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Abstract 
 
In this paper the Path Dissimilarity Problem is considered. The problem has been 
previously studied in several contexts, the most popular motivated by the need of 
selecting routes for transportation of hazardous materials. The aim of this paper is to 
formally introduce the problem as a bi-objective optimization problem, in which a single 
solution consists of a set of p different paths, and two conflicting objectives arise, on one 
side the average length of the paths that must be kept low, and on the other side the 
dissimilarity among the paths in the set, that should be kept high. Previous methods are 
reviewed and adapted to our bi-objective problem, in this way we are able to compare the 
methods using the standard measures in multi-objective optimization. A new GRASP 
procedure is proposed and tested among the revised methods, and we show that it is able 
of creating better approximations of the efficient frontiers than existing methods. 
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1. Introduction 
In this paper we consider a multi-objective routing problem in which it is necessary to 
generate a set of paths from an origin to a destination.  Finding different paths in a graph 
is a classical optimization problem.  The best known is the k-shortest path problem in 
which k different paths from an origin o to a destination d are obtained in a graph.  
However, many of these alternative paths are likely to share a large number of edges.  
This is why in some applications we need to consider a different approach.  For example, 
in the context of hazmat transportation we want to obtain not only different but also very 
dissimilar paths that minimize the risk (distributing uniformly the risk over all zones of 
the crossed regions).  Specifically, we consider here the Path Dissimilarity Problem, 
which consists of obtaining a set of p paths with minimum length and maximum 
dissimilarity. 
 
Given a graph G=(V, E) with V the set of vertices and E the set of edges with associated 
cost cij for (i,j)∈E, and a pair of vertices origin-destination, o-d, we define P(o,d) as the 
set of all paths in G from o to d.  Given an integer number p>1, a solution to the Path 
Dissimilarity Problem (PDP) is a set S⊆P(o,d) such that |S|=p. 
 
Given a solution S={P1, P2,…, Pp}, we define its cost value z1(S) as the average of the 
costs of the paths in S: 

∑
∑

∈

= ==
tPji
ijt

p

t
t

cPc
p

Pc
Sz

),(

1
1 )(where

)(
)(  

 
We also define its dissimilarity value z2(S) as the average of the dissimilarity between the 

 different pairs of paths in S: ⎟⎟
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Note that to compute z2(S) we need to define a dissimilarity measure dis(Pi,Pj).  Given an 
origin o, a destination d and an integer number p>1, the Path Dissimilarity Problem can 
be stated as: 
 

(PDP) Minimize z1(S) 
Maximize z2(S) 
 
Subject to:  S⊆P(o,d) 
  |S|=p 
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A solution S* of PDP is efficient if there is no other solution S⊆P(o,d) such that 
z1(S*)>z1(S) and z2(S*)< z2(S). In other words, if there is no solution in P(o,d) better than 
S* with respect to both objectives. 
 
Most multi-objective programming techniques focus on finding the set or frontier of 
efficient points (E) for a given problem or, in the case of heuristic procedures, an 
approximation of the efficient frontier (Ê).  In this paper, we describe the development 
and testing of a metaheuristic procedure for the PDP as a bi-objective problem.  Although 
several heuristics have been applied to different versions of this problem, they usually 
provide the user with a good solution or a few good solutions (in terms of both 
objectives), but they do not study Ê with the standard measures in multi-objective 
optimization, such as |Ê|, the size of the space covered or the dominance between 
efficient sets (Zitzler and Thiele, 1999).  In this paper we first review (Section 2) the 
relevant procedures proposed for this and related problems, then we adapt them to the 
Path Dissimilarity Problem as a bi-objective approach (Section 3) and finally, we propose 
in Section 4 a new heuristic based on the GRASP methodology.  The paper finishes with 
a computational testing among the revised methods as well as our new approach (Section 
5) and the associated conclusions. 
 
 
2. Previous Methods 
Studies on bi-criteria path problems can be traced back to the early eighties due to 
Clímaco and Martins (1982) and Martins (1984).  They considered cost and time as the 
two criteria in conflict and proposed truncated enumerative methods to obtain a few 
solutions in the efficient frontier Ê. 
 
