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The Manpower Allocation Problem with Time
Windows and Job-Teaming Constraints: A

Branch-and-Price Approach1

Anders Dohn∗, Esben Kolind, and Jens Clausen
Informatics and Mathematical Modelling, Technical University of Denmark,

Building 321, Richard Petersens Plads, 2800 Lyngby, Denmark

In this paper, we consider the Manpower Allocation Problem with
Time Windows, Job-Teaming Constraints and a limited number of
teams (m-MAPTWTC). Given a set of teams and a set of tasks,
the problem is to assign to each team a sequential order of tasks
to maximize the total number of assigned tasks. Both teams and
tasks may be restricted by time windows outside which operation is
not possible. Some tasks require cooperation between teams, and
all teams cooperating must initiate execution simultaneously. We
present an Integer Programming model for the problem, which is
decomposed using Dantzig-Wolfe decomposition. The problem is
solved by column generation in a Branch-and-Price framework. Si-
multaneous execution of tasks is enforced by the branching scheme.
To test the efficiency of the proposed algorithm, 12 realistic test in-
stances are introduced. The algorithm is able to find the optimal
solution in 11 of the test instances. The main contribution of this
article is the addition of synchronization between teams in an exact
optimization context.

Keywords: Manpower allocation; Crew scheduling; Vehicle routing with
time windows; Synchronization; Simultaneous execution; Branch-and-Price;
Branching rules; Column generation; Decomposition; Set covering; Integer pro-
gramming.

1 Introduction and Problem Description

The Manpower Allocation Problem with Time Windows, Job-Teaming Con-
straints and a limited number of teams (m-MAPTWTC) is the problem of
assigning m teams to a number of tasks, where both teams and tasks may be
restricted by time windows outside which operation is not possible. Tasks may
require several individual teams to cooperate. Due to the limited number of
teams, some tasks may have to be left unassigned. The objective is to maximize
the number of assigned tasks.

The problem arises in various contexts where cooperation between teams /
workers, possibly with different skills, is required to solve tasks. An example
is the home care sector, where the personnel travel between the homes of the
patients who may demand collaborative work (e.g. for lifting). The problem also
occurs in hospitals where a number of doctors and nurses are needed for surgery
and the composition of staff may vary for different tasks. Another example is in

1Published in: Computers and Operations Research (2009) 36.4, pp. 1145-1157.
∗Corresponding author: E-mail address: adh@imm.dtu.dk. Tel: +45 4525 3388, Fax: +45
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the allocation of technicians to service jobs, where a combination of technicians
with individual skills is needed to solve each task.

This study focuses on the scheduling of ground handling tasks in some of
Europe’s major airports. Between arrival and the subsequent departure of an
aircraft, numerous jobs including baggage handling and cleaning must be per-
formed. Typically, specialized handling companies take on the jobs and assign
crews of workers with different skills. Any daily work plan must comply with
the time windows of tasks, the working hours of the staff, the skill requirements
of tasks, and union regulations. It may be necessary to have several teams
cooperating on one task in order to complete it within the time window. The
workload has to be divided equally among the cooperating teams. Furthermore,
all teams involved must initiate work on the task simultaneously (synchronized
cooperation), as only one of the team leaders is appointed as responsible su-
pervisor. In the remainder of this paper, a team is a fixed group of workers,
whereas when referring to job-teaming or cooperation, we refer to a temporary
constellation of teams joined together for a specific task. In the airport setting,
all tasks require exactly one skill each.

MAPTWTC has previously been treated by Lim et al. (2004) and Li et al.
(2005) in a metaheuristic approach. They study an example originating from
the Port of Singapore, where the main objective is to minimize the number
of workers required to carry out all tasks, rather than carrying out the maxi-
mum number of tasks with a given workforce. Both papers describe secondary
objectives as well.

Our problem is closely related to the Vehicle Routing Problem with Time
Windows (VRPTW) which has been studied extensively in the literature.

The Synchronized Vehicle Dispatching Problem (SVDP) as presented by
Rousseau et al. (2003) is a dynamic vehicle routing problem similar to
MAPTWTC. In SVDP, the visits of the vehicles may require additional assis-
tance from other vehicles or special teams, and hence the vehicles and the special
teams have to be synchronized. A number of benchmark problems are solved by
a constraint programming based greedy procedure with post-optimization using
local search.

The Vehicle Routing Problem with Split Deliveries (VRPSD) allows a cus-
tomer to be visited by several vehicles, each fulfilling some of the demand. The
problem was introduced by Dror and Trudeau (1989). See Lee et al. (2006) for
an overview of the literature. Frizzell and Giffin (1995) were the first to include
the time window extension in the split delivery problem (VRPTWSD). They
solve the problem heuristically. A tabu search for VRPTWSD is developed by
Ho and Haugland (2004).

Lau et al. (2003) formulate the vehicle routing problem with time windows
and a limited number of vehicles (m-VRPTW) and solve it using a tabu search
approach. See Lim and Zhang (2005) and Li et al. (2004) for other heuristic
approaches to the same problem.

