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Abstract - Many service systems are appointment-driven. In such systems,
customers make an appointment and join an external queue (also referred to as
the “waiting list”). At the appointed date, the customer arrives at the service
facility and receives service. Important measures of interest include the size
of the waiting list as well as the time spent in the waiting list. We develop
a model to assess these performance measures. The model may be used to
support strategic decisions concerning server capacity (e.g. how often should
a server be online, how many customers should be served during each service
session, . . . ). The model is a vacation model that uses efficient algorithms and
matrix analytical techniques to obtain waiting list performance measures.
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1 Introduction

Many service systems require customers to make an appointment prior to receiving service.
After making an appointment, customers are issued an appointment date (which takes place
at some future service session) and join an external queue which is referred to as the “wait-
ing list”. Upon the appointment date, the customer is removed from the waiting list and
receives service at a service facility (e.g. a doctors office). We will refer to these systems as
appointment-driven systems. They may be found in healthcare, legal services, administra-
tion and many other service sectors. Often appointment-driven systems are characterized
by a chronic backlog of customers to be served. The long waiting times involved, result in
reneging behavior and missed company profits. The root of these problems may be found in
a mismatch between capacity and demand.

In this article we develop a Customer Assignment System (CAS) that allows to assess
the trade-off between capacity and demand in appointment-driven systems. CAS have been
studied in [4]. In their work, [4] propose a CAS (which they refer to as an AMQ; an
Appointment Making Queue) in which arrivals are allowed to take place at any moment in
time. Moreover, they assume interarrival times to be exponentially distributed. In this article
we develop a more general model that allows arrivals to take place only during predefined
arrival sessions (e.g. during office hours). We assume phase type (PH) interarrival time
distributions of customers that may differ over arrival sessions (e.g. the arrival process at an
arrival session during the weekend is allowed to differ from the arrival process at an arrival
session during a regular working day); allowing for a time dependent arrival process. In
addition, we significantly improve computational performance and model accuracy.
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The contribution of this article is twofold: (1) the model allows the assessment of detailed
waiting list performance measures; (2) the model may serve as a tool to address several strate-
gic issues (i.e. the trade-off between capacity and demand, the frequency and characteristics
of service sessions as well as the evaluation of appointment-booking practices).

The remainder of this article is organized as follows. Section 2 gives a detailed problem
description. The CAS is presented in section 3. Section 4 discusses model accuracy and
computational performance by means of a numerical example. Section 5 concludes.

2 Problem Description

In appointment-driven systems customers make an appointment, are assigned an appoint-
ment date and are introduced into a waiting list. Upon the appointed date the customer is
removed from the waiting list and receives the actual service at the service facility during
a predefined service session (e.g. during the opening hours of a doctors office). The CAS
observes the queueing behavior of a customer from the making of an appointment (i.e. the
arrival) until the start of the service session in which the customer will receive service. As
such, the CAS does not observe the time spent waiting in service (i.e. during the service
session) nor the actual service process itself (e.g. a patient receiving treatment at the doctors
office). The CAS serves only the purpose of obtaining waiting list performance measures.

The CAS has the following properties:

• Customers are only removed from the queue (i.e. the waiting list) at the start of a
service session (i.e. at a service instant).

• Customers are removed instantaneously.

• Customers are removed in batches (i.e. we have a batch service process).

• The number of customers removed from the queue depends on: (1) the maximum
number of customers allowed to receive service during the upcoming service session;
(2) the number of customers in the waiting list at the start of the service session.

• Customers are removed from the queue as soon as possible (i.e. customers are assigned
to the first service session in which excess capacity is still available).

• Arrivals at the CAS are allowed to occur only during arrival sessions (e.g. on office
hours, during working days).

• Service sessions have fixed starting times (e.g. a doctor always receives patients on
Thursday at 12 AM) and arrival sessions have fixed starting and ending times (e.g.
appointments may be made on Thursday from 6 AM until 6 PM). As such intervals
between these time instances are fixed as well (i.e. these intervals are deterministic).

We illustrate the dynamics of the CAS by means of an example. Figure 1 serves as a guide
throughout the text. Suppose we have an appointment-driven system with service sessions
on Thursday (at 12 AM) and on Friday (at 7 AM and at 12 AM). Arrivals are allowed to take
place during arrival sessions on Thursday (from 6 AM until 6 PM) and on Friday (from 7 AM
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Figure 1: Dynamics of the CAS
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until 12 AM). Over the period observed, five customers arrive and are scheduled for service
during the first available service session. Note that the capacity of the first service session
has already been depleted (i.e. the number of customers in the queue at the start of the first
service session is at least equal to the number of customers that is allowed to receive service
during that service session). Therefore, the first arriving customer is scheduled at the second
service session (in which capacity is still available). At the start of a service session, either
all customers are removed from the queue or the maximum number of customers allowed to
receive service during the upcoming service session is removed.

The performance measures of interest are: (1) the distribution of the number of customers
in the queue at the start of a service session; (2) the average number of customers in the
queue; (3) the average waiting time of a customer. Of particular interest is the distribution of
the number of customers in the queue at the start of a service session because it indicates the
probability of having to serve a certain number of customers during a given service session.
[4] link this information to an “appointment system” (for a review of appointment systems
refer to [3] among others) and create an appointment-driven queueing system that allows
the analysis of appointment-driven systems as a whole. More specifically, an appointment-
driven queueing system analyzes: (1) waiting list performance measures (by means of the
CAS); (2) server performance (e.g. server overtime, idle time, . . . ); (3) customer queueing
behavior during a service session itself. The CAS studied in this article may be considered
as a submodel of an appointment-driven queueing system.

In what follows we discuss the modeling approach, define the basic processes that govern
the CAS, characterize the PH distributions used to model system processes and establish a
counting process to determine the distribution of the number of arriving customers during
a vacation.

2.1 Modeling Approach

The CAS described below may be considered as a vacation model. Vacation models have
received a lot of attention in queueing literature over the past decades. Vacation models
observe the queueing behavior of systems in which the server takes a vacation (i.e. becomes
unavailable) when certain conditions are met. During server vacations, arriving customers
are stored in the queue. Once the server returns, service begins once more. A wide variety
of vacation models exists. For a general overview we refer to Doshi [5], Takagi [13] and Tian
et al. [14].

The CAS has some unique features rendering the modeling exercise rather complex:

• Because customers are served in batches, we have a batch service vacation model.

• At the start of each service session, there is a maximum number of customers allowed
to receive service (i.e. there is a maximum number of customers that is removed from
the queue). In addition, service occurs instantaneously (indicating that no arrivals
take place during service itself). As such, the vacation model has a gated, k-limited
service discipline (also referred to as a G-limited service discipline).

• The maximum number of customers removed from the queue, depends on the service
session that is about to start (e.g. the maximum number of patients served during a
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service session on Thursday is allowed to differ from the maximum number of patients
served during a service session on Friday). As such, the vacation model features time-
dependent values of k.

