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The capacitated arc routing problem (CARP) is a well-known and fundamental vehicle routing problem. A
promising exact solution approach to the CARP is to model it as a set covering problem and solve it via
branch-cut-and-price. The bottleneck in this approach is the pricing (column generation) routine. In this
paper, we note that most CARP instances arising in practical applications are defined on sparse graphs. We
show how to exploit this sparsity to yield faster pricing routines. Extensive computational results are given.
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1. Introduction

Inmost vehicle routing problems, the customers are located at the
vertices of a network. In arc routing problems (ARPs), however, the
demands are located along the edges. Although this might seem like
a minor change, ARPs have a rather different structure to standard
vehicle routing problems and specialisedmethods have been devised
for them—see for example the edited volume by Dror [1] and the
references therein.

This paper is concerned with one of the most well-known ARPs,
the capacitated arc routing problem (CARP), which is defined as fol-
lows. We are given an undirected graph G = (V , E), a set ER ⊆ E of
required edges, and a specified depot vertex. Each edge has a travers-
ing cost ce >0, and each required edge has a demand qe >0. An un-
limited fleet of identical vehicles, each of capacity Q >0, is available.
The task is to find a minimum cost set of vehicle routes, each start-
ing and ending at the depot, such that each required edge is serviced
exactly once.

The CARP was introduced by Golden and Wong [2], who showed
that even finding a 3

2 -approximate solution is NP-hard. Compre-
hensive surveys of heuristics, lower bounds and exact algorithms for
the CARP, up to the year 2000, can be found in Dror [1]. For surveys
of more recent work, see Ahr [3], WBhlk [4] and Section 2 of this
paper.

At present, the most promising approach to solving the CARP to
proven optimality is that of Longo et al. [5]. Their algorithm consists
of two steps. First, shortest-path computations are used to trans-
form the CARP into its node routing counterpart, the capacitated
vehicle routing problem (CVRP). Then, the CVRP instance is solvedwith
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the algorithm of Fukasawa et al. [6]. This algorithm is based on the
formulation of the CVRP as a set covering problem, which is then
solved by branch-cut-and-price.

In our view, it seems odd that transforming the CARP into the
CVRP should be necessary to obtain good results. Indeed, most CARPs
arising in practice (and most standard test instances) are defined on
sparse graphs, such as road networks. The transformation used by
Longo et al. leads to a CVRP instance defined on a complete graph.
This seems to be an unnecessary `squaring' of the amount of data.
(We elaborate on this point in Section 2.1.)

Our ultimate goal is to develop a branch-cut-and-price algorithm
for the CARP that fully exploits graph sparsity. In this paper, how-
ever, we concentrate on a key component of such an algorithm: the
pricing (column generation) routine. We will show that, when G is
sufficiently sparse, pricing can be performed more quickly. More-
over, unlike in the case of the CVRP, we can price over the so-called
elementary routes, which leads to a significant improvement in the
lower bound.

The remainder of the paper is structured as follows. In Sec-
tion 2, we review the existing exact approaches to the CARP and
point out their strengths and weaknesses. In Sections 3 and 4,
we describe our new pricing routines, for non-elementary and
elementary routes, respectively. In Section 5, we give extensive
computational results. Some concluding remarks are made in
Section 6.

Throughout the paper we use the following (fairly standard)
notation and terminology. For any S ⊂ V , we denote by E(S) (re-
spectively, �(S)) the set of edges with both end-vertices (exactly one
end-vertex) in S. We also define ER(S) = ER ∩ E(S) and �R(S) = ER ∩
�(S). We let V ′ denote the set of non-depot vertices and VR denote
the set of vertices that are incident on at least one required edge.
Finally, deadheading an edge e ∈ E means traversing e without ser-
vicing it. (Note that a non-required edge can only be traversed if it is
deadheaded.)
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2. Existing integer programming approaches

In this sectionwe briefly review the existing integer programming
approaches to the CARP.

2.1. The node routing approach

In the node routing approach, the given CARP instance is first
transformed into an instance of the standard CVRP. The transforma-
tion involves the computation of all-pairs shortest paths in G. The
resulting CVRP instance can then be solved by any CVRP algorithm.
This approach was first suggested by Pearn et al. [7], and explored
further by Letchford [8], Dror and Langevin [9], Longo et al. [5] and
Baldacci and Maniezzo [10]. It benefits from the fact that some ex-
cellent exact algorithms exist for the CVRP, such as the branch-and-
cut algorithm of Lysgaard et al. [11] and the branch-cut-and-price
algorithm of Fukasawa et al. [6].

Although the node routing approach has given rather good results
so far, it does have some drawbacks. For example:

1. The transformation leads to a CVRP instance defined on a complete
graph with 2|ER|+1 vertices (or even 3|ER|+1 in the case of Pearn
et al. [7]). If the original graph G is sparse, yet |ER| is large, this
leads to a huge increase in memory requirements.

2. The graph G may have some kind of special structure that could
be exploited algorithmically. (E.g., if G is a tree, then one can adapt
the approach of Labbé et al. [12] to the CARP.) Any structure of
this kind is lost in the transformation.