The most promising recent results for exact solution of VRPTW use column
generation. Ioachim et al. (1999) describe a routing problem with synchroniza-
tion constraints and use column generation to solve this problem. The synchro-
nization constraints are modeled in the master problem with the consequence
that a large number of columns with a small variation in departure time are
generated.

Boussier et al. (2007) describe a Branch-and-Price algorithm for solving
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m-VRPTW and report promising results. The work is a continuation of prelim-
inary work by Gueguen (1999). In this work, Gueguen also describes an exact
approach to VRPTWSD. Gendreau et al. (2006) consider the VRPTWSD as
well and introduce a new set covering model for this problem. Properties of
the model are studied, and a column generation based solution method is pre-
sented. With the method, they are able to solve a number of smaller instances
to optimality.

Column generation for the pure VRPTW was initiated by Desrochers et al.
(1992). They solve the pricing problem as a Shortest Path Problem with Time
Windows (SPPTW). Their approach proved very successful and was further
applied and developed by Kohl (1995), Kohl et al. (1999), Larsen (1999), Cook
and Rich (1999), Kallehauge et al. (2001), Righini and Salani (2006), Irnich and
Villeneuve (2006).

Recently, Feillet et al. (2004) suggested solving the pricing problem as an
Elementary Shortest Path Problem with Time Windows (ESPPTW) building
on the ideas of Beasley and Christofides (1989). Chabrier (2006), Danna and
Pape (2005), and Jepsen et al. (2006) have extended the ideas and achieved very
promising results.

Finally, we turn the attention to recent work by Bredström and Rönnqvist
which is described in a discussion paper (Bredström and Rönnqvist 2007) ex-
tending the work of an earlier discussion paper (Bredström and M. 2006). The
problem considered is similar to MAPTWTC and is dealing with an application
in home care. The problem is solved using a Branch-and-Price setup and the
conclusions of the paper correspond nicely with the findings that we present in
this paper.

The remainder of this paper is structured as follows. In Section 2, we present
an Integer Programming (IP) formulation of m-MAPTWTC. In Section 3, the
formulation is decomposed into a master problem and a pricing problem using
Dantzig-Wolfe decomposition. This decomposition allows us to solve the prob-
lem using column generation in a Branch-and-Price framework. In Section 4,
the necessary branching rules are described. This includes branching to enforce
integrality as well as synchronized cooperation on tasks. The computational
results on a number of real-life problems are presented in Section 5. Finally, in
Section 6 we conclude on our work and discuss possible areas for future research.

2 Problem Definitions and Formulation

2.1 IP Formulation of m-MAPTWTC

Consider a set C of n tasks and a workforce of inhomogeneous teams V . All
shifts begin at a service center, referred to as location 0. The set of tasks together
with the service center is denoted N . For each task i ∈ C a time window is
defined as [ai, bi] where ai and bi are the earliest and the latest starting times
for task i, respectively. ri is the number of teams required to carry out task
i (Task i is divided into ri split tasks). Each team k ∈ V has a time window
[ek, fk], where the team starts at the service center at time ek and must return
no later than fk. Between each pair of tasks (i, j), we associate a time tij which
contains the travel time from i to j and the service time at task i. Further, gik
is a binary parameter defining whether team k has the required qualifications
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for task i (gik = 1) or not (gik = 0).
We assume that ai, bi, ek, and fk are non-negative integers and that each tij

is a positive integer. We also assume that the triangular inequality is satisfied
for tij .

To solve the problem, two sets of decision variables have to be defined:

xijk is binary with

xijk =
{

1, if team k goes directly from task i to task j.
0, otherwise

si is an integer variable and defines the start time of task i.

m-MAPTWTC can be formulated mathematically as:

max
∑
k∈V

∑
i∈C

∑
j∈N

xijk (1)

∑
k∈V

∑
j∈N

xijk ≤ ri ∀i ∈ C (2)

xijk ≤ gik ∀i ∈ C, ∀j ∈ C,∀k ∈ V (3)∑
j∈N

x0jk = 1 ∀k ∈ V (4)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ N, ∀k ∈ V (5)

ek + t0j −M(1− x0jk) ≤ sj ∀j ∈ C,∀k ∈ V (6)

si + ti0 −M(1− xi0k) ≤ fk ∀i ∈ C, ∀k ∈ V (7)

si + tij −M(1− xijk) ≤ sj ∀i ∈ C, ∀j ∈ C,∀k ∈ V (8)

ai ≤ si ≤ bi ∀i ∈ C (9)

xijk ∈ {0, 1} ∀i ∈ N, ∀j ∈ N, ∀k ∈ V (10)

si ∈ Z+ ∪ {0} ∀i ∈ C (11)