• A vacation is initiated at the following time instances (a detailed description of the
vacation process is provided in the upcoming sections): (1) the start of a service session
(even when no customers are present in the queue); (2) the start of an arrival session;
(3) the end of an arrival session. Since these time instances are fixed moments in time,
the intervals in between (i.e. the vacation durations) are of fixed (i.e. deterministic)
length as well.

• The deterministic length of a vacation depends on the time in the system (e.g. a
vacation initiated after a service session on Thursday is allowed to have a different
length compared to a service session that is initiated on Friday).

To summarize, the CAS may be modeled as a batch service vacation model featuring: (1) a
gated, k-limited service discipline; (2) vacations of deterministic length; (3) time-dependent
values of k as well as time-dependent vacation lengths. Because of the complexity involved,
more straightforward queueing models (such as deterministic queueing models) do not suffice
to accurately assess performance measures.

2.2 Basic Processes

The service process of an appointment-driven system is a succession of service sessions during
which customers are served. Each service session is is characterized by the maximum number
of customers kis allowed to receive service. We assume recurring cycles to be present in the
succession of service sessions (e.g. a doctor receiving patients every Thursday and Friday).
A cycle of service sessions has length Tcs .

Similar to the service process, the arrival process is a succession of arrival sessions ia
during which customers are allowed to make appointments. An arrival session ia is fully
characterized by: (1) the length Tia ; (2) the mean interarrival time 1/λia ; (3) the variance of
interarrival times σ2

ia . We assume recurring cycles to be present in the succession of arrival
sessions. A cycle of arrival sessions has length Tca . An illustration of the cyclic nature of
a service and arrival processes is provided in Figure 2. In building the CAS, we will fully
exploit the repetitive structure of the service and arrival process.

The vacation process is obtained when superimposing both the service and the arrival
process. The vacation process is the continuous (i.e. uninterrupted; service occurs instanta-
neously) succession of vacations iv, of deterministic length Tiv . A new vacation iv is initiated
at each instance in time at which (1) a service session starts; (2) an arrival session starts;
(3) an arrival session ends. This observation is used to determine Tiv . We illustrate this
procedure in Figure 3. Because service and arrival processes are assumed to be cyclic, the
vacation process is cyclic as well. The cycle length of the vacation process Tcv equals the least
common multiple of Tcs and Tca (assuming the ratio of Tcs and Tca is a rational number). A
cycle of vacations contains J vacations (for the remainder of the text, index j is defined as
j ∈ {1, 2, . . . , J}). We illustrate these principles in Figure 4. Note that, due to the cyclic
nature of the vacation process, a vacation of type j + (iJ) is also a vacation of type j (for
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Figure 2: Cyclic nature of the service and arrival process

Figure 3: The vacation process at the CAS
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Figure 4: Cyclic nature of the vacation process

the remainder of the text, index i is defined as i ∈ {0, 1, . . .}). In addition, vacations may be
divided into different classes (e.g. arrivals are allowed to take place only during vacations of
a particular class). A definition of the different vacation classes is presented in section 3.1.1.

2.3 Phase Type Distributions

In order to model a general i.i.d. arrival process and a deterministic vacation process, we
make use of continuous time PH distributions. Continuous time PH distributions use expo-
nentially distributed building blocks to approximate (with arbitrary precision) any positive
valued continuous distribution. PH distributions are widely implemented in the queueing
literature. For a review on the literature and an introduction on PH distributions refer to
[9], [7] and [10] among others. A PH distribution is the distribution of time until absorption
in a Markov chain with absorbing state 0 and state space {0, 1, . . . , z, z + 1}. It is fully
characterized by parameters τ and T. τ is the vector of initial probabilities to start the
process in any of the (z + 1) transient states and T is the matrix containing the transition
rates between transient states. The infinitesimal generator of the Markov chain representing
the PH distribution is presented below:

Q =

∣∣∣∣ 0 0
t T

∣∣∣∣ ,
where 0 is a matrix of appropriate dimension containing only zeros and t = −Te (with e a
vector of ones of appropriate size).
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In this article we make use of simple phase type approximations of the arrival and vacation
process. With respect to the vacation process, an Erlang distribution of sufficient phases
provides a sound approximation of the deterministic vacation lengths. A vacation j of
deterministic length Tj may be modeled as an Erlang distribution of V phases, each phase
having an exponentially distributed duration with mean 1/ωj:

1/ωj =
Tj
V
, (1)

where V is some number sufficiently large as to minimize the variance of the resulting Erlang
distribution of parameters V and ωj (more specifically, as V approaches infinity, the variance
of the corresponding Erlang distribution approaches zero). For the Erlang distribution, τ j
and Tj are given by:

τ j =

1 1
2 0
· · · 0
V − 1 0
V 0

, Tj =

1 2 · · · V − 1 V
1 −ωj ωj · · · 0 0
2 0 −ωj · · · 0 0
...

...
...

. . .
...

...
V − 1 0 0 · · · −ωj ωj
V 0 0 · · · 0 −ωj

.

With respect to the arrival process, we limit ourselves to the matching of the first two
moments of the interarrival time distribution (i.e. 1/λia and σ2

ia ; the respective mean and
variance of the interarrival time distribution are matched by the PH distribution). For
notational convenience, let 1/λj and σ2

j denote the mean and variance of the interarrival time
distribution of arrivals during a vacation of type j. The two-moment matching procedure
developed in this section minimizes Mj, the number of phases required to approximate the
arrival process at a vacation of type j. Define Mj; the set containing the different arrival
phases of the arrival process at a vacation of type j (as such, |Mj| = Mj). Of course, if no
arrivals are allowed to occur during a vacation of type j, Mj = 0 and Mj = {∅}. If arrivals
are allowed to occur, we make a distinction between three cases: (1) C2

j = 1; (2) C2
j > 1; (3)

C2
j < 1 (where C2

j = σ2
jλ

2
j denotes the squared coefficient of variation of interarrival times

at a vacation j). In the first case, a simple exponential distribution of parameter λj suffices
to model the arrival process. τ j and Tj are given by:

τ j = 1 , Tj = −λj.
In the second case, we model the arrival process using a convex mixture of 2 exponential
distributions (i.e. using a hyperexponential distribution). The parameters of the hyperex-
ponential distribution matching the interarrival time distribution with rate λj and variance
σ2
j are given by:

βj1 =
2

2− C4
j + C6

j

, (2)

βj2 = 1− βj1 , (3)

1/λj1 =
1

2λj

(
2− C2

j + C4
j

)
, (4)

1/λj2 =
1

λj
− 1

λjC2
j

, (5)
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where βj1 , βj2 , λj1 and λj2 denote the probability of having an interarrival time that is
exponentially distributed with parameter λj1 , the probability of having an interarrival time
that is exponentially distributed with parameter λj2 , the parameter of the first exponential
distribution and the parameter of the second exponential distribution respectively. τ j and
Tj are defined as:

τ j = 1 βj1
2 βj2

, Tj =
1 2

1 −λj1 0
2 0 −λj2

.