3. The approach can suffer seriously from symmetry. Suppose, for
example, that the graph G is a star, all edges are required, and
only one vehicle is needed. When any of the approaches that we
describe in the following three subsections are used, there is only
one optimal solution: deadhead each edge exactly once. The CVRP
instance resulting from the transformation, on the other hand,
has |E|! alternative optimal solutions.

In our opinion, approaches that can avoid this transformation and
work directly on the original graph G merit serious consideration.

2.2. The two-index approach

Suppose that an upper bound, say m, is known on the number
of vehicles to be used in the optimal solution. Under these circum-
stances, it is possible to formulate the CARP using O(m|E|) variables,
which looks desirable whenm is small and G is sparse. To our knowl-
edge, this approach was first suggested by Welz [13]. However, Be-
lenguer and Benavent [14] were the first to explore the approach in
depth.

In the approach of Belenguer and Benavent [14], there is a binary
variable xek for each e ∈ ER and for k = 1, . . . ,m, taking the value 1
if and only if the edge e is serviced by that vehicle. There is also
a general integer variable yek for each e ∈ E and for k = 1, . . . ,m,
representing the number of times the edge e is deadheaded by the
given vehicle.

Valid inequalities and separation algorithms for the two-index
formulation have been devised by Belenguer and Benavent [14],
Letchford [8] and Ahr [3]. Computational results presented in [3,14]
indicate that the two-index approach works very well when m
is small (less than five). However, when m is larger, it becomes
unattractive. This is due in part to the large number of variables,
but also to the presence of symmetry: there always exist at least
m! optimal solutions. Ghiani et al. [15] recently proposed some
`symmetry-breaking' constraints, in an attempt to alleviate this
latter problem.

2.3. The one-index approach

In what we call the one-index approach, there is only one variable
for each edge. This approach was originally proposed for a sparse
variant of the CVRP by Fleischmann [16]. It was adapted to the CARP
independently by Letchford [8] and Belenguer and Benavent [17].

In the case of the CARP, the variables are defined as follows. For
each e ∈ E, let ze be a general integer variable representing the total
number of times e is deadheaded, summed over all vehicles. These
variables can be regarded as aggregated versions of the yek variables
in the two-index approach, in the sense that ze = ∑m

k=1 yek.
Although there is no known way to formulate the CARP as an

integer program using only these aggregated variables, it is easy to
derive valid inequalities that must be satisfied by feasible solutions.
Letchford [8] and Belenguer and Benavent [17] independently pro-
posed the following capacity inequalities:
∑

e∈�(S)

ze�2k(S) − |�R(S)| (S ⊂ V ′),

where k(S) is any lower bound on the number of vehicles that must
enter S. They also proposed the following R-odd cut inequalities:
∑

e∈�(S)

ze�1 (S ⊂ V ′ : |�R(S)| odd).

Belenguer and Benavent [17] also presented a third class of inequal-
ities, called disjoint path inequalities. Since the description of these
inequalities is rather complicated, we do not go into details.

Effective exact and heuristic separation algorithms for the ca-
pacity, R-odd cut and disjoint path inequalities can be found in Be-
lenguer and Benavent [17] and Ahr [3]. Their computational results
show that the one-index approach gives excellent lower bounds ex-
tremely quickly. Unfortunately, one cannot build a full exact algo-
rithm for the CARP using the z variables alone, because it is strongly
NP-hard to decide whether a vector z ∈ Z

|E|
+ represents a feasible

solution to the CARP.

2.4. A direct set covering approach

Gómez-Cabrero et al. [18] proposed formulating the CARP as a
set covering problem directly, without any transformation to the
CVRP. We refer the reader to Dror and Langevin [9] and Bramel and
Simchi-Levi [19] for introductions to the set covering approach to
vehicle routing and associated concepts such as column generation
and branch-and-price.

Let � denote the set of all possible feasible routes for a single
vehicle.We define a binary variable �r for each r ∈ �, taking the value
1 if and only if route r is used. We also denote by cr the cost of route
r. The set covering formulation takes the following standard form:

min
∑

r∈�
cr�r

s.t.
∑

r∈�
are�r �1 (e ∈ ER),

�r ∈ {0, 1} (r ∈ �), (1)

where are denotes the number of times edge e is serviced (not
merely traversed) by route r.

Since this formulation has an exponential number of variables,
one must solve its LP relaxation via column generation. Unfortu-
nately, the pricing (column generation) subproblem is itself easily
shown to be stronglyNP-hard. Gómez-Cabrero et al. [18] therefore
enlarge the set of columns by permitting non-elementary routes, i.e.,
routes in which customers may be serviced more than once. When
the problem is relaxed in this way, the pricing subproblem can be
solved in pseudo-polynomial time by dynamic programming.
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Gómez-Cabrero et al. [18] strengthen the LP relaxation by adding
the capacity and R-odd cut inequalities mentioned above. To link the
z variables with the � variables, they use the identities:

ze =
∑

r∈�
a′
re�r (e ∈ E),

where a′
re denotes the number of times route r deadheads edge e. (A

similar approach was used for the CVRP by Fukasawa et al. [6].)
Since the resulting extended formulation has an exponential

number of both variables and constraints, Gómez-Cabrero et al. [18]
use both row and column generation (cut-and-price) to solve its LP
relaxation. The resulting lower bounds are much better than those
obtained by pricing alone, and slightly better than those obtained
by cutting alone.

