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ABSTRACT 

 

In this thesis there is a set of waste disposal facilities, a set of customers at which waste 

is collected and an unlimited number of homogeneous vehicles based at a single depot. 

Empty vehicles leave the depot and collect waste from customers, emptying themselves 

at the waste disposal facilities as and when necessary. Vehicles return to the depot 

empty. We take into consideration time windows associated with customers, disposal 

facilities and the depot. We also have a driver rest period. The problem is solved 

heuristically. A neighbour set is defined for each customer as the set of customers that 

are close, but with compatible time windows.   

 

This thesis uses six different procedures to obtain initial solutions for the problem.  

Then, the initial solutions from these procedures are improved in terms of the distance 

travelled using our phase 1 and phase 2 procedures, whereas we reduce the number of 

vehicles used using our vehicle reduction (VR) procedure.   

 

In a further attempt to improve the solutions three metaheuristic algorithms are 

presented, namely tabu search (TS), variable neighbourhood search (VNS) and variable 

neighbourhood tabu search (VNTS).  Moreover, we present a modified disposal facility 

positioning (DFP), reverse order and change tracking procedures.   

 

Using all these procedures presented in the thesis, four solution procedures are reported 

for the two benchmark problem sets, namely waste collection vehicle routing problems 

with time windows (VRPTW) and multi-depot vehicle routing problem with inter-depot 

routes (MDVRPI).   
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Our solutions for the waste collection VRPTW problems are compared with the 

solutions from Kim et al (2006), and our solutions for the MDVRPI problems are 

compared with Crevier et al (2007).  Computational results for the waste collection 

VRPTW problems indicate that our algorithms produce better quality solutions than 

Kim et al (2006) in terms of both distance travelled and number of vehicles used.  

However for the MDVRPI problems, solutions from Crevier et al (2007) outperform our 

solutions.  
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CHAPTER 1 

 

INTRODUCTION 

 

The vehicle routing problem (VRP) is one of the most challenging combinatorial 

optimisation problems.  Since it was first proposed by Dantzig and Ramser in 1959 as 

the truck dispatching problem, the VRP has become a more and more interesting 

research area due to its wide applicability and economic importance in reducing 

operational costs in distribution systems.   

 

In the literature, the basic VRP is comprised of a set of vehicles, customers and a depot.  

It can be defined as the problem of designing least cost routes for identical vehicles of 

known capacities, which run from a central depot to a set of geographically dispersed 

customers with non-negative demand.  Each customer is to be fully serviced exactly 

once (typically by one vehicle).  The total demand and the length of a route must not 

exceed the total capacity and the total distance travelled allowed for a vehicle.  The 

vehicles will return to the depot after servicing customers who have been assigned to 

them.   

 

1.1 VRP variants 

In order to satisfy real-life VRP scenarios, more restrictions are usually involved in the 

problem such as multiple number of depots, different type of vehicles (homogeneous 

and heterogeneous), different types of customer’s demand (deterministic or stochastic), 
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road constraints (one way, prohibited route), types of operations (collection, delivery, 

and mixed) etc.  Including these restrictions implies a significant increase in the 

complexity of the VRP problem.  As a result, variants of the VRP have been introduced 

in the literature.  A paper by Eksioglu, Vural and Reisman (2009) presents a taxonomic 

framework of VRP for the last three decades. We also address the reader to a VRP web 

site where the explanation of VRP variants including the VRP instances, solution 

techniques used to solve VRP as well as the best solutions found are updated on this 

web site, http://neo.lcc.uma.es/radi-

aeb/WebVRP/index.html?/Problem_Instances/instances.html 

 

The VRP variant involved in this study is the Vehicle Routing Problem with Time 

Windows (VRPTW).  This time window constraint restricts the times at which a 

customer is available to be served by a vehicle.  It is usually expressed as a time frame 

for each customer.  Typically if the vehicle arrives early at a customer, then it must wait 

until start of service is possible. 

 

The VRPTW has been studied extensively in the literature (e.g. Park and Kim, 2010; 

Russell, Chiang and Zepeda, 2008; Fabri and Recht, 2006; Doerner et el.,2008).  This is 

mainly due to applicability of time window constraints in real-world situations, such as 

the waste collection problem (WCP) studied in this thesis. 
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1.2 VRPTW in waste collection 

In general a waste collection system involves the collection and transportation of solid 

waste to disposal facilities.  This essential service is receiving increasing attention from 

many researchers due to its impact on the public concern for the environment and 

population growth, especially in urban areas.  Because this service involves a very high 

operational cost, researchers are trying to reduce the cost by improving the routing of 

waste collection vehicles, finding the most suitable location of disposal facilities and the 

location of collection waste bins as well as minimizing the number of vehicles used.  For 

example, a study by Simonetto and Borenstein (2007) tested a decision support system 

called SCOLDSS on a real life waste collection problem in Porto Alegre, Brazil.  By 

using SCOLDSS, they stated that it is possible to obtain a mean reduction of 8.82% in 

the distance to be covered and a reduction of 17.89% in the weekly number of trips by 

the collection vehicles.  This result is very significant to Municipal Department of Urban 

Cleaning (DMLU) because it can represent savings of around 10% of the DMLU annual 

budget for solid waste collection per year, considering the operational and maintenance 

costs. 

 

This thesis considers a vehicle routing problem that arises when a set of customers have 

waste that must be collected by vehicles. In such situations it is common for the amount 

of waste to be such that vehicles become full during their working day and have time to 

visit a waste disposal facility to empty themselves before going on to visit more 

customers and collect more waste. As such multiple visits to waste disposal facilities 

may be made during the working day. This problem is a single period node routing 
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problem and is often encountered in terms of waste collection from commercial 

customers. 

 

In the literature, waste collection can be divided into three categories: residential, 

commercial and skip waste collection.   Residential waste is found in front of the houses 

in small bins or garbage bags.   The collection vehicles will collect all this waste along 

the streets which have been assigned to them.  Therefore, this service is often solved by 

researchers as an arc routing problem where the exact location of every customer is not 

needed.    

 

On the other hand the commercial and the skip collection problems are typically solved 

as node routing problems and the location of every customer is known.  This is because 

the waste collection involved in these strategies is point-to-point collection.  

Commercial waste can be found at restaurants, retail outlets and apartments in 

containers.  The vehicles will collect waste at collection points before going to the 

disposal facilities to be emptied.  

 

For the skip problem, waste can be found at construction sites in large containers.  The 

size of   containers used in this collection is much larger than the containers used for 

commercial waste.  In general, this problem involves the pickup of full containers, 

transport to the disposal facility for unloading (emptying) and returning the empty 

container to the site.  Therefore in this problem, the vehicle can often only collect one 

container at a time.  In the literature, this problem is also known as a roll-on roll-off 
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problem.  In terms of the total number of customers served residential waste collection 

problems typically serve more customers than the commercial and skip problems.   

 

Essentially, the commercial waste collection problem focused in this thesis can be 

described as follows: the problem has an unlimited number of identical (homogeneous) 

vehicles based at a single depot. Vehicles start/end their routes at the depot empty. This 

problem involves multiple disposal facilities, so that decisions must be made not only as 

to when a vehicle should empty itself at a disposal facility, but also which disposal 

facility it should use. This problem also considers time windows, one associated with 

each customer that governs when waste can be collected from that customer; another 

associated with each disposal facility that governs when that facility is open; another 

associated with the depot that governs when it is open to dispatch/receive vehicles. Each 

vehicle has a driver rest period (associated with a lunch break during the working day), 

and a maximum amount of work it can do during the day (both in terms of the total 

amount of waste collected and the total number of customers dealt with). This is a single 

period problem, so it is not a periodic routing problem where one has to design routes 

over multiple periods. 

 

1.3 Thesis structure 

This thesis is organised as follows. In Chapter 2 examples of heuristic techniques that 

have been used to solve the VRP for deliveries are presented.  Next, the relevant 

literature on the waste collection problem, particularly the skip problems and non-skip 
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problems which deal with node routing are reviewed.  Finally, a discussion of this 

chapter is presented.   