The objective (1) is to maximize the number of assigned tasks. A task is
counted multiple times if split between teams (ri ≥ 2). The constraints (2)
guarantee that each task is assigned the right number of teams or possibly less,
if some of its split tasks are left unassigned. Only teams with the required skill
can be assigned to a specific task (3). Furthermore, we have to ensure that
all shifts start in the service center (4). Constraints (5) ensure that no shifts
are segmented. Any task visited by a team must be left again. The next four
constraints deal with the time windows. First, we ensure that a team can only
be assigned to a task during their working hours (6)-(7). Next, we check if the
time needed for traveling between tasks is available (8). If a customer i is not
visited, the large scalar M makes the corresponding constraints non-binding.
Constraints (9) enforce the task time windows. Finally, constraints (10)-(11)
are the integrality constraints. The introduction of a service start time removes
the need for sub-tour elimination constraints, since each customer can only be
serviced once during the scheduling horizon because tij is positive.
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2.2 Relations to Vehicle Routing

As mentioned earlier, m-MAPTWTC is closely related to VRPTW. Consider
the teams as vehicles driving from one customer to another as they in m-
MAPTWTC move from one task to another. The service that the teams deliver
is an amount of their time, unlike the vehicles that deliver goods which have
taken up a part of the total volume. Hence, in that sense m-MAPTWTC is
uncapacitated. Except for the binding between teams inflicted by the possibil-
ity of cooperation on tasks, the problem is similar to the Uncapacitated Vehicle
Routing Problem with Time Windows and a limited number of vehicles (m-
VRPTW).

Column generation has proven a successful technique for exact solution of
VRPTW and as m-MAPTWTC is also NP-hard (see Li et al. 2005) the solution
procedure in this article is built on the principles of column generation in a
Branch-and-Price framework.

3 Decomposition

We present the Dantzig-Wolfe decomposition (Dantzig and Wolfe 1960) of m-
MAPTWTC. First, we introduce the notion of a path. A feasible path is defined
as a shift starting and ending at the service center, obeying time windows and
skill requirements, but disregarding the constraints dealing with interaction be-
tween shifts. By this definition the feasibility of a path can be determined
without further knowledge about other paths. We define Pk as the set of all
feasible paths for team k ∈ V . Let the set Ti be the set of all possible start
times for task i. Each path is defined by the tasks it visits and the time of
initiation of each task. Let âptik = 1 if task i is initiated at time t on path p for

team k and âptik = 0 otherwise.

3.1 Master Problem

In the integer master problem we solve the problem of optimally choosing one
feasible path for each team, maximizing the total number of assigned tasks. In
the original formulation, the equations (3)-(9) are used to ensure feasibility of
paths. In the master problem, the set Pk is used to guarantee this feasibility.
The use of only one si for each task had the effect that cooperating teams would
initiate work simultaneously. In the master problem this is enforced by a new
binary decision variable γti . Ioachim et al. (1999) and van den Akker et al.
(2006) describe versions of the master problem model, where the si variables
are introduced directly in the master problem. This, however, introduces non-
binary coefficients in the master problem, and that is usually a feature that
leads to highly fractional solutions when solving the LP-relaxation.

Now, the integer programming master problem is formulated as below, where
λpk are binary variables, which for each vehicle k are used to select a path p from
Pk. γti is a binary variable deciding if task i is initiated at time t. Any feasible
solution to the master problem is a feasible solution to the original formulation.
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max
∑
k∈V

∑
i∈N

∑
p∈Pk

∑
t∈Ti

âptikλ
p
k (12)

∑
k∈V

∑
p∈Pk

âptikλ
p
k ≤ riγ

t
i ∀i ∈ C, ∀t ∈ Ti (13)

∑
t∈Ti

γti = 1 ∀i ∈ C (14)

∑
p∈Pk

λpk = 1 ∀k ∈ V (15)

λpk ∈ {0, 1} ∀k ∈ V,∀p ∈ Pk (16)

γti ∈ {0, 1} ∀i ∈ C, ∀t ∈ Ti (17)

The objective still is to maximize the number of assigned tasks (12). (13)
has two effects. For each team it ensures that a path can only be selected if
all tasks in the path comply with their respective time of initiation. Further, it
ensures that each task is not assigned more teams than requested. In (14) we
force all tasks to have only one time of initiation, and (15) guarantees that all
teams have exactly one path assigned to them.

