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Abstract

The problem addressed in this paper is the decision problem of deter-
mining if a set of multi-dimensional rectangular boxes can be orthogonally
packed into a rectangular bin while satisfying the requirement that the pack-
ing should beguillotine cuttable. That is, there should exist a series of face
parallel straight cuts that can recursively cut the bin intopieces so that each
piece contains a box and no box has been intersected by a cut. The unre-
stricted problem is known to be NP-hard. In this paper we present a gener-
alization of a constructive algorithm for the multi-dimensional bin packing
problem, with and without the guillotine constraint, basedon constraint pro-
gramming.

1 Introduction

Arranging boxes into bins is a problem that occurs in a variety of situations: in the
industry, one goal is to minimize transport and storage costs by packing as many
items as possible per space unit. Another goal may be to maximize the utilization
of material plates (e.g. glass or wood) for cutting by arranging the elements to be
cut out cleverly. At higher dimensions the problem of packing becomes relevant
in, e.g., scheduling tasks with multiple resource demands.

In the following we consider the general problem of packingd-dimensional
boxes intod-dimensional bins. Let thereforeV be a set of boxes and letw :
V → R

+
0

d
be a size function describing the width of each box in all dimensions

x1, x2, . . . , xd. All bins are restricted to have the same sizeW ∈ R
+

0

d
. Now we

can loosely define a feasiblepackingas an arrangement of the boxesV into one or
more bins so that no boxes overlap and no box exceeds the boundaries of the bin
in which it is placed. Rotations are not allowed and box edgesmust be parallel to
bin edges. Several problems can be formulated from the task of packing boxes into
bins. Some essential ones include:
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Orthogonal Packing Problem (OPP-d) Given a set of boxesV , canV be packed
into a single bin of sizeW? OPP-d is NP-complete [FS97].

Orthogonal Bin Packing Problem (OBPP-d) Given the setV , how few bins of
sizeW is required for packing all the boxes inV ? Since OPP-d is the corre-
sponding decision problem for OBPP-d and OPP-d is NP-complete, OBPP-d
is NP-hard.

Orthogonal Knapsack Problem (OKP-d) Given a single bin of sizeW and a
value functionv : V → R

+
0

, choose a subsetV ′ ⊆ V that can be packed
into the bin so the sum of values forV ′ is maximized. Again OPP-d is the
corresponding decision problem so OKP-d is NP-hard as well.

Due the theoretical and practical hardness, OPP-d has been approached in sev-
eral ways. Chen, Lee and Shen [CLS95] approached the problemwith integer-
programming and Fekete and Schepers [FS97, FS04b] presented a general multi-
dimensional model based on graph theory, where bounds basedon conservative
scales [FSdV07] (dual feasible functions) are used to prunethe search. In a more
recent paper, Clautiaux et al. [CAdC08], give a survey of dual feasible functions
and their use for bounding the search tree in cutting problems. Pisinger and Sigurd
[PS07] presented an algorithm ford = 2 based on constraint programming (CSP)
in which a packing was constructed by assigning appropriaterelations to each pair
of boxesu, v ∈ V . Clautiaux et al. [CJCM08] modeled the OPP-2 as a scheduling
problem, making it possible to use powerful constraint-based scheduling propaga-
tion techniques. Martello et al. [MPV00] generalized the CSP technique to the
cased = 3. Note, that contour building approaches as proposed in [Sch92] for
d = 2 cannot be generalized tod ≥ 3 as shown in [MPV+07]. For a recent survey
of relaxations of OPP-d see Belov et al. [BKRS09].

When cutting specific materials like glass it may be requiredthat the rectangles
can be cut out of the bin by a number of guillotine cuts which can be thought of
as edge-to-edge cuts (see Figure 1). As noted in [Bel03], these constraints are
very difficult to formulate in an IP-model, and also in practice the problem is dif-
ficult to solve as reported in Parada et al. [PPSG00]. Pisinger and Sigurd [PS07]
presented an algorithm that handled the guillotine constraint in the CSP frame-
work by testing the guillotine criteria in each step. In [Amo05] Amossen extended
the multi-dimensional graph based model by Fekete and Schepers to also handled
the guillotine constraint. The present paper will generalize the CSP technique for
guillotine cuttings to arbitrary values ofd as well.

None of the algorithms in the above papers used data structures that automat-
ically ensures the guillotine property. Instead a series oftests were performed
ongoingly. A guillotine ensuring data structure was used inwork by Wong and
Liu [WL86] who modeled guillotine cuts as a tree structure and represented the
tree structure bynormalized polish expressions. Also Christofides and Whitlock
[CW77] used tree structures to model guillotine cuts. Both [WL86] and [CW77]
considered guillotine cuttings from a top-down point of view where different cut
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Figure 1: A non-guillotine pattern (left) and a guillotine pattern (right) with the
first four cuts marked.

configurations were applied to a bin until a cut structure that could hold all boxes
was found. Reversely, Wang [Wan83] iteratively assembled the boxes in a bottom-
up approach.

