
ar
X

iv
:0

90
2.

31
21

v1
 [

cs
.D

S]
 1

8
Fe

b
20

09

Parallel machine scheduling with precedence

constraints and setup times

Bernat Gacias 1,2, Christian Artigues 1,2 and Pierre Lopez 1,2

1 CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France

2 Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

{bgacias,artigues,lopez}@laas.fr

Abstract

This paper presents different methods for solving parallel machine schedul-
ing problems with precedence constraints and setup times between the jobs.
Limited discrepancy search methods mixed with local search principles, domi-
nance conditions and specific lower bounds are proposed. The proposed meth-
ods are evaluated on a set of randomly generated instances and compared with
previous results from the literature and those obtained with an efficient com-
mercial solver. We conclude that our propositions are quite competitive and
our results even outperform other approaches in most cases.

Keywords: Parallel machine scheduling, setup times, precedence constraints, limited discrepancy

search, local search.

1 Introduction

This paper deals with parallel machine scheduling with precedence constraints
and setup times between the execution of jobs. We consider the optimization of two
different criteria: the minimization of the sum of completion times and the mini-
mization of maximum lateness. These two criteria are of great interest in production
scheduling. The sum of completion times is a criterion that maximizes the produc-
tion flow and minimizes the work-in-process inventories. Due dates of jobs can be

http://arxiv.org/abs/0902.3121v1

associated to the delivery dates of products. Therefore, the minimization of maxi-
mum lateness is a goal of due date satisfaction in order to disturb as less as possible
the customer who is delivered with the longest delay. These problems are strongly
NP-hard (Graham et al., 1979).

The parallel machine scheduling problem has been widely studied (Cheng and Sin,
1990), specially because it appears as a relaxation of more complex problems like the
hybrid flow shop scheduling problem or the RCPSP (Resource-Constrained Project
Scheduling Problem). Several methods have been proposed to solve this problem.
In Chen and Powell (1999), a column generation strategy is proposed. Pearn et al.
(2007) propose a linear program and an efficient heuristic for large-size instances for
the resolution of priority constraints and family setup times problem. Salem et al.
(2000) solve the problem with a tree search method. More recently, Néron et al.
(2008) compare two different branching schemes and several tree search strategies
for the problem with release dates and tails for the makespan minimization case.

However, the literature on parallel machine scheduling with precedence con-
straints and setup times is quite limited. Baev et al. (2002) and van den Akker et al.
(2005) deal with the problem with precedence constraints for the minimization of
the sum of completion times and maximum lateness respectively. The setup times
case is considered in Schutten and Leussink (1996) and in Ovacik and Uzsoy (1995)
for the minimization of maximum lateness. Uzsoy and Velasquez (2008) deal with
the same criterion on a single machine with family-dependent setup times. Fi-
nally, Nessah et al. (2005) propose a lower bound and a branch-and-bound method
for the minimization of the sum of completion times.

Problems that have either precedence constraints or setup times, but not both,
can be solved by list scheduling algorithms. It means there exists a total ordering of
the jobs (i.e., a list) that, when a given machine assigment rule is applied, reaches
the optimal solution (Schutten, 1994). For a regular criterion, this rule is called
Earliest Completion Time (ECT). It consists in allocating every job to the machine
that allows it to be completed at the earliest. This reasoning unfortunately does not
work when precedence constraints and setup times are considered together, as shown
in Hurink and Knust (2001). We have then to modify the way to solve the problem
and consider both scheduling and resource allocation decisions.

In Section 2, we define formally, the parallel machine scheduling problem with
setup times and precedence constraints between jobs. In Section 3 we present a
branch-and-bound method and its components: tree structure, lower bounds, and
dominance rules. Discrepancy-based tree search methods are described in Section 4.
In Section 5 we present the hybrid tree-local search methods used to solve large-size
instances. Section 6 is dedicated to computational experiments.

2

2 Problem definition

We consider a set J of n jobs to be processed on m parallel machines. The
precedence relations between the jobs and the setup times, considered when different
jobs are sequenced on the same machine, must be satisfied. The preemption is
not allowed, so each job is continually processed during pi time units on the same
machine. The machine can process no more than one job at a time. The decision
variables of the problem are the start times of every job i = 1..n, Si, and let us define
Ci as the completion time of job i, where Ci = Si + pi. Let ri and di be the release
date and the due date of job i, respectively. Due dates are only considered for job
lateness computation. We denote by E the set of precedence constraints between
jobs. The relation (i, j) ∈ E, with i, j ∈ J , means that job i is performed before job
j (i ≺ j) such that job j can start only after the end of job i (Sj ≥ Ci). Finally, we
define sij as the setup time needed when job j is processed immediately after job i
on the same machine. Thus, for two jobs i and j processed successively on the same
machine, we have either Sj ≥ Ci + sij if i precedes j, or Si ≥ Cj + sji if j precedes
i. Using the notation of Graham et al. (1979), the problems under consideration are
denoted: Pm|prec, sij, ri|

∑
Ci for the minimization of the sum of completion times

and Pm|prec, sij, ri|Lmax for the minimization of the maximum lateness.

Example

A set of 5 jobs (n = 5) must be executed on 2 parallel machines (m = 2). For
every job i, we give pi, ri, di, and sij (see Table 1). Besides, for that example we
have the precedence constraints: 1 ≺ 4 and 2 ≺ 5.

(a)

n pi ri di
1 4 1 7
2 3 0 5
3 4 3 8
4 3 3 10
5 2 1 5

(b)

sij 1 2 3 4 5

1 0 2 3 4 5
2 7 0 6 1 3
3 2 4 0 7 1
4 4 4 8 0 1
5 3 4 8 5 0

Table 1: Example 1 data

Figure 1 displays a feasible solution for this problem. The set of precedence
constraints is satisfied: S5 = 13 ≥ 3 = C2 and S4 = 5 ≥ 5 = C1. We stress that job

3

4 must postpone its start time on M2 by one time unit because of the precedence
constraint. On the other hand, we have to check that, for every job i, ri ≤ Si and
that setup times between two sequenced jobs on the same machine are also respected.
For the evaluation of the solution, we observe that for the minimization of the sum of
completion times the value of the function is z =

∑
Ci = 43 and for the minimization

of maximum lateness z = Lmax = L5 = 10.

