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Abstract

The problem addressed in this paper is the decision probfedeter-
mining if a set of multi-dimensional rectangular boxes carobthogonally
packed into a rectangular bin while satisfying the requeetthat the pack-
ing should beguillotine cuttable That is, there should exist a series of face
parallel straight cuts that can recursively cut the bin jpigces so that each
piece contains a box and no box has been intersected by a beturire-
stricted problem is known to be NP-hard. In this paper weqea gener-
alization of a constructive algorithm for the multi-dimésal bin packing
problem, with and without the guillotine constraint, basedconstraint pro-
gramming.

1 Introduction

Arranging boxes into bins is a problem that occurs in a vaésituations: in the
industry, one goal is to minimize transport and storageschgtpacking as many
items as possible per space unit. Another goal may be to nieitine utilization
of material plates (e.g. glass or wood) for cutting by armragghe elements to be
cut out cleverly. At higher dimensions the problem of pagkirecomes relevant
in, e.g., scheduling tasks with multiple resource demands.

In the following we consider the general problem of packiiidimensional
boxes intod-dimensional bins. Let therefor& be a set of boxes and let :
V = Rf{d be a size function describing the width of each box in all disiens

r1,%9,...,24. All bins are restricted to have the same slikec ]R(J{d. Now we

can loosely define a feasibpackingas an arrangement of the boxésnto one or
more bins so that no boxes overlap and no box exceeds the &emaf the bin
in which it is placed. Rotations are not allowed and box edgest be parallel to
bin edges. Several problems can be formulated from the fgskoling boxes into
bins. Some essential ones include:
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Orthogonal Packing Problem (OPP<) Given a set of boxek, canV be packed
into a single bin of sizéV? OPPd is NP-complete [FS97].

Orthogonal Bin Packing Problem (OBPP+<) Given the set’, how few bins of
sizeWV is required for packing all the boxes Wi? Since OPRtis the corre-
sponding decision problem for OBRPand OPP4d is NP-complete, OBPR-
is NP-hard.

Orthogonal Knapsack Problem (OKP-d) Given a single bin of sizé?/” and a
value functionv : V. — Raﬂ choose a subsét’ C V that can be packed
into the bin so the sum of values fof is maximized. Again OPR-is the
corresponding decision problem so OKRFs NP-hard as well.

Due the theoretical and practical hardness, @PRs been approached in sev-
eral ways. Chen, Lee and Shen [CLS95] approached the probldminteger-
programming and Fekete and Schepers [FS97, FS04b] prdseigeneral multi-
dimensional model based on graph theory, where bounds lmsednservative
scales [FSdV07] (dual feasible functions) are used to ptheesearch. In a more
recent paper, Clautiaux et al. [CAdCO08], give a survey ofl deasible functions
and their use for bounding the search tree in cutting prosld?isinger and Sigurd
[PS07] presented an algorithm fér= 2 based on constraint programming (CSP)
in which a packing was constructed by assigning approprétgions to each pair
of boxesu,v € V. Clautiaux et al. [CJCMO08] modeled the ORRs a scheduling
problem, making it possible to use powerful constraintedascheduling propaga-
tion techniques. Martello et al. [MPV00] generalized thePO8chnique to the
cased = 3. Note, that contour building approaches as proposed ing&cior
d = 2 cannot be generalized tb> 3 as shown in [MPV 07]. For a recent survey
of relaxations of OPREsee Belov et al. [BKRS09].

When cutting specific materials like glass it may be requihed the rectangles
can be cut out of the bin by a number of guillotine cuts which ba thought of
as edge-to-edge cuts (see Figure 1). As noted in [BelO33$etlenstraints are
very difficult to formulate in an IP-model, and also in praetihe problem is dif-
ficult to solve as reported in Parada et al. [PPSGO00]. Pisiagée Sigurd [PS07]
presented an algorithm that handled the guillotine coimétia the CSP frame-
work by testing the guillotine criteria in each step. In [A@%) Amossen extended
the multi-dimensional graph based model by Fekete and ®chép also handled
the guillotine constraint. The present paper will geneeathe CSP technique for
guillotine cuttings to arbitrary values dfas well.

None of the algorithms in the above papers used data stesctbat automat-
ically ensures the guillotine property. Instead a serieseefs were performed
ongoingly. A guillotine ensuring data structure was useevatk by Wong and
Liu [WL86] who modeled guillotine cuts as a tree structurel aepresented the
tree structure byormalized polish expressian#\lso Christofides and Whitlock
[CWTT] used tree structures to model guillotine cuts. B&MHB6] and [CW77]
considered guillotine cuttings from a top-down point ofwiehere different cut
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Figure 1: A non-guillotine pattern (left) and a guillotinatpern (right) with the
first four cuts marked.

configurations were applied to a bin until a cut structure tdoauld hold all boxes
was found. Reversely, Wang [Wan83] iteratively assemiiiedbxes in a bottom-
up approach.