For the bin packing variant OBPP-d, two techniques are frequently used, both
making use of OPP-d as subproblem. One method is to distribute boxes into bins
with a branch-and-bound algorithm like Martello et al. [MPV00], who used an
outer branch-and-bound algorithm distributing boxes to bins, and an inner OPP-
3 algorithm test the feasibility of each such distribution. The other method is to
formulate the problem as a mixed integer model. Pisinger andSigurd [PS07] con-
cerned OBPP-2 and used the idea from Dantzig-Wolfe [DW60] to decompose the
model into a restricted master problem and a number of subproblems. Each of the
subproblems were then split into a one-dimensional pricingproblem and a OPP-2
decision problem. Clautiaux et al. [CAdC09] give a very recent survey on lower
bounds for OPP-d.

When solving the knapsack variant OKP-d, it is common to use a two-stage
approach as first proposed by Fekete and Schepers [FS04a]: First, a relaxed one-
dimensional knapsack problem is solved to find a subset of most profitable items
that fit within the area or volume, and then an OPP-d subproblem is used to check
feasibility. In [FS04a] the OPP-d was solved through an enumerative algorithm
based on isomorphic packing classes. Pisinger and Sigurd [PS07] used constraint
programming to solve th OPP-2, while Baldacci and Boschetti [BB07] used a
cutting-plane approach using a number of knapsack-, dominance- and incompati-
bility constraints.

Viswanathan and Bagchi [VB93] presented a best-first branch-and-bound algo-
rithm for the orthogonal guillotine constrained OKP-2. The algorithm is based on
the bottom-up strategy of Wang [Wan83]. Hifi [Hif97] improved the algorithm
of Viswanathan and Bagchi by introducing improved upper andlower bounds
based on the solution of one-dimensional bounded knapsack problems. Cung et
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al. [CHC97] further improved the algorithm by adding symmetry detection for du-
plicate patterns, and using more eficient data structures. Hifi [Hif98] presented an
exact algorithm for the strip packing problem with guillotine constraints.

Bediceanu and Carlsson [BC01] generalized a sweep algorithm to prune con-
straints having at least two variables in common by utilizing the concepts of for-
bidden and safe regions, and only knowing the minimum and maximum number
of constraints to be satisfied. They specialized the technique to an extension of
the non-overlapping rectangles constraint. Later, Bediceanu, Carlsson and Thiel
[BCT06] extended the swap algorithm so that adjusting the bounds of a variable
according to a set of conjunctions was done in a synchronizedway instead of by
independent sweeps.

This paper is organized as follows: Section 2 introduces theterminology used
throughout this paper and Section 3 presents a constraint programming solution
for solving the guillotine packing problem. Computationalresults for the devel-
oped algorithm are reported in Section 4 where the algorithmis compared to three-
dimensional solvers for solving general and robot packablevariants of the prob-
lems.

The present paper may be seen as an extension of [PS05, PS07, MPV+07]
where we generalize the packing algorithms to an arbitrary number of dimension,
and develope efficient techniques for testing guillotine cuttability. Moreover, we
experimentally compare three packing methods (unrestricted, robot packable, and
guillotine cuttable) with respect to solution time and solution quality. For the con-
sidered instances, it turns out that the solution value of bin packing problems hardly
is affected by adding constraints on the packing method.

2 Terminology

We aim to formalize the idea of packings by considering the positions of all boxes

in a Cartesian coordinate system. For that, define the mapp : V → R
+

0

d
as the

coordinate of the corner closest to the origin of each box. The box positions are
then uniquely defined byp. Also define

Ii : V → R
+
0
× R

+

v 7→ [pi(v), pi(v) + wi(v))

as the interval occupied by boxv on thexi-axis. Withp andI in hand we can now
define a packing formally:

Definition 2.1 (Packing) A feasible packingof the tuple(V,w,W ) is a function

p : V → R
+
0

d
that satisfies

∀v ∈ V : p(v) + w(v) ≤ W (1)

∀u, v ∈ V, u 6= v,∃i ∈ {1, . . . , d} : Ii(u) ∩ Ii(v) = ∅ (2)
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Constraint (1) ensures that no box exceeds the bin boundaries and (2) ensures that
no two boxes overlap.

If a packingp arranges the boxes so they are either placed at origin or at the
edge of another box we call it gapless. More formally:

Definition 2.2 (Gapless packing)A packing is said to begaplessif for all i =
1, . . . , d andv ∈ V

pi(v) = 0 or ∃u ∈ V : pi(v) = pi(u) + wi(u)

In this paper we only consider gapless packings, and in fact only gaplessguillotine
packings:

Definition 2.3 (Guillotine packing) Let p be ad-dimensional packing ofV . A
(d − 1)-dimensional axis parallel hyper planeP is called aguillotine cut if it
dividesV into two disjoint nonempty subsetsV1 andV2 such that no boxv ∈ V is
intersected byP with respect top.

Two subsetsU1, U2 ⊆ U ⊆ V are calledcut slicesif and only if they are a
result of a guillotine cut ofU .

The cutting ofV is done recursively in stages. In each stage all cuts splitting a
cut slice must be parallel. A cut sliceU is in thek’th stageif it has depthk in the
recursion tree. A packingp of the setV is ak-stage guillotine packing if and only
if it can be split into|V | singleton sets ink stages. If there are no restrictions onk
we just say thatp is aguillotine packing.

Figure 2 shows examples of guillotine cuts ford = 2 andd = 3 and Figure 1
compare a guillotine cuttable packing with a non-guillotine cuttable one.