 

Chapter 3 is divided into five parts.  First, the notation for the problem is presented.  

Second, the neighbour sets for each customer are defined. The neighbour set for a 

customer is those customers that are closest to it, but with compatible time windows.  

Third, six initial solution procedures implemented on two benchmark problem sets used 

in the thesis are presented.  Fourth, initial solutions obtained from the procedures are 

reported.  Finally, a summary of this chapter is presented.   

 

Chapter 4 presents our procedure to evaluate a given route, which involves inserting into 

the route (if necessary) disposal facility visits.  Next, procedures to improve a solution, 

both in terms of the distance travelled and in terms of the number of vehicles used are 

presented.  Then, computational results for both procedures tested on two benchmark 

problem sets are reported.  Finally, a summary of this chapter is presented.   

 

In Chapter 5 general descriptions of tabu search (TS) and variable neighbourhood search 

(VNS) are presented.  Next, our three metaheuristic algorithms, namely TS, VNS and 

variable neighbourhood tabu search (VNTS) are presented.  VNTS is a metaheuristic 

algorithm where the variable neighbourhood is searched via tabu search.  Then, 

computational results for our three metaheuristics tested on two benchmark problem sets 

are reported.  Finally, a summary of this chapter is presented.   
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Chapter 6 presents another route evaluation procedure, namely disposal facility 

positioning (DFP).  Next, two procedures namely, change tracking and reverse order are 

presented.  Then, computational results for these procedures tested on two benchmark 

problem sets are reported.  Finally, a summary of this chapter is presented.   

 

In Chapter 7 a summary of every chapter in the thesis is presented.  Then, the 

contribution of the thesis to knowledge and suggestions for further research are 

discussed. 



Chapter 2: Literature Review 
 

8 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

In the first part of this chapter, examples of heuristic techniques that have been used to 

solve the VRP for deliveries are presented.  Next, some literature on VRP for collection 

is reviewed.  This includes previous work dealing with waste collection such as arc 

routing, as well as node routing, particularly skip problems and non-skip problems. 

 

2.1 Heuristics for delivery problems 

Basically the VRP for delivery problems can be defined as delivering goods to a number 

of customers who have placed orders for a certain quantity of these goods from a central 

depot.  Due to some constraints such as load, distance and time, a single vehicle may not 

be able to serve all the customers.  The problem then is to determine the number of 

vehicles needed to serve the customers as well as the routes that will minimize the total 

distance travelled by the vehicles.  Many heuristics have been introduced in the 

literature for searching for good solutions to the problem. 

 

For instance the savings algorithm of Clarke and Wright (1964), the sweep algorithm of 

Gillett and Miller (1974), the cluster-first, route-second heuristic of Fisher and Jaikumar 

(1981), the path scanning heuristic of Golden, De Armon and Bakers (1983), and the 

route-first, cluster-second heuristic of Beasley (1983).  A detailed survey of major 
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developments in heuristics as well as exact algorithms for solving the VRP can be found 

in the recent paper by Laporte (2009), but this is a still growing research area. 

 

Many papers in the literature deal with academic test problems.  Examples of real-life 

delivery problems that catch the attention of researchers are newspaper delivery (e.g. 

Boonkleaw, Suthikarnnarunai and Srinon, 2009; Russell, Chiang and Zepeda, 2008; 

Song, Lee and Kim, 2002; Ree and Yoon, 1996), food delivery (e.g. Chen, Hsueh and 

Chang, 2009; Rusdiansyah and Tsao, 2005; Faulin, 2003), as well as postal and parcel 

delivery (e.g. Bruns, Klose and Stahly, 2000; Novaes and Graciolli, 1999). 

 

2.2 VRP for collection 

Essentially, the VRP for collection is dealing with the same type of constraints as in a 

delivery problem when constructing vehicle routes. Thus, this problem also attempts to 

determine the number of vehicles needed to serve the customers as well as the routes 

that will minimize the total distance travelled by the vehicles.  However, the vehicle for 

the collection problem is empty when it starts from the depot, whereas the vehicle for 

the delivery problem begins its route loaded with customers’ goods that need to be 

delivered.  In the collection problem vehicles will collect goods from a set of customers 

and return to the depot at the end of the working day. 

 

Some applications of collection problems that can be found in the literature are cash 

collection (e.g. Lambert, Laporte and Louveaux, 1993), collection of raw materials for 
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multi-product dehydration plants (e.g. Tarantilis and Kiranoudis, 2001a; Tarantilis and 

Kiranoudis, 2001b), and milk collection (e.g. Caramia and Guerriero, 2010).   

 

2.3 Waste collection VRP 

Dealing with a waste collection problem is different from the collection problem as 

discussed in the previous section. There is an additional constraint that needs to be 

considered in solving this problem.  Instead of returning to the depot to unload the 

collected goods, in a waste collection problem vehicles need to be emptied at a disposal 

facility before continuing collecting waste from other customers.  Thus, multiple trips to 

the disposal facility occur in this problem before the vehicles return to the depot empty, 

with zero waste.  A complication in the problem arises when more than one disposal 

facilities are involved.  Here one needs to determine the right time to empty the vehicles 

as well as to choose the best disposal facility they should go to so that the total distance 

can be minimized.  For example it may not be optimal to allow the collection vehicle to 

become full before visiting a disposal facility. 

 

Increasing quantities of solid waste due to population growth, especially in urban areas, 

and the high cost of its collection are the main reasons why this problem has become an 

important research area in the field of vehicle routing.  In the next two sections, previous 

work dealing with waste collection as arc routing problems and as node routing 

problems are reviewed. 
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2.4 Arc routing problems 

Due to the large number of residential waste locations that have to be collected from this 

collection problem is often dealt with as an arc routing problem, whereas the collection 

of commercial waste is dealt with as a node routing problem.  In this section some of the 

previous work dealing with arc routing problems for waste collection is reviewed.   

 

Chang, Lu and Wei (1997) applied a revised multiobjective mixed-integer programming 

model (MIP) for analyzing the optimal path in a waste collection network within a 

geographic information system (GIS) environment.  They demonstrated the integration 

of the MIP and the GIS for the management of solid waste in Kaohsiung, Taiwan.  

Computational results of three cases particularly the current scenario, proposed 

management scenario (without resource equity consideration) and modified 

management scenario (with resource equity requirement) are reported.  Both the 

proposed and the modified management scenarios show solutions of similar quality.  On 

average both scenarios show a reduction of around 36.46% in distance travelled and 

6.03% in collection time compared to the current scenario.       

 

Mourao and Almeida (2000) solved a capacitated arc routing problem (CARP) with side 

constraints for a refuse collection VRP using two lower-bounding methods to 

incorporate the side constraints and a three-phase heuristic to generate a near optimal 

solution from the solution obtained with the first lower-bounding method.  Then, the 

feasible solution from the heuristic represents an upper bound to the problem. The 

heuristic they developed is a route-first, cluster-second method.  
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Bautista and Pereira (2004) presented an ant algorithm for designing collection routes 

for urban waste.  To ascertain the quality of the algorithm, they tested it on three 

instances from the capacitated arc routing problem literature (i.e. Golden, DeArmon and 

Baker, 1983; Benavent et al, 1992; and Li and Eglese, 1996) and also on a set of real life 

instances from the municipality of Sant Boi del Llobregat, Barcelona.  The 

characteristics of each dataset are presented.  Computational results for Golden, 

DeArmon and Baker (1983) and Benavent et al (1992) are within less than 4% of the 

best known solution, and for Li and Eglese (1996) dataset up to 5.08%. 