The pricing subroutine of Gómez-Cabrero et al. [18] exploits the
sparsity of G only to some extent. In the next section, we present
alternative pricing subroutines that fully exploit sparsity.

3. Pricing with non-elementary routes

In this section we give algorithms for pricing, when non-
elementary routes are permitted, that exploit graph sparsity. In the
first subsection, we consider exact pricing, and in the second, we
turn to heuristic pricing.

3.1. Exact pricing

If we transform the CARP into the standard CVRP, as done in
Longo et al. [5], then pricing with non-elementary routes can easily
be performed in O(Q |ER|2) time by dynamic programming (see, e.g.,
Bramel and Simchi-Levi [19]). The pricing algorithm described by
Gómez-Cabrero et al. [18] is a little more sophisticated, and can be
shown to run in O(Q |VR|2) time. However, both approaches require
all-pairs shortest paths to be computed in G in a pre-processing stage.

We now show that pricing with non-elementary routes can in
fact be performed in O(Q(|E|+ |V| log |V|)) time without any all-pairs
shortest path computations. Like the existing algorithms, the new
algorithm is based on dynamic programming. However, we use Dijk-
stra's single-source shortest path algorithm as a subroutine to speed
up certain computations.

To explain our new algorithm, we will need some notation. For
each required edge e ∈ ER, let �e be the dual price of the associated
constraint (1) in the optimal solution to the current restricted master
LP. For i ∈ V and q=0, . . . ,Q , let f (i, q) denote the cumulative reduced
cost of the best path starting at the depot and ending at vertex
i, having delivered a cumulative load of q. (If no such path exists,
f (i, q) = ∞.) Now, for i ∈ VR and q = 0, . . . ,Q , let g(i, q) denote the
cumulative reduced cost of the best path starting at the depot and
ending at vertex i, having delivered a cumulative load of q, subject
to the restriction that it has just serviced an edge when it arrives at
i. (Again, if no such path exists, g(i, q)= ∞.) Note that, by definition,
g(i, q)� f (i, q) for all i ∈ VR and for q = 0, . . . ,Q .

The algorithm is as follows:
Initialisation: set all f (i, q) and g(i, q) values to ∞.

For q = 0, . . . ,Q − 1 do:
(*) Call Dijkstra's algorithm to compute f (i, q) for all i ∈ V .
For each {i, j} ∈ ER such that q + qij�Q do:

If f (i, q) + cij − �ij < f (j, q + qij)
set g(j, q + qij) := f (i, q) + cij − �ij.

If f (j, q) + cij − �ij < f (i, q + qij)
set g(i, q + qij) := f (j, q) + cij − �ij.

Call Dijkstra's algorithm to compute f (i,Q) for all i ∈ V .
For q = 1, . . . ,Q do:

If f (0, q) <0, output the corresponding column.

The steps of this algorithm are self-explanatory, with the excep-
tion of the step marked with an asterisk. When q = 0, it suffices to
call Dijkstra's algorithm on G with the depot as source (since the
vehicle will always take a shortest path from the depot to the node
at which servicing begins). When q�1, however, things are more
complicated. We have already computed g(i, q) for all i ∈ VR, and we
wish to use that information to compute f (i, q) for all i ∈ V . Of course,
we have

f (i, q) : =min
j∈VR

{g(j, q) + sp(j, i)},

where sp(j, i) denotes the cost of the shortest path from j to i in G
(and by convention sp(i, i)=0). Computing all-pairs shortest paths is,
however, precisely what we want to avoid. Instead, we use Dijkstra's
algorithm in the following way. We construct a copy of G, with edge-
costs ce as usual, and add a dummy vertex, say v∗. For each i ∈ VR,
we then add a directed arc from v∗ to i with cost equal to g(i, q).
By definition, f (i, q) is then equal to the cost of the shortest path
from v∗ to i in this auxiliary graph. Thus, it suffices to call Dijkstra's
algorithm once with v∗ as source. (The presence of negative g(i, q)
values does not cause any problem, since one can simply add a large
positive constant to the cost of the directed arcs, and then subtract
it from the cost of the shortest paths afterwards.)

We therefore have the following result:

Theorem 1. For the CARP, pricing with non-elementary routes permit-
ted can be performed in O(Q(|E| + |V| log |V|)) time.

Proof. We call Dijkstra's algorithm once on G, and Q times on a graph
with |V|+1 vertices, |E| edges and |V| arcs. If we use a Fibonacci heap
implementation of Dijkstra's algorithm (Fredman and Tarjan [20]),
this takes O(Q(|E|+|V| log |V|)) time. The remainder of the algorithm,
scanning the required edges, takes only O(Q |ER|) time. �

We close this subsection with a remark. It usually happens that
there are several required edges with negative reduced cost, i.e.,
edges for which �e > ce. When this occurs, it is possible for our pric-
ing algorithm to generate a non-elementary route in which a small
number of edges are serviced many times. This is analogous to the
well-known phenomenon of k-cycles in the VRP literature; see for
example Irnich and Villeneuve [21]. Just as in the case of the VRP,
one can modify our pricing algorithm to prevent k-cycles, but this
would be at the expense of increasing the running time.