Figure 1: Feasible schedule

3 Branch-and-Bound components for Pm|prec, sij, ri|
∑
Ci

and Pm|prec, sij, ri|Lmax

A tree structure with two levels of decisions (scheduling and resource allocation)
is defined in Section 3.1. Lower bounds, constraint propagation mechanisms and
dominance rules are introduced in Sections 3.2 and 3.3.

3.1 Tree structure

Precedence constraints and setup times scheduling problems may not be efficiently
solved by a list algorithm as conjectured by Hurink and Knust (2001). It means that
there possibly does not exist a job allocation rule that reaches an optimal solution
where all the possible lists of jobs are enumerated. Let us consider the minimization
of the sum of completion times for 4 jobs scheduled on 2 parallel machines. The data
of the problem are displayed in Table 2.

4

(a)

n pi ri
1 1 0
2 1 0
3 1 2
4 1 2

(b)

sij 1 2 3 4

1 0 10 2 10
2 10 0 1 1
3 10 10 0 10
4 10 10 10 0

Table 2: Example 2 data

If we consider the problem without precedence constraints, we find two optimal
solutions (

∑
Ci = 9) when we allocate the jobs following the Earliest Completion

Time rule for the lists {1, 2, 4, 3} and {2, 1, 4, 3} (see Figure 2a). Now, let us consider
the same problem with the precedence constraint 3 ≺ 4. In that case, there does not
exist any allocation rule that reaches an optimal solution for any list of jobs that
respects the precedence constraint. The optimal solution (

∑
Ci = 11) is reached

when we consider the list {1, 2, 3, 4} and job 3 is not allocated on the machine that
allows it to finish first (see Figure 2b). Thus, in our problems we have not only to
find the best list of jobs but also to specify the best resource allocation.

(a) Optimal schedule without the prece-
dence constraint

(b) Optimal schedule with the precedence
constraint

Figure 2: Example of job allocation

5

The optimal solution can be reached by a two decision-level tree search. We define
a node as a partial schedule σ(p) of p jobs. Every node entails at most m× (n− p)
child nodes. The term n−p corresponds to the choice of the next job to be scheduled
(job scheduling problem). Only the jobs with all the previous jobs already executed
are candidates to be scheduled. Once the next job to be scheduled is selected we have
to consider the m possible machine allocations (machine allocation problem). For
practical purposes, we have mixed both levels of decision: one branch is associated
with the choice of the next job to schedule and also with the choice of the machine. A
solution is reached when the node represents a complete schedule, that means when
p = n.

3.2 Node evaluation

Node evaluation differs depending on the studied criterion. First, we propose to
compute a simple lower bound. For every node (partial schedule), we update the
earliest start times of the unscheduled jobs taking account of the branching decisions
through precedence constraints and we calculate the minimum completion time (for
min

∑
Ci criterion) and the minimum lateness (for minLmax criterion) for every not

yet-scheduled job. Then we update the criterion and we compare the lower bound
with the best current solution.

We propose to compute an upper bound. The upper bound is computed by a
simple list scheduling heuristic selecting the combination of job, between the not
yet-scheduled jobs, and machine with the shortest start time.

For criterion min
∑

Ci, we also propose to compute the lower bound presented
in Nessah et al. (2005) for the parallel machine scheduling problem, with sequence-
dependent setup times and release dates (Pm|sij, ri|

∑
Ci). This problem is a relax-

ation of the problem with precedence constraints, so the lower bound is still valid for
our problem. In this paper, we just present the lower bound for the problem, that
is based on job preemption relaxation, and we refer to Nessah et al. (2005) for the
proof.

Let S∗ be the schedule obtained with the SRPT (Shortest Remaining Process-
ing Time) rule for the relaxed problem 1|ri, (

pi
m
+ s∗i), pmtn|

∑
max(C∗

i − s∗i , ri + pi),
where si = minj 6=i sij and s∗i = si

m
. Let C∗

[i](S∗) be the modified completion time
of job i with the processing time pi + s∗i for each job i. Let ai = pi + ri + s∗i
and let (a[1], a[2], . . . , a[n]) be the series obtained by sorting (a1, a2, . . . , an) in non-
decreasing order. Then LB =

∑
max[C∗

[i](S∗), a[i]] −
∑

s∗i is a lower bound for
Pm|prec, sij, ri|

∑
Ci. The complexity of the lower bound is O(n logn), the same

complexity as SRPT.

6

For minLmax, the evaluation consists in triggering a satisfiability test based
on constraint propagation involving energetic reasoning (Lopez and Esquirol, 1996).
The energy is produced by the resources and it is consumed by the jobs. We ap-
ply this feasibility test to verify whether the best solution reached from the current
node will be at least as good as the best current solution. We determine the mini-
mum energy consumed by the jobs (Econsumed) over a time interval ∆ = [t1, t2] and
we compare it with the available energy (Eproduced = m × (t2 − t1)). In our prob-
lem we also have to consider the energy consumed by the setup times (Esetup). If
Econsumed + Esetup > Eproduced we can prune the node.

For an interval ∆ where there is a set F of k jobs that may consume energy, we can
easily show that the minimum quantity of setups which occurs is α = max(0, k−m).
So, we have to take the α shortest setup times of the set {sij}, i, j ∈ F , into account.