For the bin packing variant OBP#&-two techniques are frequently used, both
making use of OPH-as subproblem. One method is to distribute boxes into bins
with a branch-and-bound algorithm like Martello et al. [MBY], who used an
outer branch-and-bound algorithm distributing boxes tspand an inner OPP-
3 algorithm test the feasibility of each such distributionheTother method is to
formulate the problem as a mixed integer model. PisingerSigdrd [PS07] con-
cerned OBPR-and used the idea from Dantzig-Wolfe [DW60] to decompose the
model into a restricted master problem and a number of sbbgrs. Each of the
subproblems were then split into a one-dimensional pripimadplem and a OPR-
decision problem. Clautiaux et al. [CAdC09] give a very rd@cgurvey on lower
bounds for OPRE

When solving the knapsack variant OKRit is common to use a two-stage
approach as first proposed by Fekete and Schepers [FS04st]: aielaxed one-
dimensional knapsack problem is solved to find a subset of profitable items
that fit within the area or volume, and then an OPSubproblem is used to check
feasibility. In [FS04a] the OPH-was solved through an enumerative algorithm
based on isomorphic packing classes. Pisinger and Sig@@7[Rused constraint
programming to solve th OP®-while Baldacci and Boschetti [BB07] used a
cutting-plane approach using a number of knapsack-, domo@aand incompati-
bility constraints.

Viswanathan and Bagchi [VB93] presented a best-first braamchbound algo-
rithm for the orthogonal guillotine constrained ORPThe algorithm is based on
the bottom-up strategy of Wang [Wan83]. Hifi [Hif97] impral¢he algorithm
of Viswanathan and Bagchi by introducing improved upper &owvder bounds
based on the solution of one-dimensional bounded knapsadtkems. Cung et



al. [CHC97] further improved the algorithm by adding symmetetection for du-
plicate patterns, and using more eficient data structurés[Hif98] presented an
exact algorithm for the strip packing problem with guiliagi constraints.

Bediceanu and Carlsson [BC01] generalized a sweep algotithprune con-
straints having at least two variables in common by utiizihe concepts of for-
bidden and safe regions, and only knowing the minimum andimmax number
of constraints to be satisfied. They specialized the tecientq an extension of
the non-overlapping rectangles constraint. Later, Bediue Carlsson and Thiel
[BCTO6] extended the swap algorithm so that adjusting thente of a variable
according to a set of conjunctions was done in a synchronimgdinstead of by
independent sweeps.

This paper is organized as follows: Section 2 introducegdtminology used
throughout this paper and Section 3 presents a constragrgmming solution
for solving the guillotine packing problem. Computatiomesults for the devel-
oped algorithm are reported in Section 4 where the algorithtompared to three-
dimensional solvers for solving general and robot packahténts of the prob-
lems.

The present paper may be seen as an extension of [PS05, PSW,0V]
where we generalize the packing algorithms to an arbitrarmplyer of dimension,
and develope efficient techniques for testing guillotingathility. Moreover, we
experimentally compare three packing methods (unrestticobot packable, and
guillotine cuttable) with respect to solution time and s$iao quality. For the con-
sidered instances, it turns out that the solution valueropbicking problems hardly
is affected by adding constraints on the packing method.

2 Terminology

We aim to formalize the idea of packings by considering thsitfums of all boxes
in a Cartesian coordinate system. For that, define the pmapy’ — Rf{d as the
coordinate of the corner closest to the origin of each boxe Bt positions are
then uniquely defined by. Also define

I V-5 Rf xRY
v = [pi(v), pi(v) + wi(v))

as the interval occupied by baxon thez;-axis. Withp andI in hand we can now
define a packing formally:

Definition 2.1 (Packing) A feasible packingf the tuple(V, w, W) is a function
p:V — R{ that satisfies

YVoeV: p)+wlw) <W (1)
Vu,v € Viu £ v,3i € {1,...,d}: Luw)NLw)=0 %))



Constraint (1) ensures that no box exceeds the bin bousdani (2) ensures that
no two boxes overlap.

If a packingp arranges the boxes so they are either placed at origin oeat th
edge of another box we call it gapless. More formally:

Definition 2.2 (Gapless packing)A packing is said to bgaplessif for all i =
1,....,dandv eV

pi(v) =00r3u eV : p;(v) = pi(u) + w;(u)

In this paper we only consider gapless packings, and in fagtgaplesguillotine
packings:

Definition 2.3 (Guillotine packing) Let p be ad-dimensional packing oV. A
(d — 1)-dimensional axis parallel hyper plang’ is called aguillotine cutif it
dividesV into two disjoint nonempty subséts and V5 such that no box € V' is
intersected by» with respect t.

Two subseté/;,U; € U C V are calledcut slicesif and only if they are a
result of a guillotine cut ot/.

