
Computers & Operations Research 36 (2009) 2619 -- 2631

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

Designandanalysisof stochastic local search for themultiobjective travelingsalesman
problem

Luís Paquetea,∗, Thomas Stützleb

aCISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
bIRIDIA, CoDE, Université Libre de Bruxelles (ULB), Bruxelles, Belgium

A R T I C L E I N F O A B S T R A C T

Available online 7 December 2008

Keywords:
Multiobjective combinatorial optimization
Meta-heuristics

Stochastic local search (SLS) algorithms are typically composed of a number of different components,
each of which should contribute significantly to the final algorithm's performance. If the goal is to design
and engineer effective SLS algorithms, the algorithm developer requires some insight into the importance
and the behavior of possible algorithmic components. In this paper, we analyze algorithmic components
of SLS algorithms for the multiobjective travelling salesman problem. The analysis is done using a careful
experimental design for a generic class of SLS algorithms for multiobjective combinatorial optimization.
Based on the insights gained, we engineer SLS algorithms for this problem. Experimental results show that
these SLS algorithms, despite their conceptual simplicity, outperform a well-known memetic algorithm
for a range of benchmark instances with two and three objectives.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic local search (SLS) algorithms are among the most suc-
cessful techniques for tackling computationally hard problems [1].
In recent years, they have become very popular also for tackling
multiobjective combinatorial optimization problems (MCOPs) [2,3].
The currently best performing SLS algorithms for MCOPs typically
involve a number of different algorithmic components that are com-
bined into amore complex algorithm. An algorithm developer should
therefore have some form of insights into the importance of these
algorithmic components and know how they interact with problem
characteristics with respect to performance. Ideally, such insights are
gained first to make the SLS algorithm design more informed and
directed.

In this paper, we present an in-depth experimental analysis of
SLS algorithms for the multiobjective traveling salesman problem
(MTSP), a paradigmatic NP-hard MCOP. Our analysis is based on a
sound experimental design that investigates some usual algorithmic
components that can be found in a general algorithmic framework
for tackling MCOPs, the scalarized acceptance criterion (SAC) search
model [3]. The SAC search model mimics local search approaches
that are based on the scalarization of the multiple objective func-
tions. Many such scalarizations are then tackled using local search

∗ Corresponding author. Tel.: +351239790000.
E-mail address: paquete@dei.uc.pt (L. Paquete).

0305-0548/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.11.013

(or exact algorithms, if the scalarized problems are efficiently solv-
able by such algorithms) and the resulting approximate solutions
are possibly further treated. Essential components of algorithms fol-
lowing the SAC search model are the number of scalarizations, the
search strategy followed (for example, whether information between
various scalarizations is exchanged or not), the computation time
invested for tackling each of the resulting single objective problems
and various others. In fact, decomposing an SLS algorithm into its
components allows to employ an experimental design perspective
for the analysis of its performance: algorithmic components are seen
as factors, that is, as abstract characteristics of an SLS algorithm that
can affect the response variables such as solution quality. Designing
the experiments in a careful way and analyzing them by methods
from experimental design allows then to arrive at statistically sound
conclusions on the importance of these components and their mu-
tual interdependencies.

While there exist few researches where experimental designs
have been used to analyze SLS algorithms for optimization problems
with a single objective function [4,5], the usage of experimental de-
signs for analyzing SLS algorithms for MCOPs is rather recent [6,7].
One reason for this is certainly that the outcomes of algorithms
for MCOPs are difficult to compare. In fact, fundamental criticisms
have been raised against the usage of many unary and binary per-
formance measures [8], which also makes it difficult, if not virtually
impossible, to apply the classical ANOVA-type analysis for compar-
ing approximations to the efficient set. Instead, we employ a sound
methodology that follows three steps. In a first step, the outcomes of

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:paquete@dei.uc.pt

2620 L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631

algorithms are compared pairwise with respect to outperformance
relations [9]; if these comparisons do not yield clear conclusions, we
compute in a next step the attainment functions to detect significant
differences between sets of outcomes [10,11]. If such differences are
detected, the usage of graphical illustrations is used in a third step
to examine the areas in the objective space where the results of two
algorithms differ more strongly [12].

Our experimental analysis allows an identification of the key-
success algorithm components. For example, our results indicate that
the two-phase search strategy and the component-wise step [13]
are two component levels that yield a significant improvement with
respect to solution quality. In addition, the experimental analysis
gives insights into the behavior of specific components such as the
effectiveness of increasing either the number of scalarizations or the
search length.

There is yet another aspect that makes the analysis through the
lens of experimental design useful: the insights gained can be ex-
ploited to define new high-performing algorithms or at least indi-
cate directions into which existing algorithms should be extended.
In other words, the insights gained from the experimental analysis
can be helpful to direct the design and engineering of successful SLS
algorithms. In fact, based on our experimental analysis, we define
SLS algorithms that are assembled from the most promising levels of
components we have identified; still, these algorithms remain con-
ceptually rather simple. An extensive experimental comparison of
these SLS algorithms on the MTSP with two and three objectives to a
well-known state-of-the-art algorithm for this problem shows that
they are very competitive or often superior.

The article is structured as follows. In Section 2, we introduce ba-
sic notions on MCOPs and the MTSP. Section 3 introduces the SAC
model and explains the particular components of these SLS algo-
rithms studied in our experiments. Next, in Section 4, we give an
overview of the experimental design, themethodology that was used
for comparing the performance of the algorithms and we describe
the experimental results obtained. Finally, in Section 5, we compare
the performance of our SLS algorithms to a well-known state-of-the-
art algorithm. We conclude in Section 6.

2. Multiobjective optimization and the MTSP

Themain goal of solving MCOPs in terms of Pareto optimality is to
find (all) feasible solutions that are not worse than any other solution
and strictly better in at least one objective. The objective function
vector for a feasible solution s ∈ S to an MCOP can be defined as a
mapping f : s�RQ , where Q is the number of objectives and S is the
set of all feasible solutions. The following order holds for objective
function vectors in RQ . Let u and v be vectors in RQ ; we define
the component-wise order as u�v, i.e., u� v and ui�vi, i = 1, . . . ,Q .
In optimization, we say (i) f (s) dominates f (s′) if f (s)� f (s′); (ii) f (s)
and f (s′) are non-dominated if f (s)�f (s′) and f (s′)�f (s). We use the
same notation and wording among solutions if these relations hold
between their objective function vectors.

A feasible solution s is said to be a Pareto optimum solution if
and only if there is no feasible solution s′ such that f (s′)� f (s). There
may be more than one Pareto optimum solution; a Pareto optimum
set is the subset S′ ⊆ S that contains only and all Pareto optimum
solutions. We call the image of the Pareto optimum set in the objec-
tive space the efficient set. In most cases, solving an MCOP in terms
of Pareto optimality would correspond to finding solutions that are
representative of the efficient set.

The optimization problem handled in this study is the MTSP. In
the well-known single-objective version of this problem, a traveling
salesman has to visit a set of cities without passing more than once
through each city and return to the starting one. The goal is to find a
tour such that the total distance traveled is minimized. In the MTSP,

the traveling salesman not only has to minimize the total distance
but also the overall traveling time, total cost and so forth. Therefore,
it is assumed that several quantities, such as distance, time and cost,
are assigned to the connection between each pair of cities. More
formally, we define the MTSP as follows: Given Q , a set C of n cities,
and distance vectors d(ci, cj) ∈ NQ for each pair of cities ci, cj ∈ C, the
goal is to find every tour in C, that is, a permutation � : [1 . . .n] →
[1 . . .n], such that the length (a vector) of the tour, that is,

f (�) = d(c�(n), c�(1)) +
n−1∑
i=1

d(c�(i), c�(i+1))

belongs to the efficient set. The MTSP is known to be NP-hard [14];
additionally, it is known that the lower bound on the expected size
of the efficient set for the MTSP is an exponential function of the
instance size [15].

