
Effective formulation reductions for the quadratic

assignment problem

Huizhen Zhang∗ Cesar Beltran-Royo† Miguel Constantino‡

11/12/2008

Abstract

In this paper we study two formulation reductions for the quadratic as-
signment problem (QAP). In particular we apply these reductions to the well
known Adams and Johnson [2] integer linear programming formulation of
the QAP, which we call formulation IPQAP-I. We analyze two cases: In the
first case, we study the effect of constraint reduction. In the second case,
we study the effect of variable reduction in the case of a sparse cost matrix.
Computational experiments with a set of 32 QAPLIB instances, which range
from 12 to 32 locations, are presented. The proposed reductions turned out
to be very effective: By applying the new constraint reduction or the new
variable reduction to the IPQAP-I formulation, we solved 13 and 23 instan-
ces, respectively, compared to the 7 instances solved by formulation IPQAP-I.

Key words: quadratic assignment problem, linear integer programming, linear
programming relaxation, sparse matrix.

1. Introduction

The quadratic assignment problem(QAP) was first proposed by Koopmans and Beckmann
in 1957 as a mathematical model related to the location of a set of indivisible economical
activities [26]. Consider the problem of assigning n facilities to n locations in such a way
that each facility is designated to exactly one location and vice-versa. The objective is to
minimize the quadratic interaction cost, a function of the distances and flows between the
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facilities, plus the costs associated with allocating a facility to a certain location. There-
fore, given three n × n matrices with real elements F = (fik), D = (djl) and C = (cij),
where fik is the flow between the facility i and facility k, djl is the distance between the
location j and l, and cij is the cost of allocating facility i at location j, the QAP can be
stated as follows:

min
x∈X

n∑
i,j,k,l=1

qijklxijxkl +
n∑

i,j=1

cijxij , (1.1)

where qijkl = fikdjl,

xij =

{
1 if facility i is assigned to location j,

0 otherwise,

and X is the set of permutation matrices of dimension n.
This set of permutations can be defined as:

X =
{

x |
n∑

j=1

xij = 1 i ∈ N (1.2)

n∑
i=1

xij = 1 j ∈ N (1.3)

xij ∈ {0, 1} i, j ∈ N
}

(1.4)

where N = {1, . . . , n}.
Lawler [27] considered a more general QAP, where the qijkl coefficients in (1.1) are not

restricted to flow-distance products, in contrast with the original Koopman-Beckmann
formulation.

The QAP has drawn researcher’s attention worldwide and extensive research has been
done for more than half century. The QAP problem is considered one of the most difficult
combinatorial problems: it is NP -hard, and even finding an ε-approximate solution is
a hard problem [37]. It is surprising the number of fields where the QAP problem can
be applied. In addition to its application in facility location, the QAP has been applied
in many fields such as printed circuit board assembly process [17], typewriter keyboards
and control panels design [34], scheduling [21], numerical analysis [8], and many others.
Moreover, many well-known classical combinatorial optimization problems such as the
traveling salesman problem, the graph partitioning problem, the maximum clique problem,
can also be formulated as special cases of the QAP, see [33] for details.

The advances in theoretical aspects, solution techniques and applications of the QAP
have been discussed in more detail, for example, in [10, 5, 13, 30]. Regarding recent QAP
advances, it is worth it to mention that, during the last years some of the most challenging
QAP instances have been solved by combining parallel branch-and-bound algorithms [31,
15] with grid computing [4].

Calculation of lower bounds is an essential component of exact QAP methods, which
employ implicit enumeration in a branch and bound framework, see [18, 24, 35]. On
the other hand, lower bounds are used to evaluate the quality of solutions produced by
heuristic algorithms, like simulated annealing algorithms [14, 32], genetic algorithms(GA)
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[3, 16], greedy randomized adaptive search procedure(GRASP) [29], ant colony algorithms
[20], and so on. Different QAP bounds have been proposed: Gilmore-Lawler bound, ei-
genvalue bounds, quadratic programming bounds, LP bounds, polyhedral bounds, semi-
definite bounds, among others. More details about QAP lower bounds can be found in
[38, 1, 28, 6, 23, 39].

In this paper we have two main objectives. The first objective is to study the effect
of constraint reduction in (linear) integer programming QAP formulations (IPQAP). In
the second objective we study the effect of variable and constraint reduction in the case
of some null flows (sparse flow matrix).

With the first objective in mind, we present a new LP bound for the QAP, which is
more effective than previous LP bounds. It is known that LP and dual-LP bounds are
tight for the QAP, but appear to be computationally prohibitive in many cases [5]. To
develop the new LP bound, our starting point is the IPQAP formulation of Adams and
Johnson [2], that we name IPQAP-I. Then, by virtually dividing by two the number of
its constraints, we propose an equivalent formulation, that we name IPQAP-II. This new
formulation is less tight than IPQAP-I, but its LP relaxation can be solved much faster.
The final result, is that formulation IPQAP-II usually requires a B&B tree with more
nodes but more efficient in terms of total solving time.

Regarding the second objective, we have observed that quite a lot of QAP instances
have a sparse flow matrix. As far as we know, this fact has not been exploited yet in
literature. We study how one can exploit those zero flows. The key point is that in presence
of one single zero flow, say fi0k0 , many coefficient costs qi0jk0l become also zero. We will
show how the associated variables yi0jk0l can be eliminated in the QAP formulation. We
name IPQAP-III and IPQAP-IV this reduced variable version of formulations IPQAP-II
and IPQAP-I, respectively.

In our numerical experiments, we have used a set of 32 QAPLIB instances [9], that
range from 12 to 32 locations, all of them with a sparse flow matrix. The results obtained
by the new formulations have been surprisingly remarkable, especially, if we take into
account that we have conducted our tests with a standard laptop, CPLEX 9.0 with default
parameters and 4 hours of CPU time limit. Within these conditions and by using the
IPQAP formulations I, II, III and IV, we have solved up to optimality 7, 13, 21 and 23
QAPLIB instances, respectively.