Johnson et al. (1992) introduced the Iterative Penalty Method (IPM) in which a shortest 
path algorithm is iteratively applied.  After each application of the method, the weight of 
the edges in the constructed path is penalized to discourage their selection in future 
constructions. As a result dissimilar paths with relatively short length are obtained with 
this method. Advantage of the method is that it only requires a shortest path algorithm to 
generate paths. Shortcoming: it relies heavily on the penalization parameter. 
 
Lombard and Church (1993) proposed the Gateway Shortest Path (GSP) method, based 
on the generation of the shortest paths between an o-d pair computed to go through a 
specific node (called gateway).  At each step, the GSP method first selects a gateway 
node, and then computes two paths, one from the origin to this node and another from 
this node to the destination.  Linking both paths it obtains the final path from o to d.  To 
evaluate the dissimilarity between two paths, the concept of "area under a path" is 
introduced. Advantage of the method is that a large number of alternative paths may be 
generated by simply using a shortest path algorithm twice. Shortcomings: the paths may 
contain loops, and may be impossible to identify some desirable dissimilar paths as 
GSPs. 
 
Kuby et al. (1997) reformulated the problem using path variables, requiring the selection 
of a number of alternative paths between each o - d pair. The task reduces to generate a 
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small number of paths with acceptable lengths which have as few common links as 
possible.  They also proposed the Minimax method. The idea is to generate a set of p 
differentiated paths by selecting a subset from a large set of k paths. Attention is paid to 
similarity between the selected paths and to their lengths so that the final set is mutually 
dissimilar and includes relatively short paths.  The method performs two steps. In the first 
one it generates the k shortest paths.  In the second it iteratively selects paths minimizing 
a linear combination of two objectives, path length and similarity with already selected 
paths. 
 
Akgün et al. (2000) improved the Minimax method with the introduction of the p-
dispersion problem.  In the p-dispersion problem, p out of m given elements (p<m) are 
selected to maximize the minimum distance between any two of the selected elements.  
The authors proposed to employ a constructive with a local search method previously 
introduced for the p-dispersion problem (Erkut 1990), to select a subset of p dissimilar 
paths from a set of k shortest paths.  Moreover they explore a variant in which the initial 
set with k paths is constructed with the IPM method described above.  Given two paths Pi 
and Pj, their similarity S(Pi, Pj) is measured as: 
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where L(Pi) denotes the length of path Pi.  Then, the dissimilarity of two paths Pi and Pj, 
D(Pi, Pj), is simply computed as D(Pi, Pj)=1- S(Pi, Pj). 
 
The two new methods as well as the three previous ones IPM, GSP and Minimax are 
compared when solving eleven instances (o-d pairs) from a road network with 305 nodes 
and 854 arcs with p ranging from 3 to 25.  Solutions are evaluated in the comparison 
according to the following three measures: 
 

AvLe: the average path length 
AvDi: the average dissimilarity between paths 
MiDi: the minimum dissimilarity 

 
Note that the first two measures correspond to z1 and z2 respectively, in the definition of 
the PDP given in Section 1.  The computational comparison indicates the superiority of 
the methods based on the p-dispersion problem. 
 
Dell'Olmo et al. (2005) approached the problem from a multi-objective perspective.  
They pointed out that there are two major drawbacks in the method proposed in Akgün et 
al. (2000): 
 

- they only consider one single criterion, edge length, in the first step of their 
method, 

- the definition of dissimilarity only considers the edges, and the obtained 
routes may be spatially very similar to one another. 
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Although other previous approaches, as the Minimax method, considered two criteria to 
construct the set of k initial paths, they added both in a single objective function.  In the 
new approach, called Multicriteria Shortest Path Algorithm (MSPA), Dell'Olmo et al. 
computed a set ND of non-dominated paths according to the multi-objective concept with 
respect to both length and risk. 
 
Each arc has two associated values, length and risk.  Given two paths Pi and Pj, let l(Pi) 
and l(Pj) be their lengths, and let r(Pi) and r(Pj) be their risks respectively.  It is said that 
Pi dominates Pj if l(Pi)<l(Pj ) and r(Pi)<r(Pj).  In the first step, the MSPA method 
computes a set of k shortest paths (according to the length).  At each iteration, it checks 
whether the shortest path is admitted to the non-dominated set ND or not.  To do this, it is 
compared with the previous paths in ND.  If none of them dominates the new one, this 
last is included; otherwise, it is discarded and it resorts to the next path generated with the 
k-shortest path algorithm. At the end of the first step it obtains the set ND with non-
dominated paths with respect to both length and risk. 
 
