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Abstract 

This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome 

representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the 

priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach 

was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results 

validate the effectiveness of the proposed algorithm. 
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1. Introduction 

 
The Resource Constrained Project Scheduling Problem (RCPSP) can be stated as follows. A project consists of n 2 

activities where each activity has to be processed in order to complete the project. Let J  0, 1 , . . . ,  n,n  1  denote 

the set of activities to be scheduled and K   1 , . . . ,  k  the set of resources. Activities 0 and n    1 are dummies, have 

no duration, and represent the initial and final activities. The activities are interrelated by two kinds of constraints: 

 

(1) precedence constraints force each activity j to be scheduled after all predecessor activities Pj are completed; 

(2) activities require resources with limited capacities. 

 

While being processed, activity j requires rj,k units of resource type k K during every time instant of its non- 

preemptable duration dj . Resource type k has a limited capacity of Rk at any point in time. The parameters dj , rj,k , 

and Rk are assumed to be integer, non-negative, and deterministic. For the project start and end activities, we have  

d0    dn+1    0 and r0,k     rn+1,k     0, for all k     K. The problem consists in finding a schedule of the activities, taking 

into account the resources and the precedence constraints, that minimizes the makespan Cmax. 
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Fig. 1. Project network example. Activities are represented as boxes and precedences by directed arcs. Parameters dj/rj,1/rj,2 are given for each 

activity j. 

 
 

 

 

Fig. 2. Feasible schedule with an optimal makespan of 15 for the project network example of Fig. 1. 

 
 

Let Fj represent the finish time of activity j. A schedule can be represented by a vector of finish times (F1 , .. . ,  Fm , . .. ,  
Fn 1). Fig. 1 shows an example of a project comprising n 6 activities which have to be scheduled, subject to two 

renewable resource types with a capacity of four and two units, respectively. A feasible schedule with an optimal 

makespan of 15 time-periods is represented in Fig. 2. 

Several exact methods to solve the RCPSP are proposed in the literature. Currently, the most competitive exact 

algorithms seem to be the ones of Demeulemeester and Herroelen [1], Brucker et al. [2], Klein and Scholl [3,4], 

Mingozzi et al. [5], and Sprecher [6]. Stork and Uetz [7] present several complexity results related to generation and 

counting of all circuits of an independence system, and study their relevance in the solution of RCPSP. 

It has been shown by Blazewicz et al. [8] that the RCPSP, as a generalization of the classical job shop scheduling 

problem, belongs to the class of NP-hard optimization problems, therefore justifying the use of heuristics when solving 

large problem instances. 

Several authors propose procedures for computing lower bounds on the makespan. Demassey et al. [9] propose     

a cooperation method between constraint programming and integer programming. Brucker and Knust [10] present    

a destructive lower bound for the multi-mode resource-constrained project scheduling problem with minimal and 

maximal time-lags. Brucker and Knust [11] developed a destructive lower bound for the RCPSP, where the lower 

bound calculations are based on two methods for proving infeasibility of a given threshold value for the makespan. 

The first uses constraint propagation techniques, while the second is based on a linear programming formulation. 



 

 

Most of the heuristics methods used for solving resource-constrained project scheduling problems either belong   

to the class of priority rule based methods or to the class of metaheuristic based approaches [12]. The first class of 

methods starts with none of the jobs being scheduled. Subsequently, a single schedule is constructed by selecting a 

subset of jobs in each step and assigning starting times to these jobs until all jobs have been considered. This process 

is controlled by the scheduling scheme as well as priority rules with the latter being used for ranking the jobs. Several 

approaches of this class have been proposed in the literature, e.g. [12–22]. The second class of methods improves upon 

an initial solution. This is done by successively executing operations which transform one or several solutions into 

others. Several approaches of this class have been proposed in the literature, e.g. genetic algorithms [23–32], simulated 

annealing [33–35], tabu search [36–40], local search-oriented approaches [41,42], and population-based approaches 

[30,43]. 

Some surveys are provided by Icmeli et al. [44], Herroelen et al. [45], Brucker et al. [46], Klein [47], Kolisch and 

Hartmann [12], Hartmann and Kolisch [48], Kolisch and Padman [49], and Demeulemeester and Herroelen [50]. Kolisch 

and Hartmann [51] and Brucker and Knust [52] present models and algorithms for complex scheduling problems and 

discuss the RCPSP. 

In this paper, we present a new genetic algorithm for finding cost-effective solutions for the RCPSP. The remainder 

of the paper is organized as follows. Section 2 presents the different classes of schedules. In Section 3, we present 

our hybrid approach to solve the RCPSP: genetic algorithm and schedule generation procedure. Section 4 reports 

computational results, and concluding remarks are made in Section 5. 

 
2. Types of schedules 

 
Schedules can be classified into one of the following three types of schedules: 

 
(1) Semi-active schedules. These are feasible schedules obtained by sequencing activities as early as possible. In a 

semi-active schedule, no activity can be started earlier without altering the processing sequences. 