This paper is organized as follows. In Section 2, we review the Adams and Johnson
QAP linearization. In section 3 we study the constraint reduction. In section 4 and 5,

we study some variable reductions, especially in the case of some null flows (sparse

flow matrix). The numerical experiments are presented in section 6. Concluding

remarks are made in the last section.
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2. Adams and Johnson linearization

Adams and Johnson [2] linearization is the well-known linear integer programming

QAP formulation:

min
x,y

n∑
i,j,k,l=1

qijkl yijkl +
n∑

i,j=1

cijxij (2.5)

s. t.
n∑

l=1

yijkl = xij i, j, k ∈ N (2.6)

n∑
k=1

yijkl = xij i, j, l ∈ N (2.7)

yijkl = yklij i, j, k, l ∈ N (2.8)

yijkl ∈ {0, 1} i, j, k, l ∈ N (2.9)

x ∈ X (2.10)

This formulation, that we name IPQAP-I, contains o(n4) variables and o(n4)

constraints. Although, it produces tight LP bounds, usually it poses an obstacle

for efficiently solving QAP instances from medium to large scale. Even to solve

the associated LP relaxation can be difficult [36]. Other QAP linearizations can

be found in literature: Lawler’s linearization [22] as the first one, Kaufmann and

Broeckx’s linearization [25] has the smallest number of variables and constraints and

Frieze and Yadegar’s linearization [19], among others.

3. Formulation reduction by constraint elimina-

tion

In this section we introduce the new formulation IPQAP-II, which corresponds to

formulation IPQAP-I without constraints (2.7), and with half of the constraints

(2.6) relaxed into the ≤ form, that is:

min
x,y

n∑
i,j,k,l=1

qijkl yijkl +
n∑

i,j=1

cijxij (3.11)

s. t.
n∑

l=1

yijkl = xij i, j, k ∈ N, i ≤ k (3.12)

n∑
l=1

yijkl ≤ xij i, j, k ∈ N, i > k (3.13)

yijkl = yklij i, j, k, l ∈ N (3.14)

yijkl ∈ {0, 1} i, j, k, l ∈ N (3.15)

x ∈ X (3.16)

Proposition 3.1 IPQAP-II is a (valid) formulation for the QAP.
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Proof: We consider the following equivalent formulation of the QAP in the

(x, y) space (we name it QAP’ ):

min
x,y

n∑
i,j,k,l=1

qijkl yijkl +
n∑

i,j=1

cijxij

s. t. xijxkl = yijkl i, j, k ∈ N

x ∈ X

Let us name FQAP ′ , FI and FII the feasible sets of formulations QAP’, IPQAP-I

and IPQAP-II, respectively. To prove this proposition, it is enough to prove that

FQAP ′ = FII , since QAP’ and IPQAP-II have the same objective function.

First, let us see that FQAP ′ ⊂ FII . We know that QAP’ and IPQAP-I are

equivalent formulations and that IPQAP-II is a relaxation of IPQAP-I. Therefore,

FQAP = FI ⊂ FII .

Second, let us see that FII ⊂ FQAP ′ . We consider (x, y) ∈ FII and will prove

that (x, y) ∈ FQAP ′ . Since x ∈ X, it is enough to see that yijkl = xij xkl for

1 ≤ i, j, k, l ≤ n. Without loss of generality, we assume that i ≤ k.

We analyze the three possible cases:

1. If xij xkl = 0, with xij = 0 then
∑n

l=1 yijkl = xij = 0 by equation (3.12). This

implies yijkl = 0.

2. If xij xkl = 0, with xkl = 0, we distinguish two subcases:

(a) If i < k, then
∑n

j=1 yklij ≤ xkl = 0 by equation (3.13).

(b) If i = k, then
∑n

j=1 yklij = xkl = 0 by equation (3.12).

In both subcases yklij = 0 and therefore yijkl = 0.

3. If xij xkl = 1 then xij = xkl = 1. Let us suppose that yijkl = 0 and get a

contradiction. If yijkl = 0, considering that
∑n

l=1 yijkl = xij = 1, there must

exist l′ ∈ N with l′ 6= l such that yijkl′ = 1. We distinguish two subcases:

(a) If i < k, then 1 = yijkl′ = ykl′ij ≤
∑n

j=1 ykl′ij ≤ xkl′ ≤ 1, by equation

(3.13).

(b) If i = k, then 1 = yijkl′ = ykl′ij =
∑n

j=1 ykl′ij = xkl′ ≤ 1 by equation

(3.12).

In both cases xkl′ = 1 (l′ 6= l), which contradicts our hypothesis xkl = 1

together with
∑n

l=1 xkl = 1.
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Given an Integer Programming formulation IPQAP, we denote by LPQAP its

Linear Programming (LP) relaxation, i.e., the formulation obtained by replacing the

integrality constraints yijkl ∈ {0, 1} for i, j, k, l ∈ N and xij ∈ {0, 1} for i, j ∈ N by

their continuous counterparts, 0 ≤ yijkl ≤ 1 for i, j, k, l ∈ N and 0 ≤ xij ≤ 1 for

i, j ∈ N respectively.

In general, the optimal value of the LP relaxation LPQAP-I is larger than the

optimal value of LPQAP-II, that is, the first formulation is tighter. Nevertheless,

LPQAP-II has fewer constraints, so it is easier to solve.

4. Formulation reduction in the case of some null

flows

In this section we assume that the quadratic cost coefficients are proportional to

the flow and to the distance, that is, qijkl = fikdjl. In many QAP instances, there

are pairs of facilities i0k0 whose flow is zero (fi0k0 = 0). In this case, the associated

quadratic cost coefficient qi0jk0l vanishes for all locations j and l. We call zero flow

variables the associated variables yi0jk0l. From the objective function point of view

it is irrelevant the value of a zero flow variable. One would like to fix them, say, to

zero and thus reduce the number of variables. In this context, when we say that we

eliminate one variable, we mean that we fix it to zero. However, as we will see in

the following proposition, the zero flow variables cannot be eliminated, since they

are relevant from the feasible set point of view (in fact any yijkl is relevant).

Proposition 4.2 In formulations IPQAP-I and IPQAP-II one cannot eliminate

any zero flow variable yijkl (i 6= k, j 6= l).

