
Scheduling of coupled tasks and one-machine
no-wait robotic cells

Nadia Brauner, Gerd Finke, Vassilissa Lehoux-Lebacque∗

Laboratoire G-SCOP, 46 av. Félix Viallet, 38031 Grenoble, France

Chris Potts, Jonathan Whitehead
School of Mathematics, University of Southampton

Highfield, Southampton SO17 1BJ, UK

Abstract

Coupled task scheduling problems were first studied more than 25 years ago.
Several complexity results have been established in the meantime, but the
status of the identical task case still remains unsettled. We describe a new
class of equivalent one-machine no-wait robotic cell problems. It turns out
that scheduling of identical coupled tasks corresponds to the production of
a single part type in a robotic cell. We describe new algorithmic procedures
to solve this robotic cell problem, allowing lower and upper bounds on the
production time, and discussing in particular cyclic production plans.

This research has been supported by INTAS Project 03-51-5501

This paper has appeared as a journal publication in:
Computers & Operations Research, Volume 36, Issue 2, pages 301-307, February 2009.
For information about the journal, see:
http://www.elsevier.com/wps/find/journaldescription.cws home/300/description#description

∗vassilissa.lebacque@g-scop.inpg.fr, Tel: (33) 4 76 57 48 42, Fax: (33) 4 76 57 46 02

1

1 Coupled tasks

A set of n coupled tasks are to be scheduled on a single machine. A coupled task
j consists of two operations to be executed on the machine which have processing
times aj and bj. These two operations have to be executed in a specified order and
have a separation time of exactly Lj time units (the time between the completion
of the first operation and the start of the second). The objective is to minimize
the makespan Cmax or, in the case of a cyclic schedule, to maximize the throughput
rate. Let us denote this problem as Problem (C).

The coupled-task problem was first studied by Shapiro [7] in the context of schedul-
ing operations for radar, while Orman et al. [4] present a more detailed case study
involving a multifunction radar system. For radar scheduling applications, the first
task is a pulse transmission and the second task is a pulse reception. The separation
between tasks is the time for a pulse of energy to be transmitted to a potential
target and then be reflected back to the radar. The radar system studied by Orman
et al. [4] is used in a military environment for weapon guidance, tracking targets,
and surveying volumes of space to find targets.

Gupta [2] describes several other potential applications of the model. In a chemical
plant where the same processor is used to perform several operations on the same
job, a specified amount of time must elapse between operations due to the chemical
reactions involved. A further application occurs for the scheduling of a worksta-
tion within a flexible manufacturing system. The workstation can perform different
types of operations, although refixturing of the part is needed between successive
operations. This refixturing is performed at a load/unload station, and while this
is undertaken the workstation can be used to process other jobs.

There are various complexity results for this problem (Orman and Potts [5]), but
the complexity for identical tasks (aj = a, Lj = L, bj = b) is still open (see Table 1
from [5]). The best known algorithm for n identical tasks, to our knowledge, has
complexity O(nr2L), where r ≤ a−1

√
a (Ahr et al. [1]). Note, however, that this is not

an algorithm for which the time complexity is polynomial in the size of the instance.
This would be a polynomial in O(log max{n, a, L, b}), or O(log max{a, L, b}) in the
cyclic case.

Table 1 about here

In the subsequent sections of the paper, we describe a robotic cell problem which is
equivalent to the coupled-task problem (Sections 2 and 3). In Section 4, we report
numerical results for problems where the separation times have a certain tolerance.
Section 5 treats the case of a cyclic production.

2

2 One-machine no-wait robotic cell

We consider a robotic cell composed of an input station (IN), an output station
(OUT) and a machine (M). IN and OUT have infinite capacity to store the raw
material for the parts to be produced and the finished parts, respectively. The
machine M can treat any number of parts simultaneously (for instance in a chemical
tank). Note that this assumption is not usually made in the robotic cell literature.
The configuration of this type of robotic cell is shown in Figure 1.

Figure 1 about here

A single transporter, a robot, carries out the material handling between IN , M and
OUT . It has unit capacity (it can carry one part at a time), but it can bring a part
to M , leave it there and pick up a finished part that is transported to OUT .

A task Tj consists of the following operations: the corresponding material is to be
transported from IN to M in Aj time units that may in the general case depend on
j. The part is then processed for pj time units at M , and after being processed has
to be transferred without delay (no-wait case) in Bj time units to OUT . For the
complete process, we also consider the movements of the empty robot from M to
IN (α time units), from OUT to M (β time units) and from OUT to IN (γ time
units). The objective is to execute n tasks with minimal makespan Cmax, or in the
cyclic case, to maximize the throughput rate (for instance for given proportions of
the different part types).

Different classes of this problem may be defined by imposing various conditions on
the travel times of the empty robot. We distinguish the following cases:

(Ra) additive problem: γ = α + β,

(Re) equidistant problem: α = β and γ < α + β,

(Rg) general problem with arbitrary α, β, γ.