(2) Active schedules. These are feasible schedules in which no activity could be started earlier without delaying some 

other activity or breaking a precedence constraint. Active schedules are also semi-active schedules. An optimal 

schedule is always active, so the search space can be safely limited to the set of all active schedules. 

(3) Non-delay schedules. These are feasible schedules in which no resource is kept idle when it could start processing 

some activity. Non-delay schedules are active and hence are also semi-active. 

 

Later in this paper we extend the use of parameterized active schedules as proposed in Gonçalves and Beirão [53] and 

Gonçalves et al. [54]. This type of schedule consists of schedules in which no resource is kept idle for more than a 

predefined period if it could start processing some activity. If the predefined period is set to zero, then we obtain a 

non-delay schedule. The basic concepts of this type of schedule are presented in the next section. 

 
2.1. Parameterized active schedules 

 
As mentioned above, the optimal schedule is in the set of all active schedules. However, the set of active schedules 

is usually very large and contains many schedules with relatively large delay times, hence with poor quality in terms 

of makespan. To reduce the solution space and to control the delay times, we use the concept of parameterized active 

schedules. 

Fig. 3 illustrates where the set of parameterized active schedules is located relative to the class of semi-active, active, 

and non-delay schedules. By controlling the maximum delay time allowed, one can reduce or increase the size of  

the solution space. A maximum delay time equal to zero is equivalent to restricting the solution space to non-delay 

schedules. Section 3.2 presents the pseudo-code to generate parameterized active schedules. 

 
3. New approach 

 
The new approach combines a genetic algorithm and a schedule generator procedure that generates parameterized 

active schedules and a novel measure of merit that computes a modified makespan value which is used as fitness measure 
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Fig. 3. Parameterized active schedules for different values of the delay time. 

 

 

 

Fig. 4. Architecture of the new approach. 

 

 
(quality measure) of feedback to the genetic algorithm. The genetic algorithm evolves the chromosomes which represent 

the priorities of the activities and delay times. For each chromosome the following two phases are applied: 

 

(1) Decoding of priorities, delay times. This phase is responsible for transforming the chromosome supplied by the 

genetic algorithm into the priorities of the activities and delay times. 

(2) Schedule generation. This phase makes use of the priorities and the delay times defined in the first phase and 

constructs parameterized active schedules. 

 

After a schedule is obtained, the corresponding measure of quality (modified makespan) is feedback to the genetic 

algorithm. Fig. 4 illustrates the sequence of steps applied to each chromosome generated by the genetic algorithm. 

Details about each of these phases will be presented in the next sections. 
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3.1. Genetic algorithm 

 
Genetic algorithms are adaptive methods, which may be used to solve search and optimization problems [55]. Before 

a genetic algorithm can be run, a suitable encoding (or representation) for the problem must be devised. A fitness function 

is also required, which assigns a figure of merit to each encoded solution. During the execution of the algorithm, parents 

must be selected for reproduction, and recombined to generate offspring. 

It is assumed that a potential solution to a problem may be represented as a set of parameters. These parameters 

(known as genes) are joined together to form a string of values (chromosome). The set of parameters represented by a 

particular chromosome is referred to as an individual. The fitness of an individual depends on its chromosome and is 

evaluated by the fitness function. 

The individuals, during the reproductive phase, are selected from the population and recombined, producing offspring, 

which comprise the next generation. Parents are randomly selected from the population using a scheme, which favors 

fitter individuals. Having selected two parents, their chromosomes are recombined, typically using mechanisms of 

crossover and mutation. Mutation is usually applied to some individuals to guarantee population diversity. 

 

3.1.1. Chromosome  representation 

The genetic algorithm described in this paper uses a random-key alphabet which is comprised of real random 

numbers between 0 and 1. The evolutionary strategy used is similar to the one proposed by Bean [56], the main 

difference occurring in the crossover operator. The important feature of random keys is that all offspring formed by 

crossover are feasible solutions. This is accomplished by moving much of the feasibility issue into the objective function 

evaluation. If any random-key vector can be interpreted as a feasible solution, then any crossover vector is also feasible. 

Through the dynamics of the genetic algorithm, the system learns the relationship between random-key vectors and 

solutions with good objective function values. 

A chromosome represents a solution to the problem and is encoded as a vector of random keys. In a direct repre- 

sentation, a chromosome represents a solution of the original problem, and is called genotype, while in an indirect 

representation it does not and special procedures are needed to derive a solution from it called phenotype. 

In the present context, the direct use of schedules as chromosomes is too complicated to represent and manipulate. In 

particular, it is difficult to develop corresponding crossover and mutation operations. Instead, solutions are represented 

indirectly by parameters that are later used by a schedule generator to obtain a solution. To obtain the solution, we use 

the parameterized active schedule generator described in Section 3.2. 