In the second step MSPA applies the method D2 (Glover et al. 1998) for the p-dispersion 
problem, to select in ND a subset of p dissimilar paths.  Dell'Olmo et al. replace the 
length L(.) with the area A(.) in the computation of the dissimilarity introduced in Akgün 
et al. (2000).  This area is determined by defining a band of 150 m around each path (that 
is called the Buffer Zone).  The method D2 is basically a destructive procedure that starts 
by considering a solution which contains all the k candidate paths and, at each step, 
eliminates the one with minimum dissimilarity until a set with exactly p paths is obtained.  
This method is coupled with a local search procedure based on exchanges. 
 
Carotenuto et al. (2007) considered to select p distinct simple o-d paths on a given 
network, so as to minimize the total path risk while satisfying a risk threshold constraint 
in the traversed links.  The authors proposed a measure of risk based on the damage 
function introduced in Batta and Chiu (1988).  They proposed two constructive 
algorithms: a greedy GD and a randomized greedy RGD. 
 
The GD algorithm first constructs k shortest paths according to the risk values. Let P1, 
P2,…, PK , be the ordered paths (where P1 is the best one).  The method examines in 
order these paths; if it can add a path Pt to the set of selected paths P* satisfying the risk 
threshold constrained, it is selected and included in the set (P*=P*∪{Pt}), otherwise Pt is 
discarded.  In the RGD method, instead of this greedy selection, a restricted candidate set 
RC is considered at each iteration with the "good" paths for selection (those satisfying the 
risk threshold constrained). The RGD randomly selects a path from RC and adds it to P* 
(P*=P*∪{Pj}).  The authors evaluate the performance of both methods on a road 
network with 311 nodes and 441 arcs with p ranging from 2 to 8. 
 
 
3. Adaptation of Previous Methods 
In this section we first specify the particular problem we are solving, including the 
dissimilarity definition, and we then adapt the main methods described in the previous 
section to our bi-objective problem. 
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We will assume that on the graph G = (V, E) there exists a distance function δ(u, v) for 
every u, v ∈ V. This distance is assumed to have the triangle property. Analogously, we 
can define the distance from a vertex v to a path P1 = {o, v1, v2, …, vn , d} as: 
 

δ( v, P1) = ),(min
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With these definitions, we may now introduce the dissimilarity measure dis between the 
two paths P1 and P2 = {o, u1, u2, …, um , d}, as follows: 
 

dis(P1, P2) = 
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and we will use it to compute z2(S) for a solution S.  It should be noted that this 
dissimilarity measure takes into account spatial information without introducing any 
arbitrary parameter.  Akgün et al. (2000) measured the dissimilarity in terms of the shared 
edges between paths, which as mentioned by other authors do not considered spatial 
information ("the obtained routes may be spatially very similar to one another").  On the 
other hand, Dell'Olmo et al. (2005) introduced the concept of Buffer Zone to measure the 
dissimilarity including spatial information; however, this measure is based on a parameter 
(the width of the band around each path) set to 150 m.  We prefer to use the distance 
between the nodes in the paths, as described above, because it is based on spatial 
information and does not include any extra parameter. 
 
3.1 Iterative Penalty Method (IPM) 
The way to construct the approximation to the efficient frontier for our specific problem 
is based on varying systematically the penalty factor β that is applied to the already 
selected edges.  We have experimentally found that in some instances (with large 
differences between cost edges) the method can select the same path in consecutive 
iterations.  In this case, we penalize the edges in the path repeatedly for a maximum 
number of maxTrials iterations. 
 
Low penalties will encourage the construction of short paths. However, given that edges 
already used may still appear, the dissimilarity of the set of constructed paths may be 
low. High penalties on the contrary will discourage edges already selected favouring 
dissimilarity at the expense of constructing longer paths.  Let IPM(β) be the IPM method 
with a particular value of β.  We run max_iter times IPM(β) with β = iter/max_iter  
where iter=1,…, max_iter.  We finally select the set of non-dominated solutions, Ê, from 
the max_iter solutions (sets with p paths) generated with this method. 
 