TheMTSPwas chosen for threemain reasons. Firstly, its single ob-
jective counterpart is one of the best studied NP-hard combinatorial
optimization problems and it has been intensively used as a test-bed
for experimenting new algorithmic ideas [16], including many SLS
algorithms. Hence, experimental results obtained for the multiobjec-
tive version may also be interpreted in light of the experience on the
performance of these techniques for the single objective case. Sec-
ondly, despite the fact that the small instances of the single-objective
TSP can be solved in a few seconds to optimality by exact algorithms
such as concorde (http://www.tsp.gatech.edu/concorde), there are
two facts that limit their use under fixed time constraints: the typ-
ically large variability in the computation times and the potentially
very large number of solutions in the efficient set [15]. Thirdly, sig-
nificant research efforts have been targeted towards applying SLS
algorithms to this problem and it has been studied from several
different perspectives: from an approximation [17,18], local search
[19–21], theoretical [15] and experimental [22] point of view; some
related problems have also been studied in the literature [23,24].

3. The search model and algorithmic components

A large number of SLS algorithms have been proposed for MCOPs.
Many of these algorithms can be classified as following one of two
main search models, the SAC and the component-wise acceptance
criterion search (CWAC) search model, or some hybrid thereof [3].
In this article, we analyze the influence of generic components that
together mimic the underlying search principles of the SAC search
model. (An analysis of generic components of the CWAC search
model can be found in [25]; the algorithms following the CWAC
model were found to be inferior to those of the SACmodel and, hence,
here we present only the analysis concerning the more successful
model.) Essentially, the SAC search model comprises approaches that
use the value returned for solving a scalarization of the objectives
for deciding upon the quality of solutions. For a reasonable approx-
imation to the efficient set, it is well known that it is necessary to
solve a number of such scalarizations.

As one representative of the SAC search model, we examine
the straight-forward approach that solves several scalarizations of
the objective function vector and tackles each of these problems
with an underlying algorithm for the corresponding single objective
version, an approach which underlies many earlier proposed algo-
rithms [20,21,26–29]. We follow the well-known principle of defin-
ing scalarizations of the objective function vector with respect to a
weighted sum. Hence, the scalarized (single) objective function is
defined as

f�(s) =
Q∑

q=1

�qfq(s), (1)

http://www.tsp.gatech.edu/concorde

L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631 2621

where � = (�1, . . . ,�Q) is a weight vector. Typically, � is normalized
such that its components sum to one. We follow this convention
and each � we use is an element from the set of normalized weight
vectors � given by

� =
⎧⎨
⎩� ∈ RQ : �q >0,

Q∑
q=1

�q = 1, q = 1, . . . ,Q

⎫⎬
⎭ . (2)

Algorithms following the SAC model then solve a number of
scalarized problems that are obtained by different weight vectors.
The resulting scalarized problems could be solved by any algorithm
for the resulting single-objective version; in our case, we apply an
effective SLS algorithm for the TSP, which is described later in more
detail. In the following subsections, we describe the algorithmic com-
ponents for the SAC model that are analyzed in this article. For each
component at least two and at most three levels are studied in the
experimental design; although for several components more options
would be possible and interesting, the number of levels was kept
restricted to limit the exponential increase of the number of exper-
iments.

3.1. Component: search strategy

The search strategy determines the series of scalarized problems
that are defined and tackled. In particular, this concerns the strategy
for defining the sequence of weight vectors and how information is
transferred from one scalarized problem to another one. We consider
two different search strategies.

Restart strategy: The probably most straightforward strategy is to
use different weight vectors and to not transfer the results from one
scalarized problem to another one. Such a strategy is obtained, for
example, by starting the search process for each scalarization from a
random initial solution (or, alternatively, by some known construc-
tion heuristic that does not use information from previous runs).
We call this approach the Restart strategy and its pseudo-code is
given in Algorithm 1; it results in multiple, independent runs of the
single objective SLS algorithm. The procedure SLS at the third line
is the underlying SLS algorithm that tackles the problems obtained
by weight vector �i. Since this process could result in dominated so-
lutions, at step 5 only the non-dominated solutions are kept, which
is implemented by the procedure Filter.

Algorithm 1. Restart search strategy

1: for all weight vectors � do
2: s is a randomly generated solution
3: s′ = SLS(s,�)
4: Add s′ to Archive
5: Filter Archive
6: return Archive

A set ofmweight vectors is used by the Restart strategy. Here,
we assume that each component of the weight vector has a value
i/z, i=0, . . . , z, where z is a parameter, and the sum of the components
is equal to one, as required by Eq. (2). Since this set of weight vectors
can be seen as the set of all compositions of z in Q parts, we have
that m = (z+Q−1

Q−1).
2phase strategy: A different possibility is to transfer results

from one scalarization to another one. Here we adopt the 2phase
strategy [13]. In a first phase, a high quality solution for one
objective is generated. This solution is the starting solution for the
second phase that solves a sequence of scalarizations of the objective

function vector. In this sequence, the initial solution for a scalariza-
tion i is the one that is returned from the previous scalarization i−1;
the first scalarization of the second phase is initialized with the so-
lution returned from the first phase. A pseudo-code of the 2phase
search strategy is given in Algorithm 2. Note that the first and the
second phase may make use of two distinct SLS algorithms, which
is indicated in Algorithm 2 by SLS1 and SLS2.

Algorithm 2. 2phase search strategy

1: s is a randomly generated solution
2: s′ = SLS1(s) /* First phase*/
3: for all weight vectors � do
4: s = s′

5: s′ = SLS2(s,�) /* Second phase */
6: Add s′ to Archive
7: Filter Archive
8: return Archive

Concerning the definition of the sequence of weight vectors that
define each scalarization, several strategies may be followed. Here,
we adopt a minimal change strategy between two successive weight
vectors to define this sequence. It can be built for two objectives by
generatingm=zweight vectors such that �i=(1− i/z, i/z), i=1, . . . ,m,
if the first objective is the one that is optimized in the first phase.
For more than two objectives, we define this sequence such that
two successive weight vectors differ only by ±1/z in any two com-
ponents. Thus, a minimal change is incurred between components
of two successive weight vectors generalizing the biobjective case.
To generate such a sequence, an algorithm for generating composi-
tions of z into Q parts can be used. In our particular case, we need a
combinatorial Gray code for this task, which can be generated by the
Gray code for compositions [30].

Finally, one may run the 2phase strategy considering different
orders of the objectives. One possibility would be to run it once for
each permutation of the Q objectives, that is, Q! times. Computa-
tionally less expensive is to consider only the combinations of each
pair of objectives, totalizing (Q2) runs, or to apply just one run for
each objective.

3.2. Component: number of scalarizations

The number of scalarizations is defined by the parameter z. It
is expected that an increase of the number of scalarizations would
increase also the number of different (non-dominated) solutions
returned. However, how much the number of solutions grows when
increasing the number of scalarizations is not clear in advance.
Therefore, we consider the number of scalarizations as a numerical
parameter, that is, also as an algorithmic component, whose influ-
ence is studied in the experimental part.

3.3. Component: neighborhood structure

In our analysis, we study two main components of the underly-
ing SLS algorithm. Both are related to the quality of the solutions it
returns. The first component is the neighborhood structure that is
used; it identifies which solutions are neighbored and it has a signif-
icant influence on the performance of local search algorithms. The
typical trade-off is that the larger the neighborhood, the better the
quality of the solutions that are found by, for example, iterative im-
provement algorithms. However, an increase of neighborhood size
also corresponds to an increase of computation time to find improv-
ing neighbors.

