

N∑

k=0

λk
(p,j) = 1, λk

(p,j) ≥ 0, ∀p ∈ P and j ∈ ∆,

and λk
(p,j) 6= 0 for at most two consecutive indices k. Observe that g(p,j)(d) is a concave

nondecreasing function on the interval
[
0, d̃(p,j)

]
; therefore, its piecewise linear approxima-

tion, i.e., g̃(p,j)(λ(p,j)), preserves the same property. From the latter, it follows that in the

maximization problem the requirement on λk
(p,j) being positive for at most two consecutive

indices k can be removed from the formulation, and it is satisfied at optimality (for details

see Chapter 11, Bazaraa et al. [2], Beale and Tomlin [3], and Beale and Forrest [4]). The

following is the mathematical formulation of the approximation problem:

max
x,y,λ

∑
p∈P

∑
j∈∆

∑

k∈K

gk
(p,j)λ

k
(p,j) −

∑
p∈P

∑

i,j∈∆|i≤j

[
cin
(p,i,j) + cpr

(p,i)

]
x(p,i,j) −

∑
p∈p

∑
i∈∆

cst
(p,i)y(p,i),

∑
p∈P

∑

j∈∆|i≤j

x(p,i,j) ≤ Ci, ∀i ∈ ∆,

∑

j∈∆|i≤j

x(p,i,j) ≤ Ciy(p,i), ∀p ∈ P and i ∈ ∆,

∑

i∈∆|i≤j

x(p,i,j) =
∑

k∈K

dk
(p,j)λ

k
(p,j), ∀p ∈ P and j ∈ ∆,

N∑

k=0

λk
(p,j) = 1, ∀p ∈ P and j ∈ ∆,

x(p,i,j) ≥ 0, λk
(p,j) ≥ 0, y(p,i) ∈ {0, 1}, ∀p ∈ P, i, j ∈ ∆ and k ∈ K ∪ {0}.

Next, we simplify the formulation using nonnegative variables xk
(p,i,j), k ∈ K, instead

of x(p,i,j), where xk
(p,i,j) represents the amount of product p that is produced at time i and

sold at time j using the unit price gk
(p,j)/d

k
(p,j) = fk

(p,j) = f(p,j)(d
k
(p,j)). Doing so, the third

constraint in the above formulation can be replaced by the following one:

∑

i∈∆|i≤j

xk
(p,i,j) = dk

(p,j)λ
k
(p,j), ∀p ∈ P, j ∈ ∆ and k ∈ K.

The latter can be used to remove the variable λk
(p,j) from the formulation. In particular,

the fourth constraint is replaced by

∑

k∈K

∑

i∈∆|i≤j

xk
(p,i,j)

dk
(p,j)

≤
∑

k∈K

∑

i∈∆|i≤j

xk
(p,i,j)

dk
(p,j)

+ λ0
(p,j) = 1, ∀p ∈ P and j ∈ ∆,

6

and in the objective

gk
(p,j)λ

k
(p,j) = fk

(p,j)


 ∑

i∈∆|i≤j

xk
(p,i,j)


 ∀p ∈ P, j ∈ ∆ and k ∈ K.

The following is the resulting alternative formulation of the approximation problem, which

we refer to as ACMDP:

ACMDP :

max
x,y

∑
p∈P

∑
i∈∆


 ∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j) − cst

(p,i)y(p,i)




∑
p∈P

∑

j∈∆|i≤j

∑

k∈K

xk
(p,i,j) ≤ Ci, ∀i ∈ ∆, (1)

∑

j∈∆|i≤j

∑

k∈K

xk
(p,i,j) ≤ Ciy(p,i), ∀p ∈ P and i ∈ ∆, (2)

∑

k∈K

∑

i∈∆|i≤j

xk
(p,i,j)

dk
(p,j)

≤ 1, ∀p ∈ P and j ∈ ∆, (3)

xk
(p,i,j) ≥ 0, y(p,i) ∈ {0, 1}, ∀p ∈ P, i, j ∈ ∆ and k ∈ K, (4)

where qk
(p,i,j) = fk

(p,j) − cin
(p,i,j) − cpr

(p,i). Observe that at optimality x∗k(p,i,j) = 0 for all indices

such that qk
(p,i,j) ≤ 0, and those variables can be removed from the formulation. Therefore,

without lost of generality, in the analysis below, we assume that qk
(p,i,j) > 0.

Define X = {x|x ≥ 0 and xk
(p,i,j) are feasible to (1) and (3)} ⊂ R|P ||K||∆|

2

+ , and Y =

[0, 1]|P ||∆|. Consider the following bilinear program:

ACMDP −B :

max
x,y

∑
p∈P

∑
i∈∆


 ∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j) − cst

(p,i)


 y(p,i) = ϕ(x, y)

x ∈ X and y ∈ Y.

Theorem 1 Any local maximum of the ACMDP-B problem is feasible or can be trans-

formed into a feasible solution of the ACMDP problem with the same objective function

value.