Proof: (By contradiction.) In formulation IPQAP-I, let us take x0 ∈ X and

assume that x0
i0j0

= x0
k0l0

= 1(i0 6= k0, j0 6= l0), and fi0k0 = 0. If we eliminate

variable yi0j0k0l0 , by constraint (2.6), we have (without loss of generality, we assume

that i0 < k0):
n∑

l=1, l 6=l0

yi0j0k0l = x0
i0j0

= 1.

Therefore, there must exist l1 6= l0 such that yi0j0k0l1 = 1. Now, by constraints

(2.7) and (2.8) we have:

1 = yi0j0k0l1 = yk0l1i0j0 ≤
n∑

i=1

yk0l1ij0 = x0
k0l1

≤ 1.

Thus, x0
k0l1

= 1 with l1 6= l0, which contradicts our hypothesis x0
k0l0

= 1 for x0 ∈ X.

Similarly, it can be shown that in formulation IPQAP-II one cannot eliminate

any zero flow variable yijkl (i 6= k, j 6= l) either.

6



In this proposition, we have seen that, in order to obtain an equivalent QAP

formulation, it is not possible to simply eliminate the zero flow variables in formula-

tions IPQAP-I and IPQAP-II. It turns out that, if we eliminate zero flow variables,

we also need to eliminate, what we call zero flow constraints (constraints with at

least one eliminated zero flow variable). This is done in formulation IPQAP-III,

where we reduce formulation IPQAP-II, by eliminating the zero flow variables and

the zero flow constraints. To state IPQAP-III we need to define first the index set

of zero flows, i.e.,

F0 = {(i, k) ∈ N ×N | fik = 0}.

We assume that the flow matrix is symmetrical and therefore if (i, k) ∈ F0 then

(k, i) ∈ F0 as well.

We state the IPQAP-III formulation as follows:

min
x,y

n∑
i,j,k,l=1, ik 6∈F0

qijkl yijkl +
n∑

i,j=1

cijxij (4.17)

s. t.
n∑

l=1

yijkl = xij i, j, k ∈ N, i ≤ k, ik 6∈ F0 (4.18)

n∑
l=1

yijkl ≤ xij i, j, k ∈ N, i > k, ik 6∈ F0 (4.19)

yijkl = yklij i, j, k, l ∈ N, ik 6∈ F0 (4.20)

yijkl ∈ {0, 1} i, j, k, l ∈ N, ik 6∈ F0 (4.21)

x ∈ X (4.22)

Proposition 4.3 Formulation IPQAP-III is equivalent to IPQAP-II.

Proof: Let FII and FIII be the feasible sets of IPQAP-II and IPQAP-III,

respectively. Let VII and VIII be the sets of feasible objective values of formulations

IPQAP-II and IPQAP-III, respectively. To prove this proposition, we will show

that VII = VIII , and therefore the minimum of both formulations is the same.

Furthermore, we will also show how to compute an optimal IPQAP-II solution once

we have an optimal IPQAP-III solution and vice versa.

First, let us show VIII ⊂ VII . In fact, we prove something stronger: any solution

(x, y) ∈ FIII can be extended to a solution (x̃, ỹ, ȳ) ∈ FII with the same objective

value (ȳ correspond to the coordinates yijkl with (i, k) ∈ F0 and j, l ∈ N).

The procedure is as follows: define x̃ = x and ỹ = y. To complete the extended

solution (x̃, ỹ, ȳ), the value of the removed variables ȳijkl for (i, k) ∈ F0 and i, j ∈ N ,

is given by ȳijkl = xij × xkl. Observe that we have
∑n

l=1 yijkl =
∑n

l=1 xijxkl =

xij

∑n
l=1 xkl = xij, the last equality follows from (1.2). Hence (x̃, ỹ, ȳ) satisfies

constraints (3.12-3.16), so it is feasible for IPQAP-II. Furthermore, (x̃, ỹ, ȳ) and

(x, y) have the same objective function value since qijkl = 0 for all (i, k) ∈ F0 and

j, l ∈ N ,
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Second, let us show VIII ⊃ VII . In fact, we prove something stronger: given any

solution (x̃, ỹ, ȳ) ∈ FII (ȳ correspond to the coordinates ijkl with (i, k) ∈ F0 and

j, l ∈ N), it can be projected to a solution (x, y) ∈ FIII with the same objective

value. The procedure is as follows: define x = x̃ and y = ỹ. Obviously, (x, y) is

feasible for IPQAP-III and as before, (x, y) and (x̃, ỹ, ȳ) have the same objective

value.

We would obtain a valid statement if in the previous Proposition we replace

IPQAP-II and IPQAP-III by LPQAP-II and LPQAP-III respectively. In fact, the

above proof remains valid in this case, as the integrality of the variables is never

used. Hence we may conclude that the LP relaxations LPQAP-II and LPQAP-III

are equivalent.

Similarly, we can eliminate the zero flow variables and the zero flow constraints

in the formulation IPQAP-I. The reduced IPQAP-I is named as IPQAP-IV :

min
x,y

n∑
i,j,k,l=1, ik 6∈F0

qijkl yijkl +
n∑

i,j=1

cijxij (4.23)

s. t.
n∑

l=1

yijkl = xij i, j, k ∈ N, ik 6∈ F0 (4.24)

n∑
k=1

yijkl = xij i, j, l ∈ N, i 6∈ I0 (4.25)

yijkl = yklij i, j, k, l ∈ N, ik 6∈ F0 (4.26)

yijkl ∈ {0, 1} i, j, k, l ∈ N, ik 6∈ F0 (4.27)

x ∈ X (4.28)

where I0 is the the index set: I0 = {i ∈ N |∃k : fik = 0}. Furthermore, we can get

the following proposition:

Proposition 4.4 IPQAP-IV is a (valid) formulation for the QAP.

Proof: Observe that IPQAP-IV is the same as IPQAP-III with additional cons-

traints (4.25). From Propositions 3.1 and 4.3 it follows that these constraints are

satisfied by the feasible set of IPQAP-III. Hence the feasible sets of IPQAP-IV and

IPQAP-III are equal. Since the objective function is the same and IPQAP-III is a

valid formulation for the QAP, the result follows.