The cutting oft is done recursively in stages. In each stage all cuts spijté
cut slice must be parallel. A cut slidé is in the k’th stageif it has depthk in the
recursion tree. A packing of the sefl’ is a k-stage guillotine packing if and only
if it can be split into| V| singleton sets ik stages. If there are no restrictions @n
we just say thap is aguillotine packing

Figure 2 shows examples of guillotine cuts tor= 2 andd = 3 and Figure 1
compare a guillotine cuttable packing with a non-guilletituttable one.
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(a) 4 stage guillotine cut for (b) 3 stage guillotine cut fal =
d=2 3

Figure 2. Example of guillotine cutable packings. The nurebedicate one out
of many feasible orderings of the cut slices. Cut number 4li) & hidden in the
back. It splits the grey cut slice.

The literature sometimes distinguish betweetrithmingis allowed after the
recursive guillotine cutting or not. If trimming is allowgthe recursive cutting
may result in pieces being larger than the box they contdirtrinthming is not



allowed, the recursive cutting must result in pieces with élxact size of the box
they contain. In this text we always allow trimming.

We will sometimes refer to a subset of guillotine cuttableliags namedobot
packing

Definition 2.4 (Robot packing) Arobot packings a packing which can be achieved
by placing the first boxy in p;(v) = 0 for all 7, and successively all other boxes
v’ so that there exists anfor which all previous boxes satisfyp;(v) < p;(v').

Robots used for packing boxes in the industry are equippéld airectangular
“hand” covered with vacuum cells for lifting the boxes. To#@l collisions, it is
demanded that no already packed box is positioned in frqrigift of, or above
the destination of the current box. Each guillotine cuttglihcking is also a robot
packing: consider indeed a guillotine cuttable packing arféasible sequence
(tree) of cuts. By first packing the items in the bottom, lefback part (depending
on the cutting direction) of each cut, a feasible robot pagks obtained.

The subproblem of OPPwhere packings are required to be guillotine cuttable
is strongly NP-complete. This is easily seen by a reductiomfthe strongly NP-
hard [GJ75] 3-partition problem: L&t = {wy,...,w,} be the set oh weights
summarizing toV = > w;. The 3-partition problem is the task of finding three
disjoint subsets, Sy, S3 C S with S; U Sy U S3 = S where

Sow= Y w= Y wm=g

w; €S U)jESQ w1653

Consider an OPP-2 instance withboxes of sizgwy,1),..., (w,,1) and a bin
of size (3W,3) whereW = Y~ w;. If an OPP-2 solution can be found for this
instance it will be a filling of the bin by three rows, each lgeih unit high and
%W units wide. The packing is clearly guillotine cuttable ae tiwo rows can
be separated in the first cut stage and each of them slicedemqafds. Solving
the OPP with the guillotine restriction for this instanceamsolves the 3-partition
problem for the instance mentioned above. Similarly if thpaBtition problem
is solved, the solution is equivalent to a guillotine res&il OPP solution similar
to the one described above. As the reduction is polynomi&P-Q is strongly
NP-complete.

3 Constraint-programming based approach

Pisinger and Sigurd [PS05, PS07] showed how to solve twediional pack-
ing problems with guillotine constraints through consttgirogramming. In the
following we will generalize the developed techniques torendimensions, and
present some more general approaches for testing whetlaakang is guillotine

cuttable.
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Figure 3. A 2-dimensional packing given by relatienand the corresponding
graphsG; andGs.

The algorithm operates with relations: V' x V — {0,+1,...,+d}, defin-
ing the relative position of two boxes v € V. The relation matrix- is skew-
symmetric, i.er,, = —ry, and hence-,, = 0. If r,, = —k it means that box
is located “left” to boxwv in coordinatek. If r,,, = k it means that box is located
“right” to box v in coordinatek. If r,, = 0 for u # v then the relative position of
boxesu, v has not been settled yet. More formally we have

Tuw = —k = pk(u) + wk(u) < pk(U) (3)
Tuv = k = Pk(v) + wk(v) < pk(u)

Now the task of finding a packing is to assign valged., . .., +-d} to the relations
ruw, b, ¥ € V, u # v such that equation (3) is satisfied, and the coordinate ifumct
p is a packing, i.e. satisfies (1) and (2). For problems withetisiond < 3 we
may interpret the valuegt1,...,+d} as

-1 left’ (L) -2 ’under’ (U) | -3 'infront’ (F)
1 right (R) | 2 ‘’above’ (A)| 3 ’'behind’ (B)

Given a relationr we may find a corresponding coordinate functjoas fol-
lows. For each dimensioh = 1, ..., d construct an oriented graghy, = (V, E})
defined by the relation

(u,v) € By < 71y =—k
(v,u) € By, & ry =%k

(4)

We will call these grapheelation graphs(see Figure 3 for an example). If a graph
G contains a cycle, then obvioustycannot define a feasible packing. For each
graphGy, we now solve a critical path problem withy, as edge lenth, finding the
earliest start/® of each node:. The coordinates of each nodeare then set to
pr(u) = dk. If some boxu by these calculations exceeds the bin size, i.e. in some
dimensionk, pi(u) + wi(u) > W, then the relation- does not define a feasible
packing.