To apply column generation, the integrality constraints are relaxed to allow
solution of the master problem by a standard linear solver. Unfortunately,
the γti -variables lose all significance when LP-relaxed. Consider the LP-relaxed
problem, i.e. (12)-(15) with the relaxed constraints 0 ≤ λpk ≤ 1,∀k ∈ V,∀p ∈ Pk

and 0 ≤ γti ≤ 1,∀i ∈ C, ∀t ∈ Ti. The LP-problem is a relaxation of the following
problem:

max
∑
k∈V

∑
i∈N

∑
p∈Pk

∑
t∈Ti

âptikλ
p
k (18)

∑
k∈V

∑
p∈Pk

∑
∀t∈Ti

âptikλ
p
k ≤ ri ∀i ∈ C (19)

∑
p∈Pk

λpk = 1 ∀k ∈ V (20)

0 ≤ λpk ≤ 1 ∀k ∈ V,∀p ∈ Pk (21)

Proof. According to Wolsey (1998): A problem (PR) zR = max{f(x) : x ∈
T ⊆ Rn} is a relaxation of (P) z = max{c(x) : x ∈ X ⊆ Rn} if:

1. X ⊆ T

2. f(x) ≥ c(x), ∀x ∈ X

Take any feasible solution λ′ to (18)-(21). Set each γ′ti equal to the portion
of paths where time t is used for task i:

γ′ti =
∑
k∈V

∑
p∈Pk

âptikλ
p
k /
∑
k∈V

∑
p∈Pk

∑
t′∈Ti

âpt
′

ik λ
p
k

Using (19), (13) is satisfied since:
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∀i ∈ C, ∀t ∈ Ti : riγ
′t
i = ri

∑
k∈V

∑
p∈Pk

âptikλ
p
k/
∑
k∈V

∑
p∈Pk

∑
t′∈Ti

âpt
′

ik λ
p
k

=
∑
k∈V

∑
p∈Pk

âptikλ
p
k (ri/

∑
k∈V

∑
p∈Pk

∑
t′∈Ti

âpt
′

ik λ
p
k)

≥
∑
k∈V

∑
p∈Pk

âptikλ
p
k

γ′ti obviously satisfies (14) and (15) is identical to (20). So for each solution
to (18)-(21) there is a corresponding solution to the LP-relaxation of (12)-(17).
Since the objective functions (12) and (18) are identical, the projection of the
LP-relaxation of (12)-(17) onto the λ-subspace is a relaxation of (18)-(21).

Hence, instead of using the model directly, we relax the constraint on
synchronized cooperation by using the model (18)-(21). We define apik =∑
∀t∈Ti

âptik,∀i ∈ C, ∀k ∈ V,∀p ∈ Pk, where apik = 1 if task i is in path p for

vehicle k and apik = 0 otherwise. At the same time, we choose to change from
a maximization problem to a minimization problem by introducing δi as the
number of unassigned split tasks of task i. This is our relaxed master problem.
Finally, to decrease the size of the problem, a set of promising paths P ′k (⊆ Pk)
is used instead of Pk. In a column generation context P ′k contains all paths
generated for team k in the pricing problem so far. We arrive at the restricted
master problem (RMP):

min
∑
i∈C

δi (22)

δi +
∑
k∈V

∑
p∈P′k

apikλ
p
k ≥ ri ∀i ∈ C (23)

∑
p∈P′k

λpk = 1 ∀k ∈ V (24)

λpk ≥ 0 ∀k ∈ V,∀p ∈ P ′k (25)

δi ≥ 0 ∀i ∈ C (26)

The sum of δi over all tasks is minimized (22). (19) is changed to a greater-
than inequality constraint, penalizing inadequate assignment to a task by adding
δi (23). This change allows tasks to be done more times than required, which is
useful in a column generation setting, where an existing column may enter the
solution basis, and we do not have to generate a new, almost identical column
containing a subset of the tasks. As a consequence, the estimates of the final
dual variables improve (see Kallehauge et al. 2005). The new master problem
has the form of a generalized set-covering problem.

On the downside, any solution may now contain overcovering, i.e. we may
have tasks which are assigned to more teams than requested. However, in the
new formulation, overcovering can be removed without altering the objective
value by unassigning the superfluous number of teams for each task. The mod-
ified solution is still feasible and the overcovering can hence easily be removed
from an optimal solution.
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If the master problem contains no columns representing paths from the out-
set of the column generation procedure, the problem will be infeasible due to the
team constraints (24). Therefore, we add an empty path λ0k (a0ik = 0,∀i ∈ C)
for each team to ensure feasibility whether regular paths are present or not.
An empty path can only be part of an optimal solution if the presence of the
team can not decrease the number of unassigned tasks. This will be the case if
manpower is available in abundance or the skills or working hours of the team
do not match those of the tasks.

The solution to the restricted master problem may not be integer. In addi-
tion, we have relaxed the constraint on synchronization of tasks. Both of these
properties must be enforced by a branching scheme.

The solution to the restricted master problem is not guaranteed to be optimal
either, since only a small subset of feasible paths is considered. For each primal
solution λ to the restricted master problem we obtain a dual solution [π, τ ],
where π and τ are the dual variables of constraints (23) and (24) respectively.
In column generation, the dual solution is used in the pricing problem to ensure
the generation of columns leading to an improvement of the solution to the
master problem.