1
23

4

5

6
78

(a) 4 stage guillotine cut for
d = 2

1

5 3

2

6

7

(b) 3 stage guillotine cut ford =

3

Figure 2: Example of guillotine cutable packings. The numbers indicate one out
of many feasible orderings of the cut slices. Cut number 4 in 2(b) is hidden in the
back. It splits the grey cut slice.

The literature sometimes distinguish between iftrimming is allowed after the
recursive guillotine cutting or not. If trimming is allowed, the recursive cutting
may result in pieces being larger than the box they contain. If trimming is not
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allowed, the recursive cutting must result in pieces with the exact size of the box
they contain. In this text we always allow trimming.

We will sometimes refer to a subset of guillotine cuttable packings namedrobot
packing:

Definition 2.4 (Robot packing) A robot packingis a packing which can be achieved
by placing the first boxv0 in pi(v) = 0 for all i, and successively all other boxes
v′ so that there exists ani for which all previous boxesv satisfypi(v) < pi(v

′).

Robots used for packing boxes in the industry are equipped with a rectangular
“hand” covered with vacuum cells for lifting the boxes. To avoid collisions, it is
demanded that no already packed box is positioned in front of, right of, or above
the destination of the current box. Each guillotine cuttable packing is also a robot
packing: consider indeed a guillotine cuttable packing anda feasible sequence
(tree) of cuts. By first packing the items in the bottom, left or back part (depending
on the cutting direction) of each cut, a feasible robot packing is obtained.

The subproblem of OPP-2where packings are required to be guillotine cuttable
is strongly NP-complete. This is easily seen by a reduction from the strongly NP-
hard [GJ75] 3-partition problem: LetS = {w1, . . . , wn} be the set ofn weights
summarizing toW =

∑
wi. The 3-partition problem is the task of finding three

disjoint subsetsS1, S2, S3 ⊂ S with S1 ∪ S2 ∪ S3 = S where

∑

wi∈S1

wi =
∑

wj∈S2

wj =
∑

wl∈S3

wl =
W

3
.

Consider an OPP-2 instance withn boxes of size(w1, 1), . . . , (wn, 1) and a bin
of size (1

3
W, 3) whereW =

∑
wi. If an OPP-2 solution can be found for this

instance it will be a filling of the bin by three rows, each being 1 unit high and
1

3
W units wide. The packing is clearly guillotine cuttable as the two rows can

be separated in the first cut stage and each of them sliced up afterwards. Solving
the OPP with the guillotine restriction for this instance also solves the 3-partition
problem for the instance mentioned above. Similarly if the 3-partition problem
is solved, the solution is equivalent to a guillotine restricted OPP solution similar
to the one described above. As the reduction is polynomial, OPP-2 is strongly
NP-complete.

3 Constraint-programming based approach

Pisinger and Sigurd [PS05, PS07] showed how to solve two-dimensional pack-
ing problems with guillotine constraints through constraint programming. In the
following we will generalize the developed techniques to more dimensions, and
present some more general approaches for testing whether a packing is guillotine
cuttable.
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ruv 1 2 3 4 5 6
1 A R L R A
2 R U U R
3 L U A
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5 A
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Figure 3: A 2-dimensional packing given by relationr, and the corresponding
graphsG1 andG2.

The algorithm operates with relationsr : V × V 7→ {0,±1, . . . ,±d}, defin-
ing the relative position of two boxesu, v ∈ V . The relation matrixr is skew-
symmetric, i.e.ruv = −rvu and henceruu = 0. If ruv = −k it means that boxu
is located “left” to boxv in coordinatek. If ruv = k it means that boxu is located
“right” to box v in coordinatek. If ruv = 0 for u 6= v then the relative position of
boxesu, v has not been settled yet. More formally we have

ruv = −k ⇒ pk(u) + wk(u) ≤ pk(v)
ruv = k ⇒ pk(v) + wk(v) ≤ pk(u)

(3)

Now the task of finding a packing is to assign values{±1, . . . ,±d} to the relations
ruv, u, v ∈ V , u 6= v such that equation (3) is satisfied, and the coordinate function
p is a packing, i.e. satisfies (1) and (2). For problems with dimensiond ≤ 3 we
may interpret the values{±1, . . . ,±d} as

-1 ’left’ (L) -2 ’under’ (U) -3 ’in front’ (F)
1 ’right’ (R) 2 ’above’ (A) 3 ’behind’ (B)

Given a relationr we may find a corresponding coordinate functionp as fol-
lows. For each dimensionk = 1, . . . , d construct an oriented graphGk = (V,Ek)
defined by the relation

(u, v) ∈ Ek ⇔ ruv = −k
(v, u) ∈ Ek ⇔ ruv = k

(4)

We will call these graphsrelation graphs(see Figure 3 for an example). If a graph
Gk contains a cycle, then obviouslyr cannot define a feasible packing. For each
graphGk we now solve a critical path problem withwk as edge lenth, finding the
earliest startdku of each nodeu. The coordinates of each nodeu are then set to
pk(u) = dku. If some boxu by these calculations exceeds the bin size, i.e. in some
dimensionk, pk(u) + wk(u) > W , then the relationr does not define a feasible
packing.