The above proof is not valid if we consider the linear relaxations LPQAP-IV

and LPQAP-III instead of IPQAP-IV and IPQAP-III, because constraints (4.25)

may not be redundant to LPQAP-III. Let V̄I − V̄IV denote the optimal values of

IPQAP−I − IPQAP−IV respectively. We have the following relationship between

the LP relaxations:

V̄III = V̄II ≤ V̄IV ≤ V̄I ,

and there are instances for which the inequalities are strict (See section 6).
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5. Further formulation reductions

In formulations IPQAP, I to IV, we can eliminate many variables, especially we

can use only one of the duplicated variables yijkl = yklij. We start by reducing

the number of variables in formulation IPQAP-II. The symmetry constraints (3.14)

imply that we can formulate IPQAP-II by using only variables yijkl, with i ≤ k.

The elimination of the duplicated variables yijkl (i > k) can be done as follows:

• In the objective function, substitute all variables yijkl with i > k by yklij.

• In constraint (3.13) substitute yijkl with i > k by yklij

n∑
l=1

yklij ≤ xij i, j, k ∈ N, i > k,

and rename the klij indexes as ijkl

n∑
j=1

yijkl ≤ xkl i, k, l ∈ N, i < k,

• Eliminate the symmetry constraints (3.14).

With the above variable reduction, we get an equivalent formulation of IPQAP-II

that we call IPQAP-II’ :

min
x,y

∑
1≤i≤k≤n

∑
1≤j,l≤n

qijkl yijkl +
∑

1≤k<i≤n

∑
1≤j,l≤n

qklij yijkl +
n∑

i,j=1

cij xij (5.29)

s. t.
n∑

l=1

yijkl = xij i, j, k ∈ N, i ≤ k (5.30)

n∑
j=1

yijkl ≤ xkl i, k, l = 1 ∈ N, i < k (5.31)

yijkl ∈ {0, 1} i, j, k, l ∈ N, i ≤ k (5.32)

x ∈ X (5.33)

Further variable reduction can be done in IPQAP-II’ for variables yijkl with

i = k or j = l:

1. Case i = k and j = l. Considering that for any (x, y) feasible for IPQAP-II’,

we have yijij = xij for all ij:

(a) In the objective function, substitute all variables yijij by xij.

(b) In constraints (5.30) substitute all variables yijij by xij.

2. Case i = k and j 6= l. Considering that yijil = 0 for all i and j 6= l.

(a) In the objective function eliminate the terms ijil for all i and j 6= l.
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(b) In constraints (5.30), eliminate the terms ijil for all i and j 6= l. Note

that, this term elimination together with substitution 1.(b) implies that

in (5.30) we can eliminate all the equations with i = k.

3. Case i 6= k and j = l. Considering that yijkj = 0 for all j and i 6= k.

(a) In the objective function eliminate the terms ijkj for all j and i 6= k.

(b) In constraints (5.30-5.31), eliminate the terms ijkj for all j and i 6= k.

4. Eliminate variables yijil and yijkj.

With the above variable reduction, we get an equivalent reduced formulation of

IPQAP-II’, which we call IPQAPR-II :

min
x,y

∑
1≤i<k≤n

∑
1≤j 6=l≤n

q̃ijkl yijkl +
n∑

i,j=1

pij xij (5.34)

s. t.
n∑

l=1, l 6=j

yijkl = xij i, j, k ∈ N, i < k (5.35)

n∑
j=1, j 6=l

yijkl ≤ xkl i, k, l ∈ N, i < k (5.36)

yijkl ∈ {0, 1} i, j, k, l ∈ N, i < k, l 6= j (5.37)

x ∈ X (5.38)

where q̃ijkl = qijkl + qklij and pij = cij + qijij.

In the past years, some pioneer QAP researchers performed similar variable re-

ductions in formulation IPQAP-I, to obtain what we call formulation IPQAPR-I

(see [5]):

min
x,y

∑
1≤i<k≤n

∑
1≤j 6=l≤n

q̃ijkl yijkl +
n∑

i,j=1

pijxij (5.39)

s. t.
n∑

l=1, l 6=j

yijkl = xij i, j, k ∈ N, i < k (5.40)

n∑
j=1, j 6=l

yijkl = xkl i, k, l ∈ N, i < k (5.41)

i−1∑
k=1

yklij +
n∑

k=i+1

yijkl = xij i, j, l ∈ N, j 6= l (5.42)

yijkl ∈ {0, 1} i, j, k, l ∈ N and k > i (5.43)

x ∈ X (5.44)

Finally, by performing the above variable reductions to formulation IPQAP-III

and IPQAP-IV, we obtain what we call formulation IPQAPR-III and IPQAPR-IV,
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respectively:

IPQAPR-III :

min
x,y

∑
1≤i<k≤n, ik 6∈F0

∑
1≤j 6=l≤n

q̃ijkl yijkl +
n∑

i,j=1

pij xij (5.45)

s. t.
n∑

l=1, l 6=j

yijkl = xij i, j, k ∈ N, i < k, ik 6∈ F0 (5.46)

n∑
j=1, j 6=l

yijkl ≤ xkl i, k, l ∈ N, i < k, ik 6∈ F0 (5.47)

yijkl ∈ {0, 1} i, j, k, l ∈ N, i < k, l 6= j, ik 6∈ F0 (5.48)

x ∈ X (5.49)

IPQAPR-IV :

min
x,y

∑
1≤i<k≤n, ik 6∈F0

∑
1≤j 6=l≤n

q̃ijkl yijkl +
n∑

i,j=1

pij xij (5.50)

s. t.
n∑

l=1, l 6=j

yijkl = xij i, j, k ∈ N, i < k, ik 6∈ F0 (5.51)

n∑
j=1, j 6=l

yijkl = xkl i, k, l ∈ N, i < k, ik 6∈ F0 (5.52)

i−1∑
k=1

yklij +
n∑

k=i+1

yijkl = xij i, j, l ∈ N, j 6= l, i 6∈ I0 (5.53)

yijkl ∈ {0, 1} i, j, k, l ∈ N k > i, j 6= l, ik 6∈ F0 (5.54)

x ∈ X (5.55)

6. Numerical experiments

In this section, we present the experimental results obtained with the formulations

IPQAPR-I, IPQAPR-II, IPQAPR-III and IPQAPR-IV, applied to some sparse

flow-input matrices instances from QAPLIB [9]. The experiments were conducted

on a laptop with an Intel Pentium M-1.70GHz processor and with 512 MB RAM.