2622 L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631

3.4. Component: search length

The second component of the underlying SLS algorithm is the
number of iterations. The reason for studying this component is that
by increasing the number of iterations, the final solution quality
returned by the SLS algorithm tends to increase, but at the same time
does also the computation time. In other words, there is a trade-
off between these two criteria and a good compromise needs to be
found for the design of an algorithm following the SAC model.

3.5. Component: component-wise step

The number of solutions returned is bounded by the number
of compositions of z in Q parts. One possibility for increasing this
number is by accepting, for each scalarization, non-dominated solu-
tions in the neighborhood of the solution returned by the underlying
single-objective SLS algorithm. We call this additional component
component-wise step [13]. In our particular case, this step uses the
neighborhood that is defined by the neighborhood component.

4. Experimental analysis

4.1. Experimental design

The experimental design considered all the five algorithm factors
that were described in the previous section plus two factors concern-
ing the MTSP instances, namely the instance type and the instance
size.

4.1.1. MTSP instances
For the experimental part of the study, we have generated MTSP

instances of different sizes and using different ways to generate the
distances between the cities.We used the random instance generator
available from the 8th DIMACS implementation challenge site1 and,
for each objective, we generated one distance matrix. We only con-
sidered two objectives for the experimental analysis of the algo-
rithm components, while the comparison with a state-of-the-art SLS
algorithm for the MTSP also included instances with three objectives.
Three types of biobjective instances were generated2:

• Random uniform Euclidean (RUE) instances, where each component
of the distance vector is generated as usual in RUE instances: each
distance value corresponds to the Euclidean distance between two
points in a two-dimensional plane rounded to the next integer;
the coordinates of each point are integers that are uniformly and
independently generated in the range [0,3163].

• Random distance matrix (RDM) instances, where each component
of the distance vector assigned to an edge is chosen as an integer
value taken from a uniform distribution in the range [0,4473].

• Mixed instances, where one objective assigns distances to the edges
as in RUE instances while the other assigns distances as in RDM
instances.

The range of edge lengths for the RUE instances was chosen in
order tomeet the range of values of the Krolak/Felts/Nelson instances
available in TSPLIB (files with prefix kro). The range of the edge
lengths for the RDM instances and the RDM objective of the mixed
instances were chosen in order to have a range similar to the one of
the RUE instances (note that �

√
2 × 31632+0.5�=4473). The instance

sizes considered were n=100, 300 and 500, which includes instances

1 The generator is available at http://www.research.att.com/∼dsj/chtsp/download.
2 The instances are available at http://eden.dei.uc.pt/∼paquete/tsp/.

Table 1
List of components and the corresponding levels that we considered for our exper-
imental setup.

Components Levels

Search strategy {Restart, 2phase}
Number of scalarizations {n, 5n, 10n}
Neighborhood structure {2-exchange, 3-exchange}
Search length {0, 50, 100}
Component-wise step {True, False}

that are larger than those considered in most of the literature on the
MTSP. A wide range of values allow us to test whether instance size
plays an important role on the algorithm performance.

For each instance size and type of instance, three instances were
generated, resulting in a total of 27 instances.

4.1.2. Algorithmic component levels
For each of the factors concerning algorithmic components, the

main effects of two or three levels were studied. A summary of the
components and their associated levels is given in Table 1. Necessary
details on the components are explained as follows.

Search strategy: If the search strategy 2phase is chosen, the first
phase will optimize the first objective and the solution returned is
also the starting solution for the second phase. For RUE and RDM
instances, the first phase of 2phase consisted in running an iter-
ated local search (ILS) algorithm [31] (which is described below in
some more detail) for 50 iterations only for the first objective; this
usually gives a high quality solution for the single objective case.
For the mixed instances, we considered two variants of the 2phase
strategy: 2phaseE starts the first phase optimizing only the objec-
tive defined by the Euclidean distance matrix; 2phaseR starts op-
timizing the objective defined by the RDM distance matrix. Using
these two versions of the 2phase strategy, we can thus also an-
alyze the dependence of the final performance on the structure of
the objective that is used for generating the initial solution for the
second phase. Since the solutions found in preliminary experiments
for the mixed instances had a lower range of objective function val-
ues for the RUE objective than for the RDM objective, we equalized
the ranges of both objectives by multiplying the ith component of
the objective function value vector by a range equalization factor Fi
[32], which for each objective i is

Fi =
Ri∑Q
j=1Rj

,

where Q is the number of objectives and Ri is the range of objective
function values for the objective i. We computed an approximation to
the range of the efficient set as follows. First, we run an ILS algorithm
[31] 10 times for each objective; then, given the best solutions to
the first and the second objective, s1 and s2, respectively, the ranges
are computed as R1 = f1(s2) − f1(s1) for the first objective and as
R2 = f2(s1) − f2(s2) for the second objective.

Number of scalarizations: For the number of scalarizations, we
analyze three levels, n, 5n and 10n, where n is the number of cities
in the MTSP instance.

Neighborhood structure: We consider two standard TSP neighbor-
hood structures, the 2- and 3-exchange neighborhoods. (In gen-
eral, two solutions are neighbored in the k-exchange neighborhood
if they differ by at most k edges.) The iterative improvement algo-
rithms we use for each scalarization, a weighted sum of the objec-
tives, make use of well-known TSP speed-up techniques such as don't
look bits and fixed radius search [33] within nearest neighbor candi-
date lists [16]. Clearly, one could also use more complex neighbor-
hood structures like the ones used in the Lin–Kernighan local search

http://www.research.att.com/~dsj/chtsp/download
http://eden.dei.uc.pt/~paquete/tsp/

L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631 2623

algorithms [34]; however, we restricted to the 2- and 3-exchange
neighborhoods for the sake of limiting the number of configurations.

Search length: On top of the resulting two iterative improvement
algorithms, we used a general-purpose SLS method called ILS [35].
This allows larger search lengths and in this way to intensify the
search for each scalarization. (In fact, ILS forms the basis for many
high-performing SLS algorithms for the TSP [1].) An algorithmic out-
line of ILS is given in Algorithm 3. The perturbation used in the ILS
algorithm is a random double-bridge move and the acceptance cri-
terion accepts a new solution only if it improves over the previ-
ous one. For the ILS algorithm, we have used the code provided at
http://www.sls-book.net/. Since the ILS algorithm uses the iterative
improvement algorithm as its subsidiary local search procedure, the
application of the iterative improvement algorithm corresponds to
“zero iterations” of the ILS algorithm. Hence, the three different lev-
els of the search length component can be indicated as 0, 50 and 100
iterations of ILS, respectively, which we denote in the following as
ILS(0), ILS(50) and ILS(100).

Algorithm 3. Algorithmic outline of an iterated local search algo-
rithm as used in the experimental setting. no_iterations is a
parameter that defines the number of times the main loop of the
algorithm is executed. If no_iterations=0, the algorithm cor-
responds to a single application of iterative improvement.

1: input: s0 (an initial solution), no_iterations (number
of iterations of main loop)

2: s∗ := IterativeImprovement(s0)
3: for i := 1 to no_iterations do
4: s′ := Perturbation(s∗)
5: s∗′ := IterativeImprovement(s′)
6: s∗ := AcceptanceCriterion(s∗, s∗′)
7: return s∗

Component-wise step: The effect of the component-wise step was
only explicitly analyzed for instances of size 100; in fact, on all in-
stance sizes the component-wise step has a (strongly) positive effect
and, hence, we decided to use it always on the large instances. This
has the side-advantage of reducing the number of experiments on
the instances of size 300 and 500 by a factor of two and, thus, saving
significant computational effort.

4.2. Performance assessment methodology

Assessing the performance of algorithms for MCOPs is by far more
complex than in the single-objective case and a number of serious
problems, in particular of unary performance indicators, have been
described [8]. Our experimental analysis is based on a three step
evaluation that avoids these known drawbacks. In a first step we use
the better relations, which provide the most basic assertion of per-
formance; the second step computes attainment functions and tests
the equality of the attainment functions [36]; the third step consists
in detecting the largest differences of performance in the objective
space between pairs of algorithms. Most aspects of this three-step
experimental analysis were already described in the literature [6,12]
and are summarized here for the sake of comprehensibility of the
remainder of the paper.