3.2 Pricing problem

The pricing problem specifies all the requirements of a feasible path. The objec-
tive is to find the path with the lowest possible reduced cost. In m-MAPTWTC
with inhomogeneous teams as described above, we obtain m = |V | separate pric-
ing problems. Each pricing problem is an Elementary Shortest Path Problem
with Time Windows (ESPPTW). The binary variable xij is defined as xij = 1
if the team goes directly from task i to task j and xij = 0 otherwise. For a
team k′ ∈ V the pricing problem is formulated as:

min
∑
i∈Ck′

∑
j∈Ck′

−πixij − τk′ (27)

∑
j∈Nk′

x0j = 1 (28)

∑
i∈Nk′

xih −
∑

j∈Nk′

xhj = 0 ∀h ∈ Nk′ (29)

ek′ + t0j −M(1− x0j) ≤ sj ∀j ∈ Ck′ (30)

si + ti0 −M(1− xi0) ≤ fk′ ∀i ∈ Ck′ (31)

si + tij −M(1− xij) ≤ sj ∀i ∈ Ck′ ,∀j ∈ Ck′ (32)

ai ≤ si ≤ bi ∀i ∈ Ck′ (33)

xij ∈ {0, 1} ∀i ∈ Nk′ ,∀j ∈ Nk′ (34)

si ∈ Z+ ∪ {0} ∀i ∈ Ck′ (35)

The constraints match the constraints of the original formulation except for
the relation between vehicles (2). The skill requirements are respected by fixing
xij = 0 for all tasks where gik = 0 and hence excluding those tasks from the
sets: Ck′ and Nk′ .
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The pricing problem can be interpreted as a graph problem. Consider a
graph
G(NG, EG, c, t), where the nodes NG are all tasks plus the service center and EG

is the set of edges connecting all nodes. With each edge e ∈ EG is associated a
travel time te = tij and a cost ce = cij = −πi, where i and j are the two nodes
connected by e. To simplify, the service center is usually split into two vertices:
a start vertex 0 and an end vertex n + 1. The objective is to find a path in G
from 0 to n + 1 with a minimum sum of edge costs that does not violate any
time windows.

Solution methods to the Shortest Path Problem with Time Windows have
been studied extensively in the literature and successful algorithms for solving
SPPTW have been built on the concept of dynamic algorithms. We solve the
elementary version of the problem (ESPPTW), where no cycles are allowed.
Dror (1994) proves that the problem is NP-hard in the strong sense and thus
no pseudo-polynomial algorithms are likely to exist. We use a label setting
algorithm built on the ideas of Chabrier (2006) and Jepsen et al. (2006). The
authors of both papers have recently succeeded in solving previously unsolved
VRPTW benchmarking instances (from the Solomon Test-sets Solomon 1987)
by ESPPTW-based column generation. Furthermore, Feillet et al. (2005), Feillet
et al. (2004) address the Vehicle Routing Problem with Profits (similar to the
Vehicle Routing Problem with a limited number of vehicles) and state that
solving the elementary shortest path problem as opposed to the relaxed version
is essential to obtain good bounds.

We will not go into the details of the label setting algorithm, since the
problem is almost identical to the pricing problem of VRPTW. We have a
shortest path problem where all arc costs out of a node are identical and hence
can be moved to the node. The pricing problems are first solved in a heuristic
label setting approach and if no columns can be added, we switch to the exact
label setting algorithm.

3.3 Linking the Pricing Problem to the Master Problem

Team Priorities

As described earlier, each team has its separate pricing problem. This introduces
the challenge of choosing the pricing problem in each iteration that is most
likely to return usable columns. Initially, we implement a round-robin style
mechanism, where each team is picked in turn. If a whole round is completed
without at least one pricing problem returning a path with negative reduced
cost, optimality is proven for the relaxed master problem.

Typically, some teams have less tight schedules than others and good
columns are generated earlier in the process. We introduce another scheme
to utilize this feature. We associate each team with a team priority, which
is set equal to the reduced cost of the latest returned column. If no column
was returned for team k, the team priority is set to a positive number higher
than all other priority values to ensure that all other teams are treated before
considering team k again.

By using team priorities, the teams which have recently shown the biggest
improvements are treated first. Notice, that in some iterations we may not
find the column with minimum reduced cost as it may be associated with a
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different team. However, when terminating the column generation, optimality
is guaranteed in the same way as for the simple round-robin scheme.

Store Last Solved Pricing Problem

Having a number of separate teams with different skills and scheduling hori-
zons means that the pricing problems of some teams do not change for many
iterations. In the extreme case, we sometimes see master problems which are
actually separable, i.e. the assignment of tasks to one team has no way of alter-
ing the dual variables for the pricing problem of another team. In these cases
we may solve the exact same pricing problem repeatedly. To avoid this, we save
the last solved pricing problem for each team, if it did not return any columns
with negative reduced cost. If it did return such a column, there is no point in
saving the problem as the dual variables will now have changed.

Prior to solving a pricing problem, it is checked whether any circumstances
have changed since last time. These circumstances include dual variables and
relevant branching decisions.