The framework by Pisinger and Sigurd [PS05] is based on a depth-first search,
where in each iteration a single relationruv is assigned a value in{±1, . . . ,±d}.
The boxes are initially ordered according to decreasing volume, such that relations
between the largest boxes are fixed first before considering the smaller boxes.
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ruv 1 2 3 4
1 L U L
2 U U
3 L
4

(a)

ruv 1 2 3 4
1 L U L
2 R U
3 L
4

(b)

1 2

3 4

(c)

1

2

3

4

(d)

Figure 4: Two 2-dimensional relationsruv shown in (a) and (b), and two pack-
ings shown in (c) and (d). Relationruv in (a) can be realized by packing (c) and
(d) depending on the dimensions of the rectangles. The first packing is guillotine
cuttable, while the second is not. Note that the relationruv in (a) does not define
a strongly guillotine cuttable packing. Relationruv in (b) is strongly guillotine
cuttable, and it can only be realized by packing (c).

With each pair of boxesu, v we associate a setMuv of feasible values ofruv.
Initially Muv = {±1, . . . ,±d}. If Muv = ∅ then we backtrack. IfMuv contains
only one value thenruv is fixed to this value. If all relationsruv 6= 0 and the
corresponding packingp is feasible, we terminate.

In each step of the search constraint propagation is used to fathom infeasible
valuesruv from Muv. This is done by repeatedly fixingruv to each value inMuv

and testing whether the corresponding packingp is feasible. If the packing is in-
feasible, we remove the value fromMuv.

In order to extend the framework to handle guillotine packings, we need to
ensure that the defined relationr at any step defines a guillotine packing, and that
all currently undefined relations can be extended to a feasible guillotine packing.

Definition 3.1 (Strongly guillotine cuttable) A relation functionr represents a
strongly guillotine cuttablepacking if either:

• The set of boxesV contains one box only.

• We can separateV into two subsetsV1 and V2 and there exists ak ∈
{±1, . . . ,±d} such that

ruv = k for all u ∈ V1, v ∈ V2 (5)

and both setsV1 andV2 are again strongly guillotine cuttable.

8



Note that the relationr may represent a guillotine cuttable packing even if it is
not strongly guillotine cuttable (see Figure 4). However, for every guillotine cut-
table pattern, there exists an equivalent strongly guillotine cuttable representation.

Definition 3.2 (Candidate strongly guillotine cuttable) A setM of feasible re-
lations represents acandidate strongly guillotine cuttablepacking if either:

• The set of boxesV contains one box only.

• We can separateV into two subsetsV1 and V2 and there exists ak ∈
{±1, . . . ,±d} such that

k ∈ Muv for all u ∈ V1, v ∈ V2 (6)

and both setsV1 andV2 are again candidate strongly guillotine cuttable.

Testing whether a relationr represents a strongly guillotine cuttable packing
may be done by using agreedy approach. Find any strong guillotine cut, separate
the problem into two subsetsV1 andV2 and call the testing algorithm recursively.
The greedy approach works since choosing a specific cut will not block for any
alternative cuts.

3.1 Finding a strong guillotine cut in a complete graph

Assume that no relationsruv are undefined, meaning that

G = (V,E1 ∪ · · · ∪Ed)

is a complete graph. Finding a strong guillotine cut in dimension k is done as
follows.

Algorithm 3.3 Construct the directed graphGk = (V,Ek) defined by relation(4).
SinceGk is acyclic, we may sort the nodesV in topological order (this order is
not necessarily unique). Assuming that vertexv is the first node in the topological
order, start withV1 = {v} andV2 = V \ {v}. If there exists ak for which the two
sets define a strong guillotine cut, we are done. Otherwise move the next node in
the topological order fromV2 to V1, and test. Repeat untilV2 = ∅ in which case
no strong guillotine cut exists.

Theorem 3.4 V1 andV2 = V \V1 define a strong guillotine cut ofV if and only if
V2 6= ∅ upon termination of Algorithm 3.3.

PROOF (⇒) Assume thatV1 andV2 = V \ V1 define a strong guillotine cut.
That is,ruv = k for all u ∈ V1, v ∈ V2. The topological sorting will therefore
order all vertices inV1 before all vertices inV2 (else there would be an edge from
V2 to V1) and at some point, the algorithm will thus stop whenV has been split
into V1 andV2.
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(⇐) Assume thatV2 6= ∅ upon algorithm termination.V1 andV2 will then
each be strongly guillotine cuttable so we need to show thatV1 andV2 define a
strong guillotine cut ofV . That is, we have to show that there exists ak for which
ruv = k for all u ∈ V1 andv ∈ V2. But this is trivially true if the algorithm
terminated beforeV2 = ∅. 2

The running time of the algorithm isO(n3) since we considern subsetsV1, V2,
and each time check criteria (5) in timeO(n2).

We can decrease the running time toO(n2) by using Algorithm 3.5, which
tests for a strong guillotine cut in dimensionk.

Algorithm 3.5 Setm = 1 and letV1 andV2 define a disjoint division ofV with
V1 = {1, . . . ,m} andV2 = {m + 1, . . . , n}. Perform the following actions for
eachu ∈ {1, . . . , n − 1}: First, for v ∈ {m + 1, . . . , n}, setm = v iff ruv 6= k.
Next, ifm = u then the pair(V1, V2) defines a strong guillotine cut. Else, ifm = n
then no strong guillotine cut exists.