Each solution chromosome is made of 2n genes, where n is the number of activities. 

 

  

 

The first n genes are used to determine the priority of each of the n activities. The genes between n  1 and 2n are used 

to determine the delay times used at each of the n iterations of the scheduling procedure. 

 

3.1.2. Decoding the priorities of the activities 

In an earlier version of the algorithm, the priorities of the activities were given directly by the genetic algorithm, i.e. 

 

 

Though this approach worked quite well, we conjectured that it could be improved if we could somehow provide the 

genetic algorithm with information about the structure of the problem. The priority decoding expression used in the 

current version of the algorithm combines what we consider the ideal priority under infinite capacity and a factor that 

corrects this value to account for the real resource load and capacity availability. For the ideal priority under  infinite 

capacity we use the term LLPj/LCP, where LLPj is the longest-length path from the beginning of activity j to the end 

of the project and LCP is length along the critical path of the project. It is clear that 0 � LLPj/LCP � 1. 



 

+ 

+ 

] [ 

+ + 

= 

+ = 

+ = 

 

The factor that adjusts the priority to account for capacity is given by (1 genej)/2. Therefore, the final decoding 

expression is given by 

 

  

 

3.1.3. Decoding the delay times 

The genes between positions n + 1 and 2n are used to determine the delay times used when scheduling an activity. 

The delay time delayg used by each scheduling iteration g is given by 

 

 

where maxDur is the maximum duration of all activities. The factor 1.5 was obtained after some experimental tuning. 

 
3.1.4. Fitness function 

Different schedules can have the same value of the makespan. However, the potential for improvement of schedules 

with the same makespan value might not be the same. To differentiate the potential for improvement between schedules 

having the same makespan we developed a new measure of fitness, that we call modified makespan. 

The modified makespan combines the makespan of the schedule with a measure of the potential for improvement 

of the schedule. This measure of potential for improvement of the schedule will have values in the interval 0, 1 . The 

rationale for this new measure is that if we have two schedules with the same makespan value, then the one with a 

smaller number of activities ending close to the makespan will have more potential for improvement. 

To define the modified makespan, we introduce the concept of the distance of one activity to the final activity (activity 

n  1). The distance dist(j) of activity j to activity n  1 is equal to the number of activities in the path connecting   

them that has the smallest number of activities, including activity j and excluding activity n   1. 

The modified makespan of distance L is given by 

  

       

 

Note that when L 0, we get a modified makespan equal to the usual makespan. We will use the project network 

example given in Fig. 1 and the schedule presented in Fig. 2 to illustrate the calculation of the modified makespan. The 

distances of activities 1–6 are 
 

The makespan of the project is 15 (see Fig. 2). The modified makespan of distance L = 1 is 

15 
(15 + 11) 

15.867. 
(15 + 15) 

The modified makespan of distance L = 2 is 

15 
(15 + 11) + (6 + 10) 

15.7.
 

(15 + 15) + (15 + 15) 

3.1.5. Evolutionary strategy 

To breed good solutions, the random-key vector population is operated upon by a genetic algorithm. Many variations 

of genetic algorithms can be obtained by varying the reproduction, crossover, and mutation operators. The reproduction 

and crossover operators determine which parents will have offspring, and how genetic material is exchanged between 

the parents to create those offspring. Reproduction and crossover operators tend to increase the quality of the popula- 

tions and force convergence. Mutation opposes convergence since it allows for random alteration of genetic material. 
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Fig. 5. Example of parameterized uniform crossover with crossover probability equal to 0.7. For each gene, a random number in the interval 0, 1 

is generated. With probability 0.7 the offspring inherits the gene of Chromosome 1 and with probability 0.3, it inherits the one of Chromosome 2. 

 

 

 

Given a current population, we perform the following three steps to obtain the next generation: 

 
(1) Reproduction. Some of the best individuals are copied from the current generation into the next (see TOP in  

Fig. 6). This strategy is called elitist [57] and its main advantage is that the best solution is monotonically improving 

from one generation to the next. However, it can lead to a rapid population convergence to a local minimum. 

Nevertheless, this can be overcome by using high mutation rates as described below. 

(2) Crossover. Regarding the crossover operator, parameterized uniform crossovers [58] are used as opposed to the 

traditional one-point or two-point crossover. Two individuals are randomly chosen to act as parents. One of the 

parents is chosen amongst the best individuals in the population (TOP in Fig. 6), while the other is randomly chosen 

from the whole current population (including TOP). For each gene, a real random number in the interval 0, 1 is 

generated. If the random number obtained is smaller than a threshold value, called crossover probability (CProb), 

for example 0.7, then the allele of the first parent is used. Otherwise, the allele used is that of the second parent. 

An example of a crossover outcome is given in Fig. 5. 