With respect to the third case, we model the arrival process using a hypoexponential
distribution (a series of exponential distributions whose parameters are allowed to differ; a
generalization of the Erlang distribution). The parameters of the hypoexponential distri-
bution matching the interarrival time distribution with rate λj and variance σ2

j are given
by:

zj = bC−2j c − bC2
j bC−2j cc, (6)

1/λj1 =

zj
λj

+

√
− zj
λ2j

+
C2

j zj

λ2j
+

C2
j z

2
j

λ2j

zj + z2j
, (7)

1/λj2 =
1

λj
−

z2j

λj
(
zj + z2j

) − zj

√
− zj
λ2j

+
C2

j zj

λ2j
+

C2
j z

2
j

λ2j

zj + z2j
, (8)

where zj, λj1 and λj2 denote the number of phases of exponential duration of parameter λj1
that occur prior to the last phase, the parameter of the exponentially distributed interarrival
times at the first zj phases, the parameter of the exponentially distributed interarrival time
at the last phase. τ j and Tj are presented below:

τ j =

1 1
2 0
...

...
zj 0

zj + 1 0

, Tj =

1 2 · · · zj zj + 1
1 −λj1 λj1 · · · 0 0
2 0 −λj1 · · · 0 0
...

...
...

. . .
...

...
zj 0 0 · · · −λj1 λj1

zj + 1 0 0 · · · 0 −λj2

.

For the three cases, Mj equals 1,2 and zj + 1 respectively. A summary of the PH
distributions, used to model the CAS, is provided in Figure 5.

2.4 Counting process

A counting process is established in order to obtain the distribution of the number of cus-
tomers arrived during a vacation of type j. Define ψ[i, d|j, 0, c]; the probability of having i
arrivals during a vacation of type j and an arrival process at final phase d (d ∈Mj) given: (1)
a PH distribution of parameters Tj and τ j; (2) an arrival process at initial phase c (c ∈Mj).

9

http://dx.doi.org/10.1016/j.cor.2008.12.008
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.cor.2008.12.008 • www.stefancreemers.be • info@stefancreemers.be

Figure 5: Overview of PH distributions used at the CAS

The distribution of the number of arrivals may be obtained through a counting process of
the MAP (Markovian Arrival Process) characterized by Cj0 and Cj1 . The counting process
has a continuous time rate matrix:

Qj =

∣∣∣∣∣∣∣∣∣∣∣

Cj0 Cj1 0 0 · · ·
0 Cj0 Cj1 0 · · ·
0 0 Cj0 Cj1 · · ·
0 0 0 Cj0 · · ·
· · · · · · · · · · · · . . .

∣∣∣∣∣∣∣∣∣∣∣
,

where Cj0 = Tj and Cj1 = tjτ
>
j . The transition probabilities of the counting process during

a vacation of deterministic length Tj are given by:

Cj (Tj) = eTjQj =
∞∑
i=0

T ij
i!

Qi
j. (9)

In order to avoid numerical problems and to enhance computational performance, we apply
a uniformization argument to the counting process. More specifically, define:

Pj =
Qj

λmaxj

+ I, (10)

where I is an identity matrix of appropriate dimension and λmaxj is the largest arrival rate
of the PH distribution of parameters Tj and τ j. We have [15]:

Cj (Tj) = e−Tjλ
max
j

∞∑
i=0

(Tjλ
max
j )i

i!
Pi
j. (11)

10

http://dx.doi.org/10.1016/j.cor.2008.12.008
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.cor.2008.12.008 • www.stefancreemers.be • info@stefancreemers.be

Since we are only interested in transitions moving from states with queue size zero, we only
need to observe the first block row of Cj (Tj). More specifically, the first block row of Cj (Tj)
holds the distribution of the number of arrivals during a vacation of type j (i.e. probabilities

ψ[i, d|j, 0, c]). In order to obtain the first block row of Cj (Tj), it suffices to compute P
(i)
j1

;

the first block row of Pi
j (for all i ≥ 0). P

(i)
j1

may be obtained through the simple recursive
relationship:

P
(i)
j1

=

(
Cj0

λmaxj

+ I

)
P

(i−1)
j1

+

[
0

Cj1

λmaxj

P
(i−1)
j1

]
. (12)

3 A queueing model to analyze appointment-driven

systems

The CAS is not a straightforward queueing model. One possible approach to model the CAS
is to construct a Markov chain of four dimensions: (1) The queue size Q : Q ∈ {0, 1, 2, . . .};
(2) the vacation type j; (3) the phase of the arrival process m : m ∈ {1, . . . ,Mj}; (4) the
phase of the vacation process v : v ∈ {1, . . . , V }.

Unfortunately, the use of multidimensional Markov chains is in general not advisable
since it is clear that, as J , Mj or V increase, the resulting statespace grows rapidly. When
modeling real life problems, memory and computational constraints are quickly met. In order
to efficiently assess performance measures, we divide the problem into two sets of Discrete
Time Markov Chains (DTMC):

• A first set of DTMC, Xj = {Xj (t) : t ≥ 0} monitors the queueing process of customers
only at the start of a vacation of type j, prior to removing kj customers from the queue.

• A second set of DTMC, X∗j =
{
X∗j (t) : t ≥ 0

}
monitors the queueing process of only

those customers that arrive during a vacation of type j.

An illustration of the dynamics of both sets of DTMC is provided in Figure 6. The combina-
tion of both sets of DTMC allows the description of the queueing behavior of customers in
the waiting list. Decomposing the problem significantly improves computational efficiency
due to: (1) dimensional reduction (Xj and X∗j are two dimensional and three dimensional
DTMC respectively); (2) avoiding unnecessary computations.

In what follows we use these sets of DTMC to describe the queueing behavior of customers
in the waiting list of an appointment-driven system. We provide a detailed description of
the DTMC Xj and X∗j . Next, we demonstrate how to obtain relevant performance measures
and in a final section we combine these performance measures to obtain general results.

3.1 The DTMC Xj

The DTMC Xj observes the queueing behavior of customers at the start of a vacation of
type j prior to the removal of kj customers from the queue. Therefore, observation moments
occur only at the start of a vacation. The actions taking place in between two successive
observation moments (i.e. the start of a vacation of type j and the start of the next vacation
of type j) are left unobserved. We refer to Figure 7 for an illustration. In order to take
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Figure 6: Division of the problem into two sets of DTMC
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Figure 7: The DTMC Xj
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the unobserved alterations of the queueing process into account, one needs to compute all
possible outcomes (i.e. resulting queue sizes) and their corresponding probabilities. More
specifically, one wants to know the probability of having t customers in the queue at the
beginning of a vacation of type j, given that, at the beginning of the previous vacation of
type j, s customers were present in the queue.

The DTMC Xj may be defined as a two dimensional stochastic process whose statespace
can be represented by pairs (Q,m)j. Define φ[n, t, d|j, s, c]; the probability of moving from a
state with queue size s and arrival phase c at the start of a vacation j towards a state with
queue size t and arrival phase d at the start of vacation j + n (c ∈ Mj ∧ d ∈ Mj+n). In
order to obtain φ[J, t, d|j, s, c] (i.e. the transition probabilities of the DTMC Xj), we first
determine φ[1, t, d|j, s, c] by means of the counting process outlined in section 2.4. These
latter probabilities serve as the input of an iterative algorithm that yields the required
transition probabilities φ[J, t, d|j, s, c].

