
Approximation Schemes for Flow Shop Scheduling Problems

with Machine Availabilty Constraints

Mikhail A. Kubzin
School of Computing and Mathematical Sciences,
University of Greenwich, London SE10 9LS, U.K.

Chris N. Potts
Faculty of Mathematical Studies, University of Southampton,

Southampton SO17 1BJ, U.K.

Vitaly A. Strusevich
School of Computing and Mathematical Sciences,
University of Greenwich, London SE10 9LS, U.K.

May 1, 2010

Abstract

This paper considers two-machine flow shop scheduling problems with machine avail-
ability constraints. When the processing of a job is interrupted by an unavailability
period of a machine, we consider both the resumable scenario in which the processing
can be resumed when the machine next becomes available, and the semi-resumable sce-
narios in which some proportion of the processing is repeated but the job is otherwise
resumable. For the resumable scenario, problems with non-availability intervals on one
of the machines are shown to admit fully polynomial-time approximation schemes that
are based on an extended dynamic programming algorithm. For the problem with sev-
eral non-availability intervals on the first machine, we present a fast 3/2-approximation
algorithm. For the problem with one non-availability interval under the semi-resumable
scenario, polynomial-time approximation schemes are developed.
(Production-Scheduling; Flow-Shop; Analysis of Algorithms; Computational Complex-
ity; Suboptimal Algorithms)

This paper has appeared as a journal publication in:
Computers & Operations Research, Volume 36, Issue 2, pages 379-390, February 2009.
For information about the journal, see:
http://www.elsevier.com/wps/find/journaldescription.cws home/300/description#description

1 Introduction

In real industrial settings, it is often necessary to address situations where the machines used
for processing become unavailable during the planning period due to planned maintenance,
machine breakdowns, or the use of such facilities for other activities that conflict with
planning decisions. Relevant scheduling models with machine non-availability periods have
recently been studied in numerous papers. For recent surveys of the related results, we
refer to Sanlaville and Schmidt [16] and Schmidt [17].

1

This paper studies the two-machine flow shop scheduling problem under various as-
sumptions about the jobs affected by a non-availability period, and the structure of non-
availability intervals.

In the classical two-machine flow shop scheduling problem, we are given a set of n jobs
and two machines. Each job has to be processed on the first machine and then on the
second machine. We refer to the processing of a job on a machine as an operation. The
processing times of all operations are known. Every job is to be processed on at most one
machine at a time, and each machine processes no more than one job at a time. In the
models studied in this paper, the machines are not continuously available for processing.
Further, the precise time of each interval of machine unavailability is known in advance.
In all problems discussed in this paper, the goal is to minimize the makespan, i.e., the
maximum completion time of all jobs on all machines.

Henceforth, we often refer to a non-availability period on a machine as a hole. As intro-
duced by Lee [14], we consider various scenarios relating to the processing of an operation
that is interrupted by a hole.

Resumable Scenario. In this case, the total processing time of the operation interrupted by
a non-availability interval remains equal to its original processing time, i.e., the processing
of the operation is interrupted by the hole and is resumed when the machine next becomes
available. For example, this scenario applies to a typist who has gone to a lunch break and
then resumes the typing of a manuscript from the last typed page.

Semi-Resumable Scenario. This case is similar to the resumable scenario, but the portion of
an operation performed before the hole has to be partially reprocessed after the hole. Thus,
the total processing time of an operation becomes greater than its original processing time.
This scenario is applicable if, for example, the machine must heat the job to the required
temperature, so that the cooling of the job during the non-availability period necessitates
re-heating to the temperature at the point of interruption.

Non-Resumable Scenario. For this scenario, after an interruption the total processing of the
interrupted operation is equal to its original processing time, so effectively the operation
restarts from scratch. We can regard this is a special case of the semi-resumable scenario
when an operation has to be completely reprocessed. An example where such a situation
arises is in situations related to downloading files from the Internet: if the connection is
lost during the download, the process must be restarted when the connection is restored.

It is well-known that the two-machine flow shop problem with no availability constraints
is solvable in O(n log n) time by an algorithm of Johnson [8]. However, the complexity of the
problem changes if the machines are not continuously available. Lee (1997, 1999) studies
the problem with a single hole for all three scenarios: resumable, non-resumable and semi-
resumable. He proves that the problem is NP-hard for each of these scenarios, and presents
pseudopolynomial dynamic programming algorithms. For the resumable scenario, Kubiak
et al. [9] show that the problem with a variable number of holes on one of the machines
is NP-hard in the strong sense. For the both the semi-resumable scenario and the non-
resumable scenario, Lee [12] shows that minimizing the makespan on a single machine with
a variable number of holes is NP-hard in the strong sense.

The complexity status of scheduling with machine unavailability has stimulated research
on approximability of the problems. It appears that for the problem under consideration,
as well as some other scheduling problems with machine availability constraints, there is a
sharp borderline between those variants of the problem for which it is possible to design
fast algorithms that provide a provably close approximation to the optimum, and those
variants for which finding an approximate solution that is close enough to the optimum is

2

theoretically no easier than determining the optimum exactly.
A polynomial-time algorithm that creates a schedule with the makespan that is at most

ρ times the optimal value (where ρ ≥ 1), is called a ρ-approximation algorithm; the value of
ρ is called a worst-case ratio bound. If a problem admits a ρ-approximation algorithm, then
it is said to be approximable within a factor ρ. A family of ρ-approximation algorithms is
called a polynomial-time approximation scheme, or a PTAS, if ρ = 1 + ε for any fixed ε > 0
and the running time is polynomial in the length of the problem input. If additionally the
running time of a PTAS is polynomial with respect to 1/ε, it is called a fully polynomial-time
approximation scheme, or an FPTAS.