(3) Mutation. In this scheme, mutation is used in a broader sense than usual. The operator we define acts like a 

mutation operator and its purpose is to prevent premature convergence of the population. Instead of performing 

gene-by-gene mutation, with very small probability at each generation, we introduce some new individuals into 

the next generation (see BOT in Fig. 6). These new individuals (mutants) are randomly generated from the same 

distribution as the original population and thus, no genetic material of the current population is brought in. This 

process prevents premature convergence of the population, like in a mutation operator, and leads to a simple 

statement of convergence, i.e. if a sufficiently large number of generations is carried out, then the entire solution 

space will be sampled. 

 

Fig. 6 depicts the transitional process between two consecutive generations. 

The initial population is randomly generated. However, to ensure that some non-delay solutions are included in the 

initial population, we changed the corresponding delay genes of some chromosomes to zero to make the delay equal 

to zero, i.e. non-delay. The percentage of non-delay chromosomes in the initial population was set to 25% after some 

experimentation on a small set of problems. 

 

3.2. Schedule generation procedure 

 
The procedure used to construct parameterized active schedules is based on a scheduling generation scheme that 

does time incrementing. For each iteration g, there is a scheduling time tg . The active set comprises all activities which 
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Fig. 6. Transitional process between consecutive generations. Current population is sorted from best to worst fitness. Top (TOP) individuals from 

current population are copied unchanged to next population. Bottom (BOT) individuals in next population are randomly generated. The remaining 

individuals are generated by applying crossover operator to randomly selected individual from TOP individuals of current population and randomly 

selected individual from the entire current population. 

 

 

are active at tg , i.e 

 

The remaining resource capacity of resource k at instant time tg is given by 

 

 

Sg comprises all activities which have been scheduled up to iteration g, and Fg comprises the finish times of the 

activities in Sg . Let delayg be the delay time associated with iteration g, and let Eg comprise all activities which are 
precedence feasible in the interval [tg, tg + delayg ], i.e. 

 

The algorithmic description of the scheduling generation scheme used to generate parameterized active schedules is 

shown in the pseudo-code in Fig. 7. The makespan of the solution is given by the maximum of all predecessor activities 

of activity n     1, i.e. Fn   1     max Fl  l     Pn   1  . 

The basic idea of parameterized active schedules is incorporated in the selection step of the procedure, 

 

 

The set Eg is responsible for forcing the selection to be made only amongst activities which will have a delay smaller 

or equal to the maximum allowed delay. The parameters PRIORITYj and delayg (priority of activity j and delays used 

at each g) are supplied by the genetic algorithm. 

For nGen generations this procedure generates 

 

 

parameterized active schedules, where nCrom is the number of chromosomes and TOP is the percentage of previous 

population copied to the next generation. 
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Fig. 7. Pseudo-code of parametrized active schedule construction procedure. 

 

 
 

4. Computational experiments 

 
This section presents results of the computational experiments done with the algorithm proposed in this paper. We 

call this algorithm GAPS (Genetic Algorithm for Project Scheduling). The algorithm was implemented in Visual Basic 

6.0 and the tests were carried out on a computer with a 1.333 GHz AMD Thunderbird CPU on the MS Windows Me 

operating system. 

To illustrate its effectiveness, we consider a total of 1560 instances from three classes of standard RCPSP test 

problems: J30 (480 instances each with 30 activities), J60 (480 instances each with 60 activities), and J120 (600 instances 

each with 120 activities). All problem instances require four resource types. Instance details are described by Kolisch 

et al. [59]. The modified makespan with distance L    2 was used because it gave the best results in a small pilot test. 

The proposed algorithm is compared with the following algorithms: 

 
(1) Local search-oriented approaches: 

Fleszar and Hindi [41] 

Palpant et al. [42] 

(2) Population-based approaches: 

Debels et al. [43] 

Valls et al. [60] 

(3) Problem and heuristic space: 

Leon and Ramamoorthy [23] 

(4) Priority-rule based sampling methods: 

• Tormos and Lova [22]—sampling LFT, forward–backward improvement (FBI) 

• Schirmer and Riesenberg [61] 

• Kolisch and Drexl [62] 

• Kolisch [20]—single pass LFT (serial) 

• Kolisch [20]—single pass LFT (parallel) 
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Kolisch [19,20]—single pass WCS 

Kolisch [63]—random (serial) 

Kolisch [63]—random (parallel) 

(5) Genetic algorithms: 

Valls et al. [31]—GA—forward–backward improvement (FBI) 

Debels and Vanhoucke [32]—GA—DBH 

Valls et al. [30]—GA—hybrid, forward–backward improvement (FBI) 

Kochetov and Stolyar [28]—GA, tabu search, path-relinking 

Hartmann [27]—GA self-adapting 

Hartmann [25]—GA activity list 

Hartmann [25]—GA random key 

Hartmann [25]—GA priority rule 

(6) Simulated annealing: 

Bouleimen and Lecocq [35] 

(7) Tabu search: 

Nonobe and Ibaraki [39] 

Baar et al. [37] 

(8) Other type heuristics: 

• Möhring et al. [64]—Lagrangian Relaxation Heuristic. 