In what follows we first provide a classification of the different vacation classes and
show how to obtain φ[1, t, d|j, s, c] for each vacation class. Next we propose an algorithm
to compute probabilities φ[J, t, d|j, s, c] and use these probabilities to construct the DTMC
Xj. We use matrix analytical techniques to obtain the stationary distribution of the number
of customers in the queue at the start of a vacation of type j, prior to the removal of kj
customers from the queue. Finally, we present an alternative algorithm that further improves
computational performance.

3.1.1 A Classification of Vacations

A distinction between five classes of vacations may be made:

• Class 1 vacations coincide with the end of an arrival session but do not coincide with
the start of a service session.

• Class 2 vacations coincide with the start of a service session, do not coincide with the
start of an arrival session and no arrival session is still in progress.

• Class 3 vacations coincide with the start of an arrival session but do not coincide with
the start of a service session.

• Class 4 vacations coincide with both the start of an arrival session and the start of a
service session.

• Class 5 vacations coincide with the start of a service session, do not coincide with the
start of an arrival session and an arrival session is still in progress.

We do not allow for (multiple) adjacent arrival sessions. The different classes of vacations are
illustrated in Figure 8. Let cj : cj ∈ {1, 2, 3, 4, 5} denote the class of a vacation j. Depending
on the class, a vacation j is characterized by:

• a deterministic length Tj (∀j : cj ∈ {1, 2, 3, 4, 5}),

• a number of customers kj that is served instantaneously at the start of a vacation j
(∀j : cj ∈ {2, 4, 5} and kj = 0 ∀j : cj ∈ {1, 3}),
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Figure 8: Overview of different vacation classes

• a mean interarrival time 1/λj and variance σ2
j (∀j : cj ∈ {3, 4, 5}). Note that Mj = 0

and Mj = {∅} for all vacations j : cj ∈ {1, 2}.

Each of the vacation classes requires a distinct modeling approach.

Class 1 Vacation

Since no arrivals nor service takes place, the queueing process remains unaltered during class
1 vacations. If vacation j+ 1 is of class 2, we have (note that a vacation j of class cj ∈ {1, 2}
can never be succeeded by a vacation j + 1 of class cj+1 ∈ {1, 5}):

φ[1, t, ∅|j, s, ∅] =

{
1 ∀s, t : s = t,
0 otherwise.

(13)

If cj+1 ∈ {3, 4}, we have:

φ[1, t, d|j, s, ∅] =

{
τ j+1(d) ∀s, t : s = t,
0 otherwise,

(14)

where τ j+1(d) indicates the probability of starting the arrival process of a vacation j + 1 at
an arrival phase d (refer to section 2.3 for a definition of τ j).

15

http://dx.doi.org/10.1016/j.cor.2008.12.008
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.cor.2008.12.008 • www.stefancreemers.be • info@stefancreemers.be

Class 2 Vacation

Since no arrivals are allowed to take place, the queueing process remains unaltered during
class 2 vacations. However, at the start of a class 2 vacation j, a maximum of kj customers
is removed from the queue. If cj+1 = 2, we have:

φ[1, t, ∅|j, s, ∅] =


1 ∀s, t : s > kj ∧ t = s− kj,
1 ∀s, t : s ≤ kj ∧ t = 0,
0 otherwise.

(15)

If cj+1 ∈ {3, 4}, we have:

φ[1, t, d|j, s, ∅] =


τ j+1(d) ∀s, t : s > kj ∧ t = s− kj,
τ j+1(d) ∀s, t : s ≤ kj ∧ t = 0,
0 otherwise.

(16)

Class 3 Vacation

For a given vacation j we use the counting process developed earlier to obtain the distribution
of the number of customers arrived. No services takes place at a class 3 vacation. If cj+1 ∈
{1, 2}, we have:

φ[1, t, ∅|j, s, c] =

{ ∑
d∈Mj

ψ[i, d|j, 0, c] ∀s, t : t− s = i,

0 otherwise.
(17)

If cj+1 = 5, we have (note that a vacation j of class cj ∈ {3, 4, 5} can never be succeeded by
a vacation j + 1 of class cj+1 ∈ {3, 4}):

φ[1, t, d|j, s, c] =

{
ψ[i, d|j, 0, c] ∀s, t : t− s = i,
0 otherwise.

(18)

Note that class 3 vacations are not preceded by a vacation during which arrivals are allowed
to take place. As such, the initial arrival phase probabilities are given by τ j. This observation
also holds for class 4 vacations.

Class 4 Vacation

Similar to class 3 vacations, we obtain the distribution of the number of customers arrived
by means of the counting process discussed previously. At the start of a class 4 vacation j,
a maximum of kj customers is removed from the queue. If cj+1 ∈ {1, 2}, we have:

φ[1, t, ∅|j, s, c] =


∑
d∈Mj

ψ [i, d|j, 0, c] ∀s, t : s > kj ∧ t = s+ i− kj,∑
d∈Mj

ψ[i, d|j, 0, c] ∀s, t : s ≤ kj ∧ t = i,

0 otherwise.

(19)

If cj+1 = 5, we have:

φ[1, t, d|j, s, c] =


ψ[i, d|j, 0, c] ∀s, t : s > kj ∧ t = s+ i− kj,
ψ[i, d|j, 0, c] ∀s, t : s ≤ kj ∧ t = i,
0 otherwise.

(20)
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Class 5 Vacation

Class 5 vacations are identical to class 4 vacations except for their definition of the initial
arrival phase probabilities. Whereas the start of a class 4 vacation coincides with the start
of a new arrival session (i.e. initial arrival phase probabilities are given by τ j), the start of
a class 5 vacation occurs while an arrival process is already in progress. As such, the initial
arrival probabilities should reflect the phase of the arrival process at the start of the class
5 vacation (i.e. the initial arrival process phase equals the final arrival process phase of the
previous vacation).

3.1.2 Algorithm

The algorithm developed in this section serves the purpose of computing φ[J, t, d|j, s, c]; the
probability of moving from a state (s, c)j at the start of a vacation of type j towards a
state (t, d)j+J at the start of the next vacation of type j. Define φ[n, u, e|j, (s, t), (c, d)]; the
probability to depart from a state (s, c)j at the start of a vacation j, to visit state (t, d)j+n−1
at the start of vacation j + n − 1 and to end up in state (u, e)j+n at the start of vacation
j + n (c ∈Mj ∧ d ∈Mj+n−1 ∧ e ∈Mj+n). We assume at least two vacations to be present
in a vacation cycle (i.e. J ≥ 2; if J = 1 the requested probabilities φ[J, t, d|j, s, c] are given
by φ[1, t, d|j, s, c]).