Initially we haveV1 = {1} andV2 = {2, . . . , n}. If ruv = k for all u ∈ V1

andv ∈ V2 we have a strong guillotine cut. Otherwiseruv 6= k for somev ∈ V2

and hence no separation whereu ∈ V1 and v ∈ V2 will be strongly guillotine
cuttable. So we proceed to the case whereu, v ∈ V1, i.e. testingV1 = {1, . . . , v}
andV2 = {v + 1, . . . , n}.

3.2 Nonexistence of strong guillotine cuts in arbitrary graphs

If some of the relationsruv are undefined we cannot use the approach from the
previous section, as a topological ordering of the nodes is not sufficient to define
the strong guillotine cut. Instead, we may look for an efficient algorithm which
detects non-existence of a strong guillotine cut in arbitrary constraint graphs.

Assume that each pair of boxes has associated the setMuv of feasible relative
placements. Testing whether a, byr induced, packing is guillotine cuttable in
dimensionk ∈ {1, . . . , d} is done as follows:

1. Calculate new setsM ′
uv := Muv ∩ {−k, k}.

2. If for two nodesu andv we have thatM ′
uv = ∅ then merge the two nodes

into a nodeu′. For every other nodew let Mu′w = Muw ∩Mvw.

3. Repeat the process until no more nodes can be merged.

If all nodes have been merged into one node, then the current solution will never
be strongly guillotine cuttable, as shown in the following theorem:

Theorem 3.6 A sufficient criterion for a strong guillotine cutnot to exist in dimen-
sionk is that the above process results in a singleton node set.
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PROOF We show that if a strong guillotine cutV1, V2 exists in dimensionk then
the above process will result in a node set of cardinality at least 2. For a strong
guillotine cutV1, V2 in dimensionk we have, per definition,ruv = −k or ruv = k
for u ∈ V1, v ∈ V2. Therefore either−k ∈ Muv for all u ∈ V1, v ∈ V2 or
k ∈ Muv for all u ∈ V1, v ∈ V2. ConsequentlyM ′

uv = Muv ∩ {−k, k} 6= ∅ for all
u ∈ V1, v ∈ V2.

We now have to show, that merging any two nodes inV1 or V2 will not make
M ′

uv = ∅ for any u ∈ V1, v ∈ V2. Without loss of generality, we may assume
thatu ∈ V1 andz, w ∈ V2 and that bothk ∈ Muw andk ∈ Muz. Mergingz and
w results in a new nodez′ with Muz′ = Muw ∩ Muz and thus alsok ∈ Muz′ .
Trivially M ′

uz′ = Muz ∩ {−k, k} 6= ∅.
No nodeu ∈ V1 will therefore ever be merged to a nodev ∈ V2 and thus the

resulting cardinality of the node set will be at least 2. 2

Since there aren(n − 1)/2 uv-pairs and the cardinality ofMuv is O(1), step
1 in the above test can be done inO(n2) time. If merging two sets has complexity
O(n) each iteration takesO(n3) time. At mostn iterations are needed so the total
complexity isO(n4).

3.3 Finding strong guillotine cuts in almost complete graphs

As we fix the relations between the boxes1, . . . , i−1 before proceeding to the next
box i, a typical situation will be as follows: For a given boxi we have

ruv ∈ {±1, . . . ,±d} for u, v = 1, . . . , i− 1
rui ∈ {0,±1, . . . ,±d} for u = 1, . . . , i− 1
ruv = 0 for u = 1, . . . , i− 1, v = i+ 1, . . . , n

In other words, all relations between boxes1, . . . , i − 1 are fully fixed, while re-
lations involving boxesi + 1, . . . , n are unsettled. Relations involving boxi are
partially settled. The constraint graphGk defined on nodes1, . . . , i is in other
words almost complete, as illustrated in Figure 5.

In this situation we may run Algorithm 3.3 for boxes1, . . . , i − 1 testing
whether acandidatestrong guillotine cut exists. Each time we test whether the
partitioning of the boxes into(V1, V2) is candidate strongly guillotine cuttable, we
try to add boxi to each of the sets in turn, i.e. we test if(V1 ∪ {i}, V2) is candi-
date strongly guillotine cuttable, or if(V1, V2∪{i}) is candidate strongly guillotine
cuttable. The running time will be increased by a factor two,which is a constant
factor.

An alternative approach for testing strong guillotine cutsin almost complete
graphs is to ignore undefined relations withruv = 0, and run Algorithm 3.3 for
boxes1, . . . , i. To see correctness of this approach, assume that a strong guillotine
cut exists in dimensionk, meaning that we can separate the set of boxes{1, . . . , i}
into V1, V2, such that

(ruv = k ∨ ruv = 0) for all u ∈ V1, v ∈ V2 (7)
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Muv 1 2 3 4 5
1 {A} {L} {L} {L}
2 {L} {L} {L,R,A}
3 {A} {L,U}
4 {R,U,A}
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Figure 5: A 2-dimensional packing given by the setsM and the corresponding
graphsG1 andG2. Dark edges(u, v) indicate that only one relation is possible in
Muv while light edges indicate alternative relations.G = (V,E1 ∪ E2) is com-
plete for the node subset{1, 2, 3, 4}. A topological ordering of the nodes inG1

according to relationr may lead to orderings1, 2, 5, 3, 4 or 1, 5, 2, 3, 4. The first-
mentioned will be found candidate strongly guillotine cuttable by Algorithm 3.3,
while the latter will not.