4.1. GA configuration 

 
The present state-of-the-art theory on genetic algorithms provides little insight on how to configure them. In our past 

experience with genetic algorithms based on the same evolutionary strategy (see e.g. [54,65–68]), we obtained good 

results with values of TOP, BOT, and crossover probability (CProb) in the following intervals: 

Parameter Interval 
 

TOP 0.10–0.20 

BOT 0.15–0.30 

CProb 0.70–0.80 

For the population size, we obtained good results by indexing it to the size of the problem, i.e. use small size 

populations for small problems and larger populations for larger problems. Having this past experience in mind and to 

obtain a reasonable configuration, we conducted a small pilot experiment with combinations of the following values 

TOP    0.10, 0.15, 0.20 , BOT     0.15, 0.20, 0.25, 0.30 , and CProb    0.70, 0.75, 0.80 . We tried population sizes  

with 1, 2, 5, and 10 times the number of activities in the project. 

The following configuration was held constant for all experiments and all problem instances: 
 

Population size 5 number of activities in the problem 

CProb 0.7 

TOP The top 15% from the previous population chromosomes are copied to the next generation 

BOT The bottom 20% of the population chromosomes are replaced with    randomly generated 

chromosomes 

Fitness Modified makespan (L 2) (to minimize) 

Stopping criterion 250 generations 

The experimental results demonstrate that this configuration provides high-quality solutions and that it is robust. 

 

4.2. Experimental results 

 
Table 1 shows the CPU time (in s) spent for 250 generations of the genetic algorithm. Tables 2 and 3 (for algorithms 

reporting the number of schedules generated) and Table 4 (for algorithms not reporting the number of schedules 
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Table                                1 

CPU time for 250 generations 
 

Instance class J30 J60 J120 

Average CPU time (s) 5.02 20.11 112.46 

 

 
Table 2 

Average percent deviations from optimal makespan—ProGen set J = 30  

Algorithm SGS Reference Maximum number of schedules 

Number of generations of GAPS 

(Number of schedules of GAPS) 
 

 1000 5000 50,000 

7 39 250 

(915) (4976) (31,773) 

GA, TS—path relinking Serial Kochetov and Stolyar [28] 0.10 0.04 0.00 

GAPS Param. active This paper 0.06 0.02 0.01 

Scatter Search—FBI Serial Debels et al. [43] 0.27 0.11 0.01 

GA—DBH Serial Debels and Vanhoucke [32] 0.15 0.04 0.02 

GA—hybrid, FBI Serial Valls et al. [30] 0.27 0.06 0.02 

GA—FBI Serial Valls et al. [31] 0.34 0.20 0.02 

Sampling—LFT, FBI Both Tormos and Lova [22] 0.25 0.13 0.05 

TS—activity list Serial Nonobe and Ibaraki [39] 0.46 0.16 0.05 

GA—self-adapting Serial Hartmann [27] 0.38 0.22 0.08 

GA—activity list Serial Hartmann [25] 0.54 0.25 0.08 

SA—activity list Serial Bouleimen and Lecocq [35] 0.38 0.23 – 

For each algorithm, the table lists its schedule generation scheme (SGS), the reference in which the results are published, and the average percent 

deviations for 1000, 5000, and 50,000 schedules. The table also lists the number of GAPS generations as well as the number of schedules generated 

by GAPS. Continues on Table 3. 

The values in bold correspond to best known solutions. 

 

 
Table 3 

Average percent deviations from optimal makespan—ProGen set J = 30  

Algorithm SGS Reference Maximum number of schedules 

Number of generations of GAPS 

(Number of schedules of GAPS) 
 

 1000 5000 50,000 

7 39 250 

(915) (4976) (31,773) 

Sampling—adaptative Both Schirmer and Riesenberg [61] 0.65 0.44 – 

TS—schedule scheme Related Baar et al. [37] 0.86 0.44 – 

Sampling—adaptative Both Kolisch and Drexl [62] 0.74 0.53 – 

Sampling—LFT Serial Kolisch [20] 0.83 0.53 0.27 

GA—random key Serial Hartmann [25] 1.03 0.56 0.23 

Sampling—random Serial Kolisch [63] 1.44 1.00 0.51 

GA—priority rule Serial Hartmann [25] 1.38 1.12 0.88 

Sampling—WCS Parallel Kolisch [19,20] 1.40 1.28 – 

Sampling—LFT Parallel Kolisch [20] 1.40 1.29 1.13 

Sampling—random Parallel Kolisch [63] 1.77 1.48 1.22 

GA—problem space Mod. Par. Leon and Ramamoorthy [23] 2.08 1.59 – 

For each algorithm, the table lists its schedule generation scheme (SGS), the reference in which the results are published, and the average percent 

deviations for 1000, 5000, and 50,000 schedules. The table also lists the number of GAPS generations as well as the number of schedules generated 

by GAPS. Continued from Table 2. 
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Table 4 

Average percent deviations from optimal makespan—ProGen set J = 30  
 

Algorithm SGS Reference CPU time  

   Avg. % deviation Avg. Max. CPU freq. 