The resumable two-machine flow shop problem becomes non-approximable within a
fixed factor in polynomial time, unless P = NP, provided that there are either two holes
on the second machine or one hole on each machine (Lee 1999, Kubiak et al. 002). Breit
et al. (2001) show that for the semi-resumable scenario as well as for the non-resumable
scenario, the single machine problem with two holes is non-approximable within a fixed
factor, unless P = NP. This implies that the two-machine flow shop problem may admit
a ρ-approximation algorithm for finite ratio ρ only if there is exactly one hole (for all
scenarios), or if there are several holes on the first machine for the resumable scenario only.

The following approximation results for the two-machine flow shop problem with a single
hole on one of the machines are known. For the resumable scenario, Lee [13] gives a (4/3)-
approximation algorithm if the hole is on the second machine, and a (3/2)-approximation
algorithm if the hole is on the first machine. For the former problem, Breit (2004) devel-
ops an improved (5/4)-approximation algorithm, while for the latter problem, Cheng and
Wang [3] propose an improved (4/3)-approximation algorithm. Finally, it has been shown
that the two-machine flow shop with a single hole under the resumable scenario admits a
PTAS [1] and an FPTAS [?].

For the semi-resumable scenario (and also the non-resumable scenario), Lee [14] gives a
(3/2)-approximation algorithm if the hole is on the second machine and a 2-approximation
algorithm if the hole is on the first machine. If there are two holes, one on the first and the
other on the second machine, and these holes are consecutive, i.e., the second hole starts
exactly when the first hole ends, Cheng and Wang [2] give a (5/3)-approximation algorithm.

Our contribution ...
The remainder of this paper is organized as follows. Section 2 contains a formal de-

scription of the two-machine flow shop problem under consideration, and introduces some
notation and terminology. In Section ??, a dynamic programming algorithm for the resum-
able scenario and several holes on one of the machines is presented. Section ?? demonstrates
how to use the available dynamic programming algorithms to create FPTAS’s. Since the
running time of these FPTAS’s is fairly large, in Section ?? a fast heuristic algorithm with
a worst-case ratio of 3/2 is presented for the problem with holes on the first machine and
the semi-resumable scenario. Section 4 describes a PTAS for the problem with a single hole
on one of the machines under the semi-resumable scenario. Some concluding remarks are
given in Section 5.

2 Preliminaries

In this section, we formally describe the problem under consideration and introduce the
required notation and terminology.

We are given a set of jobs N = {J1, J2, . . . , Jn}. Each job Jj , for j = 1, 2, . . . , n, consists
of two operations OjA and OjB to be performed on machines A and B, respectively. We
denote the processing time of operations OjA and OjB by aj and bj , respectively. We

3

assume that aj and bj are positive integers. We define amax = max1≤j≤n aj .
In the two-machine flow shop, each job is first processed on machine A and then on

machine B. For a schedule S, we denote the value of the makespan by Cmax(S). Following
the notation of Lawler et al. (1993), this classical scheduling problem is usually denoted by
F2| |Cmax. Let π = (π(1), π(2), . . . , π(n)) be an arbitrary sequence of the job indices. In a
schedule S associated with π, the jobs are processed on each machine according to π, and
each operation starts as early as possible. It follows that

Cmax(S) = max
1≤u≤n

{ u∑
j=1

aπ(j) +
n∑

j=u

bπ(j)

}
. (1)

A job Jπ(u) for which the maximum in the right-hand side of (1) is attained for index u
is called critical. A critical job starts on machine B immediately after it is completed on
machine A, and the starting times of either operation of a critical job cannot be delayed
without increasing the makespan of the schedule under consideration.

It is well-known that problem F2| |Cmax is solvable in O(n log n) time due to Johnson’s
algorithm [8]. In this algorithm, an optimal sequence starts with the jobs for which aj ≤ bj

sorted in nondecreasing order of aj , followed by the remaining jobs sorted in nonincreasing
order of bj . We refer to a sequence of jobs obtained by this rule as a Johnson sequence.
The corresponding optimal schedule can be obtained by processing the jobs in a Johnson
sequence on each machine, starting each operation as early as possible.

In this study, we are concerned with a modification of the classical problem F2| |Cmax in
which there may be several non-availability intervals on each machine. Extending the stan-
dard notation, we denote the resulting problem by F2|h(qA, qB), Sc|Cmax, where qA and qB

denote the number of holes on machines A and B, respectively, and Sc ∈ {Re, S-Re,N -Re}
denotes the scenario under consideration. Here, “Re” corresponds to the resumable sce-
nario, “S-Re” denotes the semi-resumable scenario, and “N -Re” denotes the non-resumable
scenario. The goal is to minimize the maximum completion time Cmax.

We now explain in more detail the three scenarios. Our description is given for the case
that a hole occurs on machine A; the case of a hole on machine B is analogous. Consider
a hole [s, t] on machine A. Suppose that Jk is a job for which operation OkA starts before
time s but cannot be completed by time s. In what follows, we refer to Jk as a crossover
job. The three scenarios that we study differ from each other in the way that crossover
jobs are treated. Assume that a crossover job Jk is processed on machine A for xk time
units before the hole [s, t]. Under the resumable scenario, the processing of operation OkA

is interrupted at time s and is resumed at time t requiring a further ak − xk time units of
processing. Under the semi-resumable scenario, the crossover job Jk resumes at time t, and
requires processing for a further ak − xk + αxk time units, where α is a given constant and
0 ≤ α ≤ 1. The case α = 0 corresponds to the resumable scenario, and the case α = 1 to
the non-resumable scenario.