4 Branching

4.1 Branching to get integral solutions

Various branching strategies for VRPTW have been proposed. See Kallehauge
et al. (2005) for a more thorough review of branching strategies for VRPTW.
In the MAPTWTC setting, a 0-1 branching on an original flow variable xijk
(proposed independently by Halse 1992 and Desrochers et al. 1992) is equivalent
to forcing team k to do (banning team k from doing, respectively) task j imme-
diately after task i. The branching is enforced by removing illegal columns in
the master problem in each child node and removing illegal arcs in the network
formulation of the pricing problem for team k. In VRPTW, another possibility
is to perform a 0-1 branching on

∑
k xijk thus imposing the above constraint on

all teams simultaneously. However, since the teams are inhomogeneous due to
different qualifications and work hours and since tasks i and j may need several
teams to cooperate, the branching rule is no longer a 0-1 branching and the ad-
vantage of keeping just one identical pricing problem for all teams is obviously
lost.

Instead, we focus on a 0-1 branching scheme based on
∑

j xijk which sim-
ply implies that team k is either forced to or banned from an assignment to
task i. Unlike the two strategies above, there is no need to keep track of the
status of individual arcs in the pricing problems of the child nodes. The node
corresponding to task i is either removed from the network (along with all arcs
incident to it) or given a very low (negative) cost to ensure its inclusion in any
optimal solution to the pricing problem.

4.2 Synchronized Cooperation using branching

Consider an optimal solution to the relaxed master problem, fractional or inte-
gral, and let spi be the point in time where execution of task i begins on path p
(if i is not a part of p, spi is irrelevant). The solution violates the synchronized

10



cooperation constraint for some task i if there exist positive variables λp1

k1
and

λp2

k2
associated with the two paths p1 and p2 (p1 6= p2), both containing i where

sp1

i 6= sp2

i

If the solution is fractional, the teams k1 and k2 may be identical. In this
case, the team can be perceived as cooperating with itself.

Define s∗i = d(sp1

i + sp2

i ) /2e as the split time. Now, split the problem into
two new branches and define new time windows for task i as

a′i ≤ si ≤ s∗i − 1 and s∗i ≤ si ≤ b′i
respectively, where a′i ≤ si ≤ b′i was the time window of task i in the current
branch. Existing columns not satisfying the new time windows are removed from
the corresponding child nodes and new columns generated must also respect
the updated time window. In this way, the current solution is cut off in both
branches and the new subspaces are disjoint. Since time has been discretized
the branching strategy is guaranteed to be complete.

The idea behind this branching scheme is to restrict the number of points
in time, where the execution of task i can begin. If the limited time window
makes it inconvenient for the teams to complete task i, the lower bound will
increase and the branch is likely to be pruned at an early stage. On the other
hand, if the limited time window contains an optimal point in time for the
execution of task i, it may be necessary to continue the time window branching
until a singleton interval is reached. The time is discretized into a finite number
of steps (minutes), and hence this will always be possible. However, since the
label setting algorithm for the pricing problem aims at placing tasks as early as
possible (see Desrochers et al. 1992), the actual number of different positions in
time for any task is rather small. In fact, as the time windows are reduced, the
tasks are more and more likely to be placed at the very beginning of their time
window. This property greatly reduces the number of branching steps needed.

Using time window branching, the solution will eventually become feasible
with respect to the synchronized cooperation constraint. It is not guaranteed
to be integral, though, and it may therefore be necessary to apply the regular∑

j xijk branching scheme, branching on a combination of a task and a team.
As both schemes have a finite number of branching candidates, the solution
algorithm will terminate when they are used in combination. In general, when
none of the feasibility criteria (integrality and synchronized cooperation) are
fulfilled, we have a choice of branching scheme.

Our algorithm has been set to use time window branching whenever appli-
cable. The restricted time windows reduce flexibility in the column generation
which, in turn, limits the possibilities of combining fractional columns when
solving the master problem. Thus, time window branching is also expected to
have a positive influence on the integrality of the solution as observed by Gélinas
et al. (1995) for VRPTW. This property has also been observed in practice when
testing the algorithm, hence the choice of prioritizing time window branching.

We now focus on how good branching candidates are selected for branching.
Let Pi be the set of all paths p including task i with λpk > 0 in the current
solution to the restricted master problem. If

sp1

i 6= sp2

i
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for any two paths p1, p2 ∈ Pi, task i is stored in the set C ′ of possible candidates.
We determine the split time as

s∗i =

⌈
minp∈Pi

(spi ) + maxp∈Pi
(spi )

2

⌉
,∀i ∈ C ′

When ranking the branching candidates, we prefer candidates that provide
a balanced search tree. That is, the paths in Pi should be divided equally into
the two child nodes when weighted according to the variable values λpk. Define

Si =
∑

k∈V,p∈Pi

λpk,∀i ∈ C
′

as the sum of all positive variables containing i and let

S<
i =

∑
k∈V,p∈Pi|spi <s∗i

λpk,∀i ∈ C
′

be the same sum restricted to the variables where task i is executed before the
split time. The branching candidate i∗ is now determined by

i∗ = arg min
i∈C′

∣∣∣∣S<
i

Si
− 0.5

∣∣∣∣
5 Computational Results

The Branch-and-Price algorithm has been implemented in the Branch-and-Cut-
and-Price framework of COIN-OR (Lougee-Heimer 2003, Coin 2006) and tests
have been run on 2.7 GHz AMD processors with 2 GB RAM. The implemen-
tation has been tuned to the problems at hand and parameter settings have
been made on the basis of these problems. The algorithm is set to do strong
branching (Achterberg et al. 2005) with 25 branching candidates and adds up
to 10 columns with negative reduced cost per pricing problem.