7

Proof: Let (x∗, y∗) denote a local maximum of the ACMDP-B problem. Observe that by

fixing x to the value of the vector x∗, the ACMDP-B problem reduces to a linear one, and

y∗ is an optimal solution of the resulting problem. Assume that ∃p ∈ P and i ∈ ∆ such that

y∗(p,i) ∈ (0, 1), i.e., y∗(p,i) is a fractional number. If
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
∗k
(p,i,j) − cst

(p,i) < 0

or
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
∗k
(p,i,j) − cst

(p,i) > 0 then it is possible to improve the objective

function value by assigning y∗(p,i) = 0 or y∗(p,i) = 1, respectively. The latter contradicts the

optimality of (x∗, y∗). On the other hand, if
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
∗k
(p,i,j) − cst

(p,i) = 0 then

by changing the value of the variable y∗(p,i) to zero the objective function value remains

the same. Construct a vector ŷ, where ŷ(p,i) = by∗(p,i)c. Note that (x∗, ŷ) is feasible to

constraints (1), (3) and (4). If (x∗, ŷ) violates constraint (2) then ∃p ∈ P and i ∈ ∆ such

that
∑

j∈∆|i≤j

∑
k∈K x∗k(p,i,j) > 0 and ŷ(p,i) = 0. From the local optimality of (x∗, ŷ) it follows

that
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
∗k
(p,i,j) − cst

(p,i) ≤ 0, and it is not profitable to produce product p

at time i. Furthermore, by assigning x∗k(p,i,j) = 0, ∀j ∈ ∆ and k ∈ K, the objective function

value of the ACMDP-B problem remains the same. Let x̂ denote the resulting vector, i.e.,

x̂k
(p,i,j) =





0 if
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
∗k
(p,i,j) − cst

(p,i) ≤ 0

x∗k(p,i,j) if
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
∗k
(p,i,j) − cst

(p,i) > 0
(5)

The vector (x̂, ŷ) is feasible to the ACMDP as well as the ACMDP-B problem and has the

same objective function value as (x∗, y∗). ¥

Theorem 2 A global maximum of the ACMDP-B problem is a solution or can be trans-

formed into a solution of the ACMDP problem.

Proof: Observe that any feasible solution of the ACMDP is feasible to the ACMDP-B

problem. Furthermore, if (x, y) is feasible to the ACMDP problem then

∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j)−cst

(p,i)y(p,i) =


 ∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j) − cst

(p,i)


 y(p,i), ∀p ∈ P and i ∈ ∆.

From the latter it follows that the ACMDP-B problem can be obtained from ACMDP by

replacing the objective function by

max
x,y

∑
p∈P

∑
i∈∆


 ∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j) − cst

(p,i)


 y(p,i),

8

Procedure 1 :
Step 1: Let y0 denote an initial binary vector of y(p,i). m ← 1.

Step 2: Let xm = argmax{LP (ym−1)}, and ym = argmax{LP (xm)}.
Step 3: If ym = ym−1 then stop. Otherwise, m ← m + 1 and go to Step 2.

removing constraint (2) and relaxing the integrality of the variable y(p,i). In other words,

the ACMDP-B problem is a relaxation of the ACMDP problem. From Theorem 1 it follows

that a global solution of ACMDP-B is a solution (or can be transformed into a solution)

of the ACMDP problem. ¥
The above two theorems prove that solving the ACMDP problem is equivalent to finding

a global maximum of the ACMDP-B problem. In particular, one can solve the ACMDP-B

problem and if the solution is not feasible to the ACMDP problem, then use the method

described in the proof of Theorem 1 to construct a feasible one with the same objective

function value.

3 Solution Algorithm

In this section we discuss a heuristic algorithm for solving the ACMDP-B problem, which

employs a well known iterative procedure for finding a local maximum of the ACMDP-B

problem.

Observe that the problem belongs to the class of bilinear programs. By fixing vector

x or y to a particular value, the problem can be reduced to a linear one. Let LP (x) and

LP (y) denote the corresponding linear programs, i.e.,

LP (x) : max
y∈Y

∑
p∈P

∑
i∈∆

[∑
j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) − cst

(p,i)

]
y(p,i), and

LP (y) : max
x∈X

∑
p∈P

∑
i∈∆

∑
j∈∆|i≤j

∑
k∈K

[
qk
(p,i,j)y(p,i)

]
xk

(p,i,j).

Notice that the solution of the LP (x) is easy to obtain. In particular,

y∗(p,i) =





0 if
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) − cst

(p,i) ≤ 0

1 if
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) − cst

(p,i) > 0

is an optimal solution of the problem. The Procedure 1 describes a well known algo-

9

rithm, which starts from an initial binary vector and converges to a local maximum of the

ACMDP-B problem using a finite number of iterations (see [16] or [15]). However, the

procedure has the following disadvantage.