Now assume that Algorithm 3.3 fails finding the separationV1, V2. If it was not for
the last box,i, we know that Algorithm 3.3 would have found the two sets. Assume
(for symmetry reasons) thati was placed inV1 but a nodev exists inV2 such that
rvi = k. But this means that the topological ordering of the nodes inAlgorithm
3.3 was not correct.

4 Computational results

The experiments presented in this section aim at demonstrating three things: 1)
our implementation works properly, 2) guillotine constraints can be handled effec-
tively, and 3) the quality of solutions generally is not affected by requiring guil-
lotine cuttability. To the best of our knowledge, this is thefirst comparison of
OBPP-3 displaying the costs of the addional constraints.

We only cover results ford = 3 as displaying results for higher-dimensional
problems would not contribute with additional information. Furthermore, to the
best of our knowledge, there are very few OBPP-3 solvers publicly available, and
most such solvers are built on top of an OPP-3 algorithm, making them difficult to
use for comparison. Therefore, the results below do not compare our solver with
other solvers.

Based on the codes [PS05, PS07, MPV+07] we have implemented all of the
pruning techniques described in Section 3.1 to 3.3. After some preliminary tun-
ing we have chosen to use the alternative approach, described in the last part of
Section 3.3, for testing whether a partial solution is guillotine cuttable.

The code was implemented in ANSI-C, and the experiments wererun on a
Pentium 4 processor running at 3GHz. A time limit of 3600 seconds was imposed
to each instance. We will test the developedd-dimensional guillotine packing al-
gorithm on three-dimensional instances presented by Martello et al. [MPV00]. For
the first five classes, the bin size isW = H = D = 100 and five types of boxes are
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Class
packing n 1 2 3 4 5 6 7 8 9

10 10 10 10 10 10 10 10 10 10
15 10 10 10 10 10 10 10 10 10
20 10 10 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10 10 10

general 30 10 10 10 10 10 10 10 9 9
35 10 10 10 10 10 10 8 9 9
40 10 9 8 10 9 10 7 9 3
45 8 6 4 10 6 9 5 9 0
50 7 3 7 10 5 10 6 9 0

total: 723 85 78 79 90 80 89 76 85 61
10 10 10 10 10 10 10 10 10 10
15 10 10 10 10 10 10 10 10 10
20 10 10 10 10 10 10 10 10 10
25 10 10 10 10 8 10 7 9 10

robot 30 10 10 10 10 9 10 7 7 10
35 10 10 10 10 5 10 5 8 10
40 10 9 8 10 4 10 2 10 9
45 10 7 4 10 4 10 1 8 2
50 7 4 9 10 3 10 3 5 0

total: 694 87 80 81 90 63 90 55 77 71
10 10 10 10 10 10 10 10 10 10
15 10 10 10 10 10 10 10 10 10
20 10 10 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10 10 10

guillotine 30 10 10 10 10 10 10 10 10 10
35 10 10 10 10 10 10 10 10 10
40 10 9 8 10 10 10 10 10 10
45 8 7 4 10 9 10 9 10 7
50 7 3 7 10 10 10 10 10 1

total: 769 85 79 79 90 89 90 89 90 78

Table 1: Number of instances, out of 10, solved to proved optimality in 3600 sec-
onds

Class
packing n 1 2 3 4 5 6 7 8 9

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00
20 0.01 0.01 0.01 0.00 0.01 0.01 0.16 0.00 0.01
25 0.05 0.04 0.10 0.00 0.09 0.19 1.76 0.91 0.11

general 30 15.18 1.09 3.50 0.00 1.41 7.34 93.73 360.35 468.81
35 61.07 102.39 26.30 0.00 3.01 2.90 764.97 390.11 546.46
40 217.87 614.06 861.15 0.00 448.32 15.79 1151.20 365.25 2859.09
45 1049.05 1493.49 2163.92 0.01 1464.79 363.07 1952.55 450.54 3600.01
50 1391.89 2696.83 1712.14 4.00 1971.17 4.22 1604.58 434.98 3600.02
10 0.00 0.00 0.00 0.00 0.00 0.00 7.81 0.00 0.00
15 0.00 0.00 0.00 0.00 0.04 0.01 4.85 0.02 0.00
20 0.01 0.01 0.01 0.00 3.96 0.04 207.76 4.31 0.00
25 0.11 0.03 0.18 0.00 843.37 0.09 1425.30 361.05 0.05

robot 30 10.41 1.01 1.90 0.00 381.42 5.00 1308.55 1080.11 19.78
35 36.67 35.75 11.03 0.00 1819.74 1.53 2033.36 950.86 74.75
40 114.53 449.87 766.76 0.00 2184.86 12.84 2881.79 136.94 1250.15
45 748.34 1299.86 2162.28 0.01 2161.50 11.28 3240.01 751.35 3247.02
50 1262.65 2523.43 1333.56 3.52 2532.84 5.49 2742.58 1875.95 3600.01
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.05 0.00
20 0.01 0.02 0.01 0.00 0.01 0.09 0.26 0.02 0.01
25 0.06 0.05 0.15 0.00 0.11 0.10 1.80 0.61 0.41