3.2 Gateway Shortest Path (GSP) 
To construct the paths using GSP, the selection of the gateway nodes is based on a 
randomized procedure. Initially, the shortest path is constructed, once it has been 
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obtained, the distance form every node in V, that is not included in the path is computed.  
These nodes are then sorted increasingly according to this distance in a candidate list 
(CL). To construct the first solution S1 the first p-1 vertices in CL are selected as gateway 
nodes. This solution favours the paths with shortest lengths, but dissimilarity will be low. 
For the i-th construction the gateways nodes are selected randomly among the first p-1+ i 
nodes in the CL, obtaining solution Si. As i increases the constructions will favor the 
dissimilarity at the expense of constructing longer paths.  We run GSP for max_iter 
iterations, and, as in the previous method, we then select the non-dominated solutions, 
obtaining the approximation of the efficient frontier Ê. 
 
3.3 Minimax 
In each run, the Minimax method iteratively selects paths minimizing a linear 
combination of the objectives z1 and z2 with the already selected paths.  As in the original 
method by Kuby et al. (1997), it performs two steps. In the first one it generates the k 
shortest paths.  In the second it iteratively selects paths from this set of k paths 
minimizing γz1+(1-γ)z2 where γ (0≤γ≤1) is the weight in this linear combination.  We then 
run max_iter times Minimax(γ) with γ =iter/max_iter where iter=1, .., max_iter and 
select the set Ê, from the max_iter solutions constructed with this method. 
 
3.4 Iterative Penalty Method + p-Dispersion (IPM(β)_pD) 
The two phase method IPM(β)_pD adapts the algorithm proposed in Akgün et al. (2000) 
to the bi-objective problem we are considering.  In the first phase we run the IPM(β) 
method to obtain k paths.  We select in the second phase p of them with the constructive 
plus the local search methods proposed in Erkut (1990) for the p-dispersion problem.  We 
run IPM(β)_pD max_iter times with β = iter/max_iter  where iter=1, …, max_iter, 
obtaining as the output of the method the set Ê with the non-dominated solutions. 
 
3.5 Multicriteria Shortest Path Algorithm (MSPA) 
Our adaptation of the MSPA method proposed in Dell'Olmo et al. (2005) has two phases. 
In the first phase we run the IPM(β) method to obtain k paths.  We then select in the 
second phase p of them with the semi-greedy heuristic for the p-dispersion problem 
(which is similar to the D2 method proposed in Glover et al. (1998) plus a local search 
based on exchanges, D2_LS).  Let MSPA(β) be the IPM(β) method with a particular 
value of β  coupled with the D2_LS.  As in the previous methods, we run MSPA(β) 
max_iter times with β = iter/max_iter  where iter=1,…, max_iter, and select the non-
dominated solutions to obtain the set Ê. 
 
3.6 Randomized Greedy Algorithm (RGD) 
We adapt now the method due to Carotenuto et al (2007) to our bi-objective problem. We 
consider the Randomized Greedy Algorithm because their Totally Greedy Algorithm is a 
deterministic procedure that only obtains one single solution. Since we want to obtain an 
approximation of E, we need a procedure that is able to generate many different 
solutions. 
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Figure 1 shows that our implementation of the RGD method first constructs k shortest 
paths to set the candidate list of paths CL.  Then, in each iteration, it randomly selects 
from the candidate list CL the path with a distance dis(Pi,P*) from already selected paths 
P*, above a distance threshold dth, where the dis value between a path and a set of paths 
P* is computed as: 
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The threshold dth is computed as a percentage α between the maximum, dmax, and 
minimum, dmin, distances in CL. 
 

dth = dmin + α (dmax - dmin) 
 
As in the previous methods, we run RGD max_iter times and select the non-dominated 
solutions to obtain the set Ê. 
 