The energy consumed in an interval ∆ is Econsumed =
∑

i max(0,min(pi, t2−t1, r
′
i+

pi − t1, t2 − d′i + pi)) +
∑α

l s[l] where s[l] are the setup times of the set {sij}, i, j ∈ F ,
sorted in non-decreasing order, and a time window [r′i, d

′
i] for every not yet-scheduled

job i is issued from precedence constraint propagation:

r′i = max{ri, rj + pj; ∀ j ∈ Γ−
i } and d′i = min{Zbest + di, d

′
j − pj ; ∀ j ∈ Γ+

i },

where Γ−
i and Γ+

i are respectively the set of previous and successor jobs for job i and
Zbest is the minimum current value for Lmax.

In Figure 3 we illustrate how to compute the energy consumed by the not yet-
scheduled jobs (1 to 5 in the example) for a 3-machine problem. For every job,
we determine a time window and the minimum energy consumed (in grey) over the
selected interval ∆ = [t1, t2]. For Esetup we have to take the α shortest setup times,
in the example k = 4 (there is no consumption for job 1) and m = 3, so we have to
sum only the shortest setup time between the consuming jobs, in our case we add 2
energy units (value of s35).

7

Figure 3: Minimum energy consumed in a partial schedule

The time interval ∆ = [t1, t2] considered to compute the energy consumed is
t1 = min r′i, ∀i ∈ F and t2 = d′j , where j is the job with the shortest time window
min (d′j − r′j), ∀j ∈ F . The complexity of the energetic test is O(n2).

3.3 Dominance rules

We also propose dominance rules to restrict the search space. They consist in trying
to find whether there exists a dominant node allowing us to prune the evaluated
node. All proposed rules are based on the dominance properties of the set of active
schedules. A schedule S is active if no feasible schedule can be obtained from S by
left-shifting a single activity. Let us define the front of a partial schedule as the set
of the last jobs executed on the machines (the ones with the largest start times).

We first present a global dominance rule based on max flow computation based on
a resource-flow model previously used for the resource-constrained project scheduling
problem with setup times (Neumann et al. (2002), Section 2.13). The idea is to verify
that there exists a partial schedule σ′(p) with the start times
S ′ = {S ′

1, S
′
2, . . . , S

′
i, . . . , S

′
p} different from σ(p) with start times

S = {S1, S2, . . . , Si, . . . , Sp} that allows us to move forward the start time of job
k without modifying other start times (S ′

i = Si, ∀i 6= k and S ′
k ≤ Sk − 1). This is

a necessary but not a sufficient condition for the dominance. Besides, the schedule
σ′(p) has to keep the same front as σ(p) except for the case where job k does not
belong to the front of σ′(p) (the dominant partial schedule). For example in Fig-
ure 4, job 5 (S5 = 18) may be scheduled after job 4 or between job 2 and job 4
with a shortest start time (S ′

5 = 17). In the first case the new schedule σ′(p) is not
dominant because of setup times but in the second case it is, so the front can be
modified only if job k is not part of it in σ′(p).

8

We represent σ′(p) by a graph and we turn the dominance rule in a max flow
computation. Two vertices are considered for every job, the first one represents
the start time it and the second one the completion time is of the job. One unit
capacity arcs are defined between the vertices is-jt by the partial schedule σ′(p) and
they represent the transfer of resource units between the jobs. Finally, we need four
dummy vertices. Two vertices (0s, 0t), the source node S and the sink node T , flow
origin and flow destination, respectively. Arcs S-0s and 0t-T have m-unit capacity
and represent the resource constraint. 1-unit capacity arcs between S-is and it-T
ensure the job execution.

Figure 4: Partial schedule of the evaluated node

Figure 5 shows the flow network for the schedule depicted in Figure 4 (data of
Table 1). For each node we try to find a schedule that allows us to move forward
the start time of the last scheduled job by one unit (job 5 in the example, S ′

5 = 17)
and to keep the same start times for the other jobs. We create a direct arc is-jt if
S ′
j > S ′

i+ pi+ sij, that means if job j can be executed on the same machine than job
i. In order to respect the second condition for the dominance, we do not create the
arcs between the jobs belonging to the front in the evaluated node (job 4 and job 5).
We observe that a max flow of m+ p units is necessary to ensure all job executions
and to satisfy the resource constraints. In that case, σ′(p) is a feasible schedule and
we can prune the node.

9

Figure 5: Network to compute the max flow dominance rule

We propose a second dominance rule based on the position of the front jobs in the
priority list. For a given schedule, the dominance rule searches for a new list of jobs
in order to obtain the dominant partial schedule. We modify the list of scheduled
jobs taking into account the precedence constraints. We can prune the evaluated
node when the dominant partial schedule keeps the same front than the evaluated
node (jobs 1, 2, and 3), one of the jobs starts earlier (S ′

1 < S1) and for the rest of
jobs belonging to the front the start times are not delayed (S2 = S ′

2 and S3 = S ′
3),

as we see in Figure 6.

(a) Evaluated node (b) Dominant partial schedule

Figure 6: Example of dominant partial schedule

We propose to permute the order of them front jobs in order to find the dominant
schedule. For example, in Figure 6 if the order of scheduled front jobs is 1−2−3 we

10

test all the possible permutations satisfying precedence constraints. If one of such
permutations yields a dominant partial schedule, we can prune the evaluated node.
This rule can be computed with time complexity O(m!). As shown in Section 5,
despite its exponential worst-case complexity, this dominance rule has interesting
properties when used in conjunction with discrepancy-based tree search and remains
efficient for a small number of machines. A partial enumeration remains valid if m
becomes very large.

Note similar dominance rules have already been used for the RCPSP (which
can be defined as an extension of the parallel machine scheduling problem with
precedence constraints, but without setup times) under the name ”cutset dominance
rules” (Demeulemeester and Herroelen, 1997). However, in Demeulemeester and Herroelen
(1997), all the cutsets are kept in memory yielding important memory requirements.