If there is only one hole in the problem under consideration, then let the unavailability
interval be [s, t], and let ∆ = t− s be the length of this interval. Otherwise, we denote the
unavailability intervals by [si, ti] for i = 1, 2, . . . , q, where q denotes the number of holes,
and the lengths of the unavailability intervals by ∆i = ti−si for i = 1, 2, . . . , q, respectively.
We assume that s, t, si and ti are non-negative integers.

This paper is mainly concerned with problem F2|h(qA, qB), Sc|Cmax in which either
qA = 0 or qB = 0, i.e., the holes appear on one machine only. It can be seen that for
problems of this type, there exists an optimal schedule in which both machines process the
jobs according to the same sequence. Additionally, the search for an optimal schedule can
be restricted to a class of schedules that contains a critical job. As in the classical case, a

4

critical job starts on machine B immediately after it is completed on machine A and cannot
be delayed. The makespan of a schedule that contains a critical job Ju is determined by
the length of the critical path, which is the sum of the following components:

(i) the processing time of both operations of Ju;

(ii) the total processing time of all jobs that precede Ju on machine A;

(iii) total processing time of all jobs that follow Ju on machine B;

(iv) total length of all holes either before Ju on machine A or after Ju on machine B.

We exclude from further consideration the situation that all jobs complete before the
first hole since in this case an optimal schedule can be found by Johnson’s algorithm.

For any non-empty set Q ⊆ N , we define

a(Q) =
∑
j∈Q

aj , b(Q) =
∑
j∈Q

bj ,

and denote a(∅) = b(∅) = 0.

3 Resumable Scenario

In this section, we develop a fast heuristic algorithm that guarantees a solution fairly close
to the optimum. For this problem with only one hole on machine A, Lee (1997) presents a
(3/2)−approximation algorithm. We extend his heuristic to the case of several holes and
simplify both the algorithm and the proof. Note that, to date, no approximation algorithm
for the flow shop problems with more than one hole has been developed.

Our algorithm creates two schedules and outputs the better of them as a heuristic
solution.

Algorithm H

1. Select a job with the largest processing time on machine B and place it into the first
position in the processing sequence, followed by all other jobs in an arbitrary order.
Let S1 denote the schedule associated with that sequence.

2. Sequence all jobs j in non-increasing order of bj/aj and let S2 denote the schedule
associated with that sequence.

3. If Cmax(S1) ≤ Cmax(S2), then set SH = S1 as the heuristic schedule; otherwise, set
SH = S2.

The running time of Algorithm H is O(n log n). Let S∗ denote an optimal schedule.
Our worst-case analysis of Heuristic H uses the following result.

Lemma 1 If Jk is a critical job in schedule S2 for problem F2|h(q, 0), Re|Cmax, then

Cmax(S2) − Cmax(S∗) ≤ bk.

This lemma is proved by Lee [13] for the problem with a single hole. However, it is
straightforward to extend his argument to the case of several holes. We now proceed to the
main result in this section.

5

Theorem 1 For the schedule SH obtained by Algorithm H for problem F2|h(q, 0), Re|Cmax,

Cmax(SH)/Cmax(S∗) ≤ 3/2 (2)

and this bound is tight.

Proof. It is sufficient to consider the case that a(N) > s1; otherwise, Johnson’s algorithm
delivers an optimal solution in the polynomial time.

First, suppose that there is a job with processing time on machine B that is greater
than Cmax(S∗)/2. Following a suitable relabelling of jobs, we may assume that this job is
J1. Since b1 > 1

2Cmax(S∗), we observe that

n∑
j=2

bj < Cmax(S∗)/2. (3)

In schedule S1 found in Step 1 of Algorithm H, job J1 is processed first. There are two
separate cases depending on the position of the critical job in this schedule.

(i) Job J1 is critical. Since J1 is scheduled first, its completion time on machine B is a
lower bound on the makespan of an optimal schedule, so that Cmax(S1) ≤ Cmax(S∗)+∑n

j=2 bj . Due to (3), we derive that (2) holds for SH = S1.

(ii) Job J1 is not critical. Since the completion time of the critical job on machine A is
a lower bound on the optimal makespan, we again obtain Cmax(S1) ≤ Cmax(S∗) +∑n

j=2 bj , so that the theorem holds.

Second, consider the remaining case that bj < Cmax(S∗)/2 for all j = 1, 2, . . . , n. We
apply Lemma 1 to obtain Cmax(S2) ≤ Cmax(S∗) + bk, which in turn implies that (2) holds.
for Sh = S2.