Let (xm, ym) represent the solution obtained on iteration m, and assume that ∃p ∈ P

and i ∈ ∆ such that ym
(p,i) = 0. As a result, in the LP (ym) problem qk

(p,i,j)y
m
(p,i) = 0, ∀j ∈ ∆,

i ≤ j, and k ∈ K, and perturbations of the values of the corresponding variables xk
(p,i,j)

do not change the objective function value. Furthermore, because the products “share”

the capacity and other products can have a positive cost in the LP (ym) problem, it is

likely that the value of the variable xmk
(p,i,j) decreases in the next iteration. From the latter

it follows that ym+1
(p,i) = 0. To summarize, if ym

(p,i) = 0 then it is likely that i) yn
(p,i) = 0,

∀n > m, and ii) the final solution is far from being a global one. To overcome those

difficulties, next we propose an approximate problem, which avoids having zero costs in

the objective of the LP (y) problem.

Let ϕ1
(p,i)(x(p,i)) =

∑
j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) − cst

(p,i) and

ϕ2
(p,i)(x(p,i)) =

ε(p,i)

ε(p,i) + cst
(p,i)

∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j),

where ε(p,i) > 0 and x(p,i) is the vector of xk
(p,i,j). It is easy to show that both functions

have the same value, ε(p,i), on the hyperplane
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) = ε(p,i) + cst

(p,i).

Furthermore, ϕ1
(p,i)(x(p,i)) > ϕ2

(p,i)(x(p,i)) if
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) > ε(p,i) + cst

(p,i) and

ϕ1
(p,i)(x(p,i)) < ϕ2

(p,i)(x(p,i)) if
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) < ε(p,i) + cst

(p,i). Define

ϕε(x, y) =
∑
p∈P

∑
i∈∆

[
ϕ1

(p,i)(x(p,i))y(p,i) + ϕ2
(p,i)(x(p,i))(1− y(p,i))

]

where ε denotes the vector of ε(p,i). The function ϕε(x, y) depends on the value of the vector

ε, and ϕε(x, y) ≥ ϕ(x, y), for all ε > 0 and (x, y) feasible to the ACMDP-B problem.

Observe that if ε → 0 then ϕ2
(p,i)(x(p,i)) → 0, and ϕε(x, y) → ϕ(x, y). In that sense,

ϕε(x, y) is an ε-approximation of ϕ(x, y), and it approximates the function from above.

By replacing the objective function of the ACMDP-B problem by the function ϕε(x, y), we

refer to the resulting problem as ε-approximation of the ACMDP-B problem and denote

by ACMDP-B(ε).

10

Theorem 3 There exists a sufficiently small ε > 0 such that a solution of the ACMDP-B

problem is a solution of the ACMDP-B(ε) problem.

Proof: Let (x∗, y∗) denote a vector solution of the ACMDP-B problem. As we have shown

in the proof of Theorem 1, (x̂, ŷ) is an alternative solution of the ACMDP-B problem,

where ŷ(p,i) = by∗(p,i)c and x̂ is computed according to the formula (5). Furthermore, from

the Theorem 2 it follows that (x̂, ŷ) is a solution of the ACMDP problem. Observe that

according to formula (5) for all p ∈ P and i ∈ ∆ either
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x̂
k
(p,i,j) > cst

(p,i)

or x̂k
(p,i,j) = 0, ∀k ∈ K, j ∈ ∆, i ≤ j. Let

ε̂ = min
p∈P,i∈∆





∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x̂

k
(p,i,j) − cst

(p,i)|
∑

j∈∆|i≤j

∑

k∈K

x̂k
(p,i,j) > 0



 .

It is easy to show that φε(x̂, ŷ) = φ(x̂, ŷ) ≤ φ(x, y) ≤ φε(x, y) for all (x, y) feasible to the

problem, where ε denotes the vector of ε(p,i) = ε̂. Therefore, (x̂, ŷ) is a solution of the

ACMDP-B(ε). ¥
Construct the corresponding LP ε(x) and LP ε(y) linear problems by fixing vectors x

and y in the ACMDP-B(ε) problem to a particular value, i.e.,

LP ε(x) : max
y∈Y

∑
p∈P

∑
i∈∆ ϕ1

(p,i)(x(p,i))y(p,i) + ϕ2
(p,i)(x(p,i))(1− y(p,i)), and

LP ε(y) : max
x∈X

∑
p∈P

∑
i∈∆

∑
j∈∆|i≤j

∑
k∈K qk

(p,i,j)

[
y(p,i) +

ε(p,i)

ε(p,i)+cst
(p,i)

(1− y(p,i))
]
xk

(p,i,j).

As before, the solution of the LP ε(x) problem is easy to obtain by assigning

y∗(p,i) =





0 if
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) − cst

(p,i) ≤ ε(p,i)

1 if
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) − cst

(p,i) > ε(p,i)

=





0 if ϕ1
(p,i)(x(p,i)) ≤ ϕ2

(p,i)(x(p,i))

1 if ϕ1
(p,i)(x(p,i)) > ϕ2

(p,i)(x(p,i))
.

