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It is now a well-established fact that search algorithms can exhibit heavy-tailed behavior. However, the
reasons behind this fact are not well understood. We provide a generative search tree model whose
distribution of the number of nodes visited during search is formally heavy-tailed. Our model allows us
to generate search trees with any degree of heavy-tailedness. We also show how the different regimes
observed for the runtime distributions of backtrack search methods across different constrainedness
regions of random CSP models can be captured by a mixture of the so-called stable distributions.
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1. Introduction

In the last decade we have witnessed tremendous progress in
the design and development of complete, backtrack-style search
algorithms, for constraint satisfaction problems (CSPs). For exam-
ple, in Boolean satisfiability (SAT) problems, while in the early
1990s we could only solve formulas with around 100 variables and
1000 clauses, current state-of-the-art complete DPLL-based SAT
solvers can now handle much larger real-world instances, with over
1,000,000 variables and over 5,000,000 constraints. Several factors
have contributed to such a progress, in particular more sophisti-
cated data-structures, non-chronological backtracking, fast pruning
and propagation methods, nogood (or clause) learning, and more
recently randomization and restarts.

Randomization has greatly extended our ability to solve hard
computational problems. In general, however, we think of random-
ization in the context of local search. While local search methods
have proven to be very powerful, in some situations they cannot
supplant complete or exact methods due to their inherent limita-
tion: local search methods cannot prove inconsistency or optimality.
Somehow surprisingly, randomization and restarts have also been
shown quite effective for complete backtrack-style search methods.
See e.g., [1–7]. In fact, randomization and restarts are now an in-
tegral part of most state-of-the-art complete SAT and CSP1 solvers.
See e.g., [9–14].
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The discovery of the effectiveness of randomization and restart
strategies in complete or exact search methods was made in the
context of the study of the runtime distributions of backtrack-style
algorithms. For a long time researchers had observed that the per-
formance of backtrack-style search methods can vary dramatically
depending on the way one selects the next variable to branch on (the
“variable selection heuristic”) and on what order the possible values
are assigned to a variable (the “value selection heuristic”). In fact,
quite often the branching heuristics provide incorrect search guid-
ance, forcing the procedure to explore large subtrees of the search
space that do not contain any solution. As a consequence, backtrack-
search methods exhibit a large variance in performance. For exam-
ple, we see significant differences on runs of different heuristics,
runs on different problem instances, and, for randomized backtrack-
search methods, runs with different random seeds. The inherent
exponential nature of the search process appears to magnify the un-
predictability of search procedures. In fact, it is not uncommon to
observe a backtrack-search procedure “hang” on a given instance,
whereas a different heuristic, or even just another randomized run,
solves the instance quickly.

Even though researchers had beenwell aware of the high variance
of backtrack-search algorithms, the discovery of the so-called heavy-
tailed nature of the runtime distributions of backtrack-search meth-
ods was somehow surprising and even counter-intuitive [1,15–17].
Heavy-tailed distributions exhibit power-law decay of the tails. That
is why heavy-tailed distributions are also referred to as power-laws.
The power-law decay of the tail causes it to be heavy and therefore
some of the moments do not converge—heavy-tailed distributions
are therefore characterized by infinite moments, e.g., they can have
infinite mean, or infinite variance, etc. This is in contrast with
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non-heavy-tailed distributions characterized by exponential de-
cay. Related to heavy-tailedness is fat-tailedness. The notion of
fat-tailedness may be introduced using the concept of kurtosis,2

and comparing the kurtosis of a given distribution with the kurtosis
of the standard normal distribution. The kurtosis of the standard
normal distribution is 3. A distribution with a kurtosis larger than 3
is fat-tailed or leptokurtic. Like heavy-tailed distributions, fat-tailed
distributions have long tails, with a considerable mass of proba-
bility concentrated in the tails. Nevertheless, the tails of fat-tailed
distributions are lighter than heavy-tailed distributions. Therefore,
contrarily to heavy-tailed distributions, all the moments of fat-tailed
distributions are finite. Examples of distributions that are character-
ized by fat-tails are the exponential distribution and the lognormal
distribution. Interestingly, in the context of search, heavy-tails
have been observed not only in aggregated runtime distributions
of backtrack-search methods, when considering a collection of
instances of the same class (e.g., random binary CSP instances gen-
erated with the same parameter space), but also when running a
randomized backtrack-search procedure on the same instance sev-
eral times, in which the randomization is only used to break ties in
the variable and/or value selection [1,3,15,18–20].

The understanding of the fat-tailed and heavy-tailed nature of the
distributions underlying backtrack-searchmethods has led to the de-
sign of new search strategies, in particular restart strategies for com-
plete backtrack-search methods. For example, Gomes et al. showed
how randomized restarts of search procedures can dramatically re-
duce the variance in the search behavior. In fact, they demonstrated
that a search strategy with restarts provably eliminates heavy tails
[3]. Interestingly, Beame et al. [5] showed that clause learning com-
bined with restarts, as used by current-state-of-the-art SAT solvers,
corresponds to a proof system exponentially more powerful than
that of DPLL [21,22].