 

Construct k-shortest paths 
Let P1, P2, , , Pk , the ordered paths. CL = {P1, P2, , , Pk} 
P* = {P1} 
CL = CL \ {P1} 
While (|P*| < p) { 
 RCL = { Pi ∈ CL | dis(Pi , P*) ≥ dth} 
 Randomly select Pj from RCL 
 P* = P* ∪ { Pj } 
 CL = CL \ { Pj } 
} 
Return P* 

Figure 1.  RGD method 
 
 
4. A GRASP Algorithm 
The GRASP methodology was developed in the late 1980s (Feo and Resende 1989), and 
the acronym was coined by Feo and Resende (1995).  We refer the reader to the recent 
chapter (Resende and Ribeiro 2003) for a survey on this metaheuristic.  Each GRASP 
iteration consists of constructing a trial solution and then applying a local search 
procedure to find a local optimum (i.e., the final solution for that iteration).  The 
construction phase is iterative, randomized greedy, and adaptive.  In this section we 
describe our adaptation of the GRASP methodology for the Path Dissimilarity Problem. 
 
Although not mentioned in Carotenuto et al (2007), their RGD algorithm uses the 
elements of a GRASP construction.  Specifically, considering our adaptation of this 
method to the bi-objective problem shown in Figure 1, we can see a candidate list CL of 
paths, and a Restricted Candidate List RCL of the most promising paths to be added to 
the partial solution under construction. 
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Our new GRASP algorithm for the PDP has the two standard phases: construction and 
improvement.  In the construction phase we obtain a solution with the randomized 
destructive method RDE (see Figure 2).  In particular, we first generate a set with k initial 
paths and then extract p diverse paths using RDE.  We have seen in the previous section 
that some methods, such as the Minimax or the RGD, compute the k shortest paths and 
then select p diverse paths from this set.  We found these approaches limited in the sense 
that the construction of these k paths does not consider the dissimilarity and only focuses 
on objective z1.  We therefore consider our initial set of k=k1+k2 paths generated from 
two sources: we compute the k1 shortest paths and then apply the IPM(β) to obtain k2 
paths.  We consider IPM(β) after preliminary experimentation among the methods in the 
previous section not based on the shortest path algorithm, 10 executions of this method 
with β = 1, 10, 20, …, 100, respectively, is able to generate paths more diverse than the 
other methods.  Our GRASP algorithm starts generating, by means of both methods, the 
set of k = k1+k2 initial paths from which it then extracts p diverse paths using RDE. 
 
In the improvement phase, we apply a local search method to the constructed solution as 
it is customary in GRASP.  This two phase algorithm is replicated max_iter times and 
from the set of solutions obtained (sets of p paths), dominated solutions are discarded to 
obtain the approximation of the efficient frontier. 
 

Construct k=k1+k2 initial paths 
Let P* = {P1, P2, … , Pk}, the set of k ordered paths.  
While (|P*| > p) { 
 RCL = { Pi ∈ P* | dis(Pi , P*) ≤ dth} 
 Randomly select Pj from RCL 
 P* = P* \ { Pj } 
} 
Return S=P* 

Figure 2.  RDE method 
 
The RDE method first constructs a set K with the k shortest paths.  The partial solution 
P*, which at this stage is infeasible, is initialized as P*=K.  Then, in each iteration, it 
randomly removes from P* a path with low contribution to the objective function z2.  
Specifically, the restricted candidate list RCL is formed with the paths Pi∈P* with a 
distance value dis(Pi , P*) below a distance threshold dth.  The threshold is computed as 
a percentage α between the maximum, dmax, and minimum, dmin, distances in CL, 
which is randomly selected at each iteration with diversification purposes. 
 

dth = dmin + α (dmax - dmin) 
 
As in the RGD method, dis(Pi , P*) is computed with the expression: 
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When the number of paths in P* equals p the RDE method stops and returns the final P* 
as the constructed solution S.  It should be noted that the first step of our method 
constructs the k-shortest paths, thus favouring objective function z1.  This is why in 
algorithm RDE we consider the distance criteria to favour objective function z2. 
 
The second phase of our solving method is a local search procedure.  Given a solution 
S={P1, P2,…, Pp}, with values z1(S) and z2(S) we apply an exchange procedure to 
improve it.  The method alternates two stages for g_iter global iterations; in the first one 
it tries to improve (to reduce) the value of z1 regardless the value of z2 for a maximum of 
l_iter local iterations.  In the second one it tries to improve (to increase) z2 regardless the 
value of z1 for a maximum of l_iter local iterations.  In any of the two stages if the 
method is not able to improve the corresponding objective (z1 or z2 respectively) it stops 
and resorts to the other stage.  Both stages are alternated until no longer improvement is 
possible or the maximum number g_iter of global iterations is reached. 
 