The heuristic procedure (see Procedure 2) starts with a sufficiently large ε and finds a

local maximum of the resulting ε-approximation problem. If the stopping criteria is not

satisfied in Step 3 then it decreases the value of the vector ε to αε, where α is a constant

from the open interval (0, 1), and the process continues using a new ε-approximation prob-

lem. Observe that Procedure 2 uses vector ym from the previous iteration as an initial

11

Procedure 2 :
Step 1: Let ε(p,i) be a sufficiently large number, and y0 be such that y0

(p,i) = 1, ∀p ∈ P

and i ∈ ∆. m ← 0.

Step 2: Construct the ε-approximation problem ACMDP-B(ε) and run Procedure 1

to find a local maximum of the problem, where ym is an initial binary vector. Let

(xm+1, ym+1) denote the local maximum.

Step 3: If ∃p ∈ P and i ∈ ∆ such that
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
(m+1)k
(p,i,j) − cst

(p,i) ≤ εm
(p,i) and

∑
j∈∆|i≤j

∑
k∈K x

(m+1)k
(p,i,j) > 0 then ε ← αε, m ← m+1 and go to Step 2. Otherwise, stop.

Procedure 3 :
Assign xk

(p,i,j) = 0, ∀p ∈ P , i, j ∈ ∆, and k ∈ K

for all p ∈ P and i ∈ ∆ do

Ĉ = Ci, q̂k
(p,i,j) = qk

(p,i,j), qmax = max{q̂k
(p,i,j)d

k
(p,j)|k ∈ K, j ∈ ∆, j ≥ i}

while Ĉ 6= 0 and qmax 6= 0 do

Let jmax and kmax are such that qmax = q̂kmax

(p,i,jmax)d
kmax

(p,j) .

Assign xkmax

(p,i,jmax) = min{Ĉ, dkmax

(p,jmax)}, Ĉ = Ĉ−xkmax

(p,i,jmax), q̂k
(p,i,jmax) = 0, ∀k ∈ K, and

qmax = max{q̂k
(p,i,j)d

k
(p,j)|k ∈ K, j ∈ ∆, j ≥ i}

end while

ε(p,i) =
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) − cst

(p,i)

end for

vector. Let (x∗, y∗) denote the solution returned by the procedure. From the stopping

criteria it follows that for all p ∈ P and i ∈ ∆ either
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
∗k
(p,i,j) > cst

(p,i)

and y∗(p,i) = 1 or x∗k(p,i,j) = 0, ∀k ∈ K, j ∈ ∆, i ≤ j and y∗(p,i) = 0; therefore, x∗ and y∗ are

solutions of LP (y∗) and LP (x∗) problems, respectively. Because (x∗, y∗) solves those two

linear problems, and y∗ is a unique solution of LP (x∗), one concludes that it is a local

maximum of the ACMDP-B problem.

The procedure depends on two parameters: the initial vector ε and the value of α. The

value of ε(p,i) depends on parameters of the problem, and one can consider them equal to the

maximum profit, which can be obtained by producing only product p at time i. Although

12

such maximization problem is easy to solve using standard LP solvers, for large |P | and

|∆| one finds computationally expensive solving the problem for all pairs (p, i) ∈ P ×∆.

Instead, we propose an algorithm for finding the values of ε(p,i) (see Procedure 3). Observe

that xk
(p,i,j) ≤ dk

(p,j), and the maximum additional profit that can be obtained using the

variable xk
(p,i,j) is qk

(p,i,j)d
k
(p,j). Using this property, for all pairs (p, i) the procedure iteratively

finds the maximum among qk
(p,i,j)d

k
(p,j) and assigns the demand (or the remanning of the

capacity) to the corresponding variable xk
(p,i,j). The value of ε(p,i) is computed based on

the formula ε(p,i) =
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
k
(p,i,j) − cst

(p,i). As for the parameter α, a larger

value increases the computational time of the procedure, and it is likely to provide a better

solution.

4 Numerical Experiments

In this section we discuss numerical experiments conducted on randomly generated prob-

lems. The problems are solved by Procedure 1 as well as Procedure 2 using different values

for the parameter α. The latter procedure employs Procedure 3 to find an initial value for

the vector ε. In addition, we solve the problems by the MIP solver of CPLEX using the

ACMDP formulation. In the cases where the MIP solver is not able to solve large problems

within posted CPU and memory limitations, we compare the solutions of the procedures

with the best solutions found by CPLEX. The main purpose of the computations is the

performance of the procedures for different capacities.

In the numerical experiments we consider problem sets with different numbers of prod-

ucts, |P | = 5, 10, or 20, and time horizons, |∆| = 12 or 52. For each problem set we

randomly generate capacities for all i ∈ ∆ using the formula Ci = |P |U , where U is a ran-

dom number uniformly generated from interval [10, 100], [50, 150], [100, 200], or [150, 250].