The framework by Pisinger and Sigurd [PS05] is based on andfapt search,
where in each iteration a single relatioy), is assigned a value ift+1,. .., +d}.
The boxes are initially ordered according to decreasingmel, such that relations
between the largest boxes are fixed first before considdnmgraller boxes.
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Figure 4: Two 2-dimensional relations,, shown in (a) and (b), and two pack-
ings shown in (c) and (d). Relatian,, in (a) can be realized by packing (c) and
(d) depending on the dimensions of the rectangles. The fakipg is guillotine
cuttable, while the second is not. Note that the relatignin (a) does not define
a strongly guillotine cuttable packing. Relatiop, in (b) is strongly guillotine
cuttable, and it can only be realized by packing (c).

With each pair of boxes, v we associate a séfl,,,, of feasible values of,,.
Initially M,, = {£1,...,+d}. If M,, = () then we backtrack. I#/,, contains
only one value them,, is fixed to this value. If all relations,, # 0 and the
corresponding packing is feasible, we terminate.

In each step of the search constraint propagation is useathiorf infeasible
valuesr,, from M,,,. This is done by repeatedly fixing,, to each value in\{,,
and testing whether the corresponding packirig feasible. If the packing is in-
feasible, we remove the value fraid,,,.

In order to extend the framework to handle guillotine pagkinwe need to
ensure that the defined relatierat any step defines a guillotine packing, and that
all currently undefined relations can be extended to a feagilllotine packing.

Definition 3.1 (Strongly guillotine cuttable) A relation functionr represents a
strongly guillotine cuttabl@acking if either:

e The set of boxeE contains one box only.

e We can separatd’ into two subsetd’; and V; and there exists & €
{£1,...,£d} such that

ruw = kforalueVi,vel, (5)

and both set§/; andV; are again strongly guillotine cuttable.



Note that the relatiom may represent a guillotine cuttable packing even if it is
not strongly guillotine cuttable (see Figure 4). However, dvery guillotine cut-
table pattern, there exists an equivalent strongly girikotuttable representation.

Definition 3.2 (Candidate strongly guillotine cuttable) A setM of feasible re-
lations represents aandidate strongly guillotine cuttabpacking if either:

e The set of boxek contains one box only.

e We can separatd’ into two subsetd/; and V5 and there exists & ¢
{#£1,...,+£d} such that

ke My, forallu e Vi,vel, (6)
and both set§; and V5 are again candidate strongly guillotine cuttable.

Testing whether a relation represents a strongly guillotine cuttable packing
may be done by using g@eedy approachFind any strong guillotine cut, separate
the problem into two subseig andV; and call the testing algorithm recursively.
The greedy approach works since choosing a specific cut wilblock for any
alternative cuts.

3.1 Finding a strong guillotine cut in a complete graph

Assume that no relations,, are undefined, meaning that
G = (V,ElU"'UEd)

is a complete graph. Finding a strong guillotine cut in disien k is done as
follows.

Algorithm 3.3 Construct the directed grapf, = (V, E)) defined by relatior4).
SinceGy, is acyclic, we may sort the nodé&sin topological order (this order is
not necessarily unique). Assuming that vertéx the first node in the topological
order, start withV; = {v} andV, = V' \ {v}. If there exists & for which the two
sets define a strong guillotine cut, we are done. Otherwiseertioe next node in
the topological order froni; to V3, and test. Repeat until; = () in which case
no strong guillotine cut exists.

Theorem 3.4 V; andV, = V' \ V; define a strong guillotine cut df if and only if
V4 # () upon termination of Algorithm 3.3.

PROOF (=) Assume thal; andV, = V' \ V; define a strong guillotine cut.
That is,r,, = k forall u € V;,v € V5. The topological sorting will therefore
order all vertices i/, before all vertices i/, (else there would be an edge from
V5 to V1) and at some point, the algorithm will thus stop wHérhas been split
into V7 and V5.



(<) Assume that, # () upon algorithm termination}; and V5 will then
each be strongly guillotine cuttable so we need to show thand V5 define a
strong guillotine cut of”. That is, we have to show that there existsfar which
rw = kforallu € Vi andv € V5. But this is trivially true if the algorithm
terminated beford, = 0. O

The running time of the algorithm 8(n?) since we consider subsetd/;, V3,
and each time check criteria (5) in tinign?).

We can decrease the running time@gn?) by using Algorithm 3.5, which
tests for a strong guillotine cut in dimensién

Algorithm 3.5 Setm = 1 and letV; and V; define a disjoint division of with
Vi=A{L1,...,m}andVy = {m+1,...,n}. Perform the following actions for
eachu € {1,...,n — 1}: First, forv € {m +1,...,n}, setm = v iff ry, # k.
Next, ifm = w then the pair(V;, V5) defines a strong guillotine cut. Elseyif = n
then no strong guillotine cut exists.