To establish that the bound (2) is tight, consider the following instance of problem
F2|h(q, 0), Re|Cmax. There are two jobs such that a1 = k + 1, b1 = k2 + 3k + 2 and
a2 = k, b2 = k2 + k + 1, where k is an integer greater than 1. The hole on machine A
occupies the interval [k, k2 + k]. Since b1 = k2 + 3k + 2 > k2 + k + 1 = b2, it follows that in
Step 1 of the algorithm we obtain schedule S1 associated with the sequence (J1, J2). Since
for k > 1 we have that

b1

a1
=

k2 + 3k + 2
k + 1

= k + 2 >
k2 + k + 1

k
=

b2

a2
,

it follows that in Step 2 we obtain schedule S2 associated with the same sequence. It is
easy to verify that Cmax(SH) = 3k2 + 5k + 4. On the other hand, for the optimal schedule
S∗ the sequence of jobs is (J2, J1), so that we have Cmax(S∗) = 2k2 + 5k + 3. Thus, as k
approaches to infinity C(SH)/C(S∗) goes to 3/2.

4 Semi-Resumable Scenario: PTAS

In this section, we consider the two-machine flow shop problem with a single hole on
machine B, under the semi-resumable scenario, i.e., problem F2|h(0, 1), S-Re|Cmax. The
case of the hole on machine A is symmetric. Recall that under the semi-resumable scenario,
the operation of the crossover job has to be partially reprocessed, and α ∈ [0, 1] is a given
parameter that determines the proportion of reprocessing that is required. We restrict our
attention to instances in which some job completes after the hole so that Cmax(S∗) > t;

6

otherwise, the problem is trivially solved by sequencing the jobs according to Johnson’s
rule.

For each problem F2|h(0, 1), S-Re|Cmax and F2|h(1, 0), S-Re|Cmax, we problem a
PTAS. The best known results in this area available to date are a (3/2)-approximation
algorithm for problem F2|h(0, 1), S-Re|Cmax and a 2-approximation algorithm for problem
F2|h(1, 0), S-Re|Cmax [14].

Our PTAS has the following features. First, we follow the useful idea of Sevastianov
and Woeginger (1998) of splitting the jobs into big, medium and small categories. We look
for an approximate solution in one of three classes of schedules, depending on the position
and the size of the crossover job. For each of these classes, we enumerate all schedules of
the big jobs and attempt to schedule the small jobs in the gaps of that schedule by solving
the linear programming relaxation of in integer programm. Those small jobs that cannot
be fully processed in the existing gaps, plus all medium jobs, are appended.

We first specify how the big, medium and small jobs are defined. Let T = a(N) + b(N).
Consider any given ε, where 0 < ε < 1. We define ε̃ = ε/10, and introduce the sequence of
real numbers δ1, δ2, . . ., where δt = ε̃2t

. For each integer t, where t ≥ 1, consider the set of
jobs

N t = {Jj |j ∈ N, δ2
t T < aj + bj ≤ δtT}.

Note that the sets of jobs N1, N2, . . . are mutually disjoint. Thus, there exists a value
τ ∈ {1, . . . , d1/ε̃e} such that a(N τ) + a(N τ) ≤ ε̃T holds; otherwise, T ≥ a(N1) + b(N1) +
· · · + a(N d1/ε̃e) + b(N d1/ε̃e) > d1/ε̃eε̃T , which is impossible. We define δ = δτ , and note
that

ε̃2d1/ε̃e ≤ δ ≤ ε̃2.

We now partition the jobs into big jobs Wb, medium jobs Wm and small jobs Ws by
partitioning the index set N as follows:

Wb = {j|aj + bj > δT},
Wm = {j|δ2T < aj + bj ≤ δT}, (4)

Ws = {j|aj + bj ≤ δ2T}.

Note that, by definition, Wm = N τ , which implies

a(Wm) + b(Wm) ≤ ε̃T. (5)

Let nb denote the number of big jobs. From the definition of Wb, each big job has a
total processing time that exceeds δT . Since the total processing time of all jobs is equal
to T , we deduce that nb < 1/δ. Moreover, 1/δ ≤ ε̃−2d1/ε̃e

, which implies that nb is fixed.
Our approximation scheme involves searching for an approximate solution in several

specific classes of schedules. For notational convenience, we denote the big jobs by J ′
k for

k = 1, . . . , nb, and their processing times on machines A and B by a′k and b′k, respectively.
Define S0, and S̄v and S̃v for v = 1, . . . , nb as follows:

S0 – the class of schedules in which all big jobs are completed before the hole;

S̄v – the class of schedules in which no big job is interrupted by the hole and a big job J ′
v

is the first big job that starts on B after the hole;

S̃v – the class of schedules in which a big job J ′
v is interrupted by the hole.

7

It is clear that an optimal schedule S∗ belongs to one of these classes.
We introduce two dummy jobs J ′

0 and J ′
nb+1, where J ′

0 and J ′
nb+1 each have a zero

processing time on both machines. These dummy jobs are need to simplify the statement
of an linear programming problem that forms a component of our algorithm.

Case 1
We first design an approximate solution in class S0. In a schedule of this class, the

crossover job is not a big job. Further the jobs before the hole including all big jobs are
sequenced by Johnson’s rule. If necessary, renumber the big jobs so that a Johnson sequence
of these jobs is given by (J ′

1, . . . , J
′
nb

). After placing the two dummy jobs at the beginning
and at the end, we obtain the sequence (J ′

0J
′
1, . . . , J

′
nb

, J ′
nb+1).

Let ns denote the number of small jobs and denote the small jobs by J1, . . . , Jns . We
define variables

xjk =

{
1, if Jj is scheduled between jobs J ′

k−1 and J ′
k,

0, otherwise,

for j ∈ Ws and k = 1, . . . , nb + 1. The following integer program is a relaxation of the
problem of finding a schedule from class S0 for processing the big and the small jobs. The
variable C provides a lower bound on the makespan of that partial schedule. We call this
integer program IP(0).