 

Mourao and Amado (2005) presented a heuristic method for a mixed CARP, inspired by 

the refuse collection problem in Lisbon.  The proposed heuristic can be used for directed 

and mixed cases.  Mixed cases indicate that waste may be collected on both sides of the 

road at the same time (i.e. narrow street), whereas waste for the directed cases only can 

be collected on one side of the road.  They reported computational results for the 

directed case on randomly generated data and for the mixed case on the extended CARP 

benchmark problems of Lacomme et al. (2002).  Computational results for the directed 

problem, involving up to 400 nodes show the gap values (between their lower bound 

and upper bound values computed from their heuristic method) varying between 0.8% 

and 3%.  For the mixed problem, comparison results with four other heuristics namely, 

extended Path-Scanning, extended Ulusoys, extended Augment-Merge and extended 

Merge are reported.  They stated that they were able to get good feasible solutions with 

gap values (between the lower bound values obtained from Belenguer et al (2003) and 

their upper bound values) between 0.28% and 5.47%.   
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Li, Borenstein and Mirchandani (2008) solved a solid waste collection in Porto Alegre, 

Brazil which involves 150 neighbourhoods, with a population of more than 1.3 million.  

They design a truck schedule operation plan with the purpose of minimizing the 

operating and fixed truck costs.  In this problem the collected waste is discarded at 

recycling facilities, instead of disposal facilities.  Furthermore, the heuristic approach 

used in this problem also attempts to balance the number of trips between eight 

recycling facilities to guarantee the jobs of poor people in the different areas of the city 

who work at the recycling facilities.  Computational results indicate that they reduce the 

average number of vehicles used and the average distance travelled, resulting in a saving 

of around 25.24% and 27.21% respectively.   

 

Mourao, Nunes and Prins (2009) proposed two two-phase heuristics and one best 

insertion method for solving a sectoring arc routing problem (SARC) in a municipal 

waste collection problem.  In SARC, the street network is partitioned into a number of 

sectors, and then a set of vehicle trips is built in each sector that aims to minimize the 

total duration of the trips.  Moreover, workload balance, route compactness and 

contiguity are also taken into consideration in the proposed heuristics. 

 

Ogwueleka (2009) proposed a heuristic procedure which consists of a route first, cluster 

second method for solving a solid waste collection problem in Onitsha, Nigeria.  

Comparison results with the existing situation show that they use one less collection 

vehicle, a reduction of 16.31% in route length, a saving of around 25.24% in collection 

cost and a reduction of 23.51% in collection time.   
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In some cases, waste collection problems are solved as node and arc routing problems.  

For example Bautista, Fernandez and Pereira (2008) transformed the arc routing into a 

node routing problem due to the road constraint such as forbidden turns for solving an 

urban waste collection problem in the municipality of Sant Boi de Llobregat, Barcelona 

with 73917 inhabitants using an ant colonies heuristic which is based on nearest 

neighbour and nearest insertion methods.  Computational results show that both 

methods produce less total distance compared with the current routes.  In particular, 

routes from nearest neighbour and nearest insertion travel 35% and 37% less, 

respectively. 

   

Furthermore, Santos, Coutinho-Rodriques and Current (2008) presented a spatial 

decision support system (SDSS) to generate vehicle routes for multi-vehicle routing 

problems that serve demand located along arcs and nodes of the transportation network.  

This is mainly due to some streets which are too narrow for standard-sized vehicles to 

traverse, thus the demand along arcs as well as at network nodes are required for solving 

waste collection in Coimbra, Portugal. 

 

2.5 Node routing problems 

If the location of every collection point is known when solving the waste collection 

problem then it is a node routing problem.  Vehicles will travel from the depot to a 

customer and then to another customer, etc, to collect waste based on the sequence of 

visits on the vehicle route.  This sequence includes trips to disposal facilities to empty 

the vehicle and the last visit would be the depot. 
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In the next section, previous work dealing with node routing problems, particularly the 

skip problems and non-skip problems are reviewed.  Note here that Sbihi and Eglese 

(2007) have discussed the importance attached to waste management and collection in 

terms of the “green logistics” agenda. 

      

2.5.1 Container/skip problems 

De Meulemeester et al (1997) dealt with the problem of delivering empty skips and 

collecting full skips from customers. Vehicles can carry only one skip at a time, but 

skips can be of different types. They stated that the problem was first considered by 

Cristallo (1994). Their solution approach is based on two simple heuristics and an 

enumerative approach. They reported computational experience with randomly 

generated problems involving up to 160 customers and a real-world problem involving 

30 customers. 

 

Bodin et al (2000) considered a sanitation routing problem they called the rollon-rolloff 

vehicle routing problem.  In this problem trailers, in which waste is collected, are 

positioned at customers. A tractor (vehicle) can move only a single trailer at a time. 

Tractor trips involve, for example, moving an empty trailer from the disposal facility to 

a customer and collecting the full trailer from the customer. A key aspect of their work 

is that they assume that the set of trips to be operated is known in advance (so the 

problem reduces to deciding for these trips how they will be serviced by the tractors). 
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They presented four heuristic algorithms and gave computational results for problems 

involving up to 199 trips and a single disposal facility.  

 

Archetti and Speranza (2004) developed a heuristic algorithm called SMART-COLL for 

a problem motivated by waste collection in Brescia, Italy. In their problem skips are 

collected from customers and the vehicle can carry only one skip at a time. They call the 

problem the 1-skip collection problem. They considered skips of different types and 

time windows are imposed on both the customers and the disposal facilities. 

Computational experience was reported for real world data involving 51 customers and 

13 disposal facilities.  

 

Teixeira, Antunes and de Sousa (2004) developed a three-phase heuristic technique to 

create collection routes for the collection of urban recyclable waste in the central region 

of Portugal.  Three types of waste in separate containers must be collected individually.  

The collected containers are emptied at two central depots and vehicles start and 

terminate a route in one of these depots.  Computational results show that the total 

distance travelled of the proposed solution is 29% less than the historical distance. 

 

Baldacci et al (2006) dealt with an extension of the problem considered by Bodin et al 

(2000). They considered multiple disposal facilities as well as inventory facilities at 

which empty trailers are available. They presented an approach based on regarding the 

problem as a time constrained vehicle routing problem on a directed multi-graph. 
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Computational results for problems involving up to 75 customers and two disposal 

facilities were presented. 

 

Le Blanc et al (2006) presented a paper dealing with the collection of containers from 

end-of-life vehicle dismantlers in the Netherlands. In the problem they considered 

vehicles can carry two containers at a time. Their heuristic is a two-step procedure, first 

generating candidate routes, then selecting from these routes using a set partitioning 

approach. They reported potential cost savings of over 18% compared with the current 

system. 

 

Even though Aringhieri et al (2004) solved a skip problem in Perugia, Italy, they solve 

the problem as an arc routing problem due to the different types of containers used to 

collect different waste.  Therefore, the selected arcs for the vehicle to travel depend on 

the service requests which are characterized by types of waste, container and the 

collection point. 

 

2.5.2 Non-skip problems 

The majority of papers in the literature for non-skip problems are case study papers, 

focusing on results obtained when algorithms are applied to real world data. Only a few 

of these papers report computational experience with publicly available waste collection 

test instances. 
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Chang and Wei (2002) presented a real-life comparative study between a revised 

heuristic algorithm and an optimization technique particularly, minimum spanning tree 

and integer programming model, for investigating the effectiveness of vehicle routing 

and scheduling in a solid waste collection system.  To illustrate the comparison of both 

techniques, a case study in the city of Kaohsiung, Taiwan which involves 854 collection 

points was presented.  As expected in terms of cost-saving perspective, a set of near-

optimal solutions from the heuristic algorithm are not as economic as the optimal 

solutions from the optimization scheme. Computational results show that the total 

number of collection vehicles and the total number of crews needed for the optimal 

solutions are 14 and 56, respectively whereas, the heuristic solutions require 22 vehicles 

and 84 crews in total.  However in terms of total routing distance and collection time, 

the heuristic solutions show reductions of 12.7% and 0.9%, respectively even though 

they required more vehicles.  Moreover, the authors stated that the heuristic algorithms 

allow the analysis of a much larger service area of interest within the same 

computational time as compared to the performance of an optimization model.  In their 

view if an improvement in high performance computing comes into reality in the future 

it may overcome the present computational limitation of the optimization model. 