Initially we haveV; = {1} andV, = {2,...,n}. If ry, = kforallu € 1}
andv € V; we have a strong guillotine cut. Otherwisg, # k for somev € V;
and hence no separation wherec V; andv € Vs will be strongly guillotine
cuttable. So we proceed to the case where € V7, i.e. testingl; = {1,...,v}
andVo = {v+1,...,n}.

3.2 Nonexistence of strong guillotine cuts in arbitrary grgphs

If some of the relations,,,, are undefined we cannot use the approach from the
previous section, as a topological ordering of the nodegisufficient to define
the strong guillotine cut. Instead, we may look for an effitialgorithm which
detects non-existence of a strong guillotine cut in arbytenstraint graphs.

Assume that each pair of boxes has associated th&lgebf feasible relative
placements. Testing whether a, byinduced, packing is guillotine cuttable in
dimensionk € {1,...,d} is done as follows:

1. Calculate new set®l},, := My, N {—k, k}.

2. If for two nodesu andv we have thatV//, = ) then merge the two nodes
into a nodew’. For every other node let M/, = My, N M.

3. Repeat the process until no more nodes can be merged.

If all nodes have been merged into one node, then the curoirtian will never
be strongly guillotine cuttable, as shown in the followihgdrem:

Theorem 3.6 A sufficient criterion for a strong guillotine cuitto exist in dimen-
sionk is that the above process results in a singleton node set.

10



PrRoOOF We show that if a strong guillotine clif, V5 exists in dimensiork then
the above process will result in a node set of cardinalityeast 2. For a strong
guillotine cutVy, V5 in dimensionk we have, per definition;,, = —k orr,, = k
foru € Vi,v € V5. Therefore eithek € M, forall u € Vi,v € V5 or
k € M,, for all u € V1,v € V,. Consequenth ), = M, N {—k, k} # 0 for all
u € Vi,v e Vs,

We now have to show, that merging any two node¥4ror V5 will not make
M, = 0 foranyu € Vi,v € V. Without loss of generality, we may assume
thatu € V5 andz,w € V5 and that bothk € M, andk € M,.. Merging z and
w results in a new node’ with M,,,» = M,, N M,. and thus alsd& € M,..
Trivially M, = M, N {—Fk,k} # 0.

No nodeu € V; will therefore ever be merged to a nodes 5 and thus the
resulting cardinality of the node set will be at least 2. O

Since there are(n — 1)/2 uv-pairs and the cardinality af/,, is O(1), step
1 in the above test can be done(in?) time. If merging two sets has complexity
O(n) each iteration take®(n?) time. At mostn iterations are needed so the total
complexity isO(n?).

3.3 Finding strong guillotine cuts in almost complete grapk

As we fix the relations between the boxes. . , i — 1 before proceeding to the next
box i, a typical situation will be as follows: For a given béowe have

ruw € {£1,...,td} foru,v=1,...;i—1
rui € {0,£1, ..., tdy foru=1,...,i—1
rw=0foru=1,...,i—1,v=i+1,...,n

In other words, all relations between boxes. . ,i — 1 are fully fixed, while re-
lations involving boxes + 1,...,n are unsettled. Relations involving b@xare
partially settled. The constraint gragh, defined on nodeg, ..., is in other
words almost complete, as illustrated in Figure 5.

In this situation we may run Algorithm 3.3 for boxds...,7 — 1 testing
whether acandidatestrong guillotine cut exists. Each time we test whether the
partitioning of the boxes int¢V;, V») is candidate strongly guillotine cuttable, we
try to add box: to each of the sets in turn, i.e. we tes{¥; U {i}, V») is candi-
date strongly guillotine cuttable, or (i, V>, U{i}) is candidate strongly guillotine
cuttable. The running time will be increased by a factor twhich is a constant
factor.

An alternative approach for testing strong guillotine dat@lmost complete
graphs is to ignore undefined relations with), = 0, and run Algorithm 3.3 for
boxesl,...,i. To see correctness of this approach, assume that a stroluogiroge
cut exists in dimensiok, meaning that we can separate the set of bdkes . ,i}
into V1, Va, such that

(Fuw =k V 7y = 0) forallu € Vi,v € Vs (7)

11
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Figure 5: A 2-dimensional packing given by the sétsand the corresponding
graphsG; andG,. Dark edgegu, v) indicate that only one relation is possible in
M., while light edges indicate alternative relations. = (V, E; U Es) is com-
plete for the node subsét, 2,3,4}. A topological ordering of the nodes i,
according to relatiom may lead to orderings$, 2,5,3,4 or 1,5, 2, 3, 4. The first-
mentioned will be found candidate strongly guillotine abte by Algorithm 3.3,
while the latter will not.

Now assume that Algorithm 3.3 fails finding the separafionls. If it was not for
the last boxj, we know that Algorithm 3.3 would have found the two sets. ukse
(for symmetry reasons) thatvas placed irl/; but a nodev exists inV; such that
ryi = k. But this means that the topological ordering of the nodealgorithm

3.3 was not correct.