Minimize C
subject to

u∑
k=1

(∑
j∈Ws

ajxjk + a′k

)
+ b′u +

nb+1∑
k=u+1

(∑
j∈Ws

bjxjk + b′k

)
≤ C, u = 1, . . . , nb + 1; (6)

u∑
k=1

(∑
j∈Ws

ajxjk + a′k

)
+ b′u +

nb∑
k=u+1

(∑
j∈Ws

bjxjk + b′k

)
≤ s, u = 1, . . . , nb; (7)

nb+1∑
k=1

xjk = 1, j ∈ Ws; (8)

xjk ∈ {0, 1} , j ∈ Ws, k = 1, . . . , nb + 1. (9)

Constraints (6) give lower bounds on the makespan, provided that big job J ′
u is critical.

Constraints (7) imply that all big jobs in the partial schedule must be completed on machine
B before the hole. Constraints (8) ensure that each small job must be sequenced between
some pair of big jobs, including the dummy jobs.

We solve the linear programming relaxation of this problem in which the constraints
xij ∈ {0, 1} in (9) are replaced by the non-negativity constraints xij ≥ 0. Any small job Jj

for which xjk 6= 1 for any position k in this solution is called a fractional job. Note that,
excluding non-negativity, there are 2nb + ns + 1 constraints, and consequently 2nb + ns + 1
basic variables, including C which must be basic. Moreover, each of the ns assignment
constraints (8) contains a distinct set of variables. Following the same type of analysis as
that of Potts (1985), we establish that there are at most 2nb fractional jobs.

Replace each fractional small job Jj with several pseudo-jobs Jk
j for all k such that

xjk > 0. A pseudo-job Jk
j is assigned to a position between jobs J ′

k−1 and J ′
k, and its

processing times on machines A and B are set equal to ak
j = ajxjk and bk

j = bjxjk. Each
non-fractional small job Jj with xjk = 1 is assigned to a position between jobs J ′

k−1 and J ′
k.

8

For k = 1, . . . , nb + 1, The small non-fractional jobs and pseudo-jobs assigned to positions
between jobs J ′

k−1 and J ′
k are sequenced according to Johnson’s rule, for k = 1, . . . , nb + 1,

Let S0
LP be a schedule associated with the job sequence constructed as described above,

with any crossover job receiving the appropriate proportion of reprocessing. Remove all
pseudo-jobs and assign all fractional small jobs and all medium jobs to be processed in an ar-
bitrary order so that the first of these jobs starts on machine A at time max{Cmax(S0

LP), t}.
Let Sε denote resulting schedule.

We prove next that

Cmax(Sε) ≤ Cmax(S∗) + (2nb + 2)δ2T + ε̃T, (10)

assuming that S∗ is an optimal schedule that also belongs to class S0. Let C0 denote an
optimal value of C in the linear programming relaxation of the integer program IP (0). Let
Jr be a crossover job in schedule S0

LP ; recall that in this case Jr is either a small job or a
pseudo-job. Recall that according to the semi-resumable scenario job Jr will be reprocessed
on machine B for no more than αbr extra time units.

If in schedule S0
LP a big job J ′

u is critical, then the value of Cmax(S0
LP) exceeds that of

C0 by no more than αbr. Thus, Cmax(S0
LP) ≤ C0 + δ2T ≤ Cmax(S∗) + δ2T .

Suppose that in schedule S0
LP the critical job belongs to the set Wk of small jobs and

pseudo-jobs positioned between the big jobs J ′
k−1 and J ′

k for some k, 1 ≤ k ≤ nb + 1.
Without loss of generality, we may assume that the critical job us a non-fractional small
job Jw; the case of a pseudo-job being critical is analogous. Consider the contribution to
the value of Cmax(S0

LP) that is delivered by the jobs in Ws. Job Jw contributes aw + bw, a
job Jj (or pseudo-job Jk

j) that precedes Jw contributes ajxjk, while a job Jj (or pseudo-job
Jk

j) that follows Jw contributes bjxjk. If aw ≤ bw then according to Johnson’s rule we
have that ajxjk ≤ bjxjk for all jobs of Ws that precede Jw; similarly, if aw > bw then
ajxjk > bjxjk for all jobs of Ws that follow Jw. In any case, the contribution of the jobs
that are contained in set Ws to the makespan Cmax(S0

LP) does not exceed aw + bw plus
total processing time of these jobs on one of the machines. This implies that the length of
the critical path with job Jw being critical does not exceed the length of the longer path is
which either big job J ′

k−1 or big job J ′
k is critical plus the value of aw + bw. As above, the

length of the critical path with a big critical job is bounded by C0 + δ2T . Thus, if not a big
job is critical in schedule S0

LP , we derive that Cmax(S0
LP) ≤ C0 + 2δ2T ≤ Cmax(S∗) + 2δ2T .

When the pseudo-jobs are removed from schedule S0
LP and the fractional jobs and the

medium jobs are appended to that schedule, for the resulting schedule we have that

Cmax(Sε) ≤ max{Cmax(S0
LP), t} + 2nbδ

2T + ε̃T ≤ Cmax(S∗) + (2nb + 2)δ2T + ε̃T.