While heavy-tailed behavior has been observed in backtrack-
search methods, it is clear that it does not occur in all problem
instances. In fact, backtrack-style algorithms exhibit dramatically
different statistical regimes across the different constrainedness re-
gions of random CSP models—a heavy-tailed regime in the under-
constrained area is replaced by a non-heavy-tail regime as onemoves
towards the phase transition [19,23].

A deep understanding of heavy-tailed phenomena involves for-
mal generative models. In fact, the search for good generative mod-
els for power-law distributions is a new active research area across
different domains (see e.g., [24]). For example, the so-called model
of preferential attachment that generates power-law degree distri-
butions for random graphs is an abstraction for modeling how social
networks or the Internet lead to heavy-tailed behavior.

The generation of power-law distributions for backtrack search
is also quite challenging, especially if one attempts to capture the
full behavior of backtrack search. A compromise is to produce more
abstract models, such as the model proposed by Chen et al. [25]. In
such amodel only high level branching decisions leading to “subtrees
of the search space” are modeled. Branching decisions within a given
“subtree” are not modeled. Despite its level of abstraction, the model
provided interesting insights into search algorithms. For example, it
led to the so-called notion of backdoor set, a set of critical variables
that captures the combinatorics of the problem with respect to the
propagation procedure of the solver: once values are assigned to
the backdoor set, the remaining problem is solved by propagation
[26,27].

2 The kurtosis is defined as �4/�
2
2 (�4 corresponds to the fourth central moment

about the mean and �2 is the second central moment about the mean, i.e., the
variance). Notice that the kurtosis is independent of the location and scale parameters
of a distribution. If a distribution has a high central peak and long tails, then the
kurtosis is in general large.

Our contribution in this paper is twofold. We will show how
the different regimes observed in backtrack-search methods across
different constrainedness regions of random CSP models can be
captured by a mixture of the so-called stable distributions. Stable
distributions capture a range of heavy-tailed and non-heavy-tailed
distributions. We then provide a generative search tree model whose
distribution of the number of nodes visited during search is formally
heavy-tailed. Even though our model is an abstraction of backtrack
search, it is more realistic than previous models. In particular, while
the model by Chen et al. [25] only considers high level branching de-
cisions leading to “subtrees of the search space”, more specifically,
subtrees of size 20, 21, 22, . . . , 2n nodes, our model considers finer
grained branching decisions, at every node. Furthermore, it allows
us to generate search trees with any degree of heavy-tailedness. As
we will see, our model also captures a key aspect of heavy-tailed be-
havior in backtrack search—the longer the run the more unlikely it
is for the search procedure to stop. This overall behavior is achieved
by the fact that the probability of going down the search tree de-
creases exponentially, combined with the fact that, as one goes down
the search tree, the probability of making a “wrong decision”—i.e.,
not picking a terminal node that corresponds to a solution or that
leads to a proof of unsatisfiability—given all the “wrong decisions”
so far, increases. These two opposite factors—an overall exponential
decrease in going down the search tree and an exponential increase
in search space as we go down the search tree—are key to the gen-
eration of power-law decay.

The structure of the paper is as follows. In Section 2 we define
heavy-tailed and stable distributions. In Section 3 we show how a
mixture of stable distributions captures the different tail regimes of
backtrack-search methods across different constrainedness regions
of random CSP models. In Section 4 we present a generative search
tree model and formally show that the distribution of the number of
nodes visited during search is heavy-tailed. In Section 5 we discuss
our results and their implications.

2. Heavy-tailed and stable distributions

Many standard probability distributions, such as the normal dis-
tribution, have exponentially decreasing tails,

P(X > x) ∼ Ce−x2 , C >0 (1)

which means that outliers are very rare.
Heavy-tailed distributions were first introduced by Pareto in the

context of income distributions and were extensively studied by
Lévy. Until Mandelbrot's work on fractals these types of distributions,
also called power-law distributions, were often considered patho-
logical cases. Recently, heavy-tailed distributions have been used to
model phenomena in areas as diverse as economics, physics, geo-
physics, biology and more recently in computer science (for a review
of the literature see e.g., [24,35]).

Heavy-tailed distributions have tails that are asymptotically3 of
the Pareto–Lévy form

P(X > x) ∼ Cx−�, x >0 (2)

Informally, the tails of a heavy-tailed distribution fall according to
the power �, which is much slower than exponential decay. One or
both tails of these distributions have power-law or hyperbolic decay.
Without loss of generality, we will discuss the right tail behavior
and assume that the distribution has support on the positive half
line only. The log–log plot of the tail of the survival function4 of a

3 f (x) ∼ g(x) denotes that limx→∞ f (x)/g(x) → 1.
4 The survival function corresponds to P[X > x], also called the complementary

cumulative distribution function, i.e., 1 − F(x) or 1-CDF.
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heavy-tailed distribution exhibits linear behavior with slope deter-
mined by �.