4 Discrepancy-based tree search methods

4.1 Limited discrepancy search

To tackle the combinatorial explosion of the standard branch-and-bound methods
for large problem instances, we use a method based on the discrepancies regarding
a reference branching heuristic. Such a method is based on the assumed good per-
formance of this reference heuristic, thus making an ordered local search around the
solution given by the heuristic. First, it explores the solutions with few discrepancies
from the heuristic solution and then it moves away from this solution until it has
covered the whole search space. In this context, the principle of LDS (Limited Dis-
crepancy Search) (Harvey and Ginsberg, 1995) is to explore first the solutions with
discrepancies on top of the tree, since it assumes that the early mistakes, where very
few decisions have been taken, are the most important.

Figure 7 shows LDS behavior for a binary tree search with the number of dis-
crepancies for every node. Let us consider the left branch as the reference heuristic
decision. At iteration 0 we explore the heuristic solution, then at iteration 1 we
explore all the solutions that differ at most once from the heuristic solution, and we
continue until all the leaves have been explored.

LDS can be used as an exact method, for small-size instances, when the maximum
number of discrepancies is authorized. We can also use it as an approximate method
if we limit the number of authorized discrepancies.

Several methods based on LDS have been proposed to improve its efficiency. ILDS
(Improved LDS) (Korf, 1996) has been devised to avoid the redundancy (observed
in Figure 7) where the solutions with no discrepancies are also visited at iteration 1.

11

Figure 7: Limited Discrepancy Search for a binary tree

DDS (Depth-bounded Discrepancy Search) (Walsh, 1997) or DBDFS (Discrepancy-
Bounded Depth First Search) (Beck and Perron, 2000) propose to change the order of
the search. DDS limits the depth where the discrepancies are considered, in the sense
that at the kth iteration we only authorize the discrepancies at the first k levels of the
tree. It stresses the principle that the early mistakes are the most important. DBDFS
consists in a classical DFS where the nodes explored are limited by the discrepancies.
Recently, in the YIELDS method (Karoui et al., 2007), learning process notions are
integrated. In what follows, we propose several versions of LDS adapted to the
considered parallel machine scheduling context.

4.2 Exploration strategy

As a branching heuristic, we use the same heuristic to compute the lower bound
presented in Section 3.2: EST (Earliest Start Time) rule for the selection of the next
job to schedule and the resource to execute it. We take criterion EST because it
is intuitively compatible with the minimization of setup times which has globally
a positive impact for minimization of other regular criteria (Artigues et al., 2005).
In case of tie between two jobs, we apply SPT (Smallest Processing Time) rule for
min

∑
Ci and EDD (Earliest Due Date) for minLmax.

Because of the existence of two types of decisions, we consider here two types of
discrepancies: discrepancy on job selection and discrepancy on resource allocation.
In the case of non-binary search trees, we have two different ways to count the

12

discrepancies (see Figure 8). In the first mode (binary), we consider that choosing
the heuristic decision corresponds to 0 discrepancy, while any other value corresponds
to 1 discrepancy. The other mode (non-binary) consists in considering that the
further we are from the heuristic choice the more discrepancies we have to count.
We suggest to evaluate experimentally both modes for the heuristic for job selection.
On the other hand, for the choice of the machine, we use the non-binary mode since
we assume that the allocation heuristic only makes a few errors. As we will see in
Section 5, selecting the machine which allows the earliest completion of the job is a
high performance heuristic.

(a) binary (b) non-binary

Figure 8: Example of discrepancies counting modes on job selection

We propose to test three different branching schemes. The first one, called
DBDFS (Beck and Perron, 2000), is a classical depth-first search where the solutions
obtained are limited by the allowed discrepancies (see Section 4.1). We propose two
other strategies, LDS-top and LDS-low, which consider the number of discrepancies
for the order in which the solutions are reached. The node to explore is the node
with the smallest number of discrepancies, and with the smallest depth for the strat-
egy called LDS-top, and with the largest depth for the strategy called LDS-low. As
Figure 9 shows (case of 2 authorized discrepancies) all three methods explore the
same solutions but in different orders.

13

Figure 9: Order of explored leaves for different branching rules

4.3 Large neighborhood search based on LDS

We have presented LDS as an exact or a truncated tree search method. In this
section, we propose to use it as part of local search. In a local search method, we
define a solution neighborhood Nk(x) (k defines the acceptable variations of solution
x). If we find a solution x′ better than x in Nk(x) then we explore the neighborhood
Nk(x

′) of this new best solution. In the case of large-scale neighborhoods problems,
the neighborhood becomes so huge that we can consider the search for the best
solution in Nk(x) as an optimization sub-problem (Shaw, 1998). In that context, we
consider a neighborhood defined by an LDS search tree.

CDS (Climbing Discrepancy Search) (Milano and Roli, 2002) is the first large
neighborhood search method based on LDS (see Algorithm 1). At each iteration it
carries out a k-discrepancy search around the best current solution. If a better solu-
tion is found, then CDS explores its neighborhood. In the case of no better solution is

14

found, then k is increased by one.

Algorithm 1: Climbing Discrepancy Search

begin
k ← 1;
kmax ← n;
Solref ← InitialHeuristic();
while k ≤ kmax do

/* Generate the set of solutions N of k discrepancies from Solref */

N = LDS(Solref , k);
s′ ← BestOf(N);
if z(s′) < z(Solref) then

Solref ← s′;
k ← 1;

else
k ← k + 1;

end

The drawback of CDS is that for large-size instances the neighborhood quickly
explodes. Hmida et al. (2007) propose CDDS (Climbing Depth-bounded Discrepancy
Search) that mixes principles of CDS and of DDS. The neighborhood of the best
solution is limited not only by the number of discrepancies but also by the depth in
the tree. In that case, the neighborhood explosion is avoided and the idea that the
most important heuristic mistakes are early ones is stressed.