Note that all intervals allow generating capacities that are tight at optimality with respect

to the revenue function discussed below. In addition, using term |P | one generates ca-

pacities that depend on the number of products. The latter allows comparing of results

13

across different numbers of products. As for the costs, we generate the production costs

cpr
(p,i) and the inventory costs cin

(p,i) for each product p and period i according to the uniform

distributions U [20, 40] and U [4, 8], respectively. Observe that on average the inventory

cost is equal to 20% of the production cost. Using cin
(p,i), the inventory cost between i and

j periods is computed based on the formula cin
(p,i,j) =

∑
i<r≤j cin

(p,r). Finally the setup cost

cst
(p,i) is generated uniformly from interval [600, 1000].

In the experiments we restrict ourself by considering only linear price functions of the

form f(p,j)(d) = fmax
(p,j) − (fmax

(p,j)/d
max
(p,j))d. To avoid generating functions that at optimality

result in unrealistically large profits, we introduce an index β, where

β =

∑
p∈P

∑
i∈∆

[∑
j∈∆|i≤j

∑
k∈K

(
fk

(p,j) − cin
(p,i,j) − cpr

(p,i)

)
x∗k(p,i,j) − cst

(p,i)y
∗
(p,i)

]

∑
p∈P

∑
i∈∆

[∑
j∈∆|i≤j

∑
k∈K(cin

(p,i,j) + cpr
(p,i))x

∗k
(p,i,j) + cst

(p,i)y
∗
(p,i)

] .

That is, the index measures the amount of the profit per unit of investment and it is com-

puted based on the optimal or the best solution provided by CPLEX. By generating fmax
(p,j)

and dmax
(p,j) according to the uniform distributions U [70, 90] and U [500, 1000], respectively, at

optimality i) β ∈ [0.7, 1.3], ii) all capacities considered above are tight, and iii) in most of

the cases the satisfied demand is less than d̃(p,j) (see Figure 1). In addition, the proposed

price function and distributions of the costs and capacities allow generating problems that

have an optimal objective function value ranging from hundreds of thousands to several

millions. Finally, in the construction of the piecewise linear approximation of the revenue

function we use N = 10.

The model is constructed using the GAMS environment and solved by CPLEX 9.0 with

a CPU restriction of 2000 sec. and a memory restriction of 2Gb, where the latter is the

memory that is required to store the tree in the branch-and-bound algorithm. Compu-

tations are made on a Unix machine with dual Pentium 4 3.2Ghz processors and 6GB of

memory. The results are tabulated in the Appendix.

In the experiments we solve 10 randomly generated problems for each problem set

and capacity. Tables 1 and 2 compare the results provided by CPLEX with the solutions

14

provided by both procedures. The relative error is computed using the formula

RE(%) =
ObjCPLEX −ObjProc.2(1)

ObjCPLEX

100.

In the Table 1, column A indicates the number of problems where the heuristic procedure

finds a better solution than CPLEX. Note that CPLEX is able to provide an exact solution

for all capacities from the problem set 5-12. In all other cases, the solver stops after

reaching the CPU limit or the memory limit and returns the best found solution. Although

the relative optimality gap of the final solutions of those problem sets varies from 2% to

5%, we believe that the solution is an optimal or close to an optimal one, and the large

optimality gap is due to imperfect lower bounds. The fact that the heuristic procedures

provide a slightly better solution in the case with |∆| = 52 than |∆| = 12 partially confirms

our assumptions.

The relative errors in the Table 1 confirms the effectiveness of the heuristic procedure.

In particular, in the majority of the problems the heuristic algorithm is able to provide

a solution within 1% from the optimal one or the best one provided by CPLEX. Observe

that the larger value of α provides a better solution and the number of problems where

the heuristic procedure finds a better solution than CPLEX is increasing with the size of

the problem. By comparing with the solutions provided by Procedure 1 (see Table 2) one

notices that Procedure 2 outperforms the Procedure 1, and it is more stabile to the changes

in the capacities. As for the CPU time (see Table 3), the heuristic procedures require less

resources than CPLEX. In addition, unlike CPLEX the heuristic procedures do not require

gigabytes of memory to store the tree.

5 Concluding Remarks

We have discussed a bilinear reduction scheme for the capacitated multi-item dynamic

pricing problem, where solving the latter is equivalent to finding a global solution of the

former. Based on theoretical results of the reduction problem, two procedures have been

proposed to find a global maximum of the problem. The first one is a well known technique

15

and has been intensively used to solve other bilinear problems. Because of the reasons dis-

cussed in Section 3, in the very beginning of the iterative process the procedure eliminates

some products from the further consideration. The latter worsen the quality of the solution

returned by the procedure. In the second procedure we construct approximate problems

and gradually decrease parameters of the problems. As a result, during the iterative pro-

cess the costs of the eliminated products remain positive and the procedure considers them

again if need be. Although the second procedure requires more CPU time to stop than the

first one, it provides a higher-quality solution.