 

Tung and Pinnoi (2000) proposed a heuristic procedure to solve a waste collection 

problem in Hanoi, Vietnam. In their problem there are time windows associated with 

collection from customers and their heuristic first constructs routes based on an 

approach due to Solomon (1987) and then improves them. They reported computational 
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experience indicating that they can achieve an operating cost saving of 4.6% when 

compared with the current situation. 

 

Angelelli and Speranza (2002a) presented an algorithm based on tabu search for the 

periodic version of the problem where routes must be designed over a planning horizon 

of more than one time period so as to meet customer service requirements. Their 

approach is based on the tabu search algorithm for vehicle routing of Cordeau et al 

(1997). Computational results were presented for problems involving between two and 

six days in the planning horizon. 

 

Angelelli and Speranza (2002b) proposed a model that fits three different waste 

collection systems to estimate operational costs. Their solution procedure is based on 

Angelelli and Speranza (2002a) and results were presented relating to two case studies: 

Val Trompia, Italy and Antwerp, Belgium.  

 

Sahoo et al (2005) reported how they developed a system called WasteRoute to reduce 

operating costs for a large company involved in waste collection. They gave one 

example of an area that went from ten routes to nine, improving route productivity (as 

measured by the amount collected per hour) by some 11%.  

 

The heuristic used for the WasteRoute system of Sahoo et al (2005) is fully described in 

Kim et al (2006). Customers have time windows for collection, and there are multiple 

disposal facilities, as well as a driver rest period. They extended Solomon’s (1987) 
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insertion heuristic to cope with both multiple disposal facility visits and the driver rest 

period and used it to construct routes, which are improved using simulated annealing 

and a local search exchange procedure called CROSS (Taillard et al, 1997). As their 

work is motivated by the practical context reported in Sahoo et al (2005) they discussed 

a number of issues with solutions produced by this heuristic: route compactness, 

workload balancing and computation time. In order to deal with these issues they also 

presented a heuristic based on capacitated clustering that generates clusters based on the 

estimated number of vehicles required, and then routes customers within each cluster. 

Computational results were presented for ten problem instances, derived from real-

world data, involving up to 2100 customers that the authors make publicly available.  

 

Agha (2006) used a mixed integer programming model (MIP) to optimize the routing 

system for Deir Al-Balah, Gaza Strip.  The problem involves 58 pick-up points, one 

disposal facility and three collection vehicles.  Comparison results with the existing 

routing system are presented in terms of the total distance travelled.  The result shows 

that the solution involves 23.4% less compared to the existing distance.  Thus, the 

monthly cost can be reduced by approximately US$1140. 

 

Ghose, Dikshit and Sharma (2006) combined both skip and non-skip problems to 

determine the minimum cost/distance efficient collection paths for transporting solid 

waste to the landfill for the Asansol Municipality Corporation (AMC) of West Bengal 

State, India.  In total, the problem involves 1405 collection bins with three different 

sizes.  Three types of vehicles are used for the collection of these bins.  The vehicle 
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type-A and the vehicle type-B serve as skip and non-skip problems, respectively.  While 

the vehicle type-C collects the waste from C-type bins and disposes the waste at its 

nearest A-type bin.  The vehicle will repeat the process until all the waste from C-type 

bins is collected.  Then the vehicle will return to the garage from the location of the last 

A-type bin served.  No comparison with the routing system practised by AMC is made.  

However, they compare the current annual operating cost AMC is spending with their 

estimated operating cost with respect to the proposed solution.  Comparison result 

indicates that AMC may save about 66.8% every year if the proposed solution is 

applied. 

 

Martagan et al (2006) applied classical MIP for a case study in Turkey for transporting 

metal waste from 17 factories to five potential containers, and from containers to a 

single disposal centre.  The monthly cost of the proposed optimal solution is 

approximately $48000.  Comparison routes with those current practised are not 

presented.   Data is provided by TOSB (TAYSAD Organized Industrial Region) where 

TAYSAD is an abbreviation of Association of Automotive Parts & Components 

Manufacturers. 

 

Nuortio et al (2006) considered a problem based on waste collection in two regions of 

Eastern Finland. Their problem includes time windows and they solved the problem 

using Guided Variable Neighbourhood Thresholding (Kytöjoki et al 2007).  
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Apaydin and Gonullu (2007) used Route View ProTM software for constructing waste 

collection route in Trabzon, Turkey.  The collection involves 777 containers and one 

disposal site.  The solution is compared with the present routes in terms of the total route 

distances, travelling time as well as the monthly cost.  Comparison results indicate that 

their routes outperform the present.  Both distance and travelling time are reduced by up 

to 59% and 67%, respectively whilst the monthly cost is decreased by up to 24.7%. 

 

Karadimas, Papatzelou and Loumos (2007) presented an ant colony system (ACS) for 

determining waste collection routes for the Municipality of Athens (MoA).  The 

collection involves 72 loading spots.  Comparison results with the empirical method 

(Kollias, 1993) used by MoA are presented.  The route length of the empirical model is 

9850, whilst the ACS route is 7328.  Thus, the improvement is approximately 25.6%. 

 

Ombuki-Berman et al (2007) presented a multi-objective genetic algorithm that uses a 

crossover procedure (Best Cost Route Crossover) from Ombuki et al (2006). They 

reported results from their approach using the test problems of Kim et al (2006), but no 

computation times were given. 

 

Alagöz and Kocasoy (2008) considered health waste collection in Istanbul. They used a 

commercial vehicle routing package to consider a number of scenarios relating to the 

type of facility used for waste disposal. McLeod and Cherrett (2008) considered a 

problem relating to waste collection in the UK. They used a commercial vehicle routing 

package and reported that vehicle mileage could be reduced by up to 14%. 
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Coene, Arnout and Spieksma (2008) proposed several heuristic algorithms for a routing 

problem of a Belgian company collecting waste at slaughterhouses, butchers and 

supermarket.  The company is responsible for collecting high-risk and low-risk waste 

categories of animal waste.  Both wastes need to be collected separately.  The instances 

can be found at http://www.econ.kuleuven.ac.be/public/N05012/.  Comparison results in 

terms of the total travelling time between the proposed solutions and the current routes 

are presented.  For the low-risk waste, the results indicate that the current total travelling 

time can be reduced by up to 15.5%, whereas the travelling time for the collection of 

high-risk waste can be reduced by up to 9%. 

 

Komilis (2008) presented two mixed integer-linear programming models particularly 

time based optimization model and cost optimization model for the waste collection 

problem in Athens.  The waste is collected from the source nodes and taken to potential 

intermediate nodes, namely waste production nodes (WPN) and waste transfer stations 

(WTS), respectively and finally to the landfill as a sink node.  The cost modelling 

approach used in this work has similarities with the cost optimization model used in 

Badran and El-Haggar (2006) particularly in calculating fuel and maintenance costs as 

well as labour cost.  The problem involves seven WPN, three WTS and one landfill.  

However, WTS may or may not be included in the optimal path, depending on the 

solution.   
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Arribas, Blazquez and Lamas (2010) proposed a methodology for designing an efficient 

urban waste collection for the west-central zone of the Municipality of Santiago using a 

combination of mathematical modelling such as linear integer programming and a tabu 

search algorithm in a GIS environment.  The collection involves 1600 bins and the 

comparison results indicate that the proposed routing system manages to reduce 50% of 

current monthly cost spent on waste collection system with a reduction of 57% in the 

number of vehicles as well as a reduction of 57% in the number of workers needed to 

complete the collection. 

 

Chalkias and Lasaridi (2009) used ArcGIS Network Analyst in their work for the waste 

collection in the Municipality of Nikea (MoN), Athens, Greece.  The problem involves 

501 collection bins and one disposal site. Besides constructing collection routes, 

replacing and reallocating the waste collection bins is also taken into consideration.  