Step 1: Better relations. A set of points A is better than a set of
points B if every point of B is dominated or equal to any point of A
and A is different from B. This relation was introduced in Hansen and
Jaszkiewicz [9] as one of the outperformance relations that can be
established between pairs of outcomes of SLS algorithms for MCOPs.
Thus, as a first step, we count how many times each outcome as-
sociated with each level of a component is better than the ones
from another level of the same component. However, we restrict the

comparison of outcomes to those that were produced within the
same levels of other components in order to reduce variability. This
allows us to detect if some level is clearly responsible for a good
or bad performance. If no clear answers are obtained from this first
step, we can conclude that the outcomes are mostly incomparable,
that is, neither A is better than B nor vice versa. Since then we do not
know to what extent they really differ, we test the equality of their
attainment functions.

Step 2: Attainment functions. In Fonseca and Fleming [10], the
performance of an SLS algorithm for multiobjective problems is
associated with the probability of attaining (dominating or being
equal to) an arbitrary point in the objective space in one single run.
This function is called attainment function [36] and it can be seen
as a generalization of the distribution function of solution cost [1]
to the multiobjective case. These probabilities can be estimated
empirically from the outcomes obtained in several runs of an SLS
algorithm by the empirical attainment function (EAF). Then, we can
formulate statistical hypotheses and test them based on the EAFs
of several algorithms for a certain problem instance. A suitable test
statistic for the comparison of two algorithms is the maximum ab-
solute distance between their corresponding EAFs, analogous to the
Kolmogorov–Smirnov statistic [37]. For the case of k >2 algorithms,
we choose the maximum absolute distance between the k EAFs,
analogous to the Birnbaum–Hall test [37]; if the global null hy-
pothesis of equality is rejected, we test the equality between each
pair of EAFs, where the p-values are corrected by Holm's procedure
[38]. Since the distribution of these test statistics is not known,
permutation tests [39] based on the above test statistics have to
be performed [11]. The permutation procedure has to be changed
according to the experimental design chosen. For instance, in the
presence of several factors, restricted randomizations [39], as done
in Paquete and Fonseca [6] in a similar context, can be applied;
for testing the main effects of each component, we allow permuta-
tions of the outcomes between different levels of the component of
interest, but within the same levels of the other components.

Step 3: Location of differences. If the previous analysis indicates
that the null hypothesis of equality of the attainment functions
should be rejected, the largest performance differences can be visu-
alized by plotting the points in the objective space with a large ab-
solute difference of the EAFs. In fact, large has a subjective meaning;
here, we plot the points whose absolute differences were above or
equal to 20%, assuming that lower values are negligible.3 Since the
sign of the difference at each point gives information about which
algorithm performed better at that point, we may plot positive and
negative differences separately, if differences in both directions exist.

Fig. 2 illustrates the main idea. Each of the two plots give the
differences of the EAFs associated with two algorithms that were
run several times on one instance. The lower line on each plot is
a lower bound on the efficient set,4 while the upper line connects
the set of points attained by all runs of both algorithms. On both
plots are shown the regions where the EAF of Algorithm 1 (using
2phase strategy) takes larger values by at least 20% than that of

3 The minimum number of outcomes that were used for statistical tests in this
thesis were 10 (5 runs associated with each level of a factor); thus, a difference
of 20% corresponds also to the minimum difference that can be observed in these
comparisons.

4 The lower bound is used simply as a visual reference when plotting the
differences with respect to the EAFs. We use a lower bound based on the solution
of the 2-matching problem; it yields a lower bound approximately at 14% of the
optimum for the TSP [40]. (Note that better quality lower bounds exist, but this is
for our purposes not important.) For our particular case, we solved the 2-matching
problem using as input a matrix resulting from the weighted sum of distances
assigned to each edge of an MTSP instance. This procedure is repeated for 5000
maximally dispersed weight vectors and the lower bounds have been computed
using CPLEX.

http://www.sls-book.net/

2624 L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631

Algorithm 2 (using Restart strategy); the observed differences are
encoded using a grey scale–the darker the stronger are the differ-
ences. In this case, no point in the EAF of Algorithm 2 was larger
than the corresponding one of Algorithm 1. If differences in favor
of each of the algorithms occur, the positive differences in favor of
each algorithm can be given in one plot, as it is done in Fig. 1.

4.3. Experimental results

Each configuration resulting from any of the possible combina-
tions of levels of the factors, as described in Section 4.1, was run
five times on an AMD Athlon (TM) 1.2GHz CPU, 512MB of RAM un-
der Suse Linux 7.3. We have permuted randomly the original order
of the runs to remove a possible bias. In the following, we discuss
the results of the analysis for each SLS component under study. Each
permutation test for testing hypotheses on the equality of EAFs used
10000 permutations and the significance level was set to � = 0.05.
Due to space restrictions, we only show the most relevant plots of
the locations of the differences as explained in Section 4.2; a full
collection of the results comprising all the data on the comparisons
and all plots is available at http://eden.dei.uc.pt/∼paquete/mtsp.5

4.3.1. Component: search strategy
The results in Table 2 with respect to the better relations in-

dicate that the 2phase strategy performs slightly better than the
Restart strategy for larger instances and that the difference is
more relevant on RDM instances. In addition, the null hypothesis of
equality of the EAFs was always rejected. Hence, the search strate-
gies behave statistically different with respect to the corresponding
EAFs in the instances tested.

Figs. 1 and 2 indicate the location of differences above 20% be-
tween the search strategies. The two plots of Fig. 1 indicate that
the Restart strategy covers a wider part of the trade-off than the
2phase strategy on the RUE instances of size 100, though with only
a small difference (which is reflected by the fact that the differences
are almost imperceptible); the latter performs better only towards
the first objective, where the first phase terminated. However, as in-
stance size increases in RUE and RDM instances, the 2phase strat-
egy performs clearly better than the Restart strategy, as shown
in the plots of Fig. 2.

Finally, the comparisons on the mixed instances have shown
interesting tendencies. When comparing 2phaseE and 2phaseR,
each strategy has advantages towards the objective that is optimized
in the first phase and the observed differences between the two are
roughly the same across the various instance sizes. Differences in
favor of the Restart search strategy for instance size 100 are lo-
cated in the center of the trade-off; however, on larger instances, no
differences above 20% in favor of the Restart strategy were found.

4.3.2. Component: component-wise step
The comparison based on the better relation with respect to the

use or not of the component-wise step always resulted in incompa-
rable cases, but the null hypothesis with respect to the equality of
EAFs was always rejected. Hence, there are always significant differ-
ences between using or not the component-wise step. The location
of differences above 20% clearly indicates that the use of this step
yields a significant advantage, as shown in the top plot of Fig. 3.
However, this advantage is not constant over all types of instances
tested: the differences are stronger for RUE instances than for RDM

5 Note that the computation of all the experimental results including the
execution of the hypothesis tests took more than 6 months of CPU-time; in fact,
the exponential increase of the number of experiments was one reason for limiting
the experiments to a small number of levels for each factor.

Fig. 1. Location of differences between the 2phase and the Restart search
strategy in favor of the former (top) and in favor of the latter (bottom), for RUE
instances of size 100. Note that the differences between the two strategies in
this case are all minor, that is, in the range of [0.2,0.4[, and are therefore almost
imperceptible.

Table 2
Given is the percentage of the pairwise comparisons in which the 2phase search
strategy (for mixed instances, 2phaseE and 2phaseR , respectively) was better
than the Restart strategy.