In this work, we propose two variants of CDS and CDDS for the problems at hand.
They are closely related with VNS (Variable Neighborhood Search) (Hansen and Mladenovic,
2001) concept, since we modify the size and the structure of the neighborhood ex-
plored. HD-CDDS (Hybrid Discrepancy CDDS) (see Algorithm 2) consists in a mix
of CDS and CDDS. We start with a CDS search, but if for a defined number of dis-
crepancies klimit we cannot find a better solution, then we authorize a bigger number
of discrepancies only between some levels ([dmin,dmax]). Once we have finished the
search for klimit +1, we propose either to increase the number of authorized discrep-
ancies and to keep the same number of levels where the discrepancies are authorized
(x = dmax−dmin), which is the case in Algorithm 2, or to increase the number of levels
and to keep the number of discrepancies. This method solves the problem of neigh-
borhood explosion and offers more jobs mobility than CDDS (which is particularly
interesting for setup times problems) but we need to parametrize the values of the

15

search (klimit, x).

Algorithm 2: Algorithm HD-CDDS

begin
k ← 1;
dmin ← 0;
dmax ← n;
Solref ← InitialHeuristic();
while termination conditions not met do

/* Generate the set of solutions N of k discrepancies from Solref */

N = GenSol(Solref , k, dmin, dmax);
s′ ← BestOf(N);
if z(s′) < z(Solref) then

Solref ← s′;
k ← 1;
dmin ← 0;
dmax ← n;

else

if k < klimit then
k ← k + 1;

else

if dmax − dmin = n then
dmin ← 0;
dmax ← x;

else
dmin ← dmax;
dmax ← dmin + x;
if dmin > n then

k ← k + 1;
dmin ← 0;
dmax ← x;

end

The second proposed variant, MC-CDS (Mix Counting CDS), is an application
of CDS but with a modification in the way to count the discrepancies for the job
selection rule only. We consider a binary counting for the discrepancies at the top
level of the tree and a non-binary counting way for the rest of levels. This variant
accepts discrepancies for all depth levels because the non-binary counting restricts
the explored neighborhood.

16

4.4 Discrepancy-adapted dominance rules

In this section we propose to adapt the second dominance rule presented in Sec-
tion 3.3 to the principle of local search. We argue that it can be very inefficient to
use the dominance rule as presented in Section 3.3 with the proposed local search
methods. Indeed, the best solutions of the neighborhood could not be explored be-
cause we have found a dominant partial schedule that allows us to prune them. Even
if it is true that there exists a solution better than the evaluated node, it may not
belong to the explored neighborhood.

For that reason, we propose discrepancy-adapted dominance rules. Once we know
the criterion that defines the neighborhood (for example, k authorized discrepancies
from the job list L), we only have to verify that the new list of jobs L′ that reaches the
dominant partial schedule is part of the explored nodes in the local search (L′ ∈ G,
where G is the set of k-discrepancies lists from L).

We can see that the max flow computation rule presented in Section 3.3 is not
discrepancy adaptable. It is not possible to verify that the dominant partial schedule
σ′(p) is part of the explored space because the rule indicates the existence of σ′(p)
but not the corresponding schedule. On the other hand, the second dominance rule
introduced in Section 3.3 consists in a local modification of the evaluated schedule
in order to explicitly obtain the dominant schedule. That way, we have the list of
jobs, L′, available to compare with the best current solution list of jobs, L, and to
verify that the dominant schedule is part of the explored nodes. Hence, when the
encountered dominant schedule is not part of the explored neighborhood the current
node is not pruned.

5 Computational experiments

In this section we present the main results obtained from the implementation of our
work. In the literature we have not found instances for parallel machines including
both setup times and precedence constraints. Therefore, we propose to test the
methods on a set of randomly generated instances. The algorithms are implemented
in C++ and were run on a 2 GHz personal computer with 2 Go of RAM under the
Linux Fedora 8 operating system.

We generate a set of 120 (60 for each criterion) small-size instances (n = 10,
m = 3, and n = 15, m = 2) for the evaluation of the dominance rules and for the ECT
rule efficiency. Then, we test on a set of 120 middle-size instances (n = 40, m ∈ [2, 4])
the different branching rules (LDS-top, LDS-low, and DBDFS), the different ways to
count the discrepancies (binary and non-binary) to determine the best methods for

17

being included inside the LDS structure of the local search methods. The efficiency
of the lower bounds, the dominance rules and the energetic reasoning proposed in
Section 3 are tested on middle and large-size instances (n = 100, m ∈ [2, 4]). We
also compare the CDS and the HD-CDDS methods with the results obtained in
Néron et al. (2008) for the hard instances of the Pm|ri, qi|Cmax problem (without
precedence constraints and setup times). And finally, we evaluate and compare the
proposed methods on a set of 120 large-size instances with the results obtained with
ILOG OPL 6.0.

We use the RanGen software (Demeulemeester et al., 2003) in order to generate
the precedence graph between the jobs. Setup times and time windows [ri, di] cannot
be generated by RanGen. Setup times are generated from the uniform distributions
U [1, 10] and U [20, 40] . Moreover they must respect the weak triangle inequality:
sij ≤ sik + pk + skj, ∀ i, j, k. The values of pi are generated from the uniform dis-
tribution U [1, 5] . Time windows are generated in a classical way we found in the
literature (Sourd, 2005). The values of di are generated from the uniform distribu-
tion U [max(0, P × (1− τ − ρ/2)), P × (1− τ + ρ/2)], where P =

∑
(pi +minj(sij)),

τ ∈ [0, 1], ρ ∈ [0, 1]. The ri are generated from di, ri = di − (pi × (2 + α)) where
α ∈ [−0.5,+1.5].

We solve to optimality the small-size instances and we compare the results (Opti-
mal) with the results obtained when we apply the ECT rule (ECT) for each possible
list of jobs (jobs are only allocated to the machine which allows to finish it first), with
the results using the dominance rule based on the permutation of front jobs (Front
Rule), and with the results using the dominance rule based on max flow computation
(Max Flow).