In the first stage the p paths are examined in order, according to their contribution to z1, 
where the path Pi with largest c(Pi) value is examined first.  We try to exchange path Pi 
with a new path Q∈K\S obtaining a new solution S'=S\{Pi}∪{Q} with z1(S')<z1(S).  We 
perform the first improving exchange, replace S with S' and resort to next the path Pj in 
the ordered list of paths. The first stage stops when no more exchanges are possible in 
any of the paths in the current solution or the number l_iter of maximum local iterations 
is reached. 
 
In the second stage of the improvement method the p paths in the current solution S' 
(obtained with the application of the first stage) are examined in the order given by their 
contribution to z2, where the path Pi with lowest dis(Pi,S') value is examined first.  We try 
to exchange path Pi with a new path Q∈K\S obtaining a new solution S''=S'\{Pi}∪{Q} 
with z2(S'')>z2(S').  We perform the first improving exchange, replace S' with S'' and 
resort to next the path Pj in the ordered list of paths. The second stage stops when no 
more exchanges are possible in any of the paths in the current solution or the number 
l_iter of maximum local iterations is reached.  We then apply again the first stage to the 
output solution of this second stage and continue in this way.  The improvement method 
stops after g_iter global iterations (applications of both stages). 
 
As in the previous methods, we run the GRASP algorithm max_iter times and select the 
non-dominated solutions to obtain the set Ê.  At the beginning of the method, we 
initialize Ê=∅, then after each construction, we check whether the constructed solution S 
is dominated or not with respect to the solutions already in Ê, including it if it is efficient.  
Moreover, after each movement of the local search we check whether the obtained 
solution qualify to enter Ê or not (is a non-dominated solution).  Figure 3 shows a 
pseudo-code of the GRASP algorithm. 
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1. Set max_iter equal to the number of global iterations. 
2. Ê=∅. 
3. iter=1. 

While( iter ≤ max_iter ) 
 4. Apply the RDE constructive method ⇒ S. 
 5. Check the inclusion of S in Ê. 
 6. iter2=1. 
 While (iter2 ≤ g_iter ) 
  7. iter3=1. 
  While(iter3 ≤ l_iter ). 
  8. Perform the first improving move w.r.t. z1 ⇒ S' 
  9. Check the inclusion of S' in Ê 
  10. iter3 = iter3+1 
  11. iter4=1 
  While(iter4 ≤ l_iter ). 
  12. Perform the first improving move w.r.t. z2 ⇒ S'' 
  14. Check the inclusion of S'' in Ê 
  14. iter4 = iter4+1 
  15. iter2 = iter2+1 
 16. iter = iter +1 

Figure 3. GRASP algorithm 
 
 
5. Computational Experiments 
Our experimentation has two main goals.  The first one is to present a comparison 
between existing procedures adapted to the bi-objective path dissimilarity problem, and 
the second one to show that the proposed GRASP procedure is capable of creating better 
approximations of the efficient frontiers than the adaptation of existing methods.  
Specifically, we are interested in comparing the performance of IPM, GSP, Minimax, 
IPM coupled with p-dispersion (IPM_pD), MSPA, RGD and our GRASP procedure.  We 
have implemented these seven methods in C and all the experiments were conducted on a 
Pentium 4 computer at 3 GHz with 3 GB of RAM.  The performance measures that we 
employ are the standard ones in multi-objective optimization: 
 

1. Number of points: This refers to the ability of finding efficient points. It is 
assumed that a larger number of efficient points is preferred by the decision 
maker. 

 
2. SSC: This metric suggested by Zitzler and Thiele (1999) measures the size of the 

space covered (SSC).  In other words, SSC measures the volume of the dominated 
points.  Hence, the larger the SSC value the better. 

 
3. k-distance: This density estimation technique used by Zitzler, Laumanns and 

Thiele (2001) in connection with the computational testing of SPEA2 is based on 
the kth nearest neighbor method of Silverman (1986) .  The metric is simply the 
distance to the kth nearest efficient point.  We use k = 5 and calculate both the 
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mean and the max of k-distance values.  The k-distance measure is such that a 
smaller value denotes a better approximation in terms of frontier density. 