A random variable X is said to be stable if the distribution of the
sum of independent copies of it has the same shape as the distri-
bution of X. Formally, a random variable X is said to have a stable
distribution if for any n>1, there is a positive Cn and a real number
Dn such that

X1 + X2 + · · · + Xn
D=CnX + Dn (3)

where X1,X2, . . . ,Xn are independent copies of X.
Following the notation of Samorodnitsky and Taqqu [30], a stable

in R can be represented as a distribution with four parameters

S�(�,�,�) (4)

where 0 <��2is the index of stability or characteristic exponent,
� >0the scale parameter, −1���1the skewness parameter and
−∞ <� < + ∞the shift parameter.

Another definition is based on the characteristic function. A ran-
dom variable X is said to have a stable distribution if there are
parameters 0 <��2, ��0, −1���1 and � ∈ R such that its char-
acteristic function has the following form:

E[exp{i�X}] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
{
−��|�|�(

1 − i�(sign�) tan
��
2

)
+ i��

}
if ��1

exp
{
−�|�|

(
1 − i�

2
�
(sign�) ln |�|

)
+ i��

}
if � = 1

(5)

and

sign� =
⎧⎨
⎩
1 if � >0
0 if � = 0
−1 if � <0

The probability densities of �-stable random variables are not known
in closed form, except for the following cases: Gaussian or normal
distribution, S2(�, 0,�) = N(�,�2); Cauchy distribution, S1(�, 0,�);
Lévy distribution, S1/2(�, 1,�); and a constant � which has the de-
generate distribution S�(0, 0,�). For a complete treatment of stable
distributions see Samorodnitsky and Taqqu [30].

For stable distributions the existence of moments depends on the
parameter �. When �=2 all themoments are finite. That is the case of
the normal or Gaussian distribution. For � <2, moments of X of order
less than � are finite while all higher order moments are infinite, i.e.,
�=sup{b >0 : E|X|b <∞}. So, when 1 <� <2, the distribution has finite
mean but infinite variance. With ��1, the distribution has infinite
mean and variance. The � in Eq. (2) is called the index of stability of
the distribution. The lower the index, the heavier the tail.

3. Mixtures of distributions in random binary CSP

Random problem distributions, such as random K-SAT or ran-
dom binary CSP, have played a key role in the study of typical case
complexity of combinatorial search problems. Using such random
problem distributions researchers have been able to provide a finer
characterization of computational hardness, beyond the worst-case
exponential complexity notion implied by NP-Completeness [28].

A binary CSP is defined as a set of n variables X = {x1, . . . , xn},
a set of domains D = {D(x1), . . . ,D(xn)}, where D(xi) is the finite set
of possible values for variable xi, and a set C of binary constraints
between pairs of variables. A constraint Cij on an ordered set of
variables (xi, xj) is a subset of the Cartesian product D(xi)×D(xj) that
specifies the allowed combinations of values for the variables xi and
xj. A solution to a constraint set is an instantiation of the variables

such that all the constraints are satisfied. The CSP involves finding a
solution to all constraints or proving that none exists. Several models
for generating random CSP distributions have been proposed over
the years.

Fig. 1 illustrates the typical easy–hard–easy pattern of compu-
tational hardness for random CSP instances, generated using the
so-called model E. Model E is a three parameter model, 〈N,D, p〉,
where N is the number of variables, D the size of the domains, and
	p ·D2 ·N · (N−1)/2
 forbidden pairs of values are selected with rep-
etition out of the D2 · N · (N − 1)/2 possible pairs. In the figure we
consider random instances of model E with N=17 and D=8 for dif-
ferent values of p. The figure shows the mean computational solu-
tion cost (normalized) and the percentage of satisfiable instances, as
a function of p, the constrainedness of the model. Clearly, there are
different constrainedness regions: (1) the under-constrained region,
for low values of p, in which most of the instances are satisfiable; in
this region it is relatively easy for the search procedure to find a so-
lution; (2) the over-constrained area, corresponding to high values
of p, in which most of the instances are not satisfiable; in this region
it is also relatively easy for the search procedure to prove that there
is no feasible solution; and (3) the critically constrained area, the re-
gion in between the under-constrained and over-constrained area,
in which computational cost peaks. The peak of the computational
cost is aligned with the phase transition between a phase in which
most of the instances are satisfiable and a phase in which most of
the instances are unsatisfiable. At the phase transition, p=0.25, 50%
of the instances are satisfiable (unsatisfiable).

Interestingly, runtime distributions also exhibit different statis-
tical regimes along the different constrainedness regions [23]. Fig. 2
provides a detailed view of the different regimes—from heavy-tailed
to non-heavy-tailed—for Model E. The figure displays the survival
function, i.e., P(X > x), in log–log scale, for running (pure) backtrack
search with random variable and value selection on instances of
Model E with 17 variables and a domain size of 8, for different values
of p, the constrainedness of the instances, 0.05�p�0.24. We clearly
identify a heavy-tailed region in which the log–log plot of the sur-
vival functions exhibit linear behavior, while in the non-heavy-tailed
region the drop of the survival functions is much faster than linear.

In order to model the different regimes observed along the differ-
ent constrainedness regions—from a region where the runtime dis-
tributions exhibit power-law decay to a region in which the tails are
fat but no longer heavy—we considered two different approaches: (1)
sums of Poisson arrivals and (2) mixtures of �-stable distributions.