In particular, it has been noticed by Crama and Dror (private communication) that
the complexity status of problems (Ra) and (Re) is open for identical parts.

3 Two equivalent problems

We call two optimization problems Π1 and Π2 equivalent if there are mappings from
the set of feasible solutions of Π1 to the feasible solutions of Π2 and vice versa, that
preserve optimality.

3

Theorem 1 The coupled-task problem (C) is equivalent to the one-machine no-wait
robotic cell problem (Ra).

Proof. Define the two following activities for the robot:

• Uj: the empty robot goes from M to IN (α time units), picks up, carries and
unloads the material corresponding to task Tj at M (Aj time units);

• Vj: the robot loads the part corresponding to task Tj from M and carries it
to OUT (Bj time units). Then, the empty robot returns to M (β time units).

Without loss of generality, we suppose that the robot only waits at the machine
(if required). Therefore, the preceding activities do not contain any waiting time.
While at machine M , the robot can only execute one of the two activities described
above. Note that we use the fact that γ = α + β since in the movement from
OUT to IN , we suppose that the robot passes through M . The no-wait condition
imposes that the time elapsed between the activities Uj and Vj is exactly pj. Setting
aj = α + Aj, bj = β + Bj and Lj = pj, we get the corresponding instance of (C).
The scheduling in (C) is exactly the same as for the part production in (Ra).

Conversely, starting with an instance {aj, Lj, bj} of (C), we may define return trips
of zero duration for the empty robot (in fact, any times α and β such that 0 ≤ α ≤
min aj and 0 ≤ β ≤ min bj can be used). We set Aj = aj − α, Bj = bj − β, and
γ = α + β. Again, the two problems are the same. �

From the complexity results on the coupled-tasks problem shown in Table 1, we can
deduce the complexity results for the robotic cell scheduling problem (Ra) listed in
Table 2.

Table 2 about here

4 Coupled tasks with tolerance

We now consider coupled tasks with tolerance, which allow separation times to
vary between Lj and Lj + δj. This case is particularly important in connection
with one-machine no-wait robotic cells since the interval [Lj, Lj + δj] corresponds
to a production time with lower and upper bounds. This is the usual situation in
problems related to hoist scheduling where the machines correspond to chemical
tanks.

This problem is considered by Potts and Whitehead [6]. Since the problem is strongly
NP-hard, they develop local search and construction algorithms to tackle it. The
local search algorithms (multiple restart descent, iterated descent and tabu search)

4

all use a common solution representation and neighborhood structure. Solutions
are represented as permutations of the 2n operations, representing the exact se-
quence in which the operations must be scheduled. Since for any given permutation
there may not be a corresponding feasible schedule, its feasibility and associated
minimum makespan must be determined. A longest path formulation is developed
to evaluate solutions; a single solution can be evaluated in O(n2) time. Various
speed-up techniques are proposed to make evaluation of solutions faster in practice.
The neighborhood structure is defined by insert moves which move single operations
within the permutation representing the current solution.

The authors also develop an O(n2) construction algorithm. Pairs of coupled tasks are
iteratively interleaved to make new coupled tasks. The interleaving process some-
times requires the inclusion of forced idle time. Since the objective of minimizing
makespan is equivalent to minimizing idle time, the amount of forced idle time is a
crucial factor in choosing which pairs of coupled tasks to join at each iteration. The
algorithm also uses other measures to aid the decision. A deterministic version and
a randomized version of the algorithm are developed; at each iteration, the latter
probabilistically chooses the rules used to determine which pairs of coupled tasks
should be joined.

Extensive computational tests are carried out on random instances ranging from
n=20 to 100 coupled tasks (i.e. 40 to 200 operations). The instances are split into
two groups according to the flexibility, δj, of the coupled tasks. In one group, for
any given instance the values of δj for all of the n coupled tasks are similar, lying
within a small range. In the other group, the values of δj for the coupled tasks in any
given instance may vary significantly. For each instance, each local search algorithm
is run 5 times, each run lasting 5 minutes or until a lower bound on the instance
is achieved. The deterministic construction heuristic is run only once, whereas the
randomized construction heuristic is repeatedly run until 5 minutes have elapsed.

The results of the computational tests of Potts and Whitehead [6] are summarized
in Table 3, where CALG

max indicates the makespan obtained by the tested algorithm
and CLB

max is a lower bound. The authors comment that the randomized construc-
tion heuristic (RC) is the most effective of the tested algorithms. Moreover, both
the randomized (RC) and deterministic versions (C) of the construction algorithms
show consistent performance as n increases. In contrast, the local search algorithms
perform less well and exhibit deteriorating performance as n increases. The authors
suggest that this is because of the high computational cost of searching the neigh-
borhood. The most effective local search algorithm is the multiple restart descent
(MRD), followed by tabu search algorithms (TS), with the iterated descent (ID)
yielding the poorest performance.