Decomp. & local opt. Serial Palpant et al. [42] 0.00 10.26 s 123.0 s 2.3 GHz 

VNS—activity list Serial Fleszar and Hindi [41] 0.01 0.64 s 5.9 s 1.0 GHz 

Local search—critical Serial Valls et al. [30] 0.06 1.61 s 6.2 s 400 MHz 

Population-based Serial Valls et al. [60] 0.10 1.16 s 5.5 s 400 MHz 

For each algorithm, the table lists its schedule generation scheme (SGS), the reference in which the results are published, the average percent 

deviation, average and maximum CPU times, and the frequency of the CPU used in the experiments. 

 

Table 5 

Average percent deviations from critical path lower bound—ProGen set J = 60  

Algorithm SGS Reference Maximum number of schedules 

Number of generations of GAPS 

(Number of schedules of GAPS) 
 

 1000 5000 50,000 63,546 

3 19 196 250 

(808) (4872) (49,830) (63,546) 

GAPS Param. active This paper 11.72 11.04 10.67 10.67 

GA—DBH Serial Debels and Vanhoucke [32] 11.45 10.95 10.68 – 

Scatter search—FBI Serial Debels et al. [43] 11.73 11.10 10.71 – 

GA—hybrid, FBI Serial Valls et al. [30] 11.56 11.10 10.73 – 

GA, TS—path relinking Both Kochetov and Stolyar [28] 11.71 11.17 10.74 – 

GA—FBI Serial Valls et al. [31] 12.21 11.27 10.74 – 

GA—self-adapting Both Hartmann [27] 12.21 11.70 11.21 – 

GA—activity list Serial Hartmann [25] 12.68 11.89 11.23 – 

Sampling—LFT, FBI Both Tormos and Lova [22] 11.88 11.62 11.36 – 

SA—activity list Serial Bouleimen and Lecocq [35] 12.75 11.90 – – 

TS—activity list Serial Nonobe and Ibaraki [39] 12.97 12.18 11.58 – 

For each algorithm, the table lists its schedule generation scheme (SGS), the reference in which the results are published, and the average percent 

deviations for 1000, 5000, 50,000, and 63,546 schedules. The table also lists the number of GAPS generations as well as the number of schedules 

generated by GAPS. Continues on Table 6. 

The values in bold correspond to best known solutions. 

 

generated) summarize the average percentage deviation from the optimal makespan DOPT for instance set J30. GAPS 

obtained DOPT 0.01. The number of instances for which our algorithm obtains the optimal solution is 477, i.e. for 

99.74% of the instances. The number of generated schedules was 31,773 (   5   30   249   INT(0.85   5    30)).    

GAPS ranks first for 1000 and 5000 schedules and ranks second for 50,000 schedules. We use only 31,773 schedules 

which is the number that corresponds to 250 generations. 

Tables 5 and 6 (for algorithms reporting the number of schedules generated) and Table 7 (for algorithms not reporting 

the number of schedules generated) summarize the average percentage deviation from the well-known critical path- 

based lower bound (DLB) for instance set J60. These lower bound values are reported by Stinson et al. [69]. For the J60 

instances, GAPS obtained DLB    10.67. The number of generated schedules was 63,546 (   5    60    249  INT(0.85 

5 60)). GAPS outperformed all other heuristics for 50,000 schedules, ranks second for 5000, and ranks fourth  for 

1000 schedules. 

Tables 8 and 9 (for algorithms reporting the number of schedules generated) and Table 10 (for algorithms not reporting 

the number of schedules generated) summarize the average percentage deviation from the well-known critical path- 

based lower bound (DLB) for instance set J120. This lower bound values are reported by Stinson et al. [69]. For the 

J120 instances, GAPS obtained DLB     31.20. The number of generated schedules was 127,341  (   5 120 249 

INT(0.85 5 60)). GAPS ranks seventh for 1000 schedules and ranks third for 5000 and 50,000 schedules (we use 

only 49,464 which is the number that corresponds to 250 generations). 