 
4. C(A,B): This is known as the coverage of two sets measure (Zizler and Thiele, 

1999).  C(A,B) represents the proportion of points in the estimated efficient 
frontier B that are dominated by the efficient points in the estimated frontier A. 

 
The test problems in our experimentation are taken from the well known TSP Library and 
are available at http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.  
In order to make them harder to solve as a Path Dissimilarity Problems, we remove most 
of the edges in the original instances and only include those edges with a cost (distance 
value) lower than a 10% of the maximum distance value in each instance.  With this 
value of 10%, the final instance is sparse and connected (in the cases considered in our 
experimentation).  Since previous studies in this problem consider instances with 
approximately 300 vertices, we select the following ten instances in the TSPLIB with 
approximately 500 vertices: ali535, att532, d493, d657, fl417, gr666, gr431, rat575, u574 
and pcb442. In all of them we remove the large edges as described above and select the 
farthest points as the origin and destination. The resulting instances are available at 
www.uv.es/rmarti. 
 
As in previous studies we employ Yen's algorithm (Carotenuto et al. 2007) to compute 
the initial k shortest paths in all the tested methods.  We set k=1000 in the Minimax, 
IPM(β)_pD, MSPA and k1=k2=1000 in our GRASP algorithm.  After preliminary 
experimentation we also set maxTrials=50 in the IPM method and g_iter=10 and 
l_iter=5 in GRASP. 
 
In our first experiment we represent the approximation of the efficient frontier obtained 
with five of the six adapted algorithms and with our GRASP method, all run with 
max_iter set to 1000.  We do not depict the results obtained with the Minimax method 
because it only produces a single point in the efficient frontier.  Figures 4 and 5 show the 
results of these six methods on the gr431 with p=15 and on the att532 instance with p=10 
respectively. 
 
Figures 4 and 5 clearly show that the GRASP method obtains a better approximation of 
the efficient frontier of instances gr431 and att532 (with p=15 and 10 respectively) than 
the other competing methods.  We can see in these diagrams that GRASP obtains a larger 
number and better distributed points in the efficient frontier than the other algorithms.  
The next experiment complements this information since it shows the performance 
measures described above for these six methods. 
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Figure 4.  Approximation of the efficient frontier for gr431 with p = 15. 



Heuristics for the Bi-Objective Path Dissimilarity Problem / 14 

 

IPM

0

100

200

300

400

500

0 5000 10000 15000 20000

z1

z2

 

GSP

0

100

200

300

400

500

0 5000 10000 15000 20000

z1

z2

 

IPM_pD

0

100

200

300

400

500

0 5000 10000 15000 20000

z1

z2

 

MSPA

0

100

200

300

400

500

0 5000 10000 15000 20000

z1

z2

 

RGD

0

100

200

300

400

500

0 5000 10000 15000 20000

z1

z2

 

GRASP

0

100

200

300

400

500

0 5000 10000 15000 20000

z1

z2

 
 

Figure 5.  Approximation of the efficient frontier for att532 and p = 10. 
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In our second experiment we compare the solutions found with each of the six methods 
that we have implemented (as in the previous experiment we do not include the Minimax 
method in the comparison since it only obtains a single point).  Table 1 shows the values 
of the measurements described above.  Specifically, it shows the number of points, the 
mean and maximum of the k-distance and the SSC.  We have added a "CPU Time" 
column to show the CPU seconds associated with each procedure.  The statistics are 
calculated over the 10 TSPLIB instances summarized above with p=5.  Tables 2 and 3 
report the same information with p=10 and 15 respectively. 
 