Case 2
We now look for an approximate solution such that a big job J ′

v, where 1 ≤ v ≤ nb, is
the first big job that completes on machine B after the hole. Due to Lee (1997, 1999), we
only have to consider schedules in which the big jobs that precede job J ′

v are sequenced by
Johnson’s rule, and so are the big jobs that follow job J ′

v. Thus, to obtain a sequence of
big jobs that is associated with a certain schedule we need to split the set of the remaining
big jobs into two subsets, so that the jobs of one subset are positioned before job J ′

v (we
call this subset the front part) and the jobs of the other subset are positioned after job J ′

v

(we call this subset the rear part). Our approximation scheme will generate all possible
partitions of the set of big jobs into the front and rear parts.

We give further description and analysis of the approximation scheme, provided that
job J ′

v is fixed and the partition of the remaining big jobs into the front and rear parts is

9

also fixed. Suppose that there are h− 1 big jobs in the front part. Sequence the jobs in the
front part and those in the rear part by Johnson’s rule. For notational convenience, relabel
the big jobs in such a way that the obtained sequence is given by (I0, I1, . . . , Ih−1, Ih =
J ′

v, Ih+1, . . . , Inb
, Inb+1

), where I0 and Inb+1
are the dummy jobs with zero processing times

on both machines (similar to J ′
0 and J ′

nb+1 used in Case 1). Similarly to Case 1, for a big
job Ij denote its processing times on machines A and B by a′j and b′j , respectively.

For a small job Jj , we define the variables

xjk =
{

1, if Jj is scheduled between jobs Ik−1 and Ik,
0, otherwise,

for k = 1, . . . , nb + 1.
Case 2a

We first study the situation that an approximate solution to the original problem is
sought for in class S̄v. The following integer program is a relaxation of the problem of
finding a schedule from class S̄v for processing the big jobs and the small jobs. The variable
C provides a lower bound on the makespan of that partial schedule. The variable Rh

corresponds to the starting time of job Ih = J ′
v on machine B. We call this integer program

IP (v).

C → min
s.t. t ≤ Rh; (11)

h−1∑
k=1

 ∑
j∈Ws

ajxjk + a′k

 + a′h ≤ Rh; (12)

u∑
k=1

 ∑
j∈Ws

ajxjk + a′k

 + b′u +
h∑

k=u+1

 ∑
j∈Ws

bjxjk + b′k

− b′h + ∆ ≤ Rh,

u = 1, . . . , h− 1; (13)

Rh + b′h +
nb+1∑

k=h+1

 ∑
j∈Ws

bjxjk + b′k

 ≤ C; (14)

u∑
k=1

 ∑
j∈Ws

ajxjk + a′k

 + b′u +
nb+1∑

k=u+1

 ∑
j∈Ws

bjxjk + b′k

 ≤ C; u = h + 1, . . . , nb; (15)

u∑
k=1

 ∑
j∈Ws

ajxjk + a′k

 + b′u +
h−1∑

k=u+1

 ∑
j∈Ws

bjxjk + b′k

 ≤ s; u = 1, . . . , h− 1; (16)

nb+1∑
k=1

xjk = 1, j ∈ Ws; (17)

xjk ∈ {0, 1}, j ∈ Ws, k = 1, . . . , nb + 1. (18)

Constraints (11) and (13) guarantee that job Ih starts on B after the hole and not
earlier than a preceding small job completes on that machine, provided that big job Iu is
critical, 1 ≤ u ≤ h − 1. Constraint (12) does not allow job Ih to start on B earlier than
that job completes on machine A. Constraints (14) and (15) give lower bounds on the
value of makespan, provided that job Iu is critical. Constraint (16) implies that all big jobs

10

I1, . . . , Ih−1 in the partial schedule must be completed on B before the hole. Constraints
(17) have the same meaning as in IP (0). Notice that in the formulation of this integer
program the resumable scenario is assumed.

As in Case 1, we solve the linear programming relaxation of this problem in which the
constraints xij ∈ {0, 1} in (18) are replaced by the non-negativity constraints xij ≥ 0. The
relaxation problem may appear to be infeasible, but that only means that a wrong partition
has been used for a given job J ′

v; for further purposes we are only interested in situations
that a linear programming relaxation can be solved to optimality. Similarly to Case 1,
it can be verified that a basic optimal solution the relaxation problem contains at most
nb + h− 1 fractional jobs, which is again no more than 2nb.

The resulting schedule Sε can be found as in Case 1, i.e., by introducing pseudo-jobs;
ordering the jobs between the big jobs according to Johnson’s rule; determining a schedule
S̄v

LP associated with the found permutation, provided that the crossover job, if exists, is
processed in accordance with the chosen scenario; removing all pseudo-jobs and append-
ing all fractional small jobs and all medium jobs in an arbitrary order starting at time
Cmax(S̄v

LP).
We prove that (10) holds, provided that S∗ is an optimal schedule associated with the

same choice of job J ′
v = Ih and the same partition of the other big jobs into the front and

rear parts. Let C̄v denote an optimal value of C in the linear programming relaxation of
the integer program IP (v).

Similarly to Case 1, it can be seen that

• Cmax(S̄v
LP) = C̄v if in schedule S̄v

LP a big job J ′
u for u ≥ h is critical; or

• Cmax(S̄v
LP) ≤ C̄v + δ2T if either the critical job is either a big job J ′

u for u ≤ h− 1 or
one of the small jobs (or, possibly, pseudo-jobs) positioned after job Ih; or

• Cmax(S̄v
LP) ≤ C̄v + 2δ2T for any other critical job.