18

60 Instances
n = 10,m = 3 NbBest AvgNodes AvgTCPU
Optimal 60 (100.0 �) 484925 10.6
Front Rule 60 (100.0 �) 480444 12.3
Max Flow 60 (100.0 �) 339541 27.7
ECT 53 (88.3 �) 61684 0.07

60 Instances
n = 15,m = 2 NbBest AvgNodes AvgTCPU
Optimal 60 (100.0 �) 10126793 641.9
Front Rule 60 (100.0 �) 9480313 626.4
Max Flow 60 (100.0 �) 7530154 454.6
ECT 54 (90.0 �) 1747416 2.5

Table 3: Results of ECT and dominance rules efficiency for min
∑

Ci problem

60 Instances
n = 10,m = 3 NbBest AvgNodes AvgTCPU
Optimal 60 (100.0 �) 281896 5.6
Front Rule 60 (100.0 �) 263474 7.9
Max Flow 60 (100.0 �) 219557 19.7
ECT 52 (86.7 �) 69141 0.07

60 Instances
n = 15,m = 2 NbBest AvgNodes AvgTCPU
Optimal 60 (100.0 �) 11936385 884.8
Front Rule 60 (100.0 �) 10503767 778.7
Max Flow 60 (100.0 �) 8945948 628.4
ECT 54 (90.0 �) 4681104 7.27

Table 4: Results of ECT and dominance rules efficiency for minLmax problem

19

First, note that we found some hard instances that we could not to solve to
optimality before 15000 seconds. We observe in Tables 3 and 4 that ECT rule is
very efficient for both problems. The optimal solution is reached over almost 90 � of
the instances and the average CPU time (AvgTCPU) is clearly reduced when we
use the ECT rule. These results let us consider, for local search methods, only
the job permutation allocating the jobs on the machines following the ECT rule.
The dominance front rule is also effective, the average number of explored nodes
(AvgNodes) and the average CPU time usually decrease when we use it. We observe
that the Max Flow rule largely reduces the number of explored nodes and the CPU
time, except for the very small-size instances. We deduce that it is a very efficient
rule to solve to optimality instances with a larger number of jobs.

In the comparison between the two different ways to count the discrepancies,
binary and non-binary (only for job selection rules), we have evaluated on the middle-
size instances the number of times each mode has found the best solution (NbBest).
The CPU time is limited to 100 seconds.

Table 5 shows that the binary mode has a higher performance than the non-binary
one. Out of a set of 120 instances, the binary mode has found the best solution over
75 � of the instances, independently of the branching rule. We find very similar
results for both criteria. In the following, the binary counting is kept for the LDS
structure of the local search.

120 Instances NbBest
n = 40,m ∈ [2, 4] binary mode non-binary mode
DBDFS 90 (75.0 �) 48 (40.0 �)
LDS-top 93 (77.5 �) 49 (40.8 �)
LDS-low 98 (81.7 �) 31 (25.8 �)

Table 5: Results of the comparison between discrepancies counting modes

In Table 6, we can see the results for the comparison between the exploration
strategies. In addition to previous notations, we introduce the average mean devi-
ation from the best solution (AvgDev). The CPU time is limited to 100 seconds.

20

Binary mode min
∑

Ci (60 instances) minLmax (60 instances)
n = 40,m ∈ [2, 4] NbBest AvgDev NbBest AvgDev
DBDFS 43 (71.7 �) 0.91 � 47 (78.3 �) 1.86 �

LDS-top 29 (48.3 �) 0.43 � 17 (28.3 �) 2.33 �

LDS-low 50 (83.3 �) 0.71 � 59 (98.3 �) 0.75 �

Table 6: Results for the comparison of different branching strategies

We find that LDS-low is the most efficient strategy, since it reaches the best
solution for a larger number of instances and it presents the less important average
mean deviation when the best solution is found by another strategy. LDS-low finds
the best solution for all instances except for one corresponding to the maximum
lateness minimization and for 50 over a set of 60 instances for completion times sum
minimization. We use this strategy for the remaining computational experiments.

The lower bounds, the energetic reasoning, and the discrepancy-adapted domi-
nance rule are compared in Tables 7 and 8. We run a 30 seconds LDS search for the
middle and large-size instances for different versions of the node evaluation. First,
we only consider the lower bound computed using precedence constraint propagation
(LBCP), then we add the lower bound (LBNCY) proposed in Nessah et al. (2005)
for min

∑
Ci problem and the energetic reasoning (ENERGY) for minLmax prob-

lem; finally we add the discrepancy-adapted dominance rule (DaDR). We compare
the number of times each version finds the best solution (NbBest), the explored nodes
average (AvgNodes), and the average CPU time needed to reach the best solution
(TBest), only for the cases that all versions have found it.

21

60 Instances
n = 40,m ∈ [2, 4] NbBest AvgNodes TBest
LBCP 36 (60.0 �) 62007 4.52
LBNCY 38 (63.3 �) 61742 4.47
DaDR 35 (58.3 �) 53373 1.69

60 Instances
n = 100,m ∈ [2, 4] NbBest AvgNodes TBest
LBCP 26 (43.3 �) 9259 17.55
LBNCY 34 (56.7 �) 7813 15.63
DaDR 38 (63.3 �) 7606 8.71

Table 7: Results of lower bounds and dominance rule efficiency for min
∑

Ci problem

Tables 7 and 8 show the efficiency of the specific lower bound LBLCY and energetic
reasoning with the computation of setup times consumption. Moreover, we find that
the discrepancy-adapted dominance rule is very efficient for large-size instances but
not especially interesting for the middle-size instances. However the time consumed
to reach the best solution is reduced when we use the dominance rule for most of
cases.