Before advancing to the algorithm itself, a number of important properties are established:

Property 1 When moving from the start of a vacation j to the start of a vacation j + J ,

no more than Qc =
J∑
j=1

kj customers can be removed from the queue.

Property 2 φ[J, t, d|j, s, c] = φ[J, (t+ i), d|j, (s+ i), c] ∀s : s ≥ Qc.

One of the practical implication of these properties is that only states with queue sizes up
to Qc have to be evaluated by the algorithm; resulting in a significant reduction of memory
and computational requirements.

The algorithm consists of two main steps: (1) iteration; (2) evaluation. In the upcoming
sections, we discuss these steps in detail. A final section provides a general outline of the
algorithm.

Step 1: Iteration

Prior to starting the first iteration step we initialize a counter n = 2 and compute all
probabilities φ[1, t, d|j, s, c] for all vacations j and all possible queue sizes and arrival phases.
In a first phase of the iteration step, compute all probabilities φ[n, u, e|j, (s, t), (c, d)] as
follows:

φ[n, u, e|j, (s, t), (c, d)] =
φ[(n− 1), t, d|j, s, c]φ[1, u, ∅|(j + n− 1), t, ∅] ∀cj+n−1 ∈ {1, 2} ∧ ∀cj+n = 2,
φ[(n− 1), t, d|j, s, c]φ[1, u, e|(j + n− 1), t, ∅] ∀cj+n−1 ∈ {1, 2} ∧ ∀cj+n ∈ {3, 4} ,
φ[(n− 1), t, d|j, s, c]φ[1, u, ∅|(j + n− 1), t, d] ∀cj+n−1 ∈ {3, 4, 5} ∧ ∀cj+n ∈ {1, 2} ,
φ[(n− 1), t, d|j, s, c]φ[1, u, e|(j + n− 1), t, d] ∀cj+n−1 ∈ {3, 4, 5} ∧ ∀cj+n = 5,

(21)
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where φ[(n − 1), t, d|j, s, c] is either computed in a previous iteration step or is given by
φ[1, t, d|j, s, c].

In the second phase of the iteration step, we aggregate all resulting probabilities over t
and d and obtain probabilities φ[n, u, e|j, s, c] as follows:

φ[n, u, e|j, s, c] =
∞∑
t=0

∑
d∈Mj+n−1

φ[n, u, e|j, (s, t), (c, d)]. (22)

After aggregation, we proceed to the evaluation step.

Step 2: Evaluation

At the evaluation step we evaluate if n = J . If the condition holds, we have obtained
the required probabilities φ[J, t, d|j, s, c]. If the condition does not hold, we increment the
counter n and proceed to another iteration step.

Discussion

A general outline of the algorithm is provided in Algorithm 1. Due to the aggregation of

Algorithm 1 Global algorithmic structure

for all Vacations j do
for all s, t, c, d do

Compute φ[1, t, d|j, s, c]
end for

end for
for all Vacations j do

Set n = 2
while n < J do

for all s, t, u, c, d, e do
φ[n, u, e|j, (s, t), (c, d)] = φ[(n− 1), t, d|j, s, c]φ[1, u, e|(j + n− 1), t, d]

end for
for all s, u, c, e do

φ[n, u, e|j, s, c] =
∞∑
t=0

∑
d∈Mj+n−1

φ[n, u, e|j, (s, t), (c, d)]

end for
Increment n

end while
end for

probabilities φ[n, u, e|j, (s, t), (c, d)] and due to the limitation of initial queue size s : s ≤ Qc,
the number of computations required to obtain probabilities φ[J, t, d|j, s, c] reduces to a
polynomial function.
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3.1.3 Stationary distribution of the DTMC Xj

To obtain the stationary distribution at a vacation j, we define Pj, the transition matrix of
the DTMC Xj. Following directly from Property 1 and 2 we have that:

φ[J, t, d|j, s, c] = 0 ∀s > Qc ∧ t < (s−Qc) ,
φ[J, t, d|j, s, c] = φ[J, (t+ i), d|j, (s+ i), c] ∀s ≥ Qc.

(23)

In other words, if s > Qc, it is impossible to deplete the queue when moving from a state
(s, c)j at the start of a vacation of type j towards a state (t, d)j+J at the start of the next
vacation of type j. In addition, if s ≥ Qc, transition rates moving from states at the start
of a vacation of type j towards the start of the next vacation of type j are equal given: (1)
equal arrival phases (c, d); (2) equal difference in queue sizes (s, t) and (s + i, t + i). These
properties endow the Markov chain Pj with a special, repetitive structure. More specifically,
Pj may be represented as a non-skip-free M/G/1 Markov chain [6]:

Pj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bj,0,0 Bj,0,1 Bj,0,2 Bj,0,3 · · ·
Bj,1,0 Bj,1,1 Bj,1,2 Bj,1,3 · · ·

...
...

...
...

. . .

Bj,Qc−1,0 Bj,Qc−1,1 Bj,Qc−1,2 Bj,Qc−1,3 · · ·
Aj,0 Aj,1 Aj,2 Aj,3 · · ·
0 Aj,0 Aj,1 Aj,2 · · ·
0 0 Aj,0 Aj,1 · · ·
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where Aj,i and Bj,s,t are Mj ×Mj matrices that depend on the PH distribution used to
model the arrival process at a vacation of type j. If no arrivals are allowed to occur during
a vacation of type j (i.e. cj ∈ {1, 2}), Aj,i and Bj,s,t are scalars and are given by:

Bj,s,t = φ[J, t, ∅|j, s, ∅],
Aj,i = φ[J,Qc, ∅|j, i, ∅].

If arrivals are allowed to occur, we once more make a distinction between 3 cases. In the
case of C2

j = 1, Aj,i and Bj,s,t are scalars and are given by:

Bj,s,t = φ[J, t, 1|j, s, 1],
Aj,i = φ[J,Qc, 1|j, i, 1].

In the case of C2
j > 1 we have:

1 Mj

Bj,s,t = 1 φ[J, t, 1|j, s, 1] φ[J, t,Mj|j, s, 1] ,
Mj φ[J, t, 1|j, s,Mj] φ[J, t,Mj|j, s,Mj]

1 Mj

Aj,i = 1 φ[J,Qc, 1|j, i, 1] φ[J,Qc,Mj|j, i, 1] .
Mj φ[J,Qc, 1|j, i,Mj] φ[J,Qc,Mj|j, i,Mj]
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With respect to the hypoexponential case (i.e. C2
j < 1), Bj,s,t is defined as follows:

Bj,s,t =
1 2 · · · zj Mj

1 φ[J, t, 1|j, s, 1] φ[J, t, 2|j, s, 1] · · · φ[J, t, zj|j, s, 1] φ[J, t,Mj|j, s, 1]
2 φ[J, t, 1|j, s, 2] φ[J, t, 2|j, s, 2] · · · φ[J, t, zj|j, s, 2] φ[J, t,Mj|j, s, 2]
...

...
...

. . .
...