When the pseudo-jobs are removed from schedule S̄v
LP and the fractional jobs and the

medium jobs are appended to that schedule, for the resulting schedule we have that

Cmax(Sε) ≤ Cmax(S̄v
LP) + 2nbδ

2T + ε̃T ≤ Cmax(S∗) + (2nb + 2)δ2T + ε̃T.

Case 2b
We now consider the situation that an approximate solution to the original is sought

for in class S̃v. The following integer program is a relaxation of the problem of finding
a schedule from class S̃v for processing the big jobs and the small jobs. The variable
C provides a lower bound on the makespan of that partial schedule. The variable Rh

corresponds to the starting time of job Ih = J ′
v on machine B. We call this integer program

ĨP (v).

11

C → min
s.t. Rh ≤ s; (19)

Rh + b′h > s; (20)

h−1∑
k=1

 ∑
j∈Ws

ajxjk + a′k

 + a′h ≤ Rh; (21)

u∑
k=1

 ∑
j∈Ws

ajxjk + a′k

 + b′u +
h∑

k=u+1

 ∑
j∈Ws

bjxjk + b′k

− b′h ≤ Rh, u = 1, . . . , h− 1;

(22)

Rh + b′h + ∆ + α(s−Rh) +
nb+1∑

k=h+1

 ∑
j∈Ws

bjxjk + b′k

 ≤ C; (23)

u∑
k=1

 ∑
j∈Ws

ajxjk + a′k

 + b′u +
nb+1∑

k=u+1

 ∑
j∈Ws

bjxjk + b′k

 ≤ C, u = h + 1, . . . , nb;

(24)
nb+1∑
k=1

xjk = 1, j ∈ Ws; (25)

xjk ∈ {0, 1}, j ∈ Ws, k = 1, . . . , nb + 1. (26)

Notice that in the formulation of this integer program the semi-resumable scenario is
applied. Constraints (19) and (20) imply job Ih is the crossover job. Constraints (22)
guarantee that job Ih starts on B not earlier than a preceding small job completes on that
machine, provided that big job Iu is critical, 1 ≤ u ≤ h−1 . Constraint (21) does not allow
job Ih to start on B earlier than that job completes on machine A. Constraint (23) gives
a lower bound on the makespan, provided that job Ih is the crossover job, and one of the
jobs Iu is critical, 1 ≤ u ≤ h. Constraints (15) give lower bounds on the value of makespan,
provided that job Iu is critical, h + 1 ≤ u ≤ nb.

We solve the linear programming relaxation of this problem. As in the Case 2a, ignoring
the problems that appear to be infeasible, it can be verified that a basic optimal solution
of the relaxation problem contains at most nb + 1 fractional jobs, which is again no more
than 2nb.

The resulting schedule Sε can be found as in Case 2a. Let S̃v
LP be an analog of schedule

S̄v
LP defined in Case 2a. Notice that in schedule S̄v

LP a crossover job is not a big job, while
in schedule S̄v

LP the crossover job is job Ih that starts on B at time Rh, as determined by
the solution of the linear programming relaxation.

We prove that (10) holds, provided that S∗ is an optimal schedule associated with the
same choice of the crossover job J ′

v = Ih and the same partition of the other big jobs into
the front and rear parts. Let C̃v denote an optimal value of C in the linear programming
relaxation of the integer program ĨP (v).

Similarly to previous case, it can be seen that either Cmax(S̃v
LP) = C̃v (if in schedule

S̃v
LP a big job is critical); or Cmax(S̃v

LP) ≤ C̄v + δ2T for any other critical job.
When the pseudo-jobs are removed from schedule S̃v

LP and the fractional jobs and the
medium jobs are appended to that schedule, for the resulting schedule we have that

Cmax(Sε) ≤ Cmax(S̃v
LP) + (nb + 1)δ2T + ε̃T ≤ Cmax(S∗) + (2nb + 2)δ2T + ε̃T.

12

The value of δ is chosen in such a way that nb ≤ 1/δ and δ ≤ ε̃2 ≤ ε̃, so that for ε̃ < 1
we have that

(2nb + 2)δ2 ≤ 2δ + 2δ2 ≤ 4δ ≤ 4ε̃2 ≤ 4ε̃.

This implies that

Cmax(Sε) ≤ Cmax(S∗) + 5ε̃T ≤ (1 + ε)Cmax(S∗), (27)

where the final inequality is obtained from T ≤ 2Cmax(S∗) and our choice ε̃ = ε/10.
We now provide the main result in this section.

Theorem 2 For problem F2|h(0, 1), S-Re|Cmax the family of approximation algorithms for
finding schedule Sε is a polynomial-time approximation scheme.

Proof. Inequality (27) establishes that some schedule Sε that is generated by the algorithm
provides a makespan that is no more than 1 + ε times the optimal makespan. Thus, it
remains to show that the algorithm requires polynomial time.

The algorithm constructs at most nb2nb +1 schedules, one in class S0 and at most 2nb−1

schedules in each class S̄v and S̃v due to partitioning the big jobs other than job J ′
v. This

number of schedules is fixed for a fixed ε. For each schedule, a linear programming problem
is solved, the number of variables and the number of constraints being bounded from above
by a polynomial of ns and nb. Such a linear program is solvable in polynomial time, using
the algorithm of Vaidya (1989), for example. To obtain the final schedule from the solution
of the linear program, the small jobs are sequenced using Johnson’s algorithm, see Johnson
(1954), in O(ns log ns) time. Thus, the running time of the algorithm is polynomial.