Size RUE RDM Mixed

2phase (%) 2phase (%) 2phaseE (%) 2phaseR (%)

100 0.0 6.4 0.0 0.0
300 4.1 31.6 5.2 2.1
500 10.1 31.7 15.8 6.9

In no comparison, Restart was found to be better than 2phase (or 2phaseE

and 2phaseR , respectively).

instances. In addition, the differences for mixed instances lie more
towards the Euclidean objective.

Concerning the computation time, it is remarkable that the addi-
tion of the component-wise step increases the computation time by
only about 1%, which is negligible in most applications. Furthermore,
the number of non-dominated solutions is increased by a factor of

http://eden.dei.uc.pt/~paquete/mtsp

L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631 2625

Fig. 2. Location of differences between search strategies for an RUE (top) and an
RDM instance (bottom) of size 500. All differences are in favor of the 2phase
strategy.

about six for RUE instances and by a factor of about three for RDM
instances.

4.3.3. Component: neighborhood structure
The results based on the better relation indicated that using a 3-

exchange neighborhood results in significantly better performance
than 2-exchange with the advantage of 3-exchange over 2-
exchange increasing strongly with instance size; the advantage
of 3-exchange is most evident for the RDM instances. Table 3
gives a summary of the observed percentages of 3-exchange
being better than 2-exchange for the different instance sizes and
the different instance types. Given these strong differences, clearly
also the null hypothesis with respect to the equality of the EAFs was
always rejected. The differences above 20% were always in favor of
3-exchange and the differences were more pronounced for larger
instances (see bottom plot of Fig. 3). Hence, this result is analogous
to the relative behavior between these neighborhoods in iterative
improvement algorithms for the single-objective TSP [1,16,40].

4.3.4. Component: search length
As said before, the search length defines the number of itera-

tions for a single execution of the ILS algorithm, denoted by ILS(i).
According to the use of the better relation, we observed that ILS(50)

Fig. 3. Location of differences between using or not the component-wise step in favor
of the latter for an RUE instance of size 100 (top) and between the 2-exchange
and the 3-exchange neighborhood in favor of the latter for an RDM instance
of size 500 (bottom).

Table 3
Given is the percentage of the pairwise comparisons in which 3-exchange is
better than 2-exchange.

Size RUE (%) RDM (%) Mixed (%)

100 1.2 50.3 6.5
300 43.0 67.4 22.3
500 53.1 75.0 26.2

In no comparison 2-exchange was found to better than 3-exchange.

and ILS(100) perform better than ILS(0), that is, iterative improve-
ment, and that the frequency of better performance is higher for in-
stances of size 300 and 500 than for those of size 100. The relative
performance seems similar across all types of instances, though less
emphasized for mixed instances. See Table 4 for more details. The
results also indicate that the comparisons between the outcomes
obtained by ILS(50) and ILS(100) are incomparable.

The statistical tests on the equality of the EAFs clearly indicate the
rejection of the null hypothesis for all instances. Thus, any increase
of the number of iterations from 50 to 100 results still in statistically

2626 L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631

Table 4
Given is the percentage of the pairwise comparisons in which a search length of
50 or 100 was better than a search length of 0.

Size RUE RDM Mixed

0 vs.
50 (%)

0 vs.
100 (%)

0 vs.
50 (%)

0 vs.
100 (%)

0 vs.
50 (%)

0 vs.
100 (%)

100 15.1 20.4 42.6 54.9 22.8 26.6
300 65.3 80.0 67.0 77.7 34.6 52.8
500 71.8 79.9 69.0 74.1 40.0 49.7

In no comparison, a search length of 0 was better than 50 or 100. The pairwise
comparisons between search lengths 50 and 100 resulted always in incomparable
cases.

Fig. 4. Location of differences between iterative improvement and ILS(50) in favor
of the latter (top) and between ILS(50) and ILS(100) in favor of the latter (bottom)
for an RDM instance of size 300.

significantly better performance. However, the examination of the
location of the differences above 20% indicates that, for all the in-
stances tested, the major leap in performance is given by moving
from ILS(0) to ILS(50), while moving from ILS(50) to ILS(100) yields
somewhat less pronounced (but still significant) differences. For an
illustration of this behavior, we refer to Fig. 4.

Table 5
Given is the percentage of the pairwise comparisons in which a number of scalar-
izations j is better than a number of scalarizations i (indicated by i vs. j).

Size RUE RDM Mixed

n vs.
5n (%)

5n vs.
10n (%)

n vs.
5n (%)

5n vs.
10n (%)

n vs.
5n (%)

5n vs.
10n (%)

100 0.0 0.0 0.0 0.0 0.0 0.0
300 0.0 0.0 8.3 11.9 0.9 7.3
500 0.0 0.0 7.0 10.5 1.1 7.6

In no comparison, a number of scalarizations i < j was better than j.

4.3.5. Component: number of scalarizations
Differently from an increase of the search length, an increase of

the number of scalarizations does not correspond to an evidently
better performance with respect to the better relation; as can be
seen in Table 5, some minor evidence for improved performance is
only found for large RDM and mixed instances. However, the null
hypothesis of equality with respect to the EAFs is always rejected
for any instance, which means that an increase of the number of
scalarizations results in a significant effect. The location of differ-
ences above 20% indicates that the performance differences are not
very pronounced. While the differences between n against 5n scalar-
izations are still rather clearly visible, as shown in Fig. 5 on the top
plot, the differences between 5n and 10n scalarizations are almost
imperceptible (see bottom plot).

4.4. Summary

The main insights from the experimental analysis for the SAC
search model applied to the MTSP are the following. A substan-
tial gain in solution quality can be obtained by choosing an under-
lying high performing SLS algorithm. Two ways of improving the
performance of the underlying SLS algorithm have been studied: the
underlying neighborhood (solution quality is known to improve con-
siderably also for the single objective case when moving from the
2-exchange to 3-exchange neighborhood in an iterative im-
provement algorithm) and the search length, here defined by the
number of iterations of the underlying ILS algorithm. In fact, these
insights would suggest that a further improvement of the perfor-
mance might be expected when moving to effective implementa-
tions of the Lin–Kernighan algorithms as provided by Helsgaun [41]
or the concorde library [42]. (This is the case because for the single-
objective TSP, the Lin–Kernighan algorithm is known to reach bet-
ter quality solutions when compared to the iterative improvement
algorithms we use; in fact, this same ranking transfers to the case
once the iterative improvement algorithms are included into an ILS
algorithm [1,16,43].)

The component-wise step was also shown to have a significant
impact on the final solution quality, as we observed on all instances
studied. In addition, the computational overhead caused by its in-
troduction seems to be minor at least in the biobjective case stud-
ied here: on average it leads to an increase of the computation time
by approximately one percent. Hence, concerning computation time
the impact of adding that component-wise step is much less than
when moving from 2-exchange to 3-exchange neighborhood,
which actually increases the computation time significantly.

Concerning the choice of the search strategy, there is a clear
interaction between the search strategy and the type of instance. For
small RUE instances with 100 cities, the Restart strategy has slight
advantages over 2phase. However, for larger mixed and Euclidean
instances, and for all RDM instances tested, the 2phase strategy is
clearly preferable, often by a large margin. In fact, the experimental
analysis of the SAC search model indicated that instance features

L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631 2627

Fig. 5. Location of differences between n and 5n scalarizations in favor of the latter
(top) and between 5n and 10n scalarizations in favor of the latter (bottom) for a
mixed instance of size 300.

play a strong role in the performance of the algorithms under study;
it is therefore expected that those features are also relevant in the
performance of many other SLS algorithms.

The impact of the number of scalarizations seems to be the small-
est, at least when judging from the better relations. In the plots of the
differences, the step from n to 5n scalarizations was most noticeable,
while further increasing it to 10n gave no further strong advantages.