... .
zj φ[J, t, 1|j, s, zj] φ[J, t, 2|j, s, zj] · · · φ[J, t, zj|j, s, zj] φ[J, t,Mj|j, s, zj]
Mj φ[J, t, 1|j, s,Mj] φ[J, t, 2|j, s,Mj] · · · φ[J, t, zj|j, s,Mj] φ[J, t,Mj|j, s,Mj]

and Aj,i is given by:

Aj,i =
1 2 · · · zj Mj

1 φ[J,Qc, 1|j, i, 1] φ[J,Qc, 2|j, i, 1] · · · φ[J,Qc, zj |j, i, 1] φ[J,Qc,Mj |j, i, 1]
2 φ[J,Qc, 1|j, i, 2] φ[J,Qc, 2|j, i, 2] · · · φ[J,Qc, zj |j, i, 2] φ[J,Qc,Mj |j, i, 2]
...

...
...

. . .
...

... .
zj φ[J,Qc, 1|j, i, zj ] φ[J,Qc, 2|j, i, zj ] · · · φ[J,Qc, zj |j, i, zj ] φ[J,Qc,Mj |j, i, zj ]
Mj φ[J,Qc, 1|j, i,Mj ] φ[J,Qc, 2|j, i,Mj ] · · · φ[J,Qc, zj |j, i,Mj ] φ[J,Qc,Mj |j, i,Mj ]

The repetitive structure observed in Pj may be exploited using matrix analytical techniques
(also referred to as matrix analytical methodology or matrix geometric techniques). Matrix
analytical techniques have been studied for several decades and have attracted the attention
of many researchers in the queueing field. For an overview of literature and an introduction
to matrix analytical techniques, refer to [7], [12], [10] and [1] among others. In short, matrix
analytical techniques allow the (numerically) exact analysis of a wide variety of queueing
systems featuring some repetitive structure (more specifically, M/G/1, GI/M/1 and quasi-
birth-death processes).

The matrix Pj can be reblocked into blocks Bj,i and Aj,i of dimensions MjQc ×MjQc

as follows:

Pj =

∣∣∣∣∣∣∣∣∣∣∣

Bj,0 Bj,1 Bj,2 Bj,3 · · ·
Aj,0 Aj,1 Aj,2 Aj,3 · · ·
0 Aj,0 Aj,1 Aj,2 · · ·
0 0 Aj,0 Aj,1 · · ·
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
,

which can be solved as a traditional M/G/1 Markov chain. More specifically, this involves
the computation of an auxilliary matrix Gj which is obtained as the solution of [1]:

Gj =
∞∑
i=0

Aj,iG
i
j. (24)

However, as is indicated in [6], such reblocking might increase computational requirements
(since it involves computations of MjQc×MjQc matrices instead of computations of Mj×Mj

matrices). For non-skip-free M/G/1 Markov chains, [6] have shown that Gj may be obtained
as follows:

Gj = C (gj)
Qc , (25)
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where gj = (Gj,0,Gj,1, . . . ,Gj,Qc−1) is the first block row of Gj and C (gj)
Qc is referred to

as the companion matrix and holds the probabilities of moving Qc steps left in the Markov
chain. C (gj) may be represented as:

C (gj) =

∣∣∣∣∣∣∣∣∣∣∣

0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
Gj,0 Gj,1 Gj,2 · · · Gj,Qc−1

∣∣∣∣∣∣∣∣∣∣∣
.

As such, once the first block row of Gj is known, it is a simple matter to compute Gj. Using
the functional iteration algorithm outlined in [6], we compute Gj. Once we obtained Gj, we
are able to compute π[i|j] using the recursive formula developed in [11]:

π[n|j] =

(
π[0|j]B(n)

j +
n−1∑
i=1

π[i|j]A(n−i)
j

)(
I−A(0)

j

)−1
, ∀n : n ≥ 1, (26)

where:

A(n)
j =

∞∑
i=n

Aj,i+1G
i−n
j , ∀n : n ≥ 0, (27)

B(n)
j =

∞∑
i=n

Bj,iG
i−n
j , ∀n : n ≥ 0, (28)

and π[0|j] is the solution of:

π[0|j] = π[0|j]B(0)
j , (29)

−µj = π[0|j]bj − µjπ[0|j]e + π[0|j] (I−Bj) (I−Aj)
] aj, (30)

where:

• Aj =
∞∑
i=0

Aj,i,

• Bj =
∞∑
i=0

Bj,i,

• aj =
∞∑
i=0

(i− 1)Aj,ie,

• bj =
∞∑
i=0

iBj,ie,

• µj = α>j aj and αj is the stationary distribution vector of Aj,

• operator (·)] denotes the group inverse operation.
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π[i|j] is the vector of stationary probabilities associated with a queue size s : s ∈
{iQc, . . . , ((i+ 1)Qc − 1)}. More specifically, π[i|j] holds the stationary distribution of states
(s, c)j : ∀s, c : s ∈ {iQc, . . . , ((i+ 1)Qc − 1)}
∧c ∈ Mj. From π[i|j] we obtain π[s, c|j], the stationary distribution of being in a state
(s, c)j ; ∀s, c : s ∈ {0, 1; . . .} ∧ c ∈Mj.

Using the stationary distribution π[s, c|j], various performance measures may be derived.
In this article, we limit ourselves to the average queue size at the start of a vacation j. Remark
that π[s, c|j] holds the stationary distribution of the queue size prior to the removal of kj
customers from the queue. Because we are interested in the average number of customers
already present in the queue during a vacation of type j (i.e. the number of customers in
the queue after the removal of kj customers), a shifting operation is required:

Qj =
∞∑
s=kj

∑
c∈Mj

(s− kj)π[s, c|j]. (31)

Combining the above result with the average queue size at the DTMC X∗j , the average size
of the waiting list is obtained.

Note that the stationary distribution π[s, c|j] (and all performance measures derived
thereof) is computed in a numerically exact manner. The stationary distribution π[s, c|j]
is a key element in determining (1) waiting list performance measures; (2) performance
measures of the appointment-driven system as a whole (when linked to an appointment
system). Therefore, its exact computation results in a significant improvement of model
accuracy.

3.1.4 Alternative computation of the stationary distribution of the DTMC Xj

In this section, we develop an algorithm that uses the stationary distribution π[s, c|j] of
a single DTMC Xj to determine the stationary distribution of all other DTMC Xj+n :
n ∈ {1, . . . , J − 1}. Together with probabilities φ[1, t, d|j, s, c], the stationary distribution
π[s, c|j] serves as the input of the algorithm outlined below. The algorithm is a simple
iterative procedure that consists of two steps: (1) iteration; (2) evaluation. In what follows,
we discuss these steps in detail. In a final section, we provide a discussion and give a general
outline of the algorithm.