4 Computational results

The experiments presented in this section aim at demoingiriiiree things: 1)
our implementation works properly, 2) guillotine constitaican be handled effec-
tively, and 3) the quality of solutions generally is not atted by requiring guil-
lotine cuttability. To the best of our knowledge, this is tlirst comparison of
OBPP3 displaying the costs of the addional constraints.

We only cover results fod = 3 as displaying results for higher-dimensional
problems would not contribute with additional informatioRurthermore, to the
best of our knowledge, there are very few OB®PBolvers publicly available, and
most such solvers are built on top of an OPRlgorithm, making them difficult to
use for comparison. Therefore, the results below do not esenpur solver with
other solvers.

Based on the codes [PS05, PS07, M®V] we have implemented all of the
pruning techniques described in Section 3.1 to 3.3. Aftenespreliminary tun-
ing we have chosen to use the alternative approach, deddrittbe last part of
Section 3.3, for testing whether a partial solution is gtiile cuttable.

The code was implemented in ANSI-C, and the experiments wereon a
Pentium 4 processor running at 3GHz. A time limit of 3600 selsowas imposed
to each instance. We will test the developedimensional guillotine packing al-
gorithm on three-dimensional instances presented by Madeal. [MPVO00]. For
the first five classes, the bin sizelld = H = D = 100 and five types of boxes are

12



Class
packing n 1 2 3 4 5 6 7 8 9
10 10 10 10 10 10| 10 10 10 | 10
15 10 10 10 10 10| 10 10 10 | 10
20 10 10 10 10 10| 10 10 10| 10
25 10 10 10 10 10| 10 10 10 | 10
general 30 10 10 10 10 10| 10 10 9 9
35 10 10 10 10 10| 10 8 9 9
40 10 9 8 10 10 7 9 3
45 8 6 4 10 9 5 9 0
50 7 3 7 10 10 6 9 0
total: 723 85 78 79 90 89 76 85 [ 61
10 10 10 10 10 10 10 10 10
15 10 10 10 10 10 10 10 10
20 10 10 10 10 10 10 10 10
25 10 10 10 10 10 7 9 10
robot 30 10 10 10 10 10 7
35 10 10 10 10 10 5 8 | 10

2

1

40 10 9 8 10 10 10 9
45 10 7 4 10 10
50 7 4 9 10 10 3 5 0

9

6

5

80

10

10

10

8

9

5

4

4 8 2
3

total: 694 87 80 81 90 63| 90 55 771 71

10
10
10
10
10
10
10
9
10
89

10 10 10 10 10 10 10 10 | 10
15 10 10 10 10 10 10 10 | 10
20 10 10 10 10 10 10 10 | 10
25 10 10 10 10 10 10 10 | 10
guillotine 30 10 10 10 10 10 10 10 | 10
35 10 10 10 10 10 10 10 | 10
40 10 9 8 10 10 10 10 | 10
45 8 7 4 10 10 9 10 7
50 7 3 7 10 10 10 10 1
total: 769 85 79 79 90 90 89 90 | 78

Table 1: Number of instances, out of 10, solved to provedgiity in 3600 sec-
onds

Class
packing n 1 2 3 4 5 6 7 8 9
10 0.00 0.00 0.00 0.00 0.00] 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00
20 0.01 0.01 0.01 0.00 0.01] 0.01 0.16 0.00 0.01
25 0.05 0.04 0.10 0.00 0.09) 0.19 1.76 0.91 0.11
general 30 15.18 1.09 3.50 0.00 1.41f 7.34 93.73 360.35 468.81
35 61.07 102.39 26.30 0.00 3.01 2.90 764.97 390.11 546.46

40 217.87 614.06 861.15 0.00 448.3p 15.79 1151.20 365.25| 2859.09
45 1049.05 1493.49 2163.92 0.01 1464.79 363.07 1952.55 450.54( 3600.01
50 1391.89 2696.83 1712.14 4.00 1971.17 4.22 1604.58 434.98| 3600.02

10 0.00 0.00 0.00 0.00 0.00] 0.00 7.81 0.00 0.00
15 0.00 0.00 0.00 0.00 0.04] 0.01 4.85 0.02 0.00
20 0.01 0.01 0.01 0.00 3.96] 0.04 207.76 431 0.00
25 0.11 0.03 0.18 0.00 843.37 0.09 1425.30 361.05 0.05
robot 30 10.41 1.01 1.90 0.00 381.47 5.00 1308.55 1080.11 19.78
35 36.67 35.75 11.03 0.00 1819.74 1.53 2033.36 950.86 74.75