60 Instances
n = 40,m ∈ [2, 4] NbBest AvgNodes TBest
LBCP 47 (78.3 �) 93737 4.81
ENERGY 48 (80.0 �) 99856 4.24
DaDR 44 (73.3 �) 71737 4.59

60 Instances
n = 100,m ∈ [2, 4] NbBest AvgNodes TBest
LBCP 44 (73.3 �) 11474 4.29
ENERGY 48 (80.0 �) 12961 3.58
DaDR 55 (91.7 �) 9462 3.17

Table 8: Results of lower bound, energetic reasoning and dominance rule efficiency
for minLmax problem

We compare CDS and HD-CDDS methods against other tree search methods
presented in Néron et al. (2008). In Néron et al. (2008), the authors test two dif-

22

ferent branching schemes, time windows (tw) and chronological (chr), and several
incomplete tree search techniques (truncated branch-and-bound, LDS, Beam Search
and Branch-and-Greed) for the Pm|ri, qi|Cmax problem. We adapt the proposed
methods for this problem and we use the heuristic for the initial solution and the
upper bounds proposed in their paper. In Table 9, we compare LDS (z is the number
of authorized discrepancies) and Beam Search (BS, ω is the number of explored child
nodes) results, the method with the best results in their work, against the proposed
methods CDS and HD-CDDS. We have evaluated the number of times the method
has found the best solution (NbBest) and for how many of them the method is the
only one to reach the best solution (NbBestStrict) for a set of 50 hard instances
(n = 100 and m = 10). The CPU time is limited to 30 seconds as in Néron et al.
(2008).

50 instances NbBest NbBestStrict
LDStw

z=1 1 (2.0 �) 0
LDSchr

z=2 7 (14.0 �) 0
BStw

ω=3 25 (50.0 �) 3
BSchr

ω=4 22 (44.0 �) 0
CDS 35 (70.0 �) 6
HD-CDDS 38 (76.0 �) 9

Table 9: Results for the comparison with other truncated tree search techniques

Although precedence constraints and setup times are not considered in the prob-
lem, we can observe that our propositions are strictly better. Out of a set of 50
instances, CDS and HD-CDDS find the best solution for most of the cases and they
find a new best solution for 6 and 9 instances respectively. Rather than contradicting
the statement of relative LDS inefficiency for parallel machine problem experienced
by Néron et al. (2008), this demonstrates, at least for this problem, the efficiency of
large neighborhood search based on LDS.

Finally, we compare the local search methods with the results obtained by ILOG
OPL 6.0. The four variants of the hybrid tree local search methods (CDS, CDDS,HD-
CDDS, MC-CDS) are implemented with LDS-low, discrepancy-adapted dominance
rule and binary counting (except for MC-CDS which supposes a mix counting). We
solve the large-size instances (n = 100, m ∈ [2, 4]) for two different CPU time limits,
30 and 300 seconds, then we compare the number of times when the best solution
has been found by the method and the average deviation from the best solution.

23

30 instances TCPU = 30s TCPU = 300s

p ∼ U [1, 5], sij ∼ U [1, 10] NbBest AvgDev NbBest AvgDev
CDS 17 (56.6 �) 0.64 � 7 (23.3 �) 0.51 �

CDDS 7 (23.3 �) 0.75 � 7 (23.3 �) 0.82 �

HD-CDDS 16 (53.3 �) 0.60 � 14 (46.7 �) 0.43 �

MC-CDS 17 (56.6 �) 0.64 � 10 (33.3 �) 0.45 �

ILOG OPL 4 (13.3 �) 1.51 � 2 (6.7 �) 1.47 �

30 instances TCPU = 30s TCPU = 300s

p ∼ U [1, 5], sij ∼ U [20, 40] NbBest AvgDev NbBest AvgDev
CDS 9 (30.0 �) 0.23 � 6 (20.0 �) 0.18 �

CDDS 7 (23.3 �) 0.35 � 6 (20.0 �) 0.38 �

HD-CDDS 12 (40.0 �) 0.26 � 11 (36.6 �) 0.17 �

MC-CDS 11 (36.7 �) 0.25 � 13 (43.3 �) 0.26 �

ILOG OPL 10 (33.3 �) 0.70 � 5 (16.6 �) 0.63 �

Table 10: Results for the comparison of different variants of hybrid tree local search
methods for min

∑
Ci problem

In Table 10, we observe that hybrid local search methods improve the best so-
lutions found by ILOG OPL. All methods, except CDDS, find the best solution for
a large number of instances and the mean deviation from the best solution are less
important than ILOG OPL solutions. We observe that computing an upper bound
highly increases the efficiency of the truncated search.

24

30 instances TCPU = 30s TCPU = 300s

p ∼ U [1, 5], sij ∼ U [1, 10] NbBest AvgDev NbBest AvgDev
CDS 10 (33.3 �) 2.75 � 7 (23.3 �) 3.06 �

CDDS 9 (30.0 �) 2.65 � 8 (26.7 �) 3.28 �

HD-CDDS 13 (43.3 �) 1.92 � 10 (33.3 �) 2.56 �

MC-CDS 13 (43.3 �) 1.75 � 11 (30.0 �) 2.29 �

ILOG OPL 15 (50.0 �) 2.07 � 18 (60.0 �) 1.55 �

30 instances TCPU = 30s TCPU = 300s

p ∼ U [1, 5], sij ∼ U [20, 40] NbBest AvgDev NbBest AvgDev
CDS 3 (10.0 �) 2.76 � 2 (6.0 �) 2.89 �

CDDS 3 (10.0 �) 2.71 � 2 (6.0 �) 2.88 �

HD-CDDS 13 (43.3 �) 2.12 � 7 (23.3 �) 1.55 �

MC-CDS 12 (40.0 �) 2.08 � 8 (26.7 �) 1.83 �

ILOG OPL 15 (50.0 �) 0.91 � 19 (63.3 �) 0.90 �

Table 11: Results for the comparison of different variants of hybrid tree local search
methods for minLmax problem

Table 11 shows the results for the minimization of maximum lateness. For this
case, we observe ILOG OPL improves our results, but we can say that the proposed
methods are still competitive, the mean deviation is acceptable and they found the
best solution over 50 � and 37 � of instances, for 30 and 300 seconds respectively.

6 Conclusion

In this paper we have studied limited discrepancy-based search methods. We have
compared and tested some of the existing options for different LDS components,
such as discrepancy counting modes and branching structures, to solve the parallel
machine scheduling problem with precedence constraints and setup times.