Matlab 7.0 was used to set up the formulations and Cplex 9.0 was used to solve

the resulting IP instances. Cplex default parameters were used throughout. The

program was allowed to run for 4 hours at most. The set up time (Matlab) and the

IP solving time (Cplex) are reported.

In table 1 we summarize some characteristics of the instances used in the tests,

namely the density of the flow-input matrices (DFM), which is defined as the percent

of the number of non-zero elements in the matrix. We also report the dimension of
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each formulation IPQAPR-I, IPQAPR-II, IPQAPR-III and IPQAPR-IV, namely

the number of variables xij (Nb of x) and yijkl (Nb of y), and the number of cons-

traints (Nb of constraints).

In table 2 we present the value of the objective function of the best integer so-

lution (Cost) obtained for each problem instance, as well as the gap measured by

Cplex directly. The gap is given by the formula Gap = Cost−bestnode
Cost

× 100% , where

bestnode denotes the lower bound obtained by Cplex.

In table 3 we present the linear programming relaxation values (LPcost), gaps,

LPgap = optv−LPcost
optv

×100%, where optv is the optimal objective value, and the CPU

times spent in solving the linear programming relaxation of every tested instances.

The corresponding CPU times for setting up the formulations and solving the

mixed integer linear programs are shown in table 4. In this table we also present

the CPU time given in the literature for some of the tested instances, with special

purpose exact algorithms. Unfortunately, we didn’t find the CPU time for solving

the instances Esc32a - Esc32d, Esc32g and Esc32h with exact algorithms, so they

are absent in the table 4. For the instances, Chr12a-Chr25a, Esc16a-Esc16j, Esc32e

and Esc32f, the literature CPU times are obtained in [11], [12] and [7], respectively.

We make the following observation remarks regarding the computational results

presented in tables 1- 4 :

• As expected, formulation IPQAPR-II has considerably fewer constraints than

formulation IPQAPR-I or IPQAP-I. The reduced formulations IPQAPR-IV

and IPQAPR-III have the same variables, and in most cases they have the

same number of constraints, except for instance Esc16h, as shown in table 1.

In all but this instance, I0 = N , that is, for all i ∈ N there exists k such that

the flow fik is null.

• The linear relaxation bounds obtained with formulation IPQAPR-I are in ge-

neral better than the ones obtained with formulations IPQAPR-II, as expec-

ted. Nevertheless, the integer programming solutions obtained with IPQAPR-

II, shown in table 2, are better or at least with equal value than the solutions

obtained by IPQAPR-I. On the other hand the number of nodes in the Branch

and Bound tree is larger for IPQAPR-II. Although the LP relaxation is wea-

ker, it can be solved faster, so more nodes can be searched, leading to a supe-

rior performance of IPQAPR-II over IPQAPR-I. For the 32 tested instances,

7 and 20 optimal solutions are computed with formulations IPQAPR-I and

IPQAPR-II respectively, and for 7 and 13 of them optimality has been proved.

• When we look at the results obtained with IPQAPR-III and IPQAPR-IV we

see that these formulations outperform IPQAPR-I and IPQAPR-II. Here, a

12



smaller number of variables makes the LP relaxations much easier to solve,

allowing an even larger Branch and Bound tree within the time limits. For

those instances solved to optimality, the LP CPU times as shown in table 3

and the IP CPU times shown in table 4 are smaller for formulations IPQAPR-

III and IPQAPR-IV. For the 32 tested instances, 26 and 27 optimal solutions

are computed with formulations IPQAPR-III and IPQAPR-IV respectively,

and for 21 and 23 of them optimality has been proved.

• The results obtained with IPQAPR-III and IPQAPR-IV are very similar. As

it was mentioned before, I0 = N for all instances except for Esc16h. This

means these two formulations only differ on constraints (5.47) and (5.52).

Observe that for all instances except for Esc16h the LP bounds are the same.

From these observations, we can assert that the formulation IPQAPR-I has a

tighter LP bound than the formulations IPQAPR-II, IPQAPR-III and IPQAPR-

IV. Although the LP relaxation of the formulation IPQAPR-II, IPQAPR-III and

IPQAPR-IV may be not so tight, the reduced number of variables and constraints

make them much easier to solve. Even though more Branch and Bound nodes are

needed, the instances are solved in a shorter time, or better solutions are obtained

within the time limit.

Regardless that IPQAPR-II and IPQAPR-III are LP-equivalent, and the linear

programming relaxation values of IPQAPR-IV are worse than IPQAPR-I, it is clear

that a lot of time and resources are saved by eliminating the zero flow variables and

constraints to reduce the dimensions of the problems in the formulation IPQAPR-

III and IPQAPR-IV. For example, there are absolutely zero flows between 12 of the

facilities in the flow matrix of the instance Esc32c. Thus, for any placement of the

remaining 20 facilities in the 32 locations, there are 12!=476,001,600 solutions with

exactly the same value. This multiplicity of solutions is avoided in IPQAPR-III and

IPQAPR-IV.

7. Concluding remarks

In this paper we presented Integer Programming Formulations obtained by elimi-

nating some variables and/or constraints from the QAP formulation of Adams and

Johnson [2]. Although the reduced formulations are less tight, they have considera-

bly fewer variables and constraints, so the LP relaxations are much easier to solve.

As a result, using IPQAPR-II, IPQAPR-III and IPQAPR-IV proved to be overall

more effective in solving a set of instances from the literature.