We remark that mixtures of exponential distributions have been
shown to be well suited to model the runtime distributions of local
search methods [29]. Nevertheless, in the case of complete backtrack
search methods, such mixtures do not capture well the region in
which the runtime distributions are heavy-tailed since exponential
distributions have a tail decay much faster than power-law.

3.1. Sums of Poisson arrivals

In our first approach to model the different statistical regimes ob-
served in backtrack search across different constrainedness regions
of random binary CSP instances we considered sums of random vari-
ables involving arrival times of a Poisson process, one of the standard
ways of generating heavy-tailed distributions [30].

Let N(t) represent the number of arrivals in the time interval
[0, t]. The process {N(t), t�0} is a Poisson process with rate �, if the
inter-arrival times 	i+1−	i, i�1, are independent and exponentially
distributed with mean 1/�. Let 
i be the ith arrival time of the Pois-
son process, i.e., 
i = ∑i

j=1 ej, where the ej's are independent and

exponentially distributed with mean 1/�. The random variables 
i
are, therefore, dependent; they have a gamma distribution with pa-
rameter i and mean E[
i] = i/� (gamma-Erlang distribution).
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Fig. 1. Computational complexity and phase transition curves. Model E 〈17, 8, p〉.
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Fig. 2. The progression from heavy-tailed regime to non-heavy-tailed regime. Log–log plot of the survival functions of the runtime distributions of a backtrack-search
algorithm on instances of model E 〈17, 8,p〉, for different values of p [23].

Let {	i} denote the arrival times of a Poisson process with rate 1
and let Ri be independent and identically distributed random vari-
ables, independent of the sequence {	i}. If the series

∞∑
i=1

	−1/�
i Ri (6)

converges a.s., then it converges to a strictly �-stable random vari-
able [30]. This result shows that an �-stable with 0 <� <2 can be rep-
resented as a convergent sum of random variables involving arrival
times of a Poisson process.

For our simulations, in Eq. (6), we use a sum to n, with 	i i.i.d.
Gamma(i, 1), i integer and Ri i.i.d. N(0, 1). Using N = 10, 000 replica-
tions in the simulations, combining the number of random variables
to be added (n) and tail index (�) we obtain a result as in Fig. 3.
From Fig. 3 we see that when n is low, the log–log plot of the sur-
vival function exhibits linear behavior, an indication of heavy-tailed

behavior. Increasing the number of random variables i (n ↑) causes
the median of the distribution to increase and the heavy-tailed
regime is replaced by a fat-tailed regime, similar to the behavior
observed in Fig. 2.

Despite the fact that there is a good theoretical justification for
this approach, we were not able to obtain a good fit to our empirical
data. The understanding of the semantics of this model involving
sums of Poisson arrivals and its application to capture the different
statistical regimes of backtrack-search algorithms across different
constrainedness regions of random CSP instances requires further
research.

3.2. Mixtures of �-stable distributions

Our most successful approach for modeling the different sta-
tistical regimes observed in backtrack search across different
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constrainedness regions of random binary CSP instances was a
mixture of �-stable distributions as in

X = �S2(�N , 0,�N) + (1 − �)S�(1, 0,�S) (7)

where � is the mixture weight, 0 <� <1.
In the mixture S2 represents the normal component and S� a

heavy-tailed stable distribution with � <2. In our simulations we
usedN=10, 000 replications. Varying simultaneously � and the stable
parameters, �, �N , �N and �S in (7), we were able to obtain a good fit
for the different statistical regimes, as the pattern in Fig. 2. In Fig. 4we
plot the survival functions of the mixtures of stables. Interestingly,
the weight of the normal component in the mixture is quite high
across the different regions (��0.70, except for p = 0.16).

The parameter � allows us to get the desired slope for the tail
and to counterbalance the high weight of the normal distribution
in the mixture: heavy-tails clearly appear when � is extremely low;
increasing � corresponds to progressing from the heavy-tailed to the

non-heavy-tailed regime. The stable parameters, �N and �S, allow us
to shift the distribution. The �N parameter allows us to change the
overall dispersion of data, which is translated on the log–log plot as
the degree of smoothness on the tail transition.

The insights provided by the mixture of stables are quite inter-
esting. The heavy-tailed regime is characterized by low values of
�N , �N , �S and �. In this regime, the runtime distributions decay
slowly—in the log–log plot we see a linear behavior over several or-
ders of magnitude. This is due to the extremely low values of � on the
heavy-tailed stable component. From an algorithmic point of view,
this region corresponds to instances that are general relatively easy
for the algorithm. However, now and then, the algorithm makes a
sequence of wrong decisions, leading to extremely long runs. This is
caused by the low values of � on the heavy-tailed stable in the mix-
ture. When we increase the constrainedness of our model—higher
p, which in our mixture model corresponds to increasing �N , �S
and �—we encounter a different statistical regime in the runtime
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Fig. 5. Log–log plot of survival functions of stable mixtures (solid line) and empirical runtime distributions of a backtrack-search algorithm on instances of Model E, p=0.05,
0.11, and 0.24 (dashed line).

distributions, where the heavy-tails disappear. In this region, the
normal distribution dominates the mixture (high values of � and �
for the heavy-tailed stable component), causing the tails to drop fast.
Again, from an algorithmic point of view this is quite insightful: in
this region, the instances become inherently hard for the backtrack-
search algorithm, all the runs become homogeneously long, the
algorithm has no chance of producing short runs, therefore the vari-
ance of the backtrack search algorithm decreases and the tails of the
survival functions decay rapidly.