These two scenarios are compared with the current routes.  Computational results 

demonstrate that both scenarios provide savings in terms of collection time and total 

travel distance.  The first scenario (constructing routes with the current location of the 

waste bins) saves around 3.0% in collection time and 5.5% in distance travelled, 

whereas the second scenario (constructing routes after replacing and reallocating the 

waste bins) saves around 17.0% in collection time and 12.5% in distance travelled. 

 

Hemmelmayr et al (2009) presented a paper motivated by a real world waste collection 

problem. They consider a periodic problem, where routes must be designed over a 

multi-day planning horizon so as to meet customer service requirements. They consider 
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a number of constraints motivated by their underlying application and in particular in 

their application the vehicle need not return to the depot empty. They use dynamic 

programming to sequence disposal facility visits within a variable neighbourhood search 

approach. Computational results are presented for instances, involving up to 288 

customers, derived from vehicle routing problems given in the literature.  

 

Repoussis et al (2009) considered waste oil collection and recycling in Greece. In their 

problem vehicles are compartmentalised and they use a list based threshold accepting 

metaheuristic (Tarantilis et al, 2004) to design vehicle routes. They reported reductions 

of up to 30% in the cost per unit of waste collected.  

 

Zamorano et al (2009) attempted to reduce the waste collection management costs in 

Churriana de la Vega, Spain.  This objective includes reducing fuel consumption by 

minimizing the travel time of the collection routes using ArcGIS Network Analyst.  

Computational results show reductions of 32.3% in travelling time compared to the 

current routes.   Other literature focusing on minimizing fuel consumption are Tavares et 

al (2008) and Tavares et al (2009). 

 

Here, we also would like to mention some of the previous work dealing with waste 

collection but where no disposal facilities are involved, such as Firinci et al (2009) and 

Karadimas et al (2005).  
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2.6 Discussion 

This thesis considers exactly the same waste collection problem as in Kim et al (2006) 

involving multiple disposal facilities, driver rest period and customer/depot/disposal 

facility time windows.  Because Kim et al (2006) have made their test problems publicly 

available, a direct computational comparison with their work can be made in this thesis.  

We compare our solutions with the solutions from Kim et al (2006) in terms of the 

distance travelled as well as the number of vehicles used.  Since the waste collection 

problem considered in this thesis has an unlimited number of vehicles, our main 

objective is to produce solutions for the problem with less distance travelled than Kim et 

al (2006).   

 

Although this thesis focuses directly on waste collection from customers we would 

briefly mention here that in the context of deliveries to customers an analogous problem 

is the vehicle routing problem with intermediate replenishment facilities. In problems of 

this type there are intermediate facilities at which vehicles can replenish/restock with the 

goods that they need to satisfy demand at customers they have yet to visit before they 

finally return to the depot at the end of the working day.  

 

An important difference between the collection problem with disposal facilities and the 

delivery problem with replenishment facilities is that in the collection problem a vehicle 

visits a disposal facility to empty itself immediately prior to returning to the depot. In 

the delivery problem there is typically no visit to a replenishment facility for restocking 

immediately prior to returning to the depot (or conversely immediately after leaving the 
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depot). More as to the delivery problem with intermediate replenishment facilities can 

be found in Kek et al (2008), Tarantilis et al (2008), Crevier et al (2007) and Angelelli 

and Speranza (2002a). 

 

Furthermore, this thesis also considers a set of new benchmark instances generated by 

Crevier et al (2007) from those proposed by Cordeau et al (1997) for the multi-depot 

VRP (MDVRP).  These instances contain up to 288 customers and seven depots. In this 

case the depots can act as intermediate replenishment facilities along the route of a 

vehicle.   The instances and the best known solutions are available at 

http://www.hec.ca/chairedistributique/data/.  To the best of our knowledge, no previous 

works are available, thus the comparative results are only made with the authors. 
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CHAPTER 3 

 

INITIAL SOLUTION (IS) PROCEDURES 

 

This chapter begins with the notation used in the thesis.  Next, procedures to define 

neighbour sets and to find initial solutions are presented.  Then, two sets of benchmark 

problems used in the thesis are presented.  Finally, solutions obtained from the 

procedures are reported. 

 

3.1 Notation 

Let C be the set of customers and D be the set of disposal facilities (recall we have just a 

single depot). To represent the depot, disposal facilities and customers we index them 

such that 0 is the depot, 1, 2, …, |D| are the disposal facilities and |D|+1, |D|+2, …, 

|D|+|C| are the customers. The travel time between i and j is denoted by tij and the 

distance between them by dij (where i and j may be the depot, disposal facilities or 

customers). The notation may be conveniently structured as to that relating to the 

vehicles or customers/disposal facilities/depot. For the vehicles let:  

• Q be the vehicle capacity, so a vehicle filled to this capacity has to be emptied at a 

disposal facility before any other customer can be visited 

• Q* be the maximum amount a vehicle can deal with per day (over all customers) 

• S* be the maximum number of customers the vehicle can deal with per day  
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• [R1,R2] be the single lunch (rest) time window so that the lunch/rest period must 

start at some time within this period, the rest duration (how long the vehicle/driver 

is idle) being R3  

 

For the customers/disposal facilities/depot let: 

• qi be the quantity to be collected at customer i∈C 

• Vi be the service time for i∈C∪D such that the visit to i (for collection/disposal) 

takes this (fixed) time 

• [Ei,Li] be the time window for i∈C∪D∪{0} such that the visit to i∈C∪D (for 

collection/disposal) must start within this time period and the vehicles must 

leave/return to the depot within [E0,L0] 

 

In terms of our heuristic we need to identify the nearest (in terms of travel time) open 

disposal facility for customer i at time T. We denote this by n(i,T) and it is defined by:  

n(i,T)=arg min[tij | j∈D, T+tij∈[Ej,Lj]]
 

so the disposal facility associated with customer i at time T is the nearest facility that is 

open should the vehicle go directly from customer i to the facility. Note here that 

computationally we do not calculate n(i,T) for all values of i and T, rather we calculate 

n(i,T) as and when needed in the heuristic below.  

  

3.2 Neighbour sets 

A neighbour set of cardinality K for customer i, denoted by N(i,K), is composed of the 

K customers that are closest to customer i, but with compatible time windows. A 
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customer j is defined in our work to have a compatible time window with customer i 

(and hence potentially belongs to N(i,K)) if it is possible to visit i at some time in its 

time window, service i and then go directly onto j to service j without waiting for its 

time window to open.  

 

As the time window for i is [Ei,Li] the time window for arrival at j after servicing i is 

[Ei+Vi+tij, Li+Vi+tij]. Customer j potentially belongs to the neighbour set for i if this 

time window overlaps with its time window [Ej,Lj]. Two time windows overlap if and 

only if an end point of one time window falls within the other time window. We can 

therefore define the neighbour sets using: 

∀i∈C: set N(i,K)=∅  

∀i∈C,∀j∈C (j≠i):  

if Ej≤Ei+Vi+tij≤Lj or Ej≤Li+Vi+tij≤Lj or  

Ei+Vi+tij≤Ej≤Li+Vi+tij or Ei+Vi+tij≤Lj≤Li+Vi+tij set N(i,K)=N(i,K)∪j 

 

To ensure that N(i,K) has appropriate cardinality then if after the above calculation we 

have |N(i,K)|>K we alter N(i,K) to contain only the K nearest customers to i, i.e. sort the 

customers in N(i,K) in increasing order of their travel time (tij) from i and set N(i,K) to 

contain just the first K customers from this ordered list. Note here that we may have 

|N(i,K)|<K if there are fewer than K customers that have compatible time windows with 

i. 