The effectiveness of some of the QAP linearizations depends strongly on the

sparsity of the cost matrix. When the cost coefficients are given by the product of a

13



Table 1: Dimensions of the QAP tested instances implemented with the formulations
IPQAPR-I, IPQAPR-II, IPQAPR-III and IPQAPR-IV

Ins. n DFM No. of
No. of y No. of constraints

(%) x
R-Ia/R-II R-III/R-IV R-I R-IV R-II R-III

Chr12a 12 15.28 144 8712 1452 3192 288 1608 288

Chr12b 12 15.28 144 8712 1452 3192 288 1608 288

Chr12c 12 15.28 144 8712 1452 3192 288 1608 288

Chr15a 15 12.44 225 22050 2940 6330 450 3180 450

Chr15b 15 12.44 225 22050 2940 6330 450 3180 450

Chr15c 15 12.44 225 22050 2940 6330 450 3180 450

Chr18a 18 10.49 324 46818 5202 11052 648 5544 648

Chr18b 18 10.49 324 46818 5202 11052 648 5544 648

Chr20a 20 9.50 400 72200 7220 15240 800 7640 800

Chr20b 20 9.50 400 72200 7220 15240 800 7640 800

Chr20c 20 9.50 400 72200 7220 15240 800 7640 800

Chr22a 22 8.68 484 106722 9702 20372 968 10208 968

Chr22b 22 8.68 484 106722 9702 20372 968 10208 968

Chr25a 25 7.68 625 180000 14400 30050 1250 15050 1250

P.ave.b 17.6 11.3 324.9 56854.7 5646.0 11941.7 649.7 5988.4 649.7

Esc16a 16 29.69 256 28800 9120 7712 1248 3872 1248

Esc16b 16 71.88 256 28800 22080 7712 2976 3872 2976

Esc16c 16 39.84 256 28800 12240 7712 1664 3872 1664

Esc16d 16 16.41 256 28800 5040 7712 704 3872 704

Esc16e 16 16.41 256 28800 5040 7712 704 3872 704

Esc16f 16 0.00 256 28800 0 7712 32 3872 32

Esc16g 16 16.41 256 28800 5040 7712 704 3872 704

Esc16h 16 89.84 256 28800 27600 7712 6112 3872 3712

Esc16i 16 11.72 256 28800 3600 7712 512 3872 512

Esc16j 16 9.38 256 28800 2880 7712 416 3872 416

P.ave. 16 30.2 256.0 28800.0 9264.0 7712.0 1507.2 3872.0 1267.2

Esc32a 32 14.45 1024 492032 73408 63552 4800 31808 4800

Esc32b 32 21.09 1024 492032 107136 63552 6976 31808 6976

Esc32c 32 25.59 1024 492032 129952 63552 8448 31808 8448

Esc32d 32 17.58 1024 492032 89280 63552 5824 31808 5824

Esc32e 32 1.17 1024 492032 5952 63552 448 31808 448

Esc32f 32 1.17 1024 492032 5952 63552 448 31808 448

Esc32g 32 1.76 1024 492032 8928 63552 640 31808 640

Esc32h 32 27.54 1024 492032 139872 63552 9088 31808 9088

P.ave. 32.0 13.8 1024.0 492032.0 70060.0 63552.0 4584.0 31808.0 4584.0

T.ave.c 20.7 17.8 478.0 156882.0 22880.0 23523.0 1901.0 11782.0 1826.0

aIn these tables, R-I, R-II, R-III and R-IV signify IPQAPR-I, IPQAPR-II, IPQAPR-III and IPQAPR-
IV, respectively.

bIn this paper, P. ave. is the abbreviation for partial average.
cT. ave. is the abbreviation for total average.
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Table 2: (Mixed) Integer programming results for the tested QAP instances implemen-
ted with the formulations IPQAPR-I, IPQAPR-II, IPQAPR-III and IPQAPR-IV (-: no

integer feasible solution found in the limited running time)

Ins.

Opt. or

(Mixed) IP

No. of nodes

B.known

R-I R-IV R-II R-III

R-I R-IV R-II R-III
B&B B&B B&B B&B

Sol. Cost
Gap(%)

Cost
Gap(%)

Cost
Gap(%)

Cost
Gap(%)