New local search methods based on LDS have been proposed and compared with
similar existing methods. The computational experiments show these methods are
efficient to solve parallel machine scheduling problems in general and demonstrates
the interest, at least for the studied problem, of incorporating LDS into a large
neighborhood search scheme as first suggested by Milano and Roli (2002).

We have suggested an energetic reasoning scheme integrating setup times and we
have proposed new global and local dominance rules adapted to discrepancies. As

25

the results show, these evaluation techniques allow to reduce the number of explored
nodes and the time of the search.

As a direction for further research, the proposed methods could be extended to
solve more complex problems involving setup times, like the hybrid flow shop or the
RCPSP.

References

C. Artigues, P. Lopez, and P-D. Ayache. Schedule generation schemes and priority
rules for the job-shop problem with sequence-dependent setup times: dominance
properties and computational analysis. Annals of Operations Research, 138(1):
21–52, 2005.

I. D. Baev, W. M. Meleis, and A. Eichenberger. An experimental study of algorithms
for weighted completion time scheduling. Algorithmica, 22:34–51, 2002.

J. C. Beck and L. Perron. Discrepancy-bounded depth first search. In Second Inter-
national Workshop on Integration of AI and OR Technologies for Combinatorial
Optimization Problems (CP-AI-OR’00), Paderborn (Germany), 2000.

Z.-L. Chen and W. B. Powell. Solving parallel machine scheduling problems by
column generation. INFORMS J. on Computing, 11(1):78–94, 1999.

T. Cheng and C. Sin. A state-of-the-art review of parallel-machine scheduling re-
search. European Journal of Operational Research, 47:271–292, 1990.

E. Demeulemeester, M. Vanhoucke, and W. Herroelen. Rangen: A random network
generator for activity-on-the-node networks. Journal of Scheduling, 6:17–38, 2003.

E. L. Demeulemeester and W. S. Herroelen. New benchmark results for the resource-
constrained project scheduling problem. Management Science, 43(11):1485–1492,
1997.

R.L Graham, E.L Lawler, J.K Lenstra, and A. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of
Discrete Mathematics, pages 287–326, 1979.

P. Hansen and N. Mladenovic. Variable neighborhood search: Principes and appli-
cations. European Journal of Operational Research, 130:449–467, 2001.

26

W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proceedings of
14th IJCAI, 1995.

A. Ben Hmida, M. J. Huguet, P. Lopez, and M. Haouari. Climbing depth-bounded
discrepancy search for solving hybrid flow shop scheduling problems. European
Journal of Industrial Engineering, 1(2):223–243, 2007.

J. Hurink and S. Knust. List scheduling in a parallel machine environment with
precedence constraints and setup times. Operations Research Letters, 29:231–239,
2001.

W. Karoui, M.-J. Huguet, P. Lopez, and W. Naanaa. YIELDS: A yet improved
limited discrepancy search for CSPs. In 4th International Conference on Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CP-AI-OR’07), Brussels (Belgium), 2007.

R. Korf. Improved limited discrepancy search. In Proceedings of 13th AAAI, 1996.

P. Lopez and P. Esquirol. Consistency enforcing in scheduling: A general formulation
based on energetic reasoning. In 5th International Workshop on Projet Manage-
ment and Scheduling (PMS’96), Poznan (Poland), 1996.

M. Milano and A. Roli. On the relation between complete and incomplete search:
an informal discussion. In Proceedings CPAIOR’02, Le Croisic (France), 2002.

E. Néron, F. Tercinet, and F. Sourd. Search tree based approches for parallel machine
scheduling. Computers and Operations Research, 35(4):1127–1137, 2008.

R. Nessah, Ch. Chu, and F. Yalaoui. An exact method for Pm|sds, ri|
∑

Ci problem.
Computers and Operations Research, 34:2840–2848, 2005.

K. Neumann, C. Schwindt, and J. Zimmermann. Project Scheduling with Time
Windows and Scarse Resources. Springer, 2002.

I. M. Ovacik and R. Uzsoy. Rolling horizon procedures for dynamic parallel ma-
chine scheduling with sequence-dependent setup times. International journal of
production research, 33(11):3173–3192, 1995.

W. L. Pearn, S. H. Chung, and C .M. Lai. Scheduling integrated circuit assembly
operations on die bonder. IEEE Transactions on electronics packaging manufac-
turing, 30(2), 2007.

27

A. Salem, G. C. Anagnostopoulos, and G. Rabadi. A branch-and-bound algorithm
for parallel machine scheduling problems. In Society for Computer Simulation
International (SCS), Portofino (Italy), 2000.

J. M. J. Schutten. List scheduling revisited. Operations Research Letters, 18:167–170,
1994.

J. M. J. Schutten and R. A. M. Leussink. Parallel machine scheduling with re-
lease dates, due dates and family setup times. International journal of production
economics, 46-47(1):119–126, 1996.

P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Principes and Practice of Constraint Programming-CP 98,
1998.

F. Sourd. Earliness-tardiness scheduling with setup considerations. Computers and
Operations Research, 32(7):1849–1865, 2005.

R. Uzsoy and J. D. Velasquez. Heuristics for minimizing maximum lateness on a
single machine with family-dependent set-up times. Computers and Operations
Research, 35:2018–2033, 2008.

M. van den Akker, J. Hoogeven, and J. Kempen. Parallel machine scheduling through
column generation: minimax objective functions, release dates, deadlines and/or
generalized precedence constraints. Technical report, Utrech university, 2005.

T. Walsh. Depth-bounded discrepancy search. APES Group, Department of Com-
puter Science, 1997.

28

	Introduction
	Problem definition
	Branch-and-Bound components for Pm|prec,sij,ri|Ci and Pm|prec,sij,ri|Lmax
	Tree structure
	Node evaluation
	Dominance rules

	Discrepancy-based tree search methods
	Limited discrepancy search
	Exploration strategy
	Large neighborhood search based on LDS
	Discrepancy-adapted dominance rules

	Computational experiments
	Conclusion