3.2. Heuristic pricing

Although the pricing algorithm described above exploits graph
sparsity, it can still be rather slow for large CARP instances. This led
us to devise fast heuristics for pricing, which can be called before
invoking the exact pricing routines.

Intuitively, one would expect the columns that are basic at the
optimal solution of themaster LP to correspond to routes that include
very little deadheading. Our first pricing heuristic tries to exploit this
observation, by pricing over the (not necessarily elementary) routes
that have the following `three-phase' structure:

1. The vehicle departs from the depot and deadheads to the first
edge to be serviced.

2. The vehicle services one or more required edges without any
deadheading taking place.

3. The vehicle departs from the last edge serviced and deadheads
back to the depot.

Phase 1 or 3, or both, can of course be `empty', if the vehicle starts
or ends by servicing a required edge that is incident on the depot.
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It turns out that pricing over the routes with this structure can
easily be performed in O(Q |ER|) time, assuming that we have already
computed, for each i ∈ VR, the cost c∗i of the shortest path from the
depot to i. The algorithm is as follows:

Set f (i, q) = ∞ for all i ∈ VR and for q = 1, . . . ,Q . Set f (i, 0) = c∗i
for all i ∈ VR.
For q = 0, . . . ,Q − 1 do:
For each {i, j} ∈ ER such that q + qij�Q do:
If f (i, q) + cij − �ij < f (j, q + qij) set f (j, q + qij) := f (i, q) + cij − �ij.
If f (j, q) + cij − �ij < f (i, q + qij) set f (i, q + qij) := f (j, q) + cij − �ij.

For q = 1, . . . ,Q do:
For each i ∈ VR do:
If f (i, q) + c∗i <0, output the corresponding column.

This heuristic is very fast in practice and extremely easy to imple-
ment, but it suffers from an important drawback. If the subgraph of
G induced by the required edges has many connected components,
then many `useful' routes may be lost. (The heuristic permits the ve-
hicle to pass through at most one such component while servicing.)

Our second pricing heuristic attempts to get around the above-
mentioned limitation, by permitting a limited amount of deadhead-
ing to occur in phase 2. Specifically, we `pretend' that one unit of
demand is consumed each time an edge is deadheaded. (Putting this
another way, we insist that the total demand serviced by the ve-
hicle, plus the number of edges deadheaded in phase 2, must not
exceed Q.) One can price over the resulting set of routes in O(Q |E|)
time, simply by inserting the following steps in the above algorithm
immediately after the start of the first `for q' loop:

For each {i, j} ∈ E do:
If f (i, q) + cij < f (j, q + 1) set f (j, q + 1) := f (i, q) + cij.
If f (j, q) + cij < f (i, q + 1) set f (i, q + 1) := f (j, q) + cij.

Although slightly slower and more complicated than the first
heuristic, this second heuristic is still very fast in practice and much
easier to implement than the exact pricing algorithm described in
Section 3.

4. Pricing with elementary routes

Although pricing with elementary routes is stronglyNP-hard, it
turns out that one can often solve it exactly in a reasonable amount
of time when G is sparse. The key is to formulate the pricing problem
as a mixed-integer program (MIP) with only O(|E|) variables and
constraints, as we explain in the following subsections.

4.1. A directed MIP formulation

We first present an MIP formulation that uses directed flow vari-
ables. For each {i, j} ∈ ER, define two binary variables xij and xji. The
variable xij takes the value 1 if and only if edge {i, j} is serviced from
i to j, and similarly for xji. Then, for each {i, j} ∈ E, define two bi-
nary variables yij and yji, representing the number of times {i, j} is
traversed (whether servicing or not) in either direction. (It is easy to
show that there always exists at least one optimal solution to the
pricing subproblem such that no edge is traversed more than once
in any given direction.) Finally define for each {i, j} ∈ E two con-
tinuous variables fij and fji. The variable fij takes the value zero if
yij = 0, but if yij = 1 it represents the remaining load on the vehi-
cle when the vehicle arrives at j from i. The variable fji is defined
similarly.

Since we are working with directed variables, it is helpful to
define �+(i) and �−(i), the set of directed arcs leaving and entering
vertex i, respectively. We define �+

R (i) and �−
R (i) analogously. Letting

0 denote the depot vertex, the pricing subproblem then amounts to
minimising
∑

{i,j}∈E
cij(yij + yji) −

∑

{i,j}∈ER
�ij(xij + xji)

subject to the following constraints:

xij + xji�1 ({i, j} ∈ ER), (2)

yij�xij, yji�xji ({i, j} ∈ ER), (3)

y(�−(i)) = y(�+(i)) (i ∈ V ′), (4)

f (�+(i)) = f (�−(i)) −
∑

{i,j}∈�+
R (i)

qijxij (i ∈ V ′), (5)

f (�+(0)) − f (�−(0)) +
∑

(0,j)∈�+
R (0)

q0jx0j�Q , (6)

fij�Qyij, fji�Qyji ({i, j} ∈ E\ER), (7)

fij�Qyij − qijxij, fji�Qyji − qjixji ({i, j} ∈ ER), (8)

fij, fji�0 ({i, j} ∈ E),

xij, xji ∈ {0, 1} ({i, j} ∈ ER),

yij, yji ∈ {0, 1} ({i, j} ∈ E).