guillotine 30 13.33 0.96 3.28 0.00 1.67 10.23 5.00 1.46 1.47
35 42.45 107.74 21.43 0.00 3.59 1.46 13.49 7.52 54.53
40 152.28 664.45 844.57 0.01 89.86 3.21 27.43 29.37 762.25
45 998.11 1473.31 2163.11 0.02 419.69 3.62 648.31 8.69 2024.80
50 1331.28 2663.01 1727.20 3.91 45.06 13.46 15.24 51.58 3283.91

Table 2: Average solution times in seconds, as average of 10 instances using a time
limit of 3600 seconds
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Class
packing n 1 2 3 4 5 6 7 8 9

10 3.3 3.5 3.6 6.6 2.5 2.9 2.5 2.8 3.0
15 4.7 4.5 4.8 8.7 2.9 4.4 3.0 3.7 3.0
20 6.0 6.6 6.0 12.3 3.9 5.4 3.8 4.9 3.0
25 7.4 7.0 7.1 15.4 4.6 5.9 4.3 5.5 3.0

general 30 8.6 8.0 8.6 17.2 5.4 6.7 4.0 6.1 3.1
35 9.3 9.5 10.3 21.1 6.3 7.7 5.4 7.1 3.2
40 11.0 10.7 11.5 24.3 6.9 8.8 6.5 7.7 4.7
45 12.3 12.6 12.2 27.6 7.9 9.8 7.0 8.3 5.0
50 13.5 13.8 13.4 29.4 9.2 9.8 7.9 9.4 6.2
10 3.3 3.5 3.6 6.6 2.5 2.9 2.5 2.8 3.0
15 4.7 4.5 4.8 8.7 2.9 4.4 3.0 3.7 3.0
20 6.0 6.6 6.0 12.3 3.9 5.4 3.8 4.9 3.0
25 7.4 7.0 7.1 15.4 4.8 5.9 4.7 5.6 3.0

robot 30 8.6 8.0 8.6 17.2 5.5 6.7 4.6 6.2 3.0
35 9.3 9.5 10.3 21.1 7.2 7.7 6.0 7.2 3.0
40 11.0 10.7 11.5 24.3 7.6 8.8 7.7 7.7 3.3
45 12.2 12.6 12.2 27.6 8.2 9.6 8.1 8.5 4.7
50 13.5 13.8 13.3 29.4 9.6 9.8 8.8 10.3 6.0
10 3.3 3.5 3.6 6.6 2.5 2.9 2.5 2.8 3.0
15 4.7 4.5 4.8 8.7 2.9 4.4 3.1 3.7 3.0
20 6.0 6.6 6.0 12.3 3.9 5.4 3.8 4.9 3.0
25 7.4 7.0 7.1 15.4 4.6 5.9 4.3 5.5 3.0

guilllotine 30 8.6 8.0 8.6 17.2 5.4 6.8 4.0 6.0 3.0
35 9.3 9.5 10.3 21.1 6.3 7.8 5.2 7.0 3.0
40 11.0 10.7 11.5 24.3 6.6 8.8 6.0 7.8 3.0
45 12.3 12.6 12.2 27.6 11.0 9.7 6.4 8.4 7.5
50 13.5 13.8 13.4 29.4 8.3 9.9 7.4 9.3 22.7

Table 3: Upper bound, as average of 10 instances using a time limit of 3600 seconds

Class
packing n 1 2 3 4 5 6 7 8 9

10 3.3 3.5 3.6 6.6 2.5 2.9 2.5 2.8 3.0
15 4.7 4.5 4.8 8.7 2.9 4.4 3.0 3.7 3.0
20 6.0 6.6 6.0 12.3 3.9 5.4 3.8 4.9 3.0
25 7.4 7.0 7.1 15.4 4.6 5.9 4.3 5.5 3.0

general 30 8.6 8.0 8.6 17.2 5.4 6.7 4.0 5.8 3.0
35 9.3 9.5 10.3 21.1 6.3 7.7 4.9 6.9 3.0
40 11.0 10.5 11.3 24.3 6.6 8.8 5.5 7.6 3.0
45 12.0 12.1 11.6 27.6 7.0 9.5 5.6 8.2 3.0
50 13.1 12.9 13.1 29.4 7.9 9.8 7.0 9.1 3.0
10 3.3 3.5 3.6 6.6 2.5 2.9 2.5 2.8 3.0
15 4.7 4.5 4.8 8.7 2.9 4.4 3.0 3.7 3.0
20 6.0 6.6 6.0 12.3 3.9 5.4 3.8 4.9 3.0
25 7.4 7.0 7.1 15.4 4.6 5.9 4.0 5.4 3.0