5. Comparison with a state-of-the-art algorithm

The insights gained from an extensive study of a class of al-
gorithms through experimental designs may, beyond the scientific
insights gained, also be useful to define new high-performing algo-
rithms. Here we show that, indeed, this step can effectively be done
by deriving such algorithms. These algorithms are then compared to
a multiobjective memetic algorithm called MOGLS. This algorithm
was proposed by Jaszkiewicz [21], who kindly provided us the source
code of this algorithm, and in earlier studies it was shown to outper-
form other SLS algorithms for the MTSP for two and three objectives
[21]: the algorithms to which MOGLS was compared include MOGA
[44], MOSA [29] and Ishibushi and Murata's memetic algorithm [45].

MOGLS works as follows. It initializes two archives CS and A with
l solutions obtained from runs of an iterative improvement algo-
rithm based on the 2-exchange neighborhood with respect to a
weighted sum scalarization with randomly generated weights. Then,
it iterates r times over the following two steps. First, it chooses
two among the best m solutions in A with respect to a weighted
sum based on randomly generated weights; these two solutions
are then recombined by the distance-preserving crossover [46]. Next,
it applies a different iterative improvement algorithm based on the
2-exchange neighborhood to the new recombined solution using
the same weighted sum scalarization; the resulting local optimum
s∗ is added to archive CS if it is better than the worst solution among
the m best solutions according to the weight vector considered; fi-
nally s∗ is added to archive A, if no solution dominates it and the
archive A is updated. The performance of this approach depends on
parameters m, l and r. These two steps (recombination and local im-
provement) are repeated for r · l iterations, thus generating a total of
(r + 1) · l local optima between the initialization and the following
iterations.

For our experiments, we follow the parameter settings proposed
by Jaszkiewicz [21] as far as possible: we set m= 16, the number of
iterations r= 50, which was the maximum value tested earlier; for l
we used the value 142 for instances of size 100 with two objectives,
but for instances of size 300we extrapolate it linearly, which resulted
in l = 278.

The configurations of our SLS algorithms were chosen according
to the main insights from the experimental design. The only excep-
tion is that we use only local search based on the 2-exchange
neighborhood, as MOGLS. (Using the 3-exchange neighborhood
would clearly bias the results in our favor.) For the comparison we
tested the two approaches on the RUE and RDM instances with
100 and 300 cities. We used the following configurations: all SLS
algorithms use (i) the component-wise step, (ii) 100 iterations of
the ILS algorithm, (iii) 10n scalarizations and (iv) the 2-exchange
neighborhood. Regarding the search strategy, we use always the
2phase strategy, with the only exception being the RUE instances
with 100 cities: for these instances, our experimental analysis indi-
cated slightly better performance with the Restart strategy and,
hence, we follow our conclusions of the experimental analysis. Each
of the algorithms was run 10 times on a single CPU of a computer
with two AMD Athlon (TM) 1.2GHz CPUs with 512MB of RAM run-
ning under Suse Linux 7.3. For measuring the computational effort
spent by the algorithms, we use the number of times a neighboring
solution is evaluated (recombinations in case of MOGLS, and per-
turbations in the ILS were not counted). This was done, because the
implementations were not coded using the same programming lan-
guages and the very same data structures and, hence, measuring
CPU time would have been unfair. (We verified that our code was
actually much faster concerning CPU time than MOGLS and, hence,
in this way we also avoid the bias in favor of our code that would
occur if we stopped both algorithms at a same CPU time.)

Given that most of the outcomes returned by the two algorithms
were incomparable in some preliminary experiments, we decided
to directly apply the statistical tests at the 5% significance level for
checking the null hypothesis of equality between attainment func-
tions: for all experiments, the null hypothesis was always rejected.
The location of the differences above 20% showed a clearly better
performance of our SLS algorithms over MOGLS, except in the RUE
instance with 100 cities and two objectives.6 On this instance, the
differences were rather small, except towards the improvement of
the second objective where our configuration performs better (see

6 The complete EAF plots are available online at http://eden.dei.uc.pt/
∼paquete/mtsp.

http://eden.dei.uc.pt/~paquete/mtsp
http://eden.dei.uc.pt/~paquete/mtsp

2628 L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631

Fig. 6. Location of differences between MOGLS and our SLS algorithms in favor of
MOGLS (top) and in favor of ours (bottom) for an RUE instance with 100 cities.
The differences are not very marked, but slightly stronger in favor of our algorithm.
Note that, in order to improve visibility, the gap between the worst case and the
lower bound was removed.

Fig. 6). These two plots show that the differences are larger and
more spread in favor of our SLS algorithm, though we can notice
that there are still regions of the objective space where MOGLS per-
forms slightly better. However, for all RDM instances, and for all RUE
instances with 300 cities, we found only differences in favor of our
approach; for an example, see Fig. 7.

Given the high performance advantage of our SLS algorithms,
we decided to run some experiments comparing them to MOGLS
for MTSP instances with three objectives. Since the experimental
study was done only for the two objectives case, we first performed
some exploratory experiments concerning the configuration of the
SLS algorithms. Based on these, we decided to increase strongly the
number of scalarizations to 5151 scalarizations (that is, z= 100), for
all instance sizes. We did not apply the component-wise step for
three objectives; the main reason was that the component-wise step
for more than two objectives has the drawback of returning many
clusters of solutions in the objective space. We therefore compensate
the lack of the component-wise step by the increase of the number
of scalarizations. All other components remained the same (that is,
the Restart search strategy is used for RUE instances of 100 cities,

Fig. 7. Location of differences between MOGLS and our SLS algorithms in favor
of the latter on an RUE (top) and an RDM instance (bottom) with 300 cities. No
differences in favor of MOGLS have been observed. Note that, in order to improve
visibility, the gap between the worst case and the lower bound was removed.

while 2phase is applied in all other cases). ForMOGLS, we increased
the values of the parameter l, the initial size of the archive, to 662
for instances with 100 cities, as suggested by Jaszkiewicz [21], and
to 1786 for instances of size 300 by linear extrapolation.

For the instances with three objectives, we did not apply the
statistical test because the computation of the EAFs, which consisted
in more than one million points, took already about one week for
each experiment. However, the maximum absolute difference of one
between the EAFs was always detected and, hence, we suspect that
the null hypothesis of equal EAFs would anyway be rejected. (Recall
that the statistical test is based on the maximum difference between
EAFs associated with two different algorithms.) For an illustration of
the results, we used the parallel coordinates graphical technique [47],
where each line corresponds to one point in the objective space for
detecting the location of the differences. Examples of the resulting
plots are given in Fig. 8, where points with differences in the range
of (0.8,1.0] are plotted on top and points in the range of (0.6,0.8] are
plotted on bottom in favor of MOGLS (left side) and in favor of our
SLS algorithms (right side). Since, for each point a line is drawn, the
much darker plots on the right side indicate a strong advantage of

L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631 2629

Fig. 8. Location of differences between MOGLS and our configuration on an RUE instance of size 100 with three objectives in favor of the former (left) and in favor of the
latter (right) in the range (0.8,1.0] (top) and (0.6,0.8] (bottom). See the text for more details.

our SLS algorithms over MOGLS. In fact, when counting the number
of points, for the RUE instance with 100 cities, there are 669 points in
favor of MOGLS against 16484 in favor of our approach in the range
of (0.8,1.0] and 8938 in favor of MOGLS against 200618 in favor of
ours in the range of (0.6,0.8]. For the RDM instance of size 100, no
differences above 60% were found in favor of MOGLS, and only one
point was found whose difference was above 40%. Finally, for the
RDM instance of size 300 only differences in favor of our approach
were found.

Table 6 presents the average number and standard deviation of
evaluations performed by our approach and by MOGLS for each in-
stance. It is possible to observe that our approach performs much
less evaluations than MOGLS. Therefore, these results indicate that
our approach is highly competitive, both in terms of solution quality
and time.