Constraints (2) ensure that required edges are serviced at most once
and constraints (3) ensure that edges are traversed when they are
serviced. Constraints (4) ensure that the vehicle leaves each vertex as
many times as it enters. Constraints (5) ensure that servicing reduces
vehicle load. Constraint (6) ensures that the total demand on the
route is no more than Q. Constraints (7) and (8) restrict vehicle load
en route. The remaining constraints are trivial non-negativity and
binary integrality conditions.

This formulation, which is easily seen to be valid, has only O(|E|)
variables, constraints and non-zero constraint coefficients. Moreover,
its LP relaxation is reasonably strong, as indicated by the following
proposition:

Proposition 1. The feasible region of the LP relaxation of the above
MILP formulation satisfies the following inequalities:

Qy(�−(S))�
∑

{i,j}∈ER(S)∪�R(S)

qij(xij + xji) (∀S ⊂ V ′). (9)

Proof. We use the projection technique of Gouveia [22]. Summing
constraints (5) over all i ∈ S, and re-arranging gives

f (�−(S)) = f (�+(S)) +
∑

(i,j)⊂S

qijxij +
∑

i∈S,j∈V\S
qijxij.

Since the f variables are non-negative we have

f (�−(S))�
∑

(i,j)⊂S

qijxij +
∑

i∈S,j∈V\S
qijxij.

The result then follows from the bounds (7) and (8). �

Note that the inequalities (9) are exponential in number. That is,
a linear number of constraints involving the f variables implies an
exponential number of constraints in the subspace defined by the x
and y variables.

We remark that constraints (5) and (6) also imply the `obvious'
valid inequality

∑
{i,j}∈ER qij(xij + xji)�Q .
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Although the formulation has these nice properties, there are
two simple ways to improve it. First, one can add the constraint
y(�+(0)) = 1, since any feasible route in which y(�+(0)) >1 can be
decomposed into two or more simpler routes. Second, one can fix
the variables xij and xji to zero whenever �ij=0. Note that, to use this
second improvement, one must modify the formulation dynamically
during the course of the column generation algorithm.

4.2. Undirected and mixed MIP formulations

The above directed MIP formulation suffers from a high degree
of symmetry (many feasible solutions of the same cost). One can
eliminate this symmetry, and reduce the number of variables, by
using undirected x and y variables. However, to ensure that vertex
degrees are even, one then needs to use an additional general inte-
ger variable for each (non-depot) vertex. This leads to the following
formulation, which we call the undirected formulation:

Min
∑

e∈E
ceye −

∑

e∈ER
�exe

S.t. ye�xe (e ∈ ER),

y(�(i)) = 2zi (i ∈ V ′),

f (�+(i)) = f (�−(i)) − 1
2

∑

e∈�R(i)

qexe (i ∈ V ′),

f (�+(0)) − f (�−(0)) + 1
2

∑

e∈�R(0)

qexe�Q ,

fij, fji�
Q
2
yij ({i, j} ∈ E\ER),

fij, fji�
1
2 (Qyij − qijxij) ({i, j} ∈ ER),

fij, fji�0 ({i, j} ∈ E),

xe ∈ {0, 1} (e ∈ ER),

ye ∈ {0, 1, 2} (e ∈ E),

zi ∈ Z+ (i ∈ V ′).

We remark that, although this gives a valid formulation of the pric-
ing problem, the f variables no longer have any natural physical in-
terpretation.

By analogy with the directed formulation, one can strengthen the
undirected formulation by adding the constraint y(�(0)) = 2 and by
fixing xe to zero whenever �e = 0.

It can be shown that the optimal solutions to the LP relaxations
of the directed and undirected formulations have the same cost.
The directed formulation does, however, have one advantage over
the undirected one: if during the branch-and-bound process we im-
pose the constraint yij = 1, constraints (4) immediately ensure that

y(�−(S))�1 for all S with i ∈ S, j /∈ S. In the undirected case, on the
other hand, imposing ye = 1 has no analogous effect. The result is
that the branch-and-bound tree tends to have more nodes when the
undirected formulation is used, rather than fewer as one might ex-
pect.

The above considerations led us to devise a third formulation,
which we call mixed, in which the y variables are directed but the x
variables are undirected. The derivation of the mixed formulation is
straightforward, and we omit details for brevity. Nevertheless, our
computational experience (Section 5) indicates that the mixed for-
mulation performs slightly better than the directed and undirected
formulations.