robot 30 8.6 8.0 8.6 17.2 5.4 6.7 3.9 5.6 3.0
35 9.3 9.5 10.3 21.1 6.0 7.7 4.7 6.8 3.0
40 11.0 10.5 11.3 24.3 5.9 8.8 5.2 7.7 3.0
45 12.2 12.3 11.6 27.6 6.8 9.6 5.1 8.1 3.0
50 13.1 13.0 13.2 29.4 7.7 9.8 6.6 8.7 3.0
10 3.3 3.5 3.6 6.6 2.5 2.9 2.5 2.8 3.0
15 4.7 4.5 4.8 8.7 2.9 4.4 3.1 3.7 3.0
20 6.0 6.6 6.0 12.3 3.9 5.4 3.8 4.9 3.0
25 7.4 7.0 7.1 15.4 4.6 5.9 4.3 5.5 3.0

guillotine 30 8.6 8.0 8.6 17.2 5.4 6.8 4.0 6.0 3.0
35 9.3 9.5 10.3 21.1 6.3 7.8 5.2 7.0 3.0
40 11.0 10.5 11.3 24.3 6.6 8.8 6.0 7.8 3.0
45 12.0 12.3 11.6 27.6 7.2 9.7 6.2 8.4 3.0
50 13.1 12.9 13.1 29.4 8.3 9.9 7.4 9.3 3.0

Table 4: Lower bound, as average of 10 instances using a time limit of 3600 sec-
onds
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considered by uniformly randomly generating the box sizes in different intervals,
namely:

Type 1: wj ∈ [1, 1
2
W ], hj ∈ [2

3
H,H], dj ∈ [2

3
D,D];

Type 2: wj ∈ [2
3
W,W ], hj ∈ [1, 1

2
H], dj ∈ [2

3
D,D];

Type 3: wj ∈ [2
3
W,W ], hj ∈ [2

3
H,H], dj ∈ [1, 1

2
D];

Type 4: wj ∈ [1
2
W,W ], hj ∈ [1

2
H,H], dj ∈ [1

2
D,D];

Type 5: wj ∈ [1, 1
2
W ], hj ∈ [1, 1

2
H], dj ∈ [1, 1

2
D].

Classesk (k = 1, . . . , 5) have then been obtained by generating each box accord-
ing to typek with probability 60%, and according to the other four types with
probability10% each. Classes 6 to 8 may be described as follows:

Class 6: W = H = D = 10; wj, hj , dj uniformly random in[1, 10];

Class 7: W = H = D = 40; wj, hj , dj uniformly random in[1, 35];

Class 8: W = H = D = 100; wj , hj , dj uniformly random in[1, 100].

Finally, Class 9consists of difficultall-fill instances having a known solution with
three bins: the boxes are generated by randomly cutting the bins into smaller parts
as follows. Bins 1 and 2 are cut into⌊n/3⌋ boxes each, while bin 3 is cut into
n−2⌊n/3⌋ boxes. The cutting is made using a recursive approach which repeatedly
cuts the bin into two parts using a guillotine cut until five boxes remain. These
boxes are then cut using a non guillotine pattern. This meansthat if the number of
boxes in a bin is not a multiple of 5, then then bin is guillotine-cuttable. Otherwise,
it contains a non guillotine pattern, whichpossiblycan be made guillotine cuttable
by interchanging the boxes.

The best found solver for comparison was a solver by Martelloet al. [MPV+07]
which solves the general and robot-packable version of the bin packing problem.

Table 1 shows the number of instances solved out of ten for each problem size
and instance type. It is seen that in general we are able to solve more guillotine
cuttable problems than general packing problems, while therobot-packable prob-
lems are the most difficult to solve. Indeed, using the guillotine algorithm, we are
able to solve most problems to optimality of size up ton = 50.

Table 2 reports the corresponding solution times as averageof 10 runs. The
solution times are dominated by the instances that time out,but for the instances
which are solved by all three algorithms there is no major difference in the times.

Finally Table 3 and 4 present upper and lower bounds for the considered in-
stances. If a problem was solved to optimality the upper and lower bound is equal.
Otherwise the upper bound denotes the best solution found when time-out was
reached, and the lower bound denotes the corresponding best-known lower bound.
It is seen, that imposing the guillotine cut constraint onlyin very few instances
affects the optimal solution in comparison to a general packing.

Class 9 is particularly interesting to study since all optimal solutions are guillo-
tine cuttable. Not surprising the guillotine algorithm is able to solve more instances
than the other two approaches since it takes advantage of thesmaller solution space.
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However, for large instances, the upper bound becomes very bad for the guillotine
algorithm. This can be the result of the bin-packing algorithm making infeasible
assignments of items to bins. Since the instances in class 9 are trim-free, special-
ized algorithms can exploit this property to backtrack whenever a gap appears in
the packing.

5 Conclusion

We have presented several guillotine tests, which can be used in a constraint pro-
gramming approach for solving the packing problem. The results are quite promis-
ing, as problems with guillotine cut constraint tend to be easier than general pack-
ing problems (and robot packing problems). Moreover, it seems that for the con-
sidered bin-packing instances, the objective function is affected only very little by
imposing the guillotine constraints.

Future challenges would be to develop solvers which automatically respects
guillotine constraints in each step. Currently, we solve a general packing problem,
where we in each step test for satisfaction of guillotine constraints. This can quite
easily be done in the Fekete-Schepers representation [Amo05, CM] but the com-
putational results seem to be disappointing. A similar approach for the constraint
programming approach would be interesting.
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