40 114.53 449.87 766.76 0.00 2184.8

p 12.84 2881.79 136.94| 1250.15

45 748.34 1299.86 2162.28 0.01 216150 11.28 3240.01 751.35 3247.02
50 1262.65 2523.43 1333.56 3.52 2532.84 5.49 2742.58 1875.95] 3600.01
10 0.00 0.00 0.00 0.00 0.00] 0.00 0.00 0.00 0.00
15 0.02 0.00 0.01 0.00 0.01] 0.00 0.01 0.05 0.00
20 0.01 0.02 0.01 0.00 0.01] 0.09 0.26 0.02 0.01
25 0.06 0.05 0.15 0.00 0.11] 0.10 1.80 0.61 0.41
guillotine 30 13.33 0.96 3.28 0.00 167 10.23 5.00 1.46 1.47
35 42.45 107.74 21.43 0.00 3.59 1.46 13.49 7.52 54.53
40 152.28 664.45 844.57 0.01 89.8 3.21 27.43 29.37 762.25
45 998.11 1473.31 2163.11 0.02 419.6p 3.62 648.31 8.69| 2024.80
50 1331.28 2663.01 1727.20 3.91 45.06 13.46 15.24 51.58| 3283.91

Table 2: Average solution times in seconds, as average ofsifrices using atime
limit of 3600 seconds
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Class

packing n 1 2 3 4 5 6 7 8 9
10 33 35 3.6 6.6 25 29 25 2.8 3.0
15 4.7 45 4.8 8.7 29| 44 3.0 3.7 3.0
20 6.0 6.6 6.0 12.3 39| 54 3.8 4.9 3.0
25 7.4 7.0 7.1 15.4 46| 59 4.3 55 3.0
general 30 8.6 8.0 8.6 17.2 54| 6.7 4.0 6.1 31
35 9.3 9.5 10.3 21.1 6.3| 7.7 54 7.1 3.2
40 11.0 10.7 11.5 24.3 69| 88 6.5 7.7 4.7
45 12.3 12.6 12.2 27.6 79| 9.8 7.0 8.3 5.0
50 13.5 13.8 13.4 29.4 9.2| 9.8 7.9 9.4 6.2
10 33 35 3.6 6.6 25 29 25 2.8 3.0
15 4.7 45 4.8 8.7 29| 44 3.0 3.7 3.0
20 6.0 6.6 6.0 12.3 39| 54 3.8 4.9 3.0
25 7.4 7.0 7.1 15.4 48| 59 4.7 5.6 3.0
robot 30 8.6 8.0 8.6 17.2 55| 6.7 4.6 6.2 3.0
35 9.3 9.5 10.3 211 72| 1.7 6.0 7.2 3.0
40 11.0 10.7 115 24.3 76| 88 7.7 7.7 33
45 12.2 12.6 12.2 27.6 8.2| 9.6 8.1 8.5 4.7
50 13.5 13.8 13.3 29.4 9.6] 9.8 8.8 10.3 6.0
10 33 35 3.6 6.6 25 29 25 2.8 3.0
15 4.7 45 4.8 8.7 29| 44 3.1 3.7 3.0
20 6.0 6.6 6.0 12.3 39| 54 3.8 4.9 3.0
25 7.4 7.0 7.1 15.4 46| 5.9 4.3 5.5 3.0
guilllotine 30 8.6 8.0 8.6 17.2 54| 6.8 4.0 6.0 3.0
35 9.3 9.5 10.3 211 6.3 7.8 5.2 7.0 3.0
40 11.0 10.7 115 24.3 6.6| 8.8 6.0 7.8 3.0
45 12.3 12.6 12.2 27.6 11.00 9.7 6.4 8.4 7.5
50 13.5 13.8 13.4 29.4 8.3 9.9 7.4 9.3 22.7

Table 3: Upper bound,

as average of 10 instances using aitimtef 3600 seconds

Class

packing n 1 2 3 4 5 6 7 8 9
10 3.3 35 3.6 6.6 25] 29 25 28] 3.0

15 4.7 4.5 4.8 8.7 29| 44 3.0 3.7 3.0

20 6.0 6.6 6.0 12.3 39| 54 3.8 49| 3.0

25 7.4 7.0 7.1 15.4 46| 5.9 4.3 5.5 3.0

general 30 8.6 8.0 8.6 17.2 54| 6.7 4.0 5.8 3.0
35 9.3 9.5 10.3 21.1 63| 7.7 4.9 69| 3.0

40 11.0 10.5 11.3 24.3 6.6 8.8 55 76| 3.0

45 12.0 12.1 11.6 27.6 7.0 9.5 5.6 82| 3.0

50 13.1 12.9 13.1 29.4 79 9.8 7.0 9.1 | 3.0

10 33 35 3.6 6.6 25[ 29 25 28| 3.0

15 4.7 4.5 4.8 8.7 29| 44 3.0 3.7 3.0

20 6.0 6.6 6.0 12.3 39| 54 3.8 49| 3.0

25 7.4 7.0 7.1 15.4 46| 5.9 4.0 54| 3.0

robot 30 8.6 8.0 8.6 17.2 54| 6.7 3.9 56| 3.0
35 9.3 9.5 10.3 21.1 6.0 7.7 4.7 6.8 | 3.0