The discussed technique can be easily applied to other pricing problems with a different

pricing policy, e.g., a discounting policy, or a problem with backlogging. In addition,

the technique can be applied to other production planning or supply chain management

problems with additional restrictions on the feasible region.

6 Acknowledgements

The authors would like to thank Prof. L. A. Wolsey and Prof. J. P. Geunes for their

suggestions on the generated test problems and useful discussion during the course of this

research.

16

APPENDIX: Computational Results

Table 1: The Quality of the Solution: Procedure 2.

CPLEX Procedure 2 using Procedure 3 to find vector ε

α = 1/2 α = 2/3 α = 9/10

|P |-|∆| Ci β Obj Obj RE% A Obj RE% A Obj RE% A

5-12 [10,100] 1.02 132,803 131,206 1.19 - 131,312 1.11 - 131,612 0.88 -

[50,150] 0.95 216,831 215,562 0.58 - 215,956 0.40 - 215,992 0.39 -

[100,200] 0.86 283,494 282,418 0.38 - 282,752 0.26 - 282,913 0.20 -

[150,250] 0.76 320,602 319,325 0.39 - 319,501 0.34 - 319,518 0.34 -

5-52 [10,100] 1.03 543,397 537,588 1.07 - 538,182 0.97 - 539,264 0.76 -

[50,150] 0.96 910,778 906,211 0.50 - 907,304 0.38 1 909,156 0.18 3

[100,200] 0.88 1,209,347 1,206,840 0.21 - 1,208,155 0.10 2 1,208,461 0.07 2

[150,250] 0.78 1,378,794 1,375,431 0.25 - 1,376,059 0.20 - 1,377,227 0.11 1

10-12 [10,100] 1.13 246,410 243,290 1.29 - 244,268 0.87 - 244,754 0.70 -

[50,150] 0.98 420,000 417,032 0.70 - 417,034 0.70 - 418,337 0.40 -

[100,200] 0.98 563,297 562,049 0.22 1 562,286 0.18 - 562,665 0.11 2

[150,250] 0.84 648,362 646,240 0.33 - 646,187 0.33 1 646,875 0.23 2

10-52 [10,100] 1.06 1,142,132 1,132,292 0.87 - 1,134,630 0.65 - 1,136,369 0.51 -

[50,150] 0.98 1,878,849 1,872,771 0.32 - 1,873,833 0.27 - 1,877,128 0.09 1

[100,200] 0.98 2,470,661 2,466,989 0.15 - 2,469,474 0.05 3 2,470,966 -0.01 7

[150,250] 0.77 2,799,250 2,796,396 0.10 1 2,798,049 0.04 3 2,798,808 0.02 5

20-12 [10,100] 1.08 542,549 537,346 0.95 - 539,210 0.61 - 539,754 0.51 -

[50,150] 1.00 881,231 875,963 0.59 - 877,176 0.46 - 878,836 0.27 -

[100,200] 1.00 1,152,475 1,149,701 0.24 - 1,150,268 0.19 - 1,150,967 0.13 -

[150,250] 0.79 1,305,170 1,301,587 0.28 - 1,302,134 0.24 1 1,302,963 0.17 3

20-52 [10,100] 1.08 2,303,214 2,285,508 0.77 - 2,286,716 0.71 - 2,292,545 0.46 -

[50,150] 1.00 3,791,838 3,776,768 0.40 - 3,780,310 0.31 - 3,787,192 0.12 1

[100,200] 1.00 4,993,056 4,983,599 0.19 - 4,987,746 0.11 - 4,992,368 0.01 3

[150,250] 0.79 5,671,140 5,661,338 0.17 - 5,666,816 0.08 - 5,669,574 0.03 3

A - Number of problems where the heuristic procedure provides a better solution than CPLEX.

17

Table 2: The Quality of the Solution: Procedure 1.