The test data sets originate from real-life situations faced by ground handling
companies in two of Europe’s major airports. This gives rise to four different
problem types, since the two airports each produce problems of two distinctive
types. Each type is represented by three problem instances, each spanning
approximately one 24-hour day, thus, a total of 12 test instances are available.

Generally, the four problem types can be summarized as (In brackets: The
total number of tasks after splitting into requested split tasks):

Type A Small instances, Airport 1. 12-13 teams and 80 (120) tasks

Type B Medium instances, Airport 2. 27 teams and 90 (150) tasks.

Type C Small instances, Airport 2. 15 teams and 90 (110) tasks.

Type D Large instances, Airport 1. 19-20 teams and 270 (300) tasks.

The problem instance A.1 and its optimal solution is illustrated in Fig-
ure 1. The figure depicts the distribution of tasks over the day and the skill
requirements for these. The execution time of tasks and the length of their time
windows are similar in the other problem types. In our problem instances, each
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Figure 1: Problem instance A.1 and its optimal solution.

team must be given a predefined number of breaks during their day and within
certain time windows. Breaks are treated as regular tasks, with the exceptions
that they can only be assigned to the related team, and they cannot be left
unassigned in a feasible solution.

The individual schedules of the teams are captured in the 13 boxes, which
clearly show the start and end time of each shift. Each task is represented by
one or more small boxes labeled with the task ID (Breaks have ID: ”BR”). The
superscript denotes the number of teams that the task must be split between.
This number therefore corresponds to the total number of boxes labeled with
the task ID of this task. Above each task is a thin box depicting the time
window of the task. Furthermore, each task has a color pattern revealing its
skill requirement. Each team has between one and three skills, identified by the
small squares to the left of the team ID. To assign a task to a team, the color
pattern of the task must match that of one of these small squares.

To illustrate how to read the figure, we go through the work plan of team 9.
The first task carried out is task 6 which requires skill C. The task is scheduled
from 6:10 to 7:10 and hence the time window of the task is respected, since
execution cannot start before 6 o’clock and must be finished by 7:30. The task
is solved in collaboration with team 6. The light gray box in front of the task
gives the required travel time. Next, the team takes care of task 52 (requires
skill A), this time cooperating with team 7. After this, team 9 is given their
daily break. Subsequently, they will carry out 71, 49, and 22, where task 49 and
task 22 are dealt with by team 9 alone.
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A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 ∗7 1 0 3 5 ∗3 ∗6 ∗10 ∗29 24 ∗31
Lower Bound⊗ 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 133 OM 2663 120 172 97 OM OM OM TO 2719 TO
- LP (%) 15 46 20 10 10 11 29 9 34 2 5 3
- Branching (%) 68 7 70 82 82 78 34 81 32 5 10 4
- Pricing Problem (%) 4 8 2 1 2 2 4 4 9 93 83 91
- Overhead (%) 13 39 8 7 6 9 33 6 25 0 2 2

Tree size 605 42435 3207 537 597 507 188623 87843 69637 4961 487 2741
Max. depth 160 162 168 264 291 253 122 166 204 219 235 228

# Pricing Problems 13292 3 · 106 107320 15554 17240 14813 3 · 106 2 · 106 2 · 106 379799 20728 247634

# Vars added 12268 2 · 106 109810 4074 5223 4321 2 · 106 1 · 106 1 · 106 231209 16659 204614

Table 1: Results of the Branch-and-Price algorithm with no initial solution.
OM = Out-of-Memory was encountered. TO = The Time-Out limit of 10 hours
was reached.
∗ The solution given is the best feasible solution found.
⊗ Lower Bound (more details in Table 3).

In Table 1 the results from the 12 datasets are given. From the table we
conclude the following. 6 of the 12 datasets were solved to optimality within one
hour. The remaining 6 instances are split in two cases: one case for the small
and medium-sized problems (Type A-C) and one case for the large instances
(Type D). For the unsolved problems of Type A-C we see an explosion in the
size of the branching tree. In these cases the time-out limit is never reached,
since we run out of memory before time out. The reported results for these
instances have been recorded after 2 hours, which in these cases is just before the
memory limit is reached. For Type D the results indicate that the generation
of columns is now in itself a time-consuming task and time-out is encountered
with a relatively small tree-size.