6. Discussion and conclusions

The main goal of this paper is to make a step towards the un-
derstanding of the working mechanisms of SLS algorithms applied
to MCOPs from a component-based point of view. In fact, SLS
algorithms are usually assembled from several components that
can, or not, be instantiated for tackling a problem at hand. Hence,

Table 6
The average number and standard deviation of the number of evaluations performed
by our approach and by MOGLS for each instance.

Type Objectives Size Our approach MOGLS

RUE 2 100 0.04 × 109 ± 0.03 × 106 0.10 × 109 ± 3.96 × 106

300 0.75 × 109 ± 1.29 × 106 8.00 × 109 ± 0.85 × 109

3 100 0.41 × 109 ± 0.21 × 106 0.69 × 109 ± 31.13 × 106

300 0.75 × 109 ± 3.52 × 106 80.91 × 109 ± 1.36 × 109

RDM 2 100 0.07 × 109 ± 0.26 × 106 0.45 × 109 ± 25.33 × 106

300 0.85 × 109 ± 3.19 × 106 57.66 × 109 ± 2.00 × 109

3 100 0.40 × 109 ± 0.26 × 106 1.93 × 109 ± 60.92 × 106

300 1.39 × 109 ± 7.31 × 106 287.21 × 109 ± 5.63 × 109

immediate questions for an algorithm designer are: how relevant are
these components for the overall algorithm performance? Is there a
component that can be removed in order to reduce the fine-tuning
effort?

In this article, we focused on SLS algorithms for MCOPs that fol-
low a general algorithmic template, the so-called SAC model. We
studied the importance of their components by means of a system-
atic experimental design using their example application to the biob-
jective TSP. The experimental results were analyzed using a sound

2630 L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631

methodology for the evaluation of the outcomes of SLS algorithms
for multiobjective problems.

Our analysis gave clear hints on the effectiveness of each algorith-
mic component for the MTSP. First, strong intensification for each
scalarized problem provides better performance, as shown by the re-
sults on the components neighborhood structure and search length.
This gives a clear indication that further improvements could be ob-
tained by using iterative improvement algorithms based onmore ad-
vanced neighborhood structures such as used by the Lin–Kerninghan
heuristic [34] and its iterated versions [16,41,42]. In fact, initial re-
sults by other researchers [48,49] indicate that this conjecture may
be true. The component-wise step is always recommendable, at least,
for two objectives. For more objectives it may, however, induce an
undesirable clustering, which may be circumvented by using more
scalarizations; nevertheless, more research in this direction is cer-
tainly necessary to give a more detailed answer. Finally, the 2phase
strategy seems to be a better option than Restart. This fact is cer-
tainly connected to recent results on the closeness of approximate
solutions for this problem [50].

As a proof-of-concept, the insights we gained from this analysis
were used to assemble SLS algorithms for the MTSP. Despite their
simplicity, they showed to be highly competitive with other well-
established algorithms for this problem.

There are a number of possibilities for further investigations.
More experimental research for this and other MCOPs is certainly re-
quired to further increase the understanding of the importance of SLS
algorithm components. One methodological aspect that should be
treated is to explore other measures for comparing the efficient sets
returned by the SLS algorithms such as the hypervolume indicator,
the R measure and the �-indicator. Such measures would certainly
speed-up computations in the analysis of the experimental results;
at the same time the may incur some loss of relevant information,
which is avoided by our methodology. Another direction is to ana-
lyze the importance of the algorithmic components in dependence
of search space characteristics of MCOPs and the connectedness of
the solutions in the efficient set.

Ultimately, we hope that systematic experimental designs and
their rigorous analysis will help tomake the development of effective
SLS algorithms for MCOPs less an art but more a well-established
algorithm engineering process.

Acknowledgments

The authors gratefully thank Dr. Andrzej Jaszkiewicz for the
source code of MOGLS and Dr. Carlos Fonseca for the source code
for computing the EAFs.

References

[1] Hoos H, Stützle T. Stochastic local search–foundations and applications. San
Francisco, CA: Morgan Kaufmann; 2004.

[2] Ehrgott M, Gandibleux X. Approximative solution methods for combinatorial
multicriteria optimization. TOP 2004;12(1):1–90.

[3] Paquete L, Stützle T. Stochastic local search algorithms for multiobjective
combinatorial optimization: a review. In: Gonzalez TF, editor. Handbook
of approximation algorithms and metaheuristics. Computer and information
science series. Boca Raton, FL, USA: Chapman & Hall/CRC; 2007. p. 29.1–29.15.

[4] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational
Research 2007;177(3):2033–49.

[5] Xu J, Chiu SY, Glover F. Fine-tuning a tabu search algorithm with statistical
tests. International Transactions in Operational Research 1998;5(4):233–44.

[6] Paquete L, Fonseca CM. A study of examination timetabling with multiobjective
evolutionary algorithms. In: Proceedings of the fourth metaheuristics
international conference, Porto, 2001. p. 149–54.

[7] Paquete L, Stützle T, López-Ibáñez M. Using experimental design to
analyze stochastic local search algorithms for multiobjective problems. In:
Doerner KF, Gendreau M, Greistorfer P, Gutjahr WJ, Hartl RF, Reimann M,
editors. Metaheuristics—progress in complex systems optimization. Operations
research/computer science interface series, vol.39. Berlin: Springer Verlag; 2007.
p. 325–44.

[8] Zitzler E, Thiele L, Laumanns M, Fonseca CM, Grunert da Fonseca V.
Performance assessment of multiobjective optimizers: an analysis and review.
IEEE Transactions on Evolutionary Computation 2003;7(2):117–32.

[9] Hansen MP, Jaszkiewicz A. Evaluating the quality of approximations to the non-
dominated set. Technical report IMM-REP-1998-7, Institute of Mathematical
Modelling, Technical University of Denmark, Lyngby, Denmark, 1998.

[10] Fonseca CM, Fleming P. On the performance assessment and comparison of
stochastic multiobjective optimizers. In: Voigt HM, Ebeling W, Rechenberg I,
Schwebel HP, editors. Proceedings of PPSN-IV, fourth international conference
on parallel problem solving from nature. Lecture notes in computer science,
vol. 1141. Berlin, Germany: Springer; 1996. p. 584–93.

[11] Shaw KJ, Fonseca CM, Nortcliffe AL, Thompson M, Love J, Fleming PJ. Assessing
the performance of multiobjective genetic algorithms for optimization of a batch
process scheduling problem. Proceedings of the 1999 congress on evolutionary
computation (CEC'99), vol. 1, 1999. p. 34–75.

[12] López-Ibáñez M, Paquete L, Stützle T. Hybrid population-based algorithms
for the bi-objective quadratic assignment problem. Journal of Mathematical
Modelling and Algorithms 2006;5(1):111–37.

[13] Paquete L, Stützle T. A two-phase local search for the biobjective traveling
salesman problem. In: Fonseca CM, Fleming P, Zitzler E, Deb K, Thiele L, editors.
Evolutionary multi-criterion optimization, second international conference,
EMO 2003. Lecture notes in computer science, vol. 2632. Berlin, Germany:
Springer; 2003. p. 479–93.

[14] Serafini P. Some considerations about computational complexity for
multiobjective combinatorial problems. In: Jahn J, Krabs W, editors. Recent
advances and historical development of vector optimization. Lecture notes in
economics and mathematical systems, vol. 294. Berlin, Germany: Springer;
1986. p. 222–31.

[15] Emelichev VA, Perepelitsa VA. On the cardinality of the set of alternatives
in discrete many-criterion problems. Discrete Mathematics and Applications
1992;2(5):461–71.

[16] Johnson DS, McGeoch LA. The travelling salesman problem: a case study in local
optimization. In: Aarts EHL, Lenstra JK, editors. Local search in combinatorial
optimization. Chichester, UK: Wiley; 1997. p. 215–310.