Step 1: Iteration

Prior to starting the first iteration step we initialize a counter n = 1 and compute the
stationary distribution π[s, c|j] for a single vacation j. In the iteration step, the stationary
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distribution π[t, d|(j + n)] is computed as follows:

π[t, d|(j + n)] =

∞∑
s=0

∑
c∈Mj+n−1

π[s, c|(j + n− 1)]φ[1, t, ∅|(j + n− 1), s, ∅] ∀cj+n−1 ∈ {1, 2} ∧ ∀cj+n = 2,

∞∑
s=0

∑
c∈Mj+n−1

π[s, c|(j + n− 1)]φ[1, t, d|(j + n− 1), s, ∅] ∀cj+n−1 ∈ {1, 2} ∧ ∀cj+n ∈ {3, 4} ,
∞∑
s=0

∑
c∈Mj+n−1

π[s, c|(j + n− 1)]φ[1, t, ∅|(j + n− 1), s, c] ∀cj+n−1 ∈ {3, 4, 5} ∧ ∀cj+n ∈ {1, 2} ,
∞∑
s=0

∑
c∈Mj+n−1

π[s, c|(j + n− 1)]φ[1, t, d|(j + n− 1), s, c] ∀cj+n−1 ∈ {3, 4, 5} ∧ ∀cj+n = 5,

(32)

where π[s, c|(j+n−1)] is either computed in a previous iteration step or is given by π[s, c|j].
After the iteration step, we proceed to the evaluation step.

Step 2: Evaluation

At the evaluation step, we evaluate if n = J . If the condition holds, we have computed
all the required stationary distributions. If the condition does not hold, we increment the
counter n and proceed to another iteration step.

Discussion

A general outline of the algorithm is provided in Algorithm 2.

Algorithm 2 Global algorithmic structure

for all Vacations j do
for all s, t, c, d do

Compute φ[1, t, d|j, s, c]
end for

end for
For a single vacation j compute π[s, c|j]
Set n = 1
while n < J do

for all t, d do

π[t, d|(j + n)] =
∞∑
s=0

∑
c∈Mj+n−1

π[s, c|(j + n− 1)]φ[1, t, d|(j + n− 1), s, c]

end for
Increment n

end while

Using Algorithm 2, the stationary distribution of all DTMC Xj+n : n ∈ {1, . . . , J − 1}
can efficiently be obtained, thereby avoiding the use of more complex matrix analytical
techniques. As such, computational performance is further enhanced.
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3.2 The DTMC X∗j

The DTMC X∗j observes the queueing behavior of customers that arrive during a vacation of
type j. As such, the DTMC X∗j does not take into account the queueing process of customers
that were already present in the queue at the start of a vacation of type j (the DTMC Xj

deals with the queueing behavior of these customers). Note that the DTMC X∗j does not
exist for vacations j : cj ∈ {1, 2}.

In what follows, we present a description of the DTMC X∗j and use matrix analytical
techniques to obtain the average queue size of customers that arrived during a vacation of
type j.

3.2.1 Analysis of the DTMC X∗j

The DTMC X∗j is a three dimensional stochastic process whose statespace can be represented
by triplets (Q,m, v)j. P∗j is the transition matrix that corresponds to DTMC X∗j and is
presented below:

P∗j =

∣∣∣∣∣∣∣∣∣∣∣∣∣

L̂∗j F∗j 0 0 0 · · ·
B∗j L∗j F∗j 0 0 · · ·
B∗j 0 L∗j F∗j 0 · · ·
B∗j 0 0 L∗j F∗j · · ·
B∗j 0 0 0 L∗j · · ·
· · · · · · · · · · · · · · · . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where L̂∗j , L∗j , F∗j and B∗j are the respective “local”, “forward” and “backward” transition
probability matrices. An outline of these matrices is provided below:

1 2 · · · V − 1 V

1 Λ
(1)
j Ωj · · · 0 0

2 0 Λ
(1)
j · · · 0 0

L∗j =
...

...
...

. . .
...

... ,

V − 1 0 0 · · · Λ
(1)
j Ωj

V 0 0 · · · 0 Λ
(1)
j

1 2 · · · V − 1 V

1 Λ
(2)
j 0 · · · 0 0

2 0 Λ
(2)
j · · · 0 0

F∗j =
...

...
...

. . .
...

... ,

V − 1 0 0 · · · Λ
(2)
j 0

V 0 0 · · · 0 Λ
(2)
j
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1 2 · · · V − 1 V
1 0 0 · · · 0 0
2 0 0 · · · 0 0

B∗j =
...

...
...

. . .
...

... .
V − 1 0 0 · · · 0 0
V Ωj 0 · · · 0 0

and L̂∗j = L∗j + B∗j . Λ
(1)
j , Λ

(2)
j and Ωj are the characterizing matrices of P∗j and depend on

the PH distribution used to model the arrival process. In the case where C2
j = 1, each of

the characterizing matrices can be represented as a scalar:

Λ
(2)
j =

λj
λj + ωj

, Ωj =
ωj

λj + ωj
,

and Λ
(1)
j = 0. When using a hyperexponential interarrival time distribution (i.e. C2

j > 1)
we have:

Λ
(2)
j =

1 Mj

1 βj1
λj1

λj1+ωj
βj2

λj1
λj1+ωj

Mj βj1
λj2

λj2+ωj
βj2

λj2
λj2+ωj

, Ωj =

1 Mj

1
ωj

λj1+ωj
0

Mj 0
ωj

λj2+ωj

,

and Λ
(1)
j = 0. In the case where C2

j < 1, the characterizing matrices are given by:

1 2 · · · zj Mj

1 0
λj1

λj1+ωj
· · · 0 0

2 0 0 · · · 0 0

Λ
(1)
j =

...
...

...
. . .

...
... ,

zj 0 0 · · · 0
λj1

λj1+ωj

Mj 0 0 · · · 0 0

1 2 · · · zj Mj

1 0 0 · · · 0 0
2 0 0 · · · 0 0

Λ
(2)
j =

...
...

...
. . .

...
... ,

zj 0 0 · · · 0 0

Mj
λj2

λj2+ωj
0 · · · 0 0

1 2 · · · zj Mj

1
ωj

λj1+ωj
0 · · · 0 0

2 0
ωj

λj1+ωj
· · · 0 0

Ωj =
...

...
...

. . .
...

... .
zj 0 0 · · · ωj

λj1+ωj
0

Mj 0 0 · · · 0
ωj

λj2+ωj
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The queueing behavior observed by the DTMC X∗j can best be described as a regenerative
process. Customers arrive at a queue until the end of the vacation j (of length Tj) is reached,
the queue empties and the process repeats itself. As such, the stationary distribution vector
π∗[i|j] effectively captures the queueing process of only those customers that arrive during
a vacation of type j (where π∗[i|j] is the vector of stationary probabilities associated with
states (i, c, v)j : c ∈Mj ∧ v ∈ {1, . . . , V }).

The special structure observed in the transition matrix P∗j (that defines the DTMC X∗j )
corresponds to a GI/M/1 process. As such matrix analytical techniques can once more be
used to efficiently derive performance measures. With respect to the DTMC X∗j the only
measure of interest is the average queue size Q∗j . The average queue size may be determined
as a function of π∗[1|j] and R∗j ; the vector of stationary probabilities of having a single
customer in the queue and an auxiliary matrix respectively. As such we are not required to
compute the entire stationary distribution of the DTMC X∗j , yielding a significant gain in
computational performance.