The branching trees from the above test have been built without a good
initial solution. For each of the unfinished problems, we restart the algorithm
with an initial solution, namely the best feasible solution of Table 1. The results
of the new test are displayed in Table 2.

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 7 1 0 3 5 ×3 4 9 ∗29 24 31

Lower Bound⊗ 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 0.84 0.80 36 0.97 TO 235
- LP (%) 33 25 21 17 0 5
- Branching (%) 5 8 25 8 0 0
- Pricing Problem (%) 18 6 14 8 100 95
- Overhead (%) 44 61 40 67 0 0

Tree size 11 19 981 59 447 9
Max. depth 3 5 46 28 40 4
# Pricing Problems 530 561 32921 1358 42284 6415
# Vars added 785 758 16406 475 37212 6104

Table 2: Results of the Branch-and-Price algorithm with initial solution from
the test of Table 1.
TO = The Time-Out limit of 10 hours was reached.
∗ The solution given is the best feasible solution found.
× After OM on the first run, the pricing problem solver was in this case changed
to not create heuristic columns.
⊗ Lower Bound (more details in Table 3).

It is interesting that most of these instances are now solved to optimality
within seconds. It clearly indicates that inexpedient branching decisions were
made in the first run and more reliable branching is possible when promising
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columns exist initially. Another observation is that solving C.1 under default
settings leads to another out-of-memory failure, whereas changing the settings
slightly gives an optimal solution within one second. This is another indication
of the importance of making the right branching decisions and the consequence
of not doing so. It has been tested that the settings giving a fast solution in
this case are not superior in general.

Systematic exploitation of these features is outside the scope of this article.
Automatic restart of the branching procedure could be implemented fairly easy.
Beck et al. (2006) describes a more sophisticated approach, where a number
of promising solutions are saved and the tree search is restarted from one of
these solutions, when the search seems to be stuck. A similar methodology may
prove to be very efficient in our case. To achieve even faster results, a variety of
acceleration strategies should be investigated. Look to Danna and Pape (2005)
for more on this topic.

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 0.96 1.10 1.37 0.64 0.77 0.80 1.18 1.86 1.65 75 413 2196
- LP (%) 16 8 15 6 4 3 19 25 10 17 10 2
- Branching (%) 7 0 0 0 0 1 39 24 49 17 8 1
- Pricing Problem (%) 45 74 69 19 22 30 9 11 17 62 81 97
- Overhead (%) 32 18 16 75 74 67 33 40 24 4 1 0

Tree size 3 3 1 1 3 3 11 21 19 35 83 97
Max. depth 1 1 0 0 1 1 5 8 9 17 41 22
# Pricing Problems 163 93 291 103 80 81 288 481 367 4450 8783 9811
# Vars added 407 350 663 309 222 212 586 683 435 4489 7773 14111

Table 3: Results of the Branch-and-Price algorithm with no constraint on syn-
chronized coordination.
All solution values can be used as lower bounds on the original formulation.

To reveal the complexity added by the synchronized cooperation require-
ment, we also show results for a version of the problem where no branching
on time windows is done (Table 3). This means that cooperation is no longer
synchronized, but we are able to reach optimal solutions faster. Since the latter
is a relaxation of the original problem, we are able to use the solution values as
lower bounds on our problem.

Solution times of Table 3 should be compared to the times of Table 1 and
reveal that solving the relaxed problem evidently is much faster and optimal
solutions are found in all cases. The running times for the small and medium
problems are up to 2 seconds, where one of the large problem instances uses
around 37 minutes.

It is conspicuous that all the optimal solutions found in Table 1 are equal to
the lower bound found in Table 3. The lower bound found by the unsynchronized
model is naturally closely related to the lower bound found in the root node of
the branching tree of the problems in Table 1 and these results stress how
important a good lower bound is.

6 Conclusion and future work

The Manpower Allocation Problem with Time Windows, Job-Teaming Con-
straints and a limited number of teams is successfully solved to optimality using
a Branch-and-Price approach. By relaxing the synchronization constraint and
using Dantzig-Wolfe decomposition, the problem is divided into a generalized
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set covering master problem and an elementary shortest path pricing problem.
Applying branching rules to enforce integrality as well as synchronized execu-
tion of divided tasks enables us to arrive at optimal solutions in half of the test
instances. Running a second round of the optimization, initiated from the best
solution found in round one, uncovers the optimal solution to all but one of
the 12 test instances. The test instances are all full-size realistic problems orig-
inating from scheduling problems of ground handling tasks in major airports.
Synchronization between teams in an exact optimization context has not previ-
ously been treated in the literature. We have successfully integrated the extra
requirements into the solution procedure and the results are promising.

Future work could aim at creating a structured approach to utilize the effect
of restarting the branching mechanism. By simply restarting the algorithm
once, we see a remarkable increase in the number of solvable problems, and an
extended strategy may shorten solution time significantly and it may further
increase the chance of finding optimal solutions. Other acceleration strategies
are likely to reveal improved results as well.
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