Chr12a 9552 9552 0.0 9552 0.0 9552 0.0 9552 0.0 1 9 741 36

Chr12b 9742 9742 0.0 9742 0.0 9742 0.0 9742 0.0 1 120 1295 21

Chr12c 11156 11156 0.0 11156 0.0 11156 0.0 11156 0.0 1 60 889 100

Chr15a 9896 9896 0.0 9896 0.0 9896 0.0 9896 0.0 15 60 3997 127

Chr15b 7990 7990 0.0 7990 0.0 7990 0.0 7990 0.0 1 138 2341 588

Chr15c 9504 9504 0.0 9504 0.0 9504 0.0 9504 0.0 1 1 1 1

Chr18a 11098 - - 11098 0.0 11098 0.0 11098 0.0 - 58 941 71

Chr18b 1534 - - 1534 0.0 1534 0.0 1534 0.0 - 4 13 8

Chr20a 2192 - - 2192 0.0 2192 0.0 2192 0.0 - 414 1168 413

Chr20b 2298 - - 2298 0.0 2298 0.0 2298 0.0 - 655 598 1431

Chr20c 14142 - - 14142 0.0 15100 39.1 14142 0.0 - 2110 4401 17708

Chr22a 6156 - - 6156 0.0 6156 0.0 6156 0.0 - 505 1374 230

Chr22b 6194 - - 6194 0.0 6194 0.0 6194 0.0 - 72 605 230

Chr25a 3796 - - 3796 0.0 5432 39.7 3796 0.0 - 1872 441 5164

P.ave. 7517.86 - - 7518 0.0 7703.14 5.6 7518 0.0 - 434 1343 1866

Esc16a 68 100 52.0 68 14.2 68 100.0 68 35.5 1 156136 5822 155689

Esc16b 292 314 11.5 292 97.3 294 100.0 292 100.0 1 9276 936 1590

Esc16c 160 - - 160 77.5 162 95.1 162 77.5 - 67056 8120 55170

Esc16d 16 38 89.5 16 0.0 16 100.0 16 0.0 1 260927 1071 92691

Esc16e 28 52 73.1 28 0.0 28 100.0 28 0.0 1 42637 3748 51465

Esc16f 0 0 0.0 0 0.0 0 0.0 0 0.0 1 1 1 1

Esc16g 26 46 69.6 26 0.0 26 76.9 26 0.0 1 10001 2847 9601

Esc16h 996 - - 996 30.7 996 99.8 996 99.7 - 1 10625 11881

Esc16i 14 54 100.0 14 0.0 14 100.0 14 0.0 1 4072 3631 5211

Esc16j 8 26 92.3 8 0.0 8 62.5 8 0.0 1 691 2935 418

P.ave. 160.80 - - 161 22.0 161.20 83.4 161.00 31.3 - 55080 3974 38372

Esc32a 130(Ba) - - 194 100.0 - - 244 100.0 - 91 - 140

Esc32b 168(B) - - 300 100.0 - - 400 100.0 - 21 - 17

Esc32c 642(B) - - 736 100.0 - - 716 100.0 - 26 - 31

Esc32d 200(B) - - 236 100.0 - - 256 100.0 - 71 - 136

Esc32e 2 - - 2 0.0 - - 2 100.0 - 367 - 3643725

Esc32f 2 - - 2 0.0 - - 2 100.0 - 367 - 3643577

Esc32g 6 - - 6 0.0 - - 6 0.0 - 7742 - 9064

Esc32h 438(B) - - 532 100.0 - - 534 100.0 - 15 - 34

P.ave. 198.50 - - 251 62.5 - - 270 87.5 - 1088 - 912091

T.ave. 3388.94 - - 3402 22.5 - - 3407 31.7 - 17674 - 240830

aB means the value is the best known solution.
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Table 3: Linear programming relaxation results for the tested QAP instances implemented
with the formulations IPQAPR-I, IPQAPR-II, IPQAPR-III and IPQAPR-IV

LP relaxation

Ins.

R-I R-IV R-II R-III LP CPU Time (Sec.)

LPcost
LPgap

LPcost
LPgap

LPcost
LPgap

LPcost
LPgap

R-I R-IV R-II R-III
(%) (%) (%) (%)

Chr12a 9552.0 0.0 8593.1 10.0 8593.1 10.0 8593.1 10.0 19.8 0.0 0.8 0.0

Chr12b 9742.0 0.0 7184.0 26.3 7184.0 26.3 7184.0 26.3 15.9 0.0 0.9 0.0

Chr12c 11156.0 0.0 10042.7 10.0 10042.7 10.0 10042.7 10.0 33.4 0.0 0.8 0.0

Chr15a 9513.1 3.9 8621.9 12.9 8621.9 12.9 8621.9 12.9 1319.6 0.1 5.0 0.1

Chr15b 7990.0 0.0 5141.0 35.7 5141.0 35.7 5141.0 35.7 558.6 0.1 6.0 0.1

Chr15c 9504.0 0.0 9504.0 0.0 9504.0 0.0 9504.0 0.0 145.4 0.1 3.5 0.1

Chr18a 10758.3 3.1 9515.3 14.3 9515.3 14.3 9515.3 14.3 11206.6 0.2 13.5 0.2

Chr18b - - 1534.0 0.0 1534.0 0.0 1534.0 0.0 14400(*)a 0.1 55.4 0.2

Chr20a - - 2156.0 1.6 2156.0 1.6 2156.0 1.6 14400(*) 0.2 181.7 0.3

Chr20b - - 2242.9 2.4 2242.9 2.4 2242.9 2.4 14400(*) 0.5 342.2 0.5

Chr20c - - 8816.6 37.7 8816.6 37.7 8816.6 37.7 14400(*) 0.3 130.7 0.4

Chr22a - - 5993.6 2.6 5993.6 2.6 5993.6 2.6 14400(*) 0.5 189.4 0.6

Chr22b - - 6099.0 1.5 6099.0 1.5 6099.0 1.5 14400(*) 0.6 82.1 0.6

Chr25a - - 3272.0 13.8 3272.0 13.8 3272.0 13.8 14400(*) 0.9 707.4 1.1

P.ave. - - 6336.9 12.1 6336.9 12.1 6336.9 12.1 8150.0 0.3 122.8 0.3

Esc16a 48.0 29.4 0.0 100.0 0.0 100.0 0.0 100.0 6709.9 1.9 15.9 1.1

Esc16b 278.0 4.8 0.0 100.0 0.0 100.0 0.0 100.0 8869.6 12.1 14.4 6.3

Esc16c - - 0.0 100.0 0.0 100.0 0.0 100.0 14400(*) 2.9 13.8 1.7

Esc16d 4.0 75.0 0.0 100.0 0.0 100.0 0.0 100.0 9614.6 0.3 13.8 0.2

Esc16e 14.0 50.0 0.0 100.0 0.0 100.0 0.0 100.0 6550.5 0.2 15.2 0.2

Esc16f 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4969.2 0.0 14.4 0.0

Esc16g 14.0 46.2 0.0 100.0 0.0 100.0 0.0 100.0 5449.4 0.3 16.4 0.2

Esc16h 704.0 29.3 690.0 30.7 0.0 100.0 0.0 100.0 7846.0 1532.8 14.1 12.9

Esc16i 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 3547.3 0.1 14.6 0.1

Esc16j 2.0 75.0 0.0 100.0 0.0 100.0 0.0 100.0 5023.1 0.1 13.8 0.1

P.ave. - - 69.0 83.1 0.0 90.0 0.0 90.0 7298.0 155.1 14.6 2.3

Esc32a - - 0.0 100.0 - - 0.0 100.0 14400(*) 217.3 14400(*) 94.5

Esc32b - - 0.0 100.0 - - 0.0 100.0 14400(*) 756.3 14400(*) 285.8

Esc32c - - 0.0 100.0 - - 0.0 100.0 14400(*) 845.6 14400(*) 402.8

Esc32d - - 0.0 100.0 - - 0.0 100.0 14400(*) 345.0 14400(*) 151.8

Esc32e - - 0.0 100.0 - - 0.0 100.0 14400(*) 0.1 14400(*) 0.1

Esc32f - - 0.0 100.0 - - 0.0 100.0 14400(*) 0.1 14400(*) 0.1

Esc32g - - 0.0 100.0 - - 0.0 100.0 14400(*) 0.2 14400(*) 0.1

Esc32h - - 0.0 100.0 - - 0.0 100.0 14400(*) 1159.5 14400(*) 471.2

P.ave. - - 0.0 100.0 - - 0.0 100.0 14400(*) 415.5 14400(*) 175.8

T.ave. - - 2793.9 73.8 - - 2772.4 58.4 9446.2 152.4 3658.3 44.8

aThe CPU time limit, 14400 seconds, was reached.
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Table 4: The CPU times spent of solving the tested QAP instances implemented with the
formulations IPQAPR-I, IPQAPR-II, IPQAPR-III and IPQAPR-IV

Ins.
Formulation setup time (Sec.) IP CPU Time (Sec.)