CPLEX Procedure 1

|P |-|∆| Ci β Obj Obj RE%

5-12 [10,100] 1.02 132,803 123,747 6.84

[50,150] 0.95 216,831 208,976 3.65

[100,200] 0.86 283,494 278,342 1.82

[150,250] 0.76 320,602 315,969 1.45

5-52 [10,100] 1.03 543,397 498,503 8.27

[50,150] 0.96 910,778 873,749 4.08

[100,200] 0.88 1,209,347 1,183,319 2.16

[150,250] 0.78 1,378,794 1,357,718 1.53

10-12 [10,100] 1.13 246,410 226,538 8.11

[50,150] 0.98 420,000 403,360 3.96

[100,200] 0.98 563,297 553,278 1.78

[150,250] 0.84 648,362 641,389 1.08

10-52 [10,100] 1.06 1,142,132 1,059,695 7.24

[50,150] 0.98 1,878,849 1,811,766 3.58

[100,200] 0.98 2,470,661 2,425,802 1.82

[150,250] 0.77 2,799,250 2,765,560 1.20

20-12 [10,100] 1.08 542,549 504,771 6.97

[50,150] 1.00 881,231 850,308 3.51

[100,200] 1.00 1,152,475 1,133,555 1.64

[150,250] 0.79 1,305,170 1,292,068 1.01

20-52 [10,100] 1.08 2,303,214 2,139,837 7.11

[50,150] 1.00 3,791,838 3,658,202 3.53

[100,200] 1.00 4,993,056 4,900,879 1.85

[150,250] 0.79 5,671,140 5,601,932 1.22

18

Table 3: The CPU time of the procedures.

CPLEX Procedure 2 Procedure 1

α = 1/2 α = 2/3 α = 9/10

|P |-|∆| Ci CPU CPU A B CPU A B CPU A B CPU A

5-12 [10,100] 335 0.52 641 4.7 0.78 432 6.7 1.78 188 21.1 0.19 1,811

[50,150] 1,113 0.71 1,570 5.1 0.83 1,341 7.4 2.29 486 25.2 0.20 5,621

[100,200] 1,580 0.60 2,656 5.3 0.84 1,886 7.6 2.55 617 25.1 0.26 6,148

[150,250] 559 0.74 752 5.5 0.96 583 9.2 3.10 180 36.7 0.21 2,651

5-52 [10,100] 821 10.96 75 5.0 14.98 55 7.3 40.97 20 24.1 3.77 218

[50,150] 348 12.73 27 5.5 18.42 19 8.3 52.06 7 27.4 4.82 72

[100,200] 391 15.86 25 5.8 19.06 20 8.9 56.01 7 29.7 5.79 67

[150,250] 596 12.71 47 6.5 28.51 21 19.7 60.43 10 39.7 3.23 185

10-12 [10,100] 820 1.19 688 5.3 1.64 500 8.0 4.27 192 25.1 0.39 2,096

[50,150] 748 1.24 602 5.8 1.87 401 8.8 5.48 137 28.3 0.42 1,802

[100,200] 802 1.35 594 5.8 2.05 392 8.5 5.77 139 26.6 0.44 1,814

[150,250] 660 1.47 449 6.8 2.16 306 11.0 5.30 124 25.7 0.43 1,542

10-52 [10,100] 376 24.54 15 5.9 35.42 11 8.7 103.82 4 28.6 8.30 45

[50,150] 324 25.69 13 6.0 39.51 8 9.4 115.94 3 30.8 10.19 32

[100,200] 408 27.19 15 5.8 39.98 10 8.8 118.08 3 29.3 11.89 34

[150,250] 327 26.34 12 6.0 37.67 9 8.8 107.77 3 28.7 7.16 46

20-12 [10,100] 857 2.51 341 6.0 3.69 232 8.8 10.82 79 28.8 0.85 1,005

[50,150] 657 2.72 242 6.0 4.21 156 9.4 12.72 52 30.6 0.92 717

[100,200] 633 3.07 206 6.0 4.00 158 8.6 12.05 53 29.0 0.93 684

[150,250] 675 2.75 246 5.7 4.04 167 8.5 10.72 63 26.7 0.77 873

20-52 [10,100] 890 52.02 17 6.0 76.74 12 9.2 237.57 4 30.9 17.38 51

[50,150] 750 55.27 14 6.1 86.82 9 9.7 256.99 3 31.4 28.64 26

[100,200] 756 58.04 13 6.3 84.78 9 9.0 248.12 3 29.3 33.31 23

[150,250] 785 57.70 14 5.7 77.98 10 8.7 236.52 3 28.2 14.11 56

A= CPUCPLEX/CPUProc

B - average number of iteration in Procedure 2.

19

References

[1] Barr R, Glover F, Klingman D. A New Optimization Method for Large Scale Fixed

Charge Transportation Problems. Operations Research 1981;29:448-463.

[2] Bazaraa M, Sherali H, Shetty C. Nonlinear Programming: Theory and Algorithms,

2-nd Edition, New York: Wiley, 1993.

[3] Beale E, Tomlin J. Special Facilities in a General Mathematical Programming System

for Nonconvex Problems Using Order Sets of Variables, in: J. Lawrence ed., Proceed-

ings of the Fifth International Conference on Operational Research, London, 1970.

[4] Beale E, Forrest J. Global Optimization Using Special Order Sets. Mathematical Pro-

gramming 1973;10:52-69.

[5] Bertsekas D, Lauer G, Sandell N, Posbergh T. Optimal Short-Term Scheduling of

Large-Scale Power Systems. IEEE Transactions on Automatic Control 1983;28:1-11.

[6] Cabot A, Erenguc S. Some Branch-and-Bound Procedures for Fixed-Cost Transporta-

tion Problems. Naval Researcg Logistics Quarterly 1984;31:145-154.