With respect to the DTMC X∗j , R∗j may be computed explicitly:

R∗j = F∗j
(
I− L∗j

)−1
, (33)

and π∗[1|j] is obtained as follows:

π∗[1|j] = π∗[0|j]R∗j , (34)

where π∗[0|j] is the solution of:

π∗[0|j] = π∗[0|j]
(

IL̂∗j +
∞∑
n=1

(
R∗j
)n

B∗j

)
,

1 = π∗[0|j]
(
I−R∗j

)−1
e.

(35)

The average queue size at the DTMC X∗j is given by [8]:

Q∗j = π∗[1|j]
(
I−R∗j

)−2
e. (36)

In the upcoming section, we demonstrate how to use these results in order to obtain
general performance measures.

3.3 Aggregation of results

From the previous sections we obtained the average queue sizes: (1) at the start of a vacation
of type j, after removal of kj customers from the queue; (2) during a vacation of type j.
We can combine these results to obtain the average waiting list size (defined as Q) and the
expected waiting time of a customer at the waiting list (defined as W).

The average waiting list size is given by (note thatQ∗j = 0 for all vacations j : cj ∈ {1, 2}):

Q =
J∑
j=1

pj
(
Qj +Q∗j

)
, (37)
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Table 1: Summary of the input parameters at the appointment-driven system

j cj Tj kj C2
j λj1 λj2 βj1 βj2

1 3 6 0 2.00 1/6 2/3 1/3 2/3
2 5 6 3 2.00 1/6 2/3 1/3 2/3
3 1 13 0
4 4 5 1 0.68 1/4 1
5 2 138 2

where pj is the probabilities of finding oneself at a vacation of type j:

pj =
Tj
J∑
j=1

Tj

. (38)

Using Little’s law, we can compute the expected waiting time of a customer at the CAS:

W =
Q
J∑
j=1

ηj
Tj

, (39)

where ηj is the expected number of arrivals during a vacation of type j and is computed as
follows:

ηj =
∞∑
i=0

∑
c∈Mj

∑
d∈Mj

iψ[i, d|j, 0, c]. (40)

4 Discussion and model performance

We illustrate model accuracy and computational performance by means of a numerical ex-
ample. For this purpose, we revert to the setting discussed in section 2. More specifically, we
assume an arrival cycle consisting of two arrival sessions (on Thursday and on Friday) and
a service cycle of three service sessions (one on Thursday and two on Friday). The resulting
vacation cycle consists of five vacations (i.e. J = 5) and customers are removed from the
queue at the start of vacations j : j ∈ {2, 4, 5}. We assume arrivals to take place during
vacations j : j ∈ {1, 2, 4}. The interarrival time distribution of customers at j : j ∈ {1, 2}
is highly variable and has mean and squared coefficient of variation 1/λj = 3 and C2

j = 2
respectively. At vacation j = 4, customers arrivals are distributed with a mean λj = 5 and
a squared coefficient of variation C2

j = 0.68. Using the equations developed in section 2.3
we obtain the respective PH distribution parameters. We summarize all key data in Table
1 (all time-related parameters are expressed in hours).

Using the CAS developed in this article, we assess waiting list performance measures of
the example system. We use a simulation study to validate the model and to assess model
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Table 2: Results of the DTMC Xj

j Qj Simulation
1 4.7401 4.7428
2 4.5235 4.5620
3 6.5528 6.5848
4 5.6633 5.6661
5 4.7401 4.7428

Table 3: Results of the DTMC X∗j

j Q∗j Simulation

V = 10 V = 50 V = 100 V = 200
1 1.4017 1.3082 1.2961 1.2900 1.2838
2 1.1619 1.0498 1.0346 1.0269 1.0386
4 0.4260 0.3784 0.3720 0.3688 0.3655

accuracy. The simulation runlength (50.000.000 vacation cycles) ensures the accuracy of the
simulation results.

We first discuss the results of the DTMC Xj (which monitors the number of customers
in the queue at the start of a vacation of type j). More specifically, we have a look at
the average queue size Qj at each of the five vacations. The results are reported in Table
2. One may observe that the results of the CAS and the simulation model match almost
seamlessly, which should not come as a surprise in view of the fact that the DTMC Xj

provides numerically exact results.
With respect to the DTMC X∗j (which observes the queueing behavior of customers

arriving during a vacation of type j) we approximate the deterministic vacation lengths
using an Erlang distribution of V phases. In order to assess the impact on model accuracy,
we run the model using different values of V . The results (i.e. the average queue size Q∗j at
each of the vacations in which arrivals are allowed to occur) are reported in Table 3. It is
clear that as V increases, the accuracy of the model increases as well. Even for small values
of V (i.e. V = 50) accurate results are obtained. For large values of V , only small differences
exist between the results of the CAS and the results of the simulation model.

When looking at the performance measures of the CAS in general, one may observe
an expected number of customers in the waiting list that equals Q = 4.9941 customers
(simulation reports 4.9989 customers). The expected waiting time at the waiting list amounts
to W = 158.25 hours (simulation reports 157.53 hours).

With respect to computational performance, the algorithms are implemented in Visual
C while all other computations are performed using the Matlab software package and the
structured Markov chain solver developed by [2]. The computations are performed on an
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AMD Athlon with 2.0 GHz CPU-speed and 768 MB of RAM. Computation times for the
example amount to a few seconds (most of which are spent interfacing between the the Visual
C implemented algorithms and the Matlab software package).

We can conclude that: (1) the CAS provides valid results; (2) the results obtained at
the CAS are highly accurate; (3) computational performance allows the study of complex
real-life problems.

5 Conclusion

In this article we focus on appointment-driven systems. In such systems, customers make an
appointment, are issued an appointment date and receive service at some future service ses-
sion. Appointment-driven systems are often characterized by a chronic backlog of customers
to be served (i.e. the waiting list). We develop a model that allows the detailed analysis
of waiting list performance measures. We refer to this model as the Customer Assignment
System (CAS). The CAS may be considered as a complex vacation model that has various
unique properties. In order to efficiently obtain the waiting list performance measures, we
divide the CAS into two sets of Discrete Time Markov Chains (DTMC). Each set of DTMC
requires a distinct modeling approach. The stationary distribution and other measures of
interest of both sets of DTMC are computed by means of efficient algorithms and matrix
analytical techniques.

The CAS developed in this article, is able to provide a very accurate analysis of waiting
list performance measures. In addition, the computational performance indicates that real-
life problems may be analyzed. Using these performance measures, strategically important
issues may be addressed: (1) the trade-off between capacity and demand; (2) the distribution
of capacity over time and space (e.g. when should a server be online and how many customers
should be served at each of the service sessions); (3) the evaluation of appointment-booking
practices (e.g. when and for how long should customers be allowed to make appointments).

Future research on CAS should focus on: (1) the time-dependent arrival of customers;
(2) the correlated arrival of customers; (3) the use of more general PH approximations of
the arrival process.
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