Litera.a

R-I R-IV R-II R-III R-I R-IV R-II R-III

Chr12a 5.6 0.8 1.8 0.5 23.7 0.6 49.4 1.0 9.4

Chr12b 5.5 0.7 1.9 0.3 36.8 0.9 126.5 1.0 2.8

Chr12c 5.3 0.7 1.7 0.3 53.7 0.8 67.8 1.2 1.2

Chr15a 23.4 1.7 7.1 0.8 14400(*)b 2.1 720.4 3.2 61.3

Chr15b 23.5 1.7 7.2 0.9 741.1 2.9 793.7 7.9 28.0

Chr15c 23.4 1.5 7.0 0.8 190.9 0.1 3.7 0.1 11.7

Chr18a 109.7 3.7 25.3 2.2 14400(*) 4.8 974.8 6.6 89.7

Chr18b 98.8 3.4 26.2 2.4 14400(*) 2.5 835.6 3.6 37.1

Chr20a 320.5 6.2 57.0 4.3 14400(*) 25.8 8691.8 28.7 181.4

Chr20b 322.6 5.7 57.1 3.8 14400(*) 33.0 7237.1 56.0 56.2

Chr20c 318.8 6.4 57.2 4.5 14400(*) 69.1 14400(*) 313.6 138.0

Chr22a 920.6 10.8 136.9 8.1 14400(*) 30.1 10346.7 21.4 166.3

Chr22b 922.8 10.2 137.8 7.4 14400(*) 9.7 4186.7 15.1 143.3

Chr25a 3319.0 26.0 585.2 17.9 14400(*) 121.1 14400(*) 274.0 333.3

P.ave. 458.5 5.7 79.3 3.9 9331.9 21.7 4488.1 52.4 90.0

Esc16a 37.3 5.1 11.5 3.2 14400(*) 14400(*) 14400(*) 14400(*) 65.0

Esc16b 37.3 12.9 11.3 7.7 14400(*) 14400(*) 14400(*) 14400(*) 546.0

Esc16c 37.4 6.6 10.9 4.0 14400(*) 14400(*) 14400(*) 14400(*) 3990.0

Esc16d 37.3 2.8 10.9 1.6 14400(*) 2685.0 14400(*) 1334.5 492.0

Esc16e 38.2 2.9 10.9 1.7 14400(*) 1001.7 14400(*) 1086.7 66.0

Esc16f 37.3 0.5 11.6 0.2 4811.4 0.0 14.7 0.0 0.0

Esc16g 37.4 2.9 11.6 1.8 14400(*) 348.2 14400(*) 301.5 7.0

Esc16h 37.4 30.2 11.6 11.0 14400(*) 14400(*) 14400(*) 14400(*) 22082.0

Esc16i 37.3 2.1 11.6 1.2 14400(*) 65.2 14400(*) 65.2 14.0

Esc16j 38.2 1.8 10.9 1.0 14400(*) 9.3 14400(*) 19.4 1.0

P.ave. 37.5 6.8 11.3 3.3 13441.1 6170.9 12961.5 6040.7 2726.3

Esc32a 29161.5 728.2 7095.2 638.7 14400(*) 14400(*) 14400(*) 14400(*) -

Esc32b 29176.7 1253.3 7198.3 1071.1 14400(*) 14400(*) 14400(*) 14400(*) -

Esc32c 29186.2 1633.2 7109.0 1363.4 14400(*) 14400(*) 14400(*) 14400(*) -

Esc32d 29271.5 1143.1 7131.2 1009.5 14400(*) 14400(*) 14400(*) 14400(*) -

Esc32e 29168.1 62.8 7265.1 58.4 14400(*) 5.9 14400(*) 14400(*) 600.0

Esc32f 30419.7 63.0 7135.3 58.1 14400(*) 5.9 14400(*) 14400(*) 600.0

Esc32g 29258.3 119.3 7499.9 112.2 14400(*) 208.4 14400(*) 100.2 -

Esc32h 29318.7 1740.6 7510.1 1447.0 14400(*) 14400(*) 14400(*) 14400(*) -

P.ave. 29370.1 842.9 7243.0 719.8 14400(*) 9027.5 14400(*) 12612.5 -

T.ave. 7554.9 215.3 1849.0 182.7 11883.1 4194.8 9614.0 5063.8 -

aFor the instances Chr12a - Char25a, the CPU times are obtained with a UNIVAC 1100/60. For the
instances Esc16a - Esc16j, the CPU times are obtained with a 16-processor MEIKO Computing Surface
with Intel i860 processors. For the instances Esc32e and Esc32f, the CPU times are obtained with NEC
Cenju-3.

bThe CPU time limit, 14400 seconds, was reached.
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flow and a distance, qijkl = fikdjl, one obtains a sparse matrix if some of the factors

are null. In most situations some values fik are zero, and we exploited this situation

here. The results obtained here also apply, by symmetry, to the case where djl = 0.

Finally we would like to point out that these results are an example showing that

the tighter formulation is not always the most effective to solve a problem. If we

consider as a measure the solving time of the IP, or the quality of the integer solution

within some time limit, the less tight formulations outperformed the tightest. The

technique used here to weaken a formulation to make its LP relaxation much easier

to solve may prove fruitful in other applications.
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