Table 3 about here

5

5 Cyclic production

Figure 2 about here

We now return to the main case of Problem (C) for identical parts (a, L, b), where a,
L and b are integers. We may assume that a ≥ b, otherwise we consider the reverse
problem. For the equivalent one-machine no-wait robotic cell, a single part type is
produced. In this case, it is quite common to try to channel as fast as possible the
maximum number of parts through the cell. The number of parts n is very large
or not determined in advance. The objective is to determine a production pattern,
which can be repeated identically (i.e. find a production cycle) that maximizes the
throughput rate of the part.

We want to adapt the algorithm of Ahr et al. [1] so that it solves this cyclic case.
We briefly outline the method in order to explain the necessary modifications. For a
given instance (a, L, b) and a given sequence of the tasks, one may associate a pattern
of length L with each task as shown in Figure 2). A ‘0’ indicates that this position
of L is not occupied, and a block in which ‘1’ is repeated b times in succession means
that this portion of L is occupied by the b-part of a predecessor task in the sequence.
Since each two-operation coupled task is completely rigid, knowledge of the position
of the b-part fixes the previous position of the a-part at distance L. In Figure 2 we
have for the two middle tasks the patterns

p1 = 00000110 p2 = 11011000.

The pattern p2 belongs to the immediate successor of p1. Therefore, one knows
that the last block of ‘1’ in p2 must necessarily indicate the position of the b-part
of the predecessor task p1. Consequently, one also has the length of the right shift
l between p1 and p2. In this way, a given sequence of patterns uniquely defines the
schedule of the parts and, conversely, each schedule gives the pattern sequence.

The following directed graph G = (V, E) is introduced. The vertex set V consists
of all possible patterns and there is an arc from pattern pi to pj with weight l if the
placement of the corresponding tasks yields a right-shift of l units (as explained for
p1 and p2 in Figure 2). In Ahr et al. [1] only an approximate value for the number
of vertices |V | is given. The exact number is obtained by the following formula:

|V | = 1 +

bL
a c∑

i=1

i∏
k=1

L− ia + k

k
.

Finding the optimal placement of n tasks (a, L, b) corresponds to finding the shortest
path of length L(n) of n vertices in graph G, starting at vertex p0 = 0. Then the
optimal schedule length is given by L(n)+(a+L+ b). In Ahr et al. [1], determining

6

the shortest path is done in a rather uneconomical manner, where for each vertex
all successors together with the different arc weights are memorized.

Let us now turn to the problem of finding the optimal production cycle. As an
illustration, consider the instance a = 3, L = 8 and b = 2. In Figures 3–5, three
different feasible production cycles are displayed. In Figuer 3, one has the rather
obvious placement of the form aaabbb with the mean cycle length L1 = 19

3
= 6.3̇. In

Figure 4 the cycle abab has mean cycle length L2 = 13
2

= 6.5. Finally, the optimal
cycle aababbab is displayed in Figure 5 and has length L3 = 21/4 = 5.25.

Figure 3 about here

Figure 4 about here

Figure 5 about here

A production cycle corresponds to a circuit in graph G. Its mean length Lµ is
defined as the sum of its arc weights divided by the number of vertices. Our cyclic
production problem is solved by a circuit with minimal Lµ. This combinatorial
problem is well known and solved efficiently in the literature and goes under the
name of the shortest mean cycle problem (Karp [3]).

Concerning an appropriate data structure for the implementation of the algorithm,
one can make the following observation. Let a pattern p2 be given. Then the last
block of ‘1’ in p2 belongs to the b-part of every predecessor vertex p1. Therefore,
all arcs arriving at p2 have an identical arc weight l. Note that for the case p2 = 0, a
new task is placed without nesting so that l = a+L+ b. It is much more efficient to
simply put this common arc weight on the vertex and to work with vertex weights
instead of arc weights. With this structure, one can eliminate a large number of
vertices and arcs. In fact, it is sufficient to consider only vertices with weight l = a
or l ≥ a + b. Otherwise, for a < l < a + b and b ≥ 2, one cannot place any other
task between the a-parts and b-parts (see Figure 6). Therefore, one gets a better
schedule by shifting vertex i to the left to l = a. Thus, we can eliminate all vertices
with weights l ∈ {a + 1, a + 2, . . . , a + b− 1}.

Figure 6 about here

A glance at the number of vertices shows that the degree of difficulty of the problem
is influenced by the size of

⌊
L
a

⌋
. The size of the graph explodes with increasing

values
⌊

L
a

⌋
. Table 4 gives an indication of the solvability of the cyclic production

problem (on a Pentium 4, CPU 2.53GHz, RAM 1Gb).