 

Figure 3.1 depicts an example of a neighbour set of customer 3 with K = 50.  The red 

dots represent the neighbours of customer 3 which are the closest to customer 3 as well 
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as having compatible time windows with customer 3.  The black dots are the other 

customers in the same data set.  Even though there are some black dots close to 

customer 3 they do not have compatible time windows with customer 3 and so are not 

neighbours of customer 3.  For example, if the time window of customer 3 is [12:00, 

15:00] and the time window of customer 5 is [08:00, 10:00] then the vehicle would not 

be able to visit customer 5 after servicing customer 3, because it is already closed.  

Thus, customer 5 would not satisfy any of the expressions discussed above. 

 

Figure 3.1: An example of a neighbour set with K = 50 
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Neighbour sets are a key element in our work. This arises for two reasons: 

• the nature of our metaheuristics, as will become apparent in later chapters below, is 

that we use neighbour sets in seeking to improve a route. As such the larger the 

value of K the larger the neighbourhood we search. 

• by varying K we have a variable neighbourhood. This leads in a natural fashion to 

applying variable neighbourhood search to the problem. 

 

Note here that N(i,K) can be computed before we embark on route construction.  

 

3.3 Current initial solution (IS) procedure  

We construct an initial solution by attempting to fully utilise a vehicle over the day 

(thereby aiming to minimise the total number of vehicles used). Once a vehicle cannot 

be used any more then we start a new vehicle route with a new vehicle. To deal with the 

vehicle/driver rest period we attempt to schedule it as early as possible consistent with 

its time window. Our procedure involves a number of steps, as below. 

 

Initialise 

Set B=C (B is a working set of customers that have still to be routed) 

 

Step 1 

if |B|≠0 so there are still customers to be dealt with then:  

start a new vehicle route at time E0, when the depot opens 

T=E0   T is the current time 

stotal=0  stotal is the total number of customers the vehicle has visited 

Qtotal=0  Qtotal is the total load the vehicle has dealt with 

Qcurrent=0 Qcurrent is the current load on the vehicle 
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r=0 r is the customer at the end of the current emerging vehicle route 

rest=0  rest is one if the vehicle has had its rest period, else zero 

else 

all customers have been dealt with so stop 

end if 

 

Step 2 

Check for the rest period – here we start the rest period as soon as practicable 

If the vehicle has not had a rest period (rest=0) and T∈[R1,R2] then:  

the vehicle now has its rest period 

rest=1  update rest  

T=T+R3 update the current time 

end if 

 

Step 3 

The next customer to be visited on the current emerging route is that customer i∈B such 

that  

i=arg min[trj | j∈B, T+trj∈[Ej,Lj], Qcurrent+qj≤Q, Qtotal+qj≤Q*, stotal+1≤S*,  

θ+tj,n(j,θ)+Vn(j,θ)+tn(j,θ),0≤L0, θ≤R2 if rest=0, where θ=T+trj+Vj]
 

 

The customer i is the customer that has the shortest travel time from the customer r at 

the current end of the route, provided i satisfies the conditions seen above. This 

expression is relatively complex. Here we consider only those customers j such that 

when the vehicle arrives at j (at time T+trj) it will be possible to service the customer as 

the visit will fall in its time window [Ej,Lj] and the load to be collected at j will fit on the 

vehicle (in terms of the current route, the entire days work and the total number of 
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customers visited). Also j has to be a customer such that if j is visited there is time for 

the vehicle to visit the nearest (open) disposal facility to j and then return to the depot 

before the end of the working day. In the above expression θ is the time at which the 

vehicle finishes servicing j, then the vehicle travels to the nearest open disposal facility 

n(j,θ), taking time tj,n(j,θ), the disposal facility visit takes time Vn(j,θ), and then the vehicle 

travels to the depot taking time tn(j,θ),0, arriving before the end of the working day (at 

time L0). Furthermore j has to be such that if the vehicle has not yet had its rest period 

(rest=0) there is still time after servicing j for the rest period to be started (θ≤R2). 

 

For this step preliminary computational experience indicated that one issue which arises 

is that we want to avoid excess travel simply because the vehicle has some limited spare 

capacity. In order to gauge this we compare the travel time from the end of the current 

route to i (i.e. tri) to the travel time to the nearest disposal facility n(r,T), i.e. tr,n(r,T). If 

tri>tr,n(r,T) and the vehicle is near to capacity (in our work a vehicle is defined to be near 

to capacity if max[Qcurrent/Q, Qtotal/Q
*, stotal/S

*]>0.8) then we disregard i (i.e. we treat this 

situation as if we had found no customer satisfying the above expression).  

 

If there is a customer i satisfying the above expression that we can add to the end of the 

emerging route then: 

the vehicle travels to i and services the customer 

T=T+tri+Vi  update the current time 

r=i   update the current customer at the end of the route 

Qcurrent=Qcurrent+qi update the current vehicle load 

Qtotal=Qtotal+qi  update the daily vehicle load 
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stotal=stotal+1  update the total number of customers visited 

B=B-{i}  update the set of customers B by removing i from it  

go to step 2 

end if 

 

Step 4 

We reach this step when we have not found a customer to add to the end of the emerging 

route. 

 

If vehicle is not empty (Qcurrent>0) then: 

the vehicle travels to its nearest disposal facility n(r,T) to be emptied 

T=T+tr,n(r,T)+Vn(r,T) update the current time 

r=n(r,T)  update the end of the route 

Qcurrent=0  update the current vehicle load 

go to step 2 

end if 

 

Step 5 

We reach this step when we have not found a customer to add to the end of the emerging 

route and the vehicle is empty (Qcurrent=0). In this case no more work can be done with 

this vehicle at the current time. It may be possible that the vehicle can do some more 

collections if it is idle until a time arrives such that it is possible to collect from some 

customer.  

 

To deal with this situation we look for the customer whose time window will “open” as 

soon as possible: 

i=arg min[Ej | j∈B, T+trj<Ej, Qcurrent+qj≤Q, Qtotal+qj≤Q*, stotal+1≤S*,  

θ+tj,n(j,θ)+Vn(j,θ)+tn(j,θ),0≤L0, θ≤R2 if rest=0, where θ=Ej+Vj]
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If there is a customer i satisfying the above expression then: 

the vehicle travels to i, arrives at T+tri and waits until time Ei to start the 

collection 

T=Ei+Vi  update the current time 

r=i   update the current customer at the end of the route 

Qcurrent=Qcurrent+qi update the current vehicle load 

Qtotal=Qtotal+qi  update the daily vehicle load 

stotal=stotal+1  update the total number of customers visited 

B=B-{i}  update the set of customers B by removing i from it  

go to step 2 

end if 

 

In this step, one further issue that arises with respect to the rest period is when a vehicle 

finishes servicing the current customer at the end of the emerging route before R1 (T<R1 

and rest=0) and the earliest time windows of the remaining customers will only start 

at/after R2 (Ej≥R2, �j�B).  In this situation as currently above, either we add customer i 

with Ei≥R2 at the end of the emerging route or the vehicle returns to the depot and then 

we start with a new route to serve these remaining customers.  If we add customer i the 

vehicle will not have a rest break because after servicing customer i, T is already 

exceeding the rest time window.   

 

To deal with this situation we set the vehicle to have the rest break before servicing 

customer i: 

If we have not found a customer that satisfies the above expression because rest=0 and 

Ej≥ R2, �j�B then: 

i=arg min[Ej | j∈B, T+trj<Ej, Qcurrent+qj≤Q, Qtotal+qj≤Q*, stotal+1≤S*,  

θ+tj,n(j,θ)+Vn(j,θ)+tn(j,θ),0≤L0, where θ=Ej+Vj]
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the vehicle travels to i, waits until Ei, and then services the customer 

T=max[T+ tri, R1]+R3    update the current time before servicing i 

T=max[T, Ei]+ Vi     update the current time after servicing i 

rest=1      update rest 

r=i   update the current customer at the end of the route 

Qcurrent=Qcurrent+qi update the current vehicle load 

Qtotal=Qtotal+qi  update the daily vehicle load 

stotal=stotal+1  update the total number of customers visited 

B=B-{i}  update the set of customers B by removing i from it  

go to step 3 

else 

the vehicle travels back to the depot (as it is empty it does not need to visit a 

disposal facility first) and a new vehicle must now be used 

go to step 1 

end if 

 

In step 1 above we start a new vehicle route and initialise the various counters we need 

to keep track of the use made of the vehicle. In step 2 we attempt to schedule the rest 

period. In step 3 we add a customer to the end of the emerging route such that it is 

feasible to add the customer both in terms of the vehicle load and in terms of “look-

ahead” for the vehicle to return to the depot empty. In step 4 the vehicle is emptied 

whilst in step 5 the vehicle waits for a customer time window to open. The above 

procedure terminates once all of the customers have been dealt with. 