In order to provide further evidence of the suitability of ourmodel
of mixtures of distributions, we evaluated the “goodness of fit” for
all the instances of Model E discussed above. We generated the
distributions using the well-tested International Mathematics and
Statistics Library [31,32]. We then use an iterative procedure as de-
scribed, e.g., in [33], to compare the empirical data against the fitted
theoretical mixed distribution using the Kolmogorov–Smirnov (K–S)
goodness of fit test. Note that we have to use such an iterative pro-
cedure given that we are using mixtures of distributions and that
there is no closed form for the stable distributions with the parame-
ters required in our model (see Section 2). The two-sample K–S test
is one of the most useful and general non-parametric methods for
these purposes [34]. As discussed before, given that we are inter-
ested in studying the tail behavior of the distributions, we measure
the quality of the fit only taking into account tail data. For the sake
of uniformity, we used 5% of the tail (500 observations) in all cases.
Table 2 shows the results for the K–S statistics obtained for different
instances of Model E. We observe high “p” values, which means the
null hypothesis of equality of distributions is not rejected. We can
thus assume our real data series are well modeled by the fitted mix-
ture of distributions. In Fig. 5 we plot the empirical data and the fitted
distribution for p= 0.05, 0.11, 0.18 and 0.24. The near overlap of the
empirical curves and corresponding fitted distributions is striking.
Our model is able to reproduce the inflexions of the plots with high
accuracy.

As a final remark we would like to point out that the same
qualitative behavior is observed when considering different variants
of backtrack-search methods. The more sophisticated the method
(e.g., nogood learning, strong pruning and propagation), the nar-
rower the heavy-tailed region but still, as the instances become

too hard, the heavy-tailed regime is replaced by a non-heavy-tailed
regime.

4. Generative power-law search tree model

In this section we present an abstract generative search tree
model that produces power-laws. In order to motivate the topic we
start by considering two typical examples of exponential decay.

4.1. Exponential decay

We start by considering a full binary tree with N levels below
the root node (see Fig. 6, left panel), therefore a total of 2N+1 − 1
nodes. Let us assume we only have one terminal node (i.e., a solution
node or a node that leads to a proof of unsatisfiability) and that it
can be any node of the tree. We consider a search algorithm that at
each branching decision picks a node with probability 1

2 , until the
terminal node is found. We denote by X the total number of visited
nodes in the tree. In this model, the probability that the search stops
after n choices is 2−n and

P(X >n) = 2−n → 0 as n → ∞,

which means that the tail of the distribution has exponential
decay.

Now, with the same algorithm, let us consider a different binary
search tree. In each level there are two equiprobable nodes, one of
which is a terminal node, i.e., one in which the search terminates (a
solution is found or the algorithm proves that there is no solution).
(See Fig. 6, right panel.) In this case, the probability that the search
stops after n choices is also 2−n and the tail also has exponential
decay, that is, P(X >n) → 0 very quickly.

In order for us to have a model that exhibits hyperbolic or power-
law tail decay, the probability of terminal nodes, as we go down the
tree, must decrease, but slowly. In the following sections we present
different generative models of power-law decay for the number of
nodes visited during search.
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4.2. Power-law decay

In our search tree model terminal nodes, i.e., nodes in which
the search terminates (a solution is found or the algorithm
proves that there is no solution) are distributed in the tree
according to some rule. The search algorithm consists of descending
the tree according to a random path, until a terminal node is found.
The random variable, X, is the total number of visited nodes during
search.

We start by considering a high level incomplete binary tree
model. In this model there are two types of nodes: terminal nodes
and non-terminal nodes. Terminal nodes have no children. Non-
terminal nodes have two child nodes: a terminal node and a non-
terminal node. Nodes are naturally organized in levels, starting with
the root node at level 1. The children of the root node have level 2
and so on. As we will see, we can tune the heavy-tailedness of X by
varying the probabilities of reaching a terminal node (non-terminal
node) from a non-terminal node.

4.2.1. Case � = 1
We assign probabilities to each node according to its level, l:

from a non-terminal node, the probability of reaching a terminal
node is 1/l and a non-terminal node (1 − 1/l). In Fig. 7 we show the
binary tree model with the corresponding branching probabilities.
Again, we define X as the total number of nodes visited by a random
path down the tree, until reaching a terminal node (including the
terminal node). The probability mass of X is given by the following
expression:

P(X = n) =
⎛
⎝n−1∏

i=2

i − 1
i

⎞
⎠× 1

n
= 1

n − 1
× 1

n
, n>1

Proposition 1. If the mass probability of X is

P(X = n) = 1
n − 1

× 1
n

(8)

then, for n>1, P(X >n)=1/n, so X has a hyperbolic or power-law decay
with � = 1.