4.3. Heuristic pricing

For large instances, solving the pricing subproblem exactly by
mixed-integer programming can be very time-consuming. So, we

were led to consider fast heuristics for pricing with elementary
routes. We experimented with various constructive heuristics, but
did not find any method that consistently led to better overall per-
formance. Instead, we found it more fruitful to adjust the param-
eters of the MIP solver itself, as follows. In a first step, we solve
the MIP approximately by branch-and-bound, aborting whenever the
gap between upper and lower bound drops below 0.01. (We do this
in ILOG CPLEX by setting the parameters CPX_PARAM_EPAGAP and
CPX_PARAM_MIPEMPHASIS to 0.01 and 1, respectively. Apart from
that, all other settings were left at their default values.) If a col-
umn is found that has a reduced cost less than 10−3, we add it
to the restricted master LP. Otherwise, we proceed to solve the
MIP to proven optimality with a much higher degree of precision.
(We do this in CPLEX by setting CPX_PARAM_EPAGAP to 10−6 and
CPX_PARAM_MIPEMPHASIS to 0. Again, no other parameters were
changed.) If a column is found whose reduced cost is less than 10−6,
we add it to the master.

5. Computational experiments

Four sets of CARP instances are commonly used in the literature.
The set created by Golden et al. [23] contains 23 instances, defined on
artificial graphs. The set of Benavent et al. [24] contains 34 instances,
based on the road network in Valencia. The third set, due to Kiuchi
et al. [25], contains six instances, defined on artificial graphs. In
each of these three sets, the demands are randomly generated and
all edges are required. The fourth set, due to Li [26] and Li and
Eglese [27], contains 24 instances based on the road network in
Cumbria. The complete data for these instances are available on the
web (http://www.uv.es/∼belengue/carp.html).

Tables 1–4 present some detailed results for these instances. The
first four columns give the instance name, the number of vertices and
edges, and the minimum number of vehicles needed. The columns
marked LBNE and LBE give the lower bounds obtained with our col-
umn generation algorithm, with non-elementary and elementary
routes, respectively. The column marked LBA gives, for comparison,
the lower bound obtained by Ahr's cutting plane algorithm [3], based
on the exact separation of capacity and R-odd cut inequalities. (Ahr's
algorithm ran into time and memory problems for the 12 larger egl
instances. For those instances, the number reported within paren-
theses is the best lower bound obtained by his algorithm at the point

Table 1
Results for Golden et al. instances.

Inst. |V| |E| m LBNE LBE LBA Opt.

gdb1 12 22 5 282 285 316 316
gdb2 12 26 6 313 314 339 339
gdb3 12 22 5 248 250 275 275
gdb4 11 19 4 266 272 287 287
gdb5 13 26 6 358 359 377 377
gdb6 12 22 5 282 284 298 298
gdb7 12 22 5 288 293 325 325
gdb8 27 46 10 319 330 344 348
gdb9 27 51 10 291 294 303 303
gdb10 12 25 4 254 254 275 275
gdb11 22 45 5 364 364 395 395
gdb12 13 23 7 422 444 450 458
gdb13 10 28 6 525 525 536 536
gdb14 7 21 5 98 98 100 100
gdb15 7 21 4 56 56 58 58
gdb16 8 28 5 122 122 127 127
gdb17 8 28 5 85 85 91 91
gdb18 9 36 5 159 159 164 164
gdb19 8 11 3 47 55 55 55
gdb20 11 22 4 107 114 121 121
gdb21 11 33 6 151 151 156 156
gdb22 11 44 8 196 196 200 200
gdb23 11 55 10 233 233 233 233

http://www.uv.es/~belengue/carp.html
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Table 2
Results for Kiuchi et al. instances.

Inst. |V| |E| m LBNE LBE LBA Opt.

kshs1 8 15 4 13 363 13553 14661 14661
kshs2 10 15 4 8195 8723 9863 9863
kshs3 6 15 4 8401 8654 9320 9320
kshs4 8 15 4 11 442 11498 11098 11498
kshs5 8 15 3 10 215 10370 10957 10957
kshs6 9 15 3 9080 9232 10197 10197

Table 3
Results for Benavent et al. instances.

Inst. |V| |E| m LBNE LBE LBA Opt.

val1a 24 39 2 220 220 247 247
val1b 24 39 3 223 225 247 247
val1c 24 39 8 294 313 309 319
val2a 24 34 2 270 277 298 298
val2b 24 34 3 300 304 328 330
val2c 24 34 8 515 528 526 528
val3a 24 35 2 92 93 105 105
val3b 24 35 3 99 101 111 111
val3c 24 35 7 153 155 159 162
val4a 41 69 3 478 478 522 522
val4b 41 69 4 490 492 534 534
val4c 41 69 5 511 515 550 550
val4d 41 69 9 615 621 642 652
val5a 34 65 3 524 524 566 566
val5b 34 65 4 545 548 586 589
val5c 34 65 5 574 578 610 617
val5d 34 65 9 682 689 714 720
val6a 31 50 3 300 305 330 330
val6b 31 50 4 309 315 336 340
val6c 31 50 10 397 405 414 424
val7a 40 66 3 352 358 382 382
val7b 40 66 4 354 361 386 386
val7c 40 66 9 401 407 430 437
val8a 30 63 3 489 489 522 522
val8b 30 63 4 501 502 531 531
val8c 30 63 9 633 638 645 657
val9a 50 92 3 407 407 450 450
val9b 50 92 4 412 412 453 453
val9c 50 92 5 419 419 459 459
val9d 50 92 10 481 484 505 518
val10a 50 97 3 590 590 637 637
val10b 50 97 4 597 597 645 645
val10c 50 97 5 608 609 655 655
val10d 50 97 10 691 695 731 735