Table 4 about here

7

6 Conclusion

We have established a new equivalence between the coupled task problem and a
certain type of 1-machine robotic cell problem. The known complexity results carry
over to these robotic cell problems. It still remains the challenge to settle the status
of the identical part problem (a, L, b), which is open for more than twenty years. We
report new algorithmic procedures for this problem, with and without tolerances on
the distance L.

References

[1] Ahr D, Békési J, Galambos G, Oswald M, Reinelt G. An exact algorithm
for scheduling identical coupled tasks. Mathematical Methods of Operations
Research (ZOR) 2004; 59: 193–203.

[2] Gupta JND. Comparative evaluation of heuristic algorithms for the single
machine scheduling problem with two operations per job and time-lags. Journal
of Global Optimization 1996; 9: 239–250.

[3] Karp M. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics 1978; 23: 309–311.

[4] Orman AJ, Potts CN, Shahani AK, Moore AR. Scheduling for a multifunction
phased array radar system. European Journal of Operational Research 1996;
90: 13–25.

[5] Orman AJ, Potts CN. On the Complexity of Coupled-task Scheduling. Discrete
Applied Mathematics 1997; 72: 141–154.

[6] Potts CN, Whitehead JD. Heuristics for a coupled-operation scheduling prob-
lem. Journal of the Operational Research Society In press; doi: 10.1057/pal-
grave.jors.2602272.

[7] Shapiro RD. Scheduling coupled tasks. Naval Research Logistics Quarterly
1980; 27(2): 489–497.

8

IN M OUT
- -

� �
Aj Bj

α β

Figure 1: 1-machine robotic cell

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

1 1 0 1 1 0 0 0

1 1 0 0 0 0 0 0

Figure 2: Sequences of patterns

. . . 1 1
2 2

3 3

. . .

Figure 3: L = 8, a = 3, b = 2, solution . . . aaabbb . . ., 3-part cycle, mean cycle time
L1 = 19/3

. . . 1 1
22

1 . . .
2

Figure 4: L = 8, a = 3, b = 2, solution . . . abab . . ., 2-part cycle, mean cycle time
L2 = 13/2

. . . 1 1
2 2

4
3 3

4 4

1
2

. . .

Figure 5: L = 8, a = 3, b = 2, solution . . . aababbab . . ., 4-part cycle, mean cycle
time L3 = 21/4

-�
< b

0 0 0 0 * * * * * *

-�
l

* * * * * * 1 1 0 0

Figure 6: Graph reduction for a < l < a + b

9

Table 1: Table of complexities

aj; Lj; bj

Strongly NP-hard aj = Lj = bj

aj = a; Lj; bj = b
aj = a; Lj = L; bj

Open aj = a; Lj = L; bj = b
Polynomial aj = Lj = p; bj

aj = bj = p; Lj = L

Table 2: Table of complexities of problem (Ra)

Aj; pj; Bj multiple parts, part dependent travel
Strongly Aj+α=pj =Bj+β related travel & processing, multiple parts
NP-hard Aj =A; pj; Bj =B multiple parts, constant travel

Aj =A; pj =p; Bj identical processing
Open Aj =A; pj =p; Bj =B identical parts
Polynomial Aj+α=pj =p; Bj identical processing,

Aj+α=Bj+β =pj =p related travel & processing

Table 3: Average algorithm performance ratio, CALG
max /CLB

max, of heuristics for the
coupled-task scheduling problem with tolerances

n = 20 n = 30 n = 50 n = 100 Overall
RC 1.046 1.045 1.043 1.040 1.043
C 1.057 1.058 1.054 1.044 1.053
MRD 1.047 1.058 1.068 1.115 1.072
TS 1.051 1.063 1.072 1.113 1.075
ID 1.077 1.091 1.091 1.126 1.096

10

Table 4: Computational results with a = 5, b = 3 and varying L

L bL/ac number of vertices reduced number of vertices solution time
10 2 8 6 < 1 sec
12 2 15 8 < 1 sec
14 2 26 14 < 1 sec
16 3 45 22 < 1 sec
18 3 80 36 < 1 sec
20 4 140 58 < 1 sec
22 4 245 92 < 1 sec
24 4 431 151 < 1 sec
26 5 756 241 < 1 sec
28 5 1326 391 < 1 sec
30 6 2328 627 < 1 sec
32 6 4085 1013 < 1 sec

33 6 5441 1288 < 1 min
34 6 7168 1634 < 1 min
35 7 9496 2071 < 1 min
36 7 12580 2632 < 1 min
37 7 16665 3344 < 1 min
38 7 22076 4246 < 1 min

39 7 29244 5389 < 1 hour
40 8 38740 6839 < 1 hour
41 8 51320 8688 < 1 hour
42 8 67985 11034 < 1 hour
43 8 90061 14007 not solved

11