40 11.0 10.5 11.3 24.3 59 88 52 77| 3.0

45 12.2 12.3 11.6 27.6 6.8 9.6 51 81| 3.0

50 13.1 13.0 13.2 29.4 7.7 9.8 6.6 87| 3.0

10 33 35 3.6 6.6 25] 29 25 28] 3.0

15 4.7 4.5 4.8 8.7 29| 44 3.1 37| 3.0

20 6.0 6.6 6.0 12.3 39| 54 38 49| 3.0

25 7.4 7.0 7.1 15.4 46| 5.9 4.3 55| 3.0

guillotine | 30 8.6 8.0 8.6 17.2 54| 6.8 4.0 6.0 | 3.0
35 9.3 9.5 10.3 21.1 63| 7.8 52 70| 3.0

40 11.0 10.5 11.3 24.3 6.6 8.8 6.0 78| 3.0

45 12.0 12.3 11.6 27.6 7.2 9.7 6.2 84| 3.0

50 13.1 12.9 13.1 29.4 8.3 9.9 7.4 9.3 3.0

Table 4: Lower bound, as average of 10 instances using a itiniteof 3600 sec-

onds
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considered by uniformly randomly generating the box sipedifferent intervals,
namely:

Type tw; € [1,4W], h; € [3H, H], d; € [3D, DJ;
Type 2 w; € [2W, W], h; € [1,1H], d; € [2D, DJ;
Type 3w; € W, W], h; € [3H, H], d; € [1,1D];
Type 4 w; € [§W, W], h; € [$H, H|,d; € 3D, DJ;
Type 5w; € [1,4W], h; € [1,4H], d; € [1,1D].
Classes: (k = 1,...,5) have then been obtained by generating each box accord-

ing to typek with probability 60%, and according to the other four types with
probability 10% each. Classes 6 to 8 may be described as follows:

Class 6 W = H = D = 10; wj, h;, d; uniformly random in[1, 10];
Class T W = H = D = 40; wj, h;, d; uniformly random in[1, 35];
Class 8 W = H = D = 100; wj, h;, d; uniformly random in1, 100].

Finally, Class 9consists of difficulall-fill instances having a known solution with
three bins: the boxes are generated by randomly cuttingitiseriio smaller parts
as follows. Bins 1 and 2 are cut info/3| boxes each, while bin 3 is cut into
n—2|n/3] boxes. The cutting is made using a recursive approach wajpzratedly
cuts the bin into two parts using a guillotine cut until fivexbe remain. These
boxes are then cut using a non guillotine pattern. This mewisf the number of
boxes in a bin is not a multiple of 5, then then bin is guilleticuttable. Otherwise,
it contains a non guillotine pattern, whiglossiblycan be made guillotine cuttable
by interchanging the boxes.

The best found solver for comparison was a solver by Marétléd. [MPV™07]
which solves the general and robot-packable version ofithedcking problem.

Table 1 shows the number of instances solved out of ten fdr pablem size
and instance type. It is seen that in general we are able ve sabre guillotine
cuttable problems than general packing problems, whiledhet-packable prob-
lems are the most difficult to solve. Indeed, using the giiilwalgorithm, we are
able to solve most problems to optimality of size upite= 50.

Table 2 reports the corresponding solution times as aveshd® runs. The
solution times are dominated by the instances that timelautfor the instances
which are solved by all three algorithms there is no majdedéce in the times.

Finally Table 3 and 4 present upper and lower bounds for timsidered in-
stances. If a problem was solved to optimality the upper angit bound is equal.
Otherwise the upper bound denotes the best solution fourahwime-out was
reached, and the lower bound denotes the correspondindi@st lower bound.
It is seen, that imposing the guillotine cut constraint omyery few instances
affects the optimal solution in comparison to a general pack

Class 9 is particularly interesting to study since all opiisplutions are guillo-
tine cuttable. Not surprising the guillotine algorithm Hexto solve more instances
than the other two approaches since it takes advantage siiier solution space.
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However, for large instances, the upper bound becomes aehydn the guillotine
algorithm. This can be the result of the bin-packing al¢yonitmaking infeasible
assignments of items to bins. Since the instances in class @im-free, special-
ized algorithms can exploit this property to backtrack wdhem a gap appears in
the packing.

5 Conclusion

We have presented several guillotine tests, which can ke inse constraint pro-
gramming approach for solving the packing problem. Thelteswe quite promis-
ing, as problems with guillotine cut constraint tend to bsieathan general pack-
ing problems (and robot packing problems). Moreover, itrseéhat for the con-
sidered bin-packing instances, the objective functiorifecged only very little by
imposing the guillotine constraints.

Future challenges would be to develop solvers which autioaibt respects
guillotine constraints in each step. Currently, we solvemegal packing problem,
where we in each step test for satisfaction of guillotinesti@ints. This can quite
easily be done in the Fekete-Schepers representation [Bn@id] but the com-
putational results seem to be disappointing. A similar apph for the constraint
programming approach would be interesting.
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