Methods N. of points k-distance 
(mean) 

k-distance 
(max) 

SSC CPU Time 

IPM 29.30 0.09 0.29 0.58 407.2 
GSP 21.10 0.08 0.20 0.61 130.3 
IPM_pD 11.70 0.07* 0.14* 0.60 480.4 
MSPA 26.90 0.09* 0.20* 0.61 348.5 
RGD 9.30 0.10* 0.20* 0.43   63.5 
GRASP 35.20 0.09 0.24 0.84 294.7 
*Not available in the 10 instances 

Table 1.  Performance measures with p=5  
 
 

Methods N. of points k-distance 
(mean) 

k-distance 
(max) 

SSC CPU Time 

IPM 26.70 0.07 0.25 0.47 414.1 
GSP 20.10 0.06 0.16 0.48 264.3 
IPM_pD 11.00 0.06* 0.19* 0.48 469.8 
MSPA 27.91 0.11* 0.18* 0.47 343.5 
RGD 5.60 0.02* 0.13* 0.45   67.1 
GRASP 56.50 0.06 0.27 0.85 307.8 
*Not available in the 10 instances 

Table 2.  Performance measures with p=10 
 
 

Methods N. of points k-distance 
(mean) 

k-distance 
(max) 

SSC CPU Time 

IPM 28.90 0.08 0.24 0.42 485.3 
GSP 20.00 0.06 0.16 0.45 441.0 
IPM_pD 13.50 0.08* 0.17* 0.44 476.4 
MSPA 30.01 0.11* 0.17* 0.42 323.4 
RGD 6.10 0.01* 0.13* 0.42   78.1 
GRASP 62.40 0.03 0.21 0.85 499.5 
*Not available in the 10 instances 

Table 3.  Performance measures with p=15 
 
 
The results in Tables 1 2 and 3 indicate that GRASP is capable of finding efficient 
frontiers with a large number of points and high density, as indicated by the small k-
distance values.  Some k-distance values in these tables are followed with the "*" symbol 
indicating that the associated method is not able to produce five points or more in the 
associated frontier.  Specifically, IPM_pD MSPA and RGD obtain more than 5 points in 
the efficient frontier in 20, 26 and 18 out of the 30 instances solved respectively.  We 
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therefore compute the average and max of the k-distance values considering only those 
cases.  The SSC values clearly show a superior performance of GRASP over the 
competing approaches since it is significantly larger than the others in the three tables.  
CPU times are of a similar magnitude in all the methods (around 6 minutes) with the 
exception of the RGD method which is much faster than the others (although it obtains a 
reduced number of points in the efficient frontier). 
 
In our third experiment we compare the C(A,B) measure over the entire set of test 
problems.  This measure allows us to make a comparison according to the dominance of 
one efficient frontier over another.  Table 4 shows the average C(A,B) values over the 30 
instances (10 with p=5, 10 with p=10 and 10 with p=15). 
 

C(A/B) IPM GSP IPM_pD MSPA RGD GRASP 
IPM 0.01 0.34 0.23 0.02 0.47 0.00 
GSP 0.44 0.06 0.46 0.13 0.58 0.01 
IPM_pD 0.20 0.05 0.00 0.00 0.03 0.00 
MSPA 0.34 0.14 0.75 0.00 0.00 0.04 
RGD 0.04 0.06 0.03 0.00 0.00 0.00 
GRASP 0.96 0.94 0.95 0.83 0.84 0.00 

Table 4. Coverage of two sets 
 
The values in Table 4 show that the frontier generated by GRASP dominates those 
generated by the other methods.  For example, C(GRASP,GSP)=0.94 indicates that 94% 
of the point in the frontier obtained with GSP are dominated by points in the frontier 
obtained with GRASP.  We compare this value with C(GSP,GRASP)=0.01, which 
indicates that only the 1% of the points in the frontier obtained with GRASP are 
dominated by points in the frontier obtained with GSP.  In all the cases we can see that 
C(GRASP,-) > C(-,GRASP), assessing the superiority of GRASP in terms of dominance. 
 
 
6. Conclusions 
We have formally stated the Bi-objective Path Dissimilarity Problem (PDP), and 
described the development and implementation of a GRASP procedure for its resolution.  
The final design is then compared to state-of-the-art methods and the outcome of our 
experiments seems quite conclusive in regard to the merit of the procedure that we 
propose. Our first contribution is to adapt previous methods originally designed for 
different versions of this problem to the bi-objective variant we are considering.  Our 
second contribution has been to propose a new algorithm based on the GRASP 
methodology.  To the best of our knowledge, our work is the first one to test several 
procedures for the Path Dissimilarity Problem within the multi-objective programming 
framework and its associated evaluation measures based on the efficient frontier. 
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