[17] Angel E, Bampis E, Gourvés L. Approximating the Pareto curve with local search
for the bicriteria TSP(1,2) problem. Theoretical Computer Science 2004;310:
135–46.

[18] Ehrgott M. Approximation algorithms for combinatorial multicriteria
optimization problems. International Transactions in Operational Research
2000;7:5–31.

[19] Angel E, Bampis E, Gourvés L. A dynasearch neighborhood for the bicriteria
traveling salesman problem. In: Gandibleux X, Sevaux M, Sörensen K, T'kindt
V, editors. Metaheuristics for multiobjective optimisation. Lecture notes in
computer science, vol. 535. Berlin, Germany: Springer; 2004. p. 153–76.

[20] Hansen MP. Use of subsitute scalarizing functions to guide a local search base
heuristics: the case of moTSP. Journal of Heuristics 2000;6:419–31.

[21] Jaszkiewicz A. Genetic local search for multiple objective combinatorial
optimization. European Journal of Operational Research 2002;1(137):50–71.

[22] Borges P. CHESS–changing horizon efficient set search: a simple principle for
multiobjective optimization. Journal of Heuristics 2000;6(3):405–18.

[23] Keller CP. Algorithms to solve the orienteering problem: a comparison. European
Journal of Operational Research 1989;41:224–31.

[24] Sigal IK. Algorithms for solving the two-criterion large-scale travelling salesman
problem. Computational Mathematics and Mathematical Physics 1994;34(1):
33–43.

[25] Paquete L. Stochastic local search algorithms for multiobjective combinatorial
optimization: methodology and analysis. PhD thesis, Fachbereich Informatik,
Technische Universität Darmstadt, 2005.

[26] Czyzak P, Jaszkiewicz A. Pareto simulated annealing—a metaheuristic technique
for multiple objective combinatorial optimization. Journal of Multi-Criteria
Decision Analysis 1998;7:34–47.

[27] Gandibleux X, Mezdaoui N, Fréville A. A tabu search procedure to solve
multiobjective combinatorial optimization problems. In: Caballero R, Ruiz F,
Steuer R, editors. Advances in multiple objective and goal programming. Lecture
notes in economics and mathematics systems, vol. 455. Berlin: Springer; 1997.

[28] Hamacher HV, Ruhe G. On spanning tree problems with multiple objectives.
Annals of Operations Research 1994;52:209–30.

[29] Ulungu EL. Optimisation combinatoire multicritére: détermination de
l'ensemble des solutions efficaces et méthodes interactives. PhD thesis,
Université de Mons-Hainaut, Mons, Belgium, 1993.

[30] Klingsberg P. A gray code for compositions. Journal of Algorithms 1982;3:41–4.
[31] Stützle T, Hoos HH. Analysing the run-time behaviour of iterated local search

for the travelling salesman problem. In: Hansen P, Ribeiro C, editors. Essays
and surveys on metaheuristics. Operations research/computer science interfaces
series. Boston, MA: Kluwer Academic Publishers; 2001. p. 589–611.

[32] Steuer RE. Multiple criteria optimization: theory, computation and application.
Wiley series in probability and mathematical statistics ,New York, NY: Wiley;
1986.

[33] Bentley JL. Fast algorithms for geometric traveling salesman problems. ORSA
Journal on Computing 1992;4(4):387–411.

[34] Lin S, Kernighan BW. An effective heuristic algorithm for the traveling salesman
problem. Operations Research 1973;21(2):498–516.

[35] Lourenço HR, Martin O, Stützle T. Iterated local search. In: Glover F,
Kochenberger G, editors. Handbook of metaheuristics. International series in
operations research & management science, vol. 57. Norwell, MA: Kluwer
Academic Publishers; 2002. p. 321–53.

L. Paquete, T. Stützle / Computers & Operations Research 36 (2009) 2619 -- 2631 2631

[36] Grunert da Fonseca V, Fonseca CM, Hall A. Inferential performance assessment
of stochastic optimizers and the attainment function. In: Zitzler E, Deb K, Thiele
L, Coello CC, Corne D, editors. Evolutionary multi-criterion optimization (EMO
2001). Lecture notes in computer science, vol. 1993. Berlin, Germany: Springer;
2001. p. 213–25.

[37] Conover J. Practical nonparametric statistics. New York, NY: Wiley; 1980.
[38] Hsu J. Multiple comparisons—theory and methods. Boca Raton, FL, USA:

Chapman & Hall/CRC; 1996.
[39] Good PI. Permutation tests: a pratical guide to resampling methods for testing

hypothesis. Springer series in statistics. 2nd ed., New York, USA: Springer; 2000.
[40] Reinelt G. The traveling salesman: computational solutions for TSP Applications.

Lecture notes in computer science Berlin, Germany: Springer; vol. 840, 1994.
[41] Helsgaun K. An effective implementation of the Lin-Kernighan traveling

salesman heuristic. European Journal of Operational Research 2000;126(1):
106–30.

[42] Applegate DL, Bixby RE, Chvátal V, Cook WJ. The traveling salesman problem:
a computational study. Princeton, NJ, USA: Princeton University Press; 2006.

[43] Johnson DS, McGeoch LA. Experimental analysis of heuristics for the STSP. In:
Gutin G, Punnen A, editors. The traveling salesman problem and its variations.
Dordrecht, The Netherlands: Kluwer Academic Publishers; 2002. p. 369–443.

[44] Fonseca CM, Fleming P. Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In: Forrester S, editor. Proceedings
of the fifth international conference on genetic algorithms. San Mateo, CA:
Morgan Kaufmann; 1993. p. 416–23.

[45] Ishibuchi H, Murata T. A multi-objective genetic local search algorithm and its
application to flow-shop scheduling. IEEE Transactions on Systems, Man, and
Cybernetics—Part C 1998;28(3):392–403.

[46] Freisleben B, Merz P. A genetic local search algorithm for solving symmetric and
assymetric traveling salesman problem. In: Bäck T, Fukuda T, Michalewicz Z,
editors. Proceedings of the 1996 IEEE international conference on evolutionary
computation (ICEC 1996). 1996. p. 616–21.

[47] Inselberg A. The plane with parallel coordinates. Visual Computer 1985;1(4):
69–91.

[48] Jaszkiewicz A, Zielniewicz P. Pareto memetic algorithm with path relinking for
bi-objective traveling salesperson problem. European Journal of Operational
Research 2009; 193(3):885–90.

[49] Lust T, Teghem J. Two phase stochastic local search algorithms for the
biobjective traveling salesman problem. In: Ridge E, Stützle T, Birattari M, Hoos
HH, editors. Proceedings of SLS-DS 2007, doctoral symposium on engineering
stochastic local search algorithms, Brussels, Belgium, 2007. p. 21–5.

[50] Paquete L, Stützle T. Clusters of non-dominated solutions in multiobjective
combinatorial optimization. In: Barichard V, Ehrgott M, Gandibleux X, T'Kindt
V, editors. Multiobjective programming and goal programming: theoretical
results and practical applications. Lecture notes in economics and mathematical
systems, vol. 618. Berlin: Springer, Germany; 2009. p. 69–77.

	Design and analysis of stochastic local search for the multiobjective traveling salesman problem
	Introduction
	Multiobjective optimization and the MTSP
	The search model and algorithmic components
	Component: search strategy
	Component: number of scalarizations
	Component: neighborhood structure
	Component: search length
	Component: component-wise step

	Experimental analysis
	Experimental design
	MTSP instances
	Algorithmic component levels

	Performance assessment methodology
	Experimental results
	Component: search strategy
	Component: component-wise step
	Component: neighborhood structure
	Component: search length
	Component: number of scalarizations

	Summary

	Comparison with a state-of-the-art algorithm
	Discussion and conclusions
	Acknowledgments
	References