 

We have set out our initial solution procedure in detail in order that the reader can 

clearly see the steps involved and the counters that are updated as a route is constructed. 
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For the remainder of this thesis we, for brevity, use higher level pseudocode in terms of 

presenting our algorithms. 

 

Figure 3.2 illustrates an example of how our IS works in constructing initial vehicle 

routes for a problem which consists of one single depot, ten customers and two disposal 

facilities.  All time windows are [9:00, 19:00] except customer 3 is [17:00, 18:00].  The 

rest time window is [11:00, 12:00] and the rest time duration is one hour.  The amount 

of waste that needs to be collected at every customer is one cubic meter except for 

customers 4 and 7 which are two cubic meters each.  The vehicle capacity is five cubic 

meters and two vehicle routes are required to serve the customers.  In this example we, 

for simplicity, have not given explicit travel times between customers.  Rather we have 

assumed underlying travel times are such as to illustrate the procedure we outlined 

above.    The processes for constructing both routes are explained as follow:     

• Initialise set B=C 

• Do step 1: We construct first vehicle route and initialise all counters. 

• Do step 2: Rest period is checked.  Currently, T=9:00 (E0) so no rest break is 

required yet.  

• Do step 3: The first vehicle will start its route by travelling to a customer closest to 

the depot.  In this case, suppose customer 3 is closest to the depot but its time 

window starts at 17:00 and still not ready to be served if the vehicle travels to it.  

Thus, the vehicle travels to the next customer which is closest to the depot (customer 

4 which can be served).  After collecting waste at customers 4, 5, and 7, total waste 
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on the vehicle is 2+1+2=5 cubic meters.  Thus, no other customers can be served 

because it would exceed the capacity of the vehicle. 

• Do step 4: The vehicle travels to the nearest available disposal facility (here disposal 

facility 1) to be emptied.     

• Do step 3 to find the next customer to be served.  So from disposal facility 1, it goes 

to customer 9 and finishes servicing customer 9 at 11:15.   

• Do step 2: The driver takes a rest break for an hour before serving other customers.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Examples of two vehicle routes for a waste collection problem 
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• Do step 3: After the break, the vehicle goes to customer 8, followed by customers 6 

and 10.  Now the total waste on the vehicle is four cubic meters which is 

approximately 80% (4/5) full.  Our procedure treats this situation as we had found 

no customer satisfying the expressions in step 3.  Here we will check whether the 

vehicle should continue with another customer (customer 11) or should unload the 

waste at a disposal facility.  The figure shows that disposal facility 2 is closer to 

customer 10 than disposal facility 1.  This facility is also closer to customer 10 than 

customer 11 (its next nearest customer that can be served).  Hence, the vehicle goes 

to disposal facility 2 to be emptied and then travels to the nearest customer (i.e. 

customer 11).  After serving customer 11, the remaining customers (customers 3 and 

12) do not satisfy the expression in step 3.  For example, if the vehicle travels to 

customer 3 it will arrive before 17:00 and customer 3 is still not ready to be served.  

Whereas, if the vehicle travels to customer 12, the vehicle will not be able to return 

to the depot before 19:00 (i.e. T>L0). 

• Do step 4: The vehicle is not empty so it goes to the nearest disposal facility to be 

emptied. 

• Do step 5: We will check whether the vehicle should return to the depot or continue 

servicing other customers, whose time window will open as soon as possible.  Here, 

customer 3 satisfies the expression.  Thus, the vehicle travels to customer 3 and 

waits until the customer is ready to be served.   

• Do step 3: After servicing customer 3, only one unrouted customer is left (customer 

12).  However if the vehicle continued to service customer 12, it will arrive at the 

depot after 19:00.  Thus, no more customers can be served. 
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• Do step 4: The vehicle goes to the nearest disposal facility (here disposal facility 1) 

to be emptied. 

• Do step 3: After unloading waste, the vehicle continues to serve another customer.  

Since only customer 12 is left and the vehicle cannot serve this customer because the 

depot is already closed if it arrived after servicing customer 12.   Thus, no more 

customers can be served. 

• Do step 5: The vehicle is empty and returns to the depot. 

• Do step 1: We construct a second vehicle route and initialise all counters. 

• Do step 2: We check rest period.  Currently, T=9:00 (E0) so no rest break is required 

yet. 

• Do step 3: From the depot, the second vehicle starts its route by travelling to 

customer 12.  Now, |B|=0 (where all customers have been served). 

• Do step 4: The vehicle is not empty and goes to the nearest disposal facility to 

unload the waste. 

• Do step 5: The vehicle returns to the depot.  Since the vehicle completes its route 

before 11:00 (T<R1), the driver would have the rest period at the depot. 

• Note that in our procedure every time the vehicle finishes servicing a customer or 

unloading waste at a disposal facility, we always do step 2 because we want to start 

the rest period as soon as practicable. 

 

The IS procedure discussed in this section has been designed for solving the waste 

collection VRPTW problems by Kim et al (2006).  In addition, the effectiveness of our 

IS procedure is also tested on a multi-depot VRP with inter-depot routes (MDVRPI) 
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benchmark problem generated by Crevier et al (2007).  There are some differences 

between MDVRPI and waste collection VRPTW problems such as: 

• no time windows (either customers or depots) 

• no rest period 

• limited number of homogenous vehicles  

• much smaller problems, the largest problem of  the waste collection VRPTW 

involves 2092 customers, whereas the MDVRPI involves 288 customers. 

 

The need to cope with the very large waste collection VRPTW problems has 

affected the design of the heuristic procedures we present in this thesis.  For 

example our use of neighbour sets. 

 

 When applying our IS procedure on the MDVRPI problems, in step 1 we set rest=1 so 

in the solution no rest time will be included.  However, computational results indicate 

that solutions by Crevier et al (2007) are much better than ours.  Even though our initial 

solutions have been improved after applying our local search algorithm, yet the 

solutions by Crevier et al (2007) still outperform our solutions.  Thus in trying to 

improve the solution, in this thesis we apply other IS procedures to this problem.  Some 

of the procedures are adapted from the literature. 

 

Moreover, these IS procedures also have been tested on the waste collection VRPTW 

problems for investigating the effectiveness of the procedures.   Both sets of benchmark 

problems are presented in section 3.6. 
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3.4 Other IS procedures 

In this section we present two other IS procedures which we modified from the IS 

procedure presented in the last section, namely   

• Farthest from depot procedure 

• Different initial customer procedure.    

 

3.4.1 Farthest from depot 

Currently, in our IS procedure every vehicle route starts with a customer closest to the 

depot.  Then the vehicle continues travelling to another customer closest to the last 

customer/disposal facility added on the route.  Thus, the customers which are far from 

the depot are dealt with late in the process of route construction.  As a result, the last 

vehicle that serves these customers may travel more distance than the other earlier 

vehicle routes even if there is only a small number of customers left on this route.  