Proof. If (8) then

P(X�n) =
n∑

i=2

1
i − 1

× 1
i

=
(
1
1

− 1
2

)

+
(
1
2

− 1
3

)
+ · · · +

(
1

n − 1
− 1

n

)
= 1 − 1

n

so P(X >n) = 1/n.
From Eq. (2), with � = 1 we see

lim

⎛
⎜⎝Cn−1

1
n

⎞
⎟⎠= C ∈ R+ �⇒ P(X >n) ∼ C

1
n

�

4.3. Case � ∈ Q

The following result allows us to build a stable tree for any ratio-
nal � ∈ (0, 2). We shall consider the same search algorithm as before.
Again, we assume a binary tree (terminal vs. non-terminal node) and
we set up the probabilities according to the node levels as shown in
Fig. 8. The probability mass of X is given by the following expression:

P(X = n) = 2�
2n − 1 + �

n−1∏
i=2

2i − 1 − �
2i − 1 + �

, n>1 (9)

Proposition 2. If the mass probability of X is

P(X = n) = 2�
2n − 1 + �

n−1∏
i=2

2i − 1 − �
2i − 1 + �

, n>1 (10)

Then, for n>1,

P(X >n) =
n∏

i=2

2i − 1 − �
2i − 1 + �

and X as a hyperbolic decay with the index of stability �.

Proof.

P(X >n) =
n∏

i=2

2i − 1 − �
2i − 1 + �

= � − 1
� + 1

n∏
i=0

i + 1 + �
2

i + 1 − �
2

= � − 1
� + 1

n∏
i=0

i − 1 + 1 − �
2

i − 1 − �
2



A. Carvalho et al. / Computers & Operations Research 36 (2009) 2376 -- 2386 2383

2
7

5
7

2
11

9
11

2
15

13
15

...

2
4n−1

4n−3
4n−1

terminal nodes

non-terminal nodes

2α
3+α

3−α
3+α

2α
5+α

5−α
5+α

2α
7+α

7−α
7+α

...

2n−1−α
2n−1+α

2α
2n−1+α

Fig. 8. Search tree with power-law decay: � = 1
2 (left) and � ∈ Q (right).

To simplify the notation let us use d = (1 − �)/2.

P(X >n) = � − 1
� + 1

n∏
i=0

i − 1 + d
i − d

= � − 1
� + 1


(i + d)
(i − d)

(i − d + 1)
(d)

(11)

Applying Stirling's formula to (11),

P(X >n) ∼ � − 1
� + 1


(1 − d)

(d)

√
2�e−n−d+1(n + d − 1

)n+d−1/2

√
2�e−n+d

(
n − d

)n+d+1/2

= e−2d+1 � − 1
� + 1


(1 − d)

(d)

(
n + d − 1

)n+d−1/2

(n − d)n−d+1/2

= e−2d+1 � − 1
� + 1


(1 − d)

(d)

× (n + d − 1)n+d−1/2

(n − d)n−d+1/2(n − d)−2d+1

= e−2d+1 � − 1
� + 1


(1 − d)

(d)

(
1 + 2d − 1

n − d

)n−d

×
(
1 + 2d − 1

n − d

)2d−1/2
(n − d)2d−1

→e−2d+1 � − 1
� + 1


(1 − d)

(d)

e2d−1(n − d)2d−1

= � − 1
� + 1


(1 − d)

(d)

(n − d)2d−1 ∼ Cn−� �

4.4. Case � ∈ R

A generalization of the previous cases, i.e., ∀� ∈ (0, 2), leads to
some technicalities, namely due to the fact that the branching prob-
abilities can be irrational numbers.

Let us consider, for example, the case � = �/2, then we have
P(X >n) = 1/

√
n�. In this case we want to generate a tree with the

behavior in Fig. 9 (left). Let us denote the sequence of probabilities
for each non-terminal node level by Un. It is not physically possi-
ble to construct the tree depicted in Fig. 9, left panel, due to the
irrationality of the weights in question. As an approximation, let us
construct another tree in which the sequence of the branching prob-
abilities leading to non-terminal nodes correspond the truncated Un
sequence, with n decimal digits, denoted by Truncn(Un). Fig. 9 (right
panel) illustrates such a tree for � = �/2. See Table 1 for an example
of the truncation approximation.

In the ideal case, presented in Fig. 9 (left panel), we have

P(X >n) =
∏
n�2

√(
n − 1
n

)�
= 1√

n�
(12)

and in the approximation case, presented in Fig. 9 (right panel), we
have

P(X >n) =
∏
n�2

Trunc
n

√(
n − 1
n

)�
(13)

In Appendix A we show that

lim

(∏
n�2 Truncn(Un)∏

n�2 Un

)
= C ∈ R+ (14)

In other words, the power-law tail decay of X, assuming branching
probabilities given by the approximation Truncn(Un), is similar to
the corresponding power-law tail decay considering the original,
untruncated branching probabilities, Un.