[7] Cooper L, Drebes C. An Approximate Solution Method for the Fixed Charge Problem.

Naval Research Logistics Quarterly 1967;14:101-113.

[8] Diaby M. Successive Linear Approximation Procedure for Generalized Fixed-Charge

Transportation Problem. Journal of the Operations Research Society 1991;42:991-

1001.

[9] Florian M, Klein M. Deterministic Production Planning with Concave Costs and Ca-

pacity Constraints. Management Science 1971;18:12-20.

[10] Geunes J, Romeijn E, Taaffe K. Requirements Planning with Pricing and Order Se-

lection Flexibility. Operations Research 2006;54:394-401.

20

[11] Gilbert S. Coordination of Pricing and Multi-Period Production for Constant Priced

Goods. European Journal of Operational Research 1999;114:330-337.

[12] Gray P. Exact Solution for the Fixed-Charge Transportation Problem. Operations

Research 1971;19:1529-1538.

[13] van Hoesel C, Wagelmans A. Fully Polynomial Approximation Schemes for Single-

Item Capacitated Economic Lot-Sizing Problems. Mathematics of Operations Re-

search 2001;26:339-357.

[14] van Hoesel C, Wagelmans A. An O(T 3) Algorithm for the Economic Lot-Sizing Prob-

lem with Constant Capacities. Management Science 1996;42:142-150.

[15] Horst R, Pardalos P, Thoai N. Introduction to global optimization, 2-nd Edition,

Boston: Springer, 2000.

[16] Horst R, Tuy H. Global Optimization, 3-rd Edition, New York: Springer, 1996.

[17] Kennington J, Unger V. A New Branch-and-Bound Algorithm for the Fixed Charge

Transportation Problem. Management Science 1976;22:1116-1126.

[18] Khang D, Fujiwara O. Approximate Solution of Capacitated Fixed-Charge Minimum

Cost Network Flow Problems. Networks 1991;21:689-704.

[19] Kim D, Pardalos P. A Solution Approach to the Fixed Charged Network Flow

Problems Using a Dynamic Slope Scaling Procedure. Operations Research Letters

1999;24:195-203.

[20] Kim D, Pardalos P. Dynamic Slope Scaling and Trust Interval Techniques for Solving

Concave Piecewise Linear Network Flow Problems. Networks 2000;35:216-222.

[21] Konno H. A Cutting Plane Algorithm for Solving Bilinear Programs. Mathematical

Programming 1976;11:14-27.

21

[22] Kuhn H, Baumol W. An Approximate Algorithm for the Fixed Charge Transportation

Problem. Naval Research Logistics Quarterly 1962;9:1-15.

[23] Loparic M, Marchand H, Wolsey L. Dynamic Knapsack Sets and Capacitated Lot-

Sizing. Mathematical Programming 2003;B95:53-69.

[24] Loparic M, Pochet Y, Wolsey L, The Uncapacitated Lot-Sizing Problem with Sales

and Safety Stocks. Mathematical Programming 2001;A89:487-504.

[25] Marchand H, Martin A, Weismantel R, Wolsey L. Cutting Planes in Integer and Mixed

Integer Programming. Discrete Applied Mathematics 2002;123:397-446.

[26] Miller A, Wolsey L. Tight Formulations for Some Simple Mixed Integer Programs and

Convex Objective Integer Programs. Mathematical Programming 2003;B98:73-88.

[27] Nahapetyan A, Pardalos P. A Bilinear Relaxation Based Algorithm for Concave Piece-

wise Linear Network Flow Problems. To appear in the Journal of Industrial and Man-

agement Optimization.

[28] Nahapetyan A, Pardalos P. Adaptive Dynamic Cost Updating Procedure for Solving

Fixed Charge Network Flow Problems. To appear in the Computational Optimization

and Applications.

[29] Palekar U, Karwan M, Zionts S. A Branch-and-Bound Method for Fixed Charge Trans-

portation Problem. Management Science 1990;36:1092-1105.

[30] Pochet Y, Wosley L. Algorithms and Reformulations for Lot-Sizing Problems, Com-

binatorial Optimization, DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, Vol 20, Providence, 1995.

[31] Sherali H, Shetty C. A Finitely convergent Algorithm for Bilinear Programming

Problems Using Polar Cuts and Disjunctive Face Cuts, Mathematical Programming

1980;19:14-31.

22

[32] Thomas J. Price-Production Decisions with Deterministic Demand. Management Sci-

ence 1970;16:747-750.

[33] Wolsey L. Solving Multi-Item Lot-Sizing Problems with an MIP Solver Using Classi-

fication and Reformulation. Management Science 2002;48:1587-1602.

23

Figure Captions

d

()df jp),(

max

),(jpf

A linear function

A quadratic function

max

),(jpd d

()dg jp),(

max

),(jpd),(

~
jpd

Figure 1: The price and the revenue functions.

24