5 Conclusions

In this paper we consider the two-machine flow shop scheduling problem with availability
constraints under different scenarios. The contribution of this paper against the previously
known results is summarized in Table 1 (for the resumable scenario) and Table 2 (for the
semi-resumable scenario).

Structure Resumable
of holes Previously known In this paper
(1, 0) Dynamic programming, Lee (1997) FPTAS, Section ??

ρ = 4
3 , Cheng and Wang (2000)

(0, 1) Dynamic programming, Lee (1997) FPTAS, Section ??
ρ = 4

3 , Lee (1999)
(q, 0) Dynamic programming, Section ??

FPTAS, Section ??
ρ = 3

2 , Section ??
(0, q) Not approximable for q ≥ 2, Dynamic programming, Section ??

Kubiak et al (2002)
(1, 1) Not approximable, Kubiak et al (2002)

Table 1: Results for the two-machine flow shop scheduling problem with availability con-
straints under the resumable scenario

13

Strucure Semi-resumable
of holes Previously known In this paper
(1, 0) Dynamic programming, Lee (1999) PTAS, Section 4

ρ = 2, Lee (1999)
(0, 1) Dynamic programming, Lee (1999) PTAS, Section 4

ρ = 3
2 , Lee (1999)

(q, 0) Not approximable for q ≥ 2, Lee (1996), Breit et al (2003)
(0, q) Not approximable for q ≥ 2, Lee (1996), Breit et al (2003)
(1, 1) Not approximable, Lee (1996), Breit et al (2003)

Table 2: Results for the two-machine flow shop sheduling problem with availability con-
straints under the semi-resumable scenario

It can be seen that the paper provides a fairly complete approximability classification of
the relevant problems. An interesting topic for future research is whether the two-machine
flow shop problem with a single hole under the semi-resumable scenario admits a FPTAS.

References

1. Breit, J., G. Schmidt and V.A. Strusevich. 2003. Non-preemptive two-machine open
shop scheduling with non-availability constraints. Report B0101, Department of Eco-
nomics, University of Saarland (to appear in Mathematical Methods of Operations Re-
search).

2. Cheng, T.C.E., G. Wang. 1999. Two-machine flowshop scheduling with consecutive
availability constraints. Information Processing Letters 71 49-54.

3. Cheng, T.C.E., G. Wang. 2000. An improved heuristic for two-machine flowshop
scheduling with an availability constraint. Operations Research Letters 26 223-229.

4. Espinouse, M.-L., P. Formanowicz and B. Penz. 1999. Minimizing the makespan in
the two machine no-wait flow-shop with limited machine availability. Computers &
Industrial Engineering 37 497-500.

5. Espinouse, M.-L., P. Formanowicz and B. Penz. 2001. Complexity results on and ap-
proximation algorithms for the two machine no-wait flow-shop with limited machine
availability. Journal of the Operational Research Society 52 116-121.

6. Garey, M.R., D.S. Johnson. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., New York.

7. Gilmore, P.C., R.E. Gomory. 1964. Sequencing a one-state variable machine: a solvable
case of the traveling salesman problem. Operations Research 12 655-679.

8. Johnson, S.M. 1954. Optimal two- and three-stage production schedules with Setup
times included. Naval Research Logistics Quarterly 1 61–68.

9. Kubiak, W., J. B lażevicz, P. Formanowicz, J. Breit, G. Shmidt. 2002. Two-machine
flow shop with limited machine availability. European Journal of Operational Research
136 528-540.

14

10. Kubzin, M.A., V.A. Strusevich. 2002. Two-machine flow shop no-wait scheduling with
a non-availability interval. Paper 02/IM/99, CMS Press, University of Greenwich, Lon-
don, U.K.

11. Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys. 1993. “Sequencing
and scheduling: algorithms and complexity,” in Handbooks in Operations Research
and Management Science, vol. 4, Logistics of Production and Inventory, S.C. Graves,
A.H.G. Rinnooy Kan, P.H. Zipkin (Editors), North–Holland, Amsterdam. 455-522.

12. Lee, C.-Y. 1996. Machine scheduling with an availability constraint. Journal of Global
Optimization 9 395–416.

13. Lee, C.-Y. 1997. Minimizing the makespan in the two-machine flowshop scheduling
problem with an availability constraint. Operations Research Letters 20 129-139.

14. Lee, C.-Y. 1999. Two-machine flowshop scheduling with availability constraints. Euro-
pean Journal of Operations Research 114 420-429.

15. Potts, C.N. 1985. Analysis of a linear programming heuristic for scheduling unrelated
parallel machines, Discrete Applied Mathematics 10 155–164.

16. Sanlaville, E., G. Schmidt. 1998. Machine scheduling with availability constraints. Acta
Informatica 35 795-811.

17. Schmidt, G. 2000. Scheduling with limited machine availability. European Journal of
Operations Research 121 1-15.

18. Sevastianov, S.V., G.J. Woeginger. 1998. Minimizing makespan in open shops: A poly-
nomial time approximation scheme, Mathematical Programming 82 191–198.

19. Vaidya, P.M. 1989. Speeding up linear programming using fast matrix multiplication.
In: Proceedings of IEEE 30th Annual Symposium on Foundations of Computer Science.
332–337.

20. Wang, G., T.C.E. Cheng. 2001. Heuristics for two-machine no-wait flowshop scheduling
with an availability constraint. Information Processing Letters 80 305-309.

15