 

 

Table 6 

Average percent deviations from critical path lower bound—ProGen set J = 60  

Algorithm SGS Reference Maximum number of schedules 

Number of generations of GAPS 

(Number of schedules of GAPS) 
 

   1000 5000 50,000 63,546 

   3 19 196 250 

   (808) (4872) (49,830) (63,546) 

Sampling—adaptative Both Schirmer and Riesenberg [61] 12.94 12.58 – – 

Sampling—adaptative Both Kolisch and Drexl [62] 13.51 13.06 – – 

TS—schedule scheme Related Baar et al. [37] 13.80 13.48 – – 

GA—random key Serial Hartmann [25] 14.68 13.32 12.25 – 

GA—priority rule Serial Hartmann [25] 13.30 12.74 12.26 – 

Sampling—LFT Parallel Kolisch [20] 13.59 13.23 12.85 – 

Sampling—LFT Serial Kolisch [20] 13.96 13.53 12.97 – 

Sampling—random Parallel Kolisch [63] 14.89 14.30 13.66 – 

Sampling—WCS Parallel Kolisch [19,20] 13.66 13.21 – – 

Sampling—random Serial Kolisch [63] 15.94 15.17 14.22 – 

GA—problem space Mod. Par. Leon and Ramamoorthy [23] 14.33 13.49 – – 

For each algorithm, the table lists its schedule generation scheme (SGS), the reference in which the results are published, and the average percent 

deviations for 1000, 5000, 50,000, and 63,546 schedules. The table also lists the number of GAPS generations as well as the number of schedules 

generated by GAPS. Continued from Table 5. 

 

 
Table 7 

Average percent deviations from critical path lower bound—ProGen set J = 60  
 

JJ Algorithm SGS Reference CPU time  

   Avg. % deviation Avg. Max. CPU freq. 

Decomp. & local opt. Serial Palpant et al. [42] 10.81 38.8 s 223.0 s 2.3 GHz 

Population-based Serial Valls et al. [60] 10.89 3.7 s 22.6 s 400 MHz 

Local search—critical Serial Valls et al. [30] 11.45 2.8 s 14.6 s 400 MHz 

Lagrangian Relax. heuristic Both, Mod. parallel Möhring et al. [64] 15.60 6.9 s 57 s 200 MHz 

For each algorithm, the table lists its schedule generation scheme (SGS), the reference in which the results are published, the average percent 

deviation, average and maximum CPU times, and the frequency of the CPU used in the experiments. 

 
 

From the above results it is clear that no algorithm dominates GAPS. The approach of Debels et al. [43] is the  

one that seems to have similar performance. When 50,000 or more schedules are allowed, GAPS seems to have the 

best performance. Given that GAPS uses an evolutionary strategy that depends on the number of generations, it is not 

surprising that, for problems with large number of activities, it does not perform so well when only a small number of 

schedules generated is allowed. 

To demonstrate the contribution of the parameterized active generation scheme to the overall performance of GAPS 

we also run GAPS using the parallel and serial schedule generation schemes (SGSs). Table 11 presents the results. It 

is clear that in all cases the parameterized active generation scheme performs considerably better. 

Additionally, to demonstrate the contribution of the parameter L in the overall performance of GAPS, we ran GAPS 

using L = 0, 1, 2, 3. Table 12 presents the results. It is clear that the results obtained by using the modified makespan 

outperform, in all cases, the ones obtained by using the makespan (L = 0). Additionally, the results confirm that GAPS 

obtains the best results using the modified makespan when L = 2. 

5. Conclusions 

 
This paper presents a genetic algorithm for the resource constrained project scheduling problem. The chromosome 

representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the 



 

 

Table 8 

Average percent deviations from critical path lower bound—ProGen set J = 120  

Algorithm SGS Reference Maximum number of schedules 

Number of generations of GAPS 

(Number of schedules of GAPS) 
 

 1000 5000 50,000 100,000 127,341 

2 9 97 196 250 

(1109) (4672) (49,464) (99,855) (127,341) 

GA—DBH Serial Debels and Vanhoucke [32] 34.19 32.34 30.82 – – 

GA—hybrid, FBI Serial Valls et al. [30] 34.07 32.54 31.24 – – 

GAPS Param. active This paper 35.87 33.03 31.44 31.32 31.20 

Scatter search—FBI Serial Debels et al. [43] 35.22 33.10 31.57 – – 

GA—FBI Serial Valls et al. [31] 35.39 33.24 31.58 – – 

GA, TS—path relinking Both Kochetov and Stolyar [28] 34.74 33.36 32.06 – – 

GA—self-adapting Both Hartmann [27] 37.19 35.39 33.21 – – 

Sampling—LFT, FBI Both Tormos and Lova [22] 35.01 34.41 33.71 – – 

GA—activity list Serial Hartmann [25] 39.37 36.74 34.03 – – 

SA—activity list Serial Bouleimen and Lecocq [35] 42.81 37.68 – – – 

TS—activity list Serial Nonobe and Ibaraki [39] 40.86 37.88 35.85 – – 

For each algorithm, the table lists its schedule generation scheme (SGS), the reference in which the results are published, and the average percent 

deviations for 1000, 5000, 50,000, 100,000, and 127,341 schedules. The table also lists the number of GAPS generations as well as the number of 

schedules generated by GAPS. Continues on Table 9. 

The values in bold correspond to best known solutions. 