In summary we can generate trees with any desired power-law
tail decay by constructing binary trees with the branching probabili-
ties for non-terminal nodes given by the sequence Un or Truncn(Un)
defined as follows5:

Case � ∈ Q:

Un = 2n − 1 − �
2n − 1 + �

(15)

Other cases:

Trunc
n

(Un) = Trunc
n

(
n − 1
n

)�
(16)

5. Discussion

We introduced a generative model that allows us to generate
search trees with any degree of heavy-tailedness. While it is only an
abstract model, we believe it captures key aspects of heavy-tailed
behavior in combinatorial search. Our model is also more realis-
tic than a formal model proposed previously [25]. In that model
only high level decisions are considered, leading to subtrees of size

5 The branching probabilities for terminal nodes are the complement to one of
the branching probabilities for non-terminal nodes.
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Fig. 9. Search tree with stable decay for � = �/2: ideal (left) and approximation (right).

Table 1
Fit results of �-stable mixture: X = �S2(�N , 0,�N) + (1 − �)S�(1, 0,�S)

p �N �N � � �S p-Value KS

0.05 9 4.5 0.9 0.5 1 0.9051
0.06 12 6 0.85 0.5 10 0.9051
0.07 15 7.5 0.8 0.5 15 0.8320
0.08 15 10 0.8 0.6 100 0.9341
0.09 20 10 0.7 0.7 1000 0.9999
0.10 25 50 0.7 0.8 1100 0.9968
0.11 30 70 0.7 0.8 1400 0.6616
0.12 35 100 0.7 0.7 2000 0.9975
0.13 50 200 0.7 1.0 5000 0.9988
0.14 0 500 0.7 1.3 8500 0.9621
0.15 0 900 0.7 1.3 10,000 0.9404
0.16 0 1000 0.5 1.7 15,000 0.8111
0.17 0 4000 0.7 1.8 27,000 0.7326
0.18 0 7000 0.7 1.9 50,000 0.8111
0.19 0 15,000 0.8 1.9 70,000 0.8970
0.20 0 27,000 0.85 1.9 120,000 0.9959
0.21 0 70,000 0.9 2.0 200,000 0.9464
0.22 0 85,000 0.9 2.0 300,000 0.3114
0.23 0 180,000 0.95 2.0 300,000 0.8004
0.24 0 350,000 0.99 2.0 300,000 0.9922

20, 21, 22, . . . , 2n nodes. Our model explicitly considers branching de-
cisions at every node of the tree, while still capturing a key as-
pect of heavy-tailed behavior in backtrack search—the longer the
run the more unlikely it is for the search procedure to stop. This
is captured by the fact that, even though the probability of going
down the search tree decreases exponentially, as one goes down
the search tree, the probability of not picking a terminal node that
corresponds to a solution or that leads to a proof of unsatisfiabil-
ity, given all the “wrong decisions” so far, increases, leading to an
exponential increase in the size of the search space searched. These
two opposite factors—exponential increase in search space as we go
down the search tree, with an overall exponential decrease in go-
ing down the search tree—are key to the generation of power-law
decay.

While we presented our model as a binary tree, it can be easily
adapted to other tree shapes that resemble more the search trees
produced in combinatorial search. In fact, our abstract generative
binary model presented in Section 4.2 can be mapped into different
tree shapes: the key issue is that from each non-terminal node the
probability of reaching a terminal node in level l is 1/l; the remaining
probability (1 − 1/l) is distributed among non-terminal nodes. In
Fig. 10 we show two variants of the binary tree presented in Section
4.2, for the case of � = 1. The middle case provides an example of
how to construct a tree with equiprobable nodes at each level. Again,

Table 2
Truncated probabilities for a tree with equiprobable nodes at each level with �=�/2

Un Truncn(Un) Level Total of
branches

Branches with
non-terminal node√(

1
2

)�

0.33 2 100 33√(
2
3

)�

0.528 3 1000 528√(
3
4

)�

0.6364 4 10,000 6364√(
4
5

)�

0.70432 5 100,000 70,432√(
5
6

)�

0.750969 6 1,000,000 750,969

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.√(
n − 1
n

)�

n 10n Trunc
n

(√(
n − 1
n

)�
)

× 10n

if we consider irrational branching probabilities, the construction of
such a tree is more involved. Table 1 provides an example for the
case of � = �/2.

We should also point out that the nodes in our model capture
different decision points such as picking the next variable to branch
on, or picking a value to assign to a variable, or picking a backtracking
point, or more generally picking or not picking the “right terminal
node”.6 Therefore, our model can be viewed as an abstraction for
different variants of backtrack-search models.

Finally, even though our results are asymptotic, we observe a clear
indication of heavy-tailed behavior even for relatively small values
of n. As illustrated in Fig. 11, for the case of � = 1, while for n = 10,
100, and 1000 the log–log plot of tail of the survival function exhibits
a sharp drop, for n = 10, 000, n = 100, 000, and n = 1, 000, 000 it al-
ready exhibits a close-to-linear behavior, which is a clear indication
of heavy-tailed behavior. Of course, we are dealing with finite prob-
lems and these distributions have a non-finite support. The actual fi-
nite support problems would correspond to truncated distributions,
which could be modeled analogously to the way done in [25].