where the run was aborted.) The last column displays the optimal
solution value (in the case of the gdb, val and kshs instances), or
the best known upper bound at the time of writing (in the case of the
egl instances). The optimal solution values are taken from Belenguer
and Benavent [17], Longo et al. [5], Baldacci and Maniezzo [10] and
Ghiani et al. [15]. The upper bounds are taken from Brandão and
Eglese [28]. Bounds that have been proven optimal are in bold font.

We point out that not all of the gdb and kshs instances are sparse.
Indeed, the instances gdb16 and kshs3 are defined on complete
graphs.

Two main conclusions can be drawn from these tables. First,
forbidding non-elementary routes leads to significantly improved
bounds, especially in the case of the egl instances. Second, the
bounds obtained with column generation alone are weaker than
those obtained with cutting planes alone. However, LBE is stronger
than LBA in a few cases (specifically, in two val instances, one kshs
instance and eight egl instances).

To explore further the quality of the various bounds, we con-
structed Table 5. This table shows, for the three sets of instances
that have been solved to optimality and for several lower bounds,
the average ratio between the bound and the optimum. The mean-

Table 4
Results for Li and Eglese instances.

Inst. |V| |E| |ER| m LBNE LBE LBA UB

egl-e1-A 77 98 51 5 2983 3425 3516 3548
egl-e1-B 77 98 51 7 3791 4291 4436 4498
egl-e1-C 77 98 51 10 4931 5472 5481 5595
egl-e2-A 77 98 72 7 4221 4832 4963 5018
egl-e2-B 77 98 72 10 5463 6105 6271 6317
egl-e2-C 77 98 72 14 7679 8187 8155 8335
egl-e3-A 77 98 87 8 5076 5706 5866 5898
egl-e3-B 77 98 87 12 6882 7541 7649 7777
egl-e3-C 77 98 87 17 9434 10 086 10119 10305
egl-e4-A 77 98 98 9 5634 6233 6378 6456
egl-e4-B 77 98 98 14 8048 8678 8838 9000
egl-e4-C 77 98 98 19 10 770 11 416 11376 11601
egl-s1-A 140 190 75 7 4170 4985 (4975) 5018
egl-s1-B 140 190 75 10 5542 6284 (6180) 6388
egl-s1-C 140 190 75 14 7716 8423 (8286) 8518
egl-s2-A 140 190 147 14 8867 9667 (9718) 9956
egl-s2-B 140 190 147 20 12 146 12 801 (12835) 13165
egl-s2-C 140 190 147 27 15 618 16 262 (16216) 16524
egl-s3-A 140 190 159 15 9190 9925 (9991) 10260
egl-s3-B 140 190 159 22 12 752 13 388 (13520) 13807
egl-s3-C 140 190 159 29 16 390 17 014 (16958) 17234
egl-s4-A 140 190 190 19 11 314 11 905 (12007) 12341
egl-s4-B 140 190 190 27 15 266 15 891 (15897) 16462
egl-s4-C 140 190 190 35 19 651 20 197 (20176) 20591

Table 5
Average ratios computed for the test sets and five lower bounds.

Set LBNE LBE LBBB LBA LBG

gdb 0.9368 0.9524 0.9987 0.9987 0.9990
val 0.9230 0.9327 0.9940 0.9941 0.9964
kshs 0.9103 0.9315 0.9942 0.9942 –

Table 6
Time to solve the master LP under six pricing strategies.

Set NE-C NE-S NE-SH E-D E-U E-M

gdb 2.26 0.45 0.17 28.61 54.23 20.10
val 64.33 31.99 10.81 4364.19 6696.91 3531.59
ksh 0.85 0.22 0.09 3.75 3.86 3.75
egl 410.20 500.14 385.40 36 890.00 57 932.94 30 542.09

ing of the headings LBNE, LBE and LBA is as before; LBBB corresponds
to the bound obtained by Belenguer and Benavent's cutting plane
algorithm [17], when heuristics are used for separation of capac-
ity and R-odd cut inequalities; and LBG to the bound obtained with
the cut-and-price algorithm of Gómez-Cabrero et al. [18], which
used non-elementary routes in the pricing routine, and heuristic
separation of capacity and R-odd cut inequalities. Based on these
figures, we conjecture that a cut-and-price algorithm using exact
pricing with elementary routes, or exact separation of capacity and
R-odd cut inequalities, or both, would give extremely strong lower
bounds.