 

 

 
Table 9 

Average percent deviations from critical path lower bound—ProGen set J = 120  

Algorithm SGS Reference Maximum number of schedules 

Number of generations of GAPS 

(Number of schedules of GAPS) 
 

 1000 5000 50,000 100,000 127,341 

2 9 97 196 250 

(1109) (4672) (49,464) (99,855) (127,341) 

GA—priority rule Serial Hartmann [25] 39.93 38.49 36.51 – – 

Sampling—adaptative Both Schirmer and Riesenberg [61] 39.85 38.70 – – – 

Sampling—LFT Parallel Kolisch [20] 39.60 38.75 37.74 – – 

Sampling—WCS Parallel Kolisch [19,20] 39.65 38.77 – – – 

Sampling—adaptative Both Kolisch and Drexl [62] 41.37 40.45 – – – 

GA—problem space Mod. Par. Leon and Ramamoorthy [23] 42.91 40.69 – – – 

GA—random key Serial Hartmann [25] 45.82 42.25 38.83 – – 

Sampling—LFT Serial Kolisch [20] 42.84 41.84 40.63 – – 

Sampling—random Parallel Kolisch [63] 44.46 43.05 41.44 – – 

Sampling—random Serial Kolisch [63] 49.25 47.61 45.60 – – 

For each algorithm, the table lists its schedule generation scheme (SGS), the reference in which the results are published, and the average percent 

deviations for 1000, 5000, 50,000, 100,000, and 127,341 schedules. The table also lists the number of GAPS generations as well as the number of 

schedules generated by GAPS. Continued from Table 8. 

 

 

 
priorities are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized 

active schedules. 

The approach was tested on a set of 1560 standard instances taken from the literature and compared with 14 other 

approaches. The algorithm produced good results when compared with other approaches, therefore validating the 

effectiveness of the proposed algorithm. 



 

= 

 

Table 10 

Average percent deviations from critical path lower bound—ProGen set J = 120  
 

Algorithm SGS Reference CPU time  

   Avg. % deviation Avg. Max. CPU freq. 

Population-based Serial Valls et al. [60] 31.58 59.4 s 264.0 s 400 MHz 

Decomp. & local opt. Serial Palpant et al. [42] 32.41 207.9 s 501.0 s 2.3 GHz 

Local search—critical Serial Valls et al. [30] 34.53 17.0 s 43.9 s 400 MHz 

Lagrangian Relax. heuristic Both, Mod. parallel Möhring et al. [64] 36.00 72.9 s 654 s 200 MHz 

For each algorithm, the table lists its schedule generation scheme (SGS), the reference in which the results are published, the average percent 

deviation, average and maximum CPU times, and the frequency of the CPU used in the experiments. 
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Average percent deviations using the parallel, serial, and parameterized active schedule generation schemes (SGS) 

Prob. set SGS Maximum number of schedules 
 

 1000 5000 31,773 50,000 63,546 100,000 127,341 

J30 Parallel 1.23 1.13 1.11 – – – – 

 Serial 0.58 0.20 0.14 – – – – 

 Param. active 0.06 0.02 0.01 – – – – 

J60 Parallel 13.71 12.58 – 12.15 12.12 – – 

 Serial 13.68 12.05 – 11.38 11.35 – – 

 Param. active 11.72 11.04 – 10.67 10.67 – – 

J120 Parallel 40.20 37.93 – 34.09 – 33.57 33.45 

 Serial 43.22 39.93 – 34.31 – 33.99 33.92 

 Param. active 35.87 33.03 – 31.44 – 31.32 31.20 

For problem set J30 the deviation is from the optimal makespan while for sets J60 and J120 it is from the critical path lower bound. The fitness 

function used is the modified makespan with L    2. 

The values in bold correspond to best known solutions. 

 

 
Table 12 

Average percent deviation of GAPS using the modified makespan fitness function with different values of L for increasing number of schedules 

generated 

Prob. set L Maximum number of schedules 
 

 1000 5000 31,773 500,00 63,546 100,000 127,341 

J30 0 0.82 0.38 0.29 – – – – 

 1 0.76 0.34 0.25 – – – – 

 2 0.06 0.02 0.01 – – – – 

 3 0.21 0.15 0.07 – – – – 

J60 0 13.76 12.63 – 12.45 12.41 – – 

 1 12.89 12.10 – 11.92 11.44 – – 

 2 11.72 11.04 – 10.67 10.67 – – 

 3 11.87 11.25 – 10.89 10.88 – – 

J120 0 41.94 40.45 – 38.81 – 38.29 38.11 

 1 39.56 37.45 – 35.41 – 34.95 34.67 

 2 35.87 34.53 – 31.44 – 31.32 31.20 

 3 37.71 35.99 – 33.71 – 33.22 32.96 

For problem set J30 the deviation is from the optimal makespan while for sets J60 and J120 it is from the critical path lower bound. 

The values in bold correspond to best known solutions. 
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