We also showed how the different statistical regimes observed in
the runtime distributions of backtrack-style algorithms on random
CSP instances can be captured by a mixture of stable distributions,

6 Note that in algorithms that perform chronological backtrack, once a dead-end
is reached the algorithm automatically backtracks to the last variable considered,
with remaining unexplored values, and therefore the only decision consists on
picking the next value to assign to the variable.
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Fig. 10. Different variants of search trees with power-law decay with � = 1.
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Fig. 11. Tails obtained with our generative model for � = 1 and different values of n.

in which one of the components is heavy-tailed and the other com-
ponent is the normal distribution. This mixture provides interesting
insights: despite the relative high weight of the normal distribu-
tion across the different regions, the extremely low � values of the
heavy-tailed stable produce a heavy-tailed regime; as � is increased,
the heavy-tailed component no longer outweighs the normal com-
ponent, leading to exponentially decaying tails. From an algorithmic
point of view the heavy-tailed regime corresponds to having an
algorithm that has good chances of finding solutions with short
runs, given the fact that this regime is in the under or medium con-
strained area, but now and then it makes a sequence of mistakes that
leads to extremely long tails, therefore heavy-tails. As the instances
become harder, the heavy-tailed regime is replaced by a non-heavy-
tailed regime in which the normal distribution dominates, with
corresponding increase in �. In this region the instances become
inherently harder, all the runs become homogeneously long, the
algorithm does not have a chance of producing short runs, therefore
the dramatic decrease in the ranges of the runtime distributions
and the fast drop of the tails.

In summary, we introduced a generative search tree model
that captures key aspects of heavy-tailed behavior in combinatorial
search. Furthermore our model allows us to generate search trees
with any degree of heavy-tailedness. We also showed how a mix-
ture of stable distributions captures the statistical regimes observed
in runtime distributions of backtrack-style algorithms across differ-
ent constrainedness regions of random CSP instances. We hope our
models will lead to further improvements in the design of search
methods.

Appendix A.

Let us denote the sequence of probabilities for each non-terminal
node of level n by Un and by Truncn(Un) the corresponding trun-
cated sequence with n decimal digits. Our goal is to show that using
Truncn(Un) instead of Un leads to the same power-law decay for the
distribution of X, the number of visited nodes during the search.

Lemma. If Un → 1, Un >0 and Truncn(Un + 1)�Truncn(Un) then
Truncn/Un → 1.

Proof. Let us start to note that

Truncn(Un)
Un

= 1 − Un − Truncn(Un)
Un

�1

Due the nature of truncation, Un −Truncn(Un)�10−n. Therefore,

1 − 10−n

Un
�1 − Un − Truncn(Un)

Un
�1

Since

lim

(
1 − 10−n

Un

)
= 1 − lim(10−n)

lim(Un)
= 1

then

Truncn(Un)
Un

→ 1 �
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Defining the sequence

Wn =
∏
n

Un =
{
W1 = U1
Wn+1 = Wn × Un+1

and noting that

ln(Wn) = −
∑

ln(U−1
n )

then

Wn → 0 ⇔ ln(Wn) = −
∑

ln(U−1
n ) → +∞ (17)

which will simplify the computations that follow.

Proposition 3. Let us considered the sequence Un�2 → 1, Un >0 and
Truncn(Un + 1)�Truncn(Un), then

lim

(∏
n�2 Truncn(Un)∏

n�2 Un

)
= lim

∏
n�2

(
Truncn(Un)

Un

)

= C ∈ R+ (18)

Proof. By (17), to prove this theorem is analogous to show that

∑
ln
(
Truncn(Un)

Un

)−1
=
∑

ln
(

Un
Truncn(Un)

)
< + ∞ (19)

Using lemma, Un/Truncn(Un) → 0. Therefore, let us see if (19) con-
verges.

Since ln(x)�x, for x >0, then

ln
(
1 + Un − Truncn(Un)

Truncn(Un)

)
�

Un − Truncn(Un)
Truncn(Un)

�
Un − Truncn(Un)

Trunc2(U2)

Since the first significant digits of Un −Truncn(Un) appears at the
(n + 1) decimal place, we have Un − Truncn(Un)�10−n. Therefore,

ln
(
1 + Un − Truncn(Un)

Truncn(Un)

)
�

10−n

Trunc2(U2)
(20)

Comparing both sequences (20), since
∑∞

n=2 10
−n/Truncn(U2) is

convergent then
∑

ln(Truncn(Un)/Un)−1 is also convergent. �

A.1. In summary

Proposition 3 shows that the sequences∏
n�2

Un and
∏
n�2

Trunc(Un)

are asymptotically of the same order. We can therefore use
Truncn(Un) to generate a search tree whose distribution X, the num-
ber of nodes visited during search, can have any desired power-law
tail decay (i.e., the index of stability, �, 0 <� <2).
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