Finally, Table 6 reports, for each set of instances and for six dif-
ferent pricing strategies, the average time (in seconds) taken to solve
the master LP to optimality. As before, the columns headed NE cor-
respond to the case in which non-elementary routes are permitted,
whereas the columns headed E correspond to the case in which only
elementary routes are permitted. For the column NE-C, we used the
traditional pricing routine, based on a transformation to a complete
graph. For the column NE-S, we used our sparse pricing routine,
and for the column NE-SH we also used our pricing heuristics. The
columns E-D, E-U and E-M correspond to the directed, undirected and
mixed MIP formulations, respectively.
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Fig. 1. Pricing cpu time when only the elementary routes are generated.
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Fig. 2. Tail-off effect curve when only the elementary routes are generated.
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Fig. 3. Reduced costs when only the elementary routes are generated.

The cpu times corresponding to the case inwhich non-elementary
routes are permitted show clearly that the sparse approach performs
better than the complete approach for all sets of instances, except
the egl instances. A closer look at the results for the egl instances
revealed that the complete approach works better than the sparse
approach when there is a significant number of non-required edges.
Therefore, the sparse approach appears to be more suited for in-
stances where most or all of the edges are required.

As for the case where only elementary routes are generated, the
undirected MIP formulation is the slowest of the three formulations.
Although it has fewer variables and constraints than the other MIP
formulations, and the LP relaxation is typically solved more quickly,
the number of branch-and-bound nodes tends to be higher. The di-
rected MIP formulation performs well for small instances, but rather
poorly for larger ones, probably due to the relatively large number
of variables and constraints. Finally, the mixed MIP formulation is
solved considerably more quickly than the others.

Even using the mixed MIP formulation, running times are ex-
cessive for the val and egl instances. In an attempt to understand
this, we produced Figs. 1–3. The first figure shows how the time

taken to solve the pricing subproblem typically evolves: the sub-
problems faced in the later iterations tend to be the hardest ones.
This may be because the later routes tend to accommodate more
customers, which makes the `knapsack' aspect of the pricing sub-
problem harder. The second and third figures show that the column
generation process also exhibits a strong `tailing-off' phenomenon,
i.e., small changes in the objective function value and in the reduced
costs in the later iterations. This behaviour is typical of column gen-
eration algorithms.

6. Concluding remarks

In this paper, we have argued that exact algorithms for the CARP
should be capable of exploiting the sparsity of typical real-life CARP
instances. We have also argued that algorithms based on the set
covering formulation are ideal for doing this. To back up this claim,
we have shown how to exploit sparsity in a core component of such
algorithms, namely the pricing subproblem.

There are several potential topics for future research. First, one
could experiment with k-cycle elimination in the exact routine for
non-elementary routes, as mentioned in Section 3.1. Second, in the
case of elementary routes, one might consider solving the pricing
MIPs themselves by branch-and-cut, instead of just feeding them
to a standard MIP solver. Third, one could attempt to improve the
convergence of the column generation process by using stabilisation
techniques (see, e.g., duMerle et al. [29]). Fourth, one could develop a
full branch-cut-and-price algorithm for sparse CARP instances, using
one or more of our pricing algorithms as subroutines. Some thought
would be needed to devise branching rules that effectively exploited
graph sparsity.

Finally, we remark that our algorithm for pricing with non-
elementary routes can be adapted with little modification to other
VRPs or ARPs defined on sparse graphs. For example, one can easily
obtain an O(QT|E|) pricing algorithm for the capacitated arc routing
problem with time windows (CARPTW), where T is the number of
time periods. However, the approach we have given for pricing with
elementary routes is not so easily adapted. For example, we do not
know how to formulate the pricing problem for the CARPTW as a
mixed-integer program with only O(|E|) variables.

Appendix

Proposition 1. In the case of elementary routes, there exists at least
one optimal solution to the pricing subproblem such that no edge is
traversed more than once in any given direction.

Proof (Sketch). Given an optimal solution to the pricing subproblem,
let G′ be the corresponding Eulerian multigraph, with one copy of
each edge for each time that it is traversed by the vehicle. If G′ is
a graph (i.e., if it does not contain any parallel edges), then there is
nothing to prove. So suppose that G′ contains parallel edges. Note
that, for a fixed {i, j} ∈ E, there cannot exist more than two parallel
edges in G′ between i and j. (If there were, we could delete two of
them to obtain an Eulerian multigraph of lower cost, contradicting
the fact that G′ represents an optimal solution to the pricing sub-
problem.) So we can assume that, if there are any parallel edges, then
they come in pairs. Let e1 and e2 form a pair of parallel edges in G′,
and let G− denote the (multi)graph obtained from G′ by deleting e1

and e2. We consider two cases:
Case 1: G− is disconnected. In this case, the vehicle must travel

from i to j via e1, and travel from j to i via e2, or vice versa.
Case 2: G− is connected. In this case, we can construct an Eulerian

traversal of G−. We can then convert it into an Eulerian traversal of
G′ as follows. When the vehicle arrives at node i, traverse the edge
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e1 to arrive at node j, and then immediately traverse the edge e2 to
return to node i.

In either case, we can assume that e1 and e2 are traversed in
opposite directions. The proof can be completed via induction, since
we can apply the same argument to G−. �
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