 

Hence, to overcome this problem we modify our current IS procedure particularly in 

Step 3.  In this new procedure, when we start a new route the first customer on the route 

would be the customer farthest from the depot. Then new customers on the route are 

added using the same expressions as in Step 3.  Other parts of the current IS procedures 

remain the same.  Below is the pseudocode of Step 3 with the changes highlighted:   

 

Step 3 

The next customer to be visited on the current emerging route is that customer i∈B such 

that  
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if r = 0 then 

this is the first customer to be placed on the route, take the customer farthest from the 

depot 

i=arg max[trj | j∈B, T+trj∈[Ej,Lj], Qcurrent+qj≤Q, Qtotal+qj≤Q*, stotal+1≤S*,  

θ+tj,n(j,θ)+Vn(j,θ)+tn(j,θ),0≤L0, θ≤R2 if rest=0, where θ=T+trj+Vj] 

else 

i=arg min[trj | j∈B, T+trj∈[Ej,Lj], Qcurrent+qj≤Q, Qtotal+qj≤Q*, stotal+1≤S*,  

θ+tj,n(j,θ)+Vn(j,θ)+tn(j,θ),0≤L0, θ≤R2 if rest=0, where θ=T+trj+Vj] 

endif 

 

Note here that r is the node at the end of the current emerging vehicle route.  Thus if r=0 

(current node is the depot), the next node on the route would be the farthest customer 

from the depot.  Then, after updating r, the process on selecting the next customer to be 

visited on the current emerging route is the same as in our IS procedure (closest to r). 

 

3.4.2 Different initial customer based on current IS procedure 

In this section we construct |C| sets of initial solutions using the current IS procedure.  

For this new procedure we do |C| runs, each time with a different initial customer as the 

first customer on route 1.  The processes for constructing vehicle routes remain the same 

such that we start a new route with a customer closest to the depot.  Here we add Step 0 

and also make a change in Step 3 in the current IS procedure.  The pseudocode of both 

steps is therefore 

 

Step 0 

For all customers i∈C: 

• Set flag = 0, this is a flag to indicate that we are going to construct route 1 
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• startNode = i, this would be the first customer on route 1 

• Perform IS(startNode, flag) 

 

end for  

 

Step 3 

The next customer to be visited on the current emerging route is that customer i∈B such 

that 

if flag = 0 then 

i = startNode  

flag = 1 

else 

i=arg min[trj | j∈B, T+trj∈[Ej,Lj], Qcurrent+qj≤Q, Qtotal+qj≤Q*, stotal+1≤S*,  

θ+tj,n(j,θ)+Vn(j,θ)+tn(j,θ),0≤L0, θ≤R2 if rest=0, where θ=T+trj+Vj] 

endif 

 

In step 0 above we set a flag to indicate that we are going to construct a new set of initial 

solutions with a different initial customer as the first customer on route 1.  In step 3 we 

add a customer to the end of the emerging route. 

 

3.5 Other IS procedures using disposal facility positioning (DFP) 

In further attempts to construct other initial solutions for the benchmark problems, in 

this section three IS procedures adapted from the literature are presented, namely 

• The savings approach of Clarke and Wright (1964) 

• The sweep algorithm of Gillett and Miller (1974) 
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• The different initial customer procedure based on the sweep algorithm of Gillett 

and Miller (1974) 

 

Since the waste collection problem involves disposal facilities trips on the routes, a 

procedure by Hemmelmayr et al (2009), namely disposal facility positioning (DFP) is 

added in the above IS procedures for choosing the best disposal facilities to go on the 

route.  In this thesis the DFP procedure is presented in detail in Chapter 6.   

 

3.5.1 The savings approach  

In this section, an initial solution based on the savings approach of Clarke and Wright 

(1964) is constructed.  For all pairs of customers (i,j) let sij = (d0i + di0) + (d0j + dj0) – (d0i 

+ dij + dj0) = di0 + d0j -  dij be the distance saving resulting from having i and j together 

on the same route, rather than serviced individually on two separate routes. The larger 

the distance saving the more attractive it is to have i and j on the same route. Note that 

these savings values can be computed once for the problem, they do not depend on the 

routes that will be constructed later. 

 

The new savings algorithm is therefore: 

Step 1 

Choose the customer pair (i,j), where i∈N(j,K) and j∈N(i,K) with the largest saving.  

Then, evaluate the route depot–i-j-depot using the DFP and reverse procedures.  If the 

route is not FEASIBLE then consider the customer pair with the next largest saving.  

Repeat the process until a customer pair such that the route is feasible is found. 
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Reloop: 

Step 2 

Let α and β be the two customers at the end of this emerging feasible route. Consider all 

unrouted customers i∈N(α,K) and j∈N(β,K) and from the savings [sαi ∀i∈N(α,K) i 

unrouted; sβj ∀j∈N(β,K) j unrouted]: 

• consider them in descending order until a feasible customer to add to the end of the 

merging route is found, i.e.: 

o for each savings value add the corresponding customer to the end of the 

emerging route and evaluate the route using the DFP and reverse 

procedures 

o if the route is FEASIBLE then keep the added customer, reset α and β to 

the customers at the end of the emerging route and go to Reloop to find a 

new customer to add; else consider the next largest saving value 

 

Step 3 

At this step we have added as many customers as we can to the emerging route in which 

case this route is done.  If there are still unrouted customers then go to Step 1 to 

construct a new route with a new vehicle. 

 

In step 1 above we start a new vehicle route by adding a pair of customers so that they 

would be the two customers at the end of the emerging feasible route.  In step 2 a 

neighbour (with the largest saving value) of the two customers who are currently at the 

end of the emerging feasible route is added to the end of the emerging route.  In step 3 

we check whether there are still unrouted customers left.  The above procedure 

terminates once all of the customers have been dealt with. 
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3.5.2 The sweep algorithm 

In this section, an initial solution based on the sweep algorithm of Gillett and Miller 

(1974) is constructed.  Here we consider the customers’ coordinates (xi,yi) are in 

ascending order of the angle between the line that connects the customer with the depot 

(x0,y0) and the horizontal.  The coordinates relative to the depot of customer i are (xi-x0, 

yi-y0) and the polar angle that the line connecting the depot to the customer makes with 

the horizontal is θ = tan-1[(yi-y0)/(xi-x0)] or θ = tan-1[y/x] where y = yi-y0 and x = xi-x0. 

 

To obtain θ in the interval [0, 2π) radians (moving anti-clockwise), an adjustment has 

been made using the following rules: 

  

tan-1[y/x]  if x > 0 and y ≥ 0 

 tan-1[y/x] + 2π  if x > 0 and y < 0 

θ = tan-1[y/x] + π  if x < 0 

 π/2   if x = 0 and y > 0 

 3π/2   if x = 0 and y < 0 

 0   if x = 0 and y = 0 

  

Again in this section, the DFP procedure is added in the sweep algorithm for choosing 

suitable disposal facilities on the route.  The new initial solution procedure using a 

sweep approach is as below. 

Step 1 

Choose the unrouted customer i, i∈B that has the minimum polar angle to be the first 

customer on the route. 
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Reloop: 

Step 2 

• Let α be the customer at the end of the emerging feasible route. Consider all 

unrouted customers i (with polar angles ≥ polar angle of α) in ascending order of 

their polar angles until a feasible customer to add to the end of the merging route is 

found, i.e.: 

o for each unrouted customer i (whose polar angle ≥ polar angle of α) add 

it to the end of the emerging route and evaluate the route using the DFP 

procedure 

o if the route is FEASIBLE then keep the added customer, reset α to the 

customer at the end of the emerging route and go to Reloop to find a new 

customer to add; else consider the next customer with a larger polar 

angle. 

 

Step 3 

At this step we have added as many customers as we can to the emerging route in which 

case this route is done.  If there are still unrouted customers then go to Step 1 to 

construct a new route with a new vehicle. 

 

In step 1 above we start a new vehicle route by adding a customer who has the minimum 

polar angle.  In step 2 we add a customer who has a larger or equal polar angle than the 

polar angle of a customer who is currently at the end of the emerging feasible route.  In 

step 3 we check whether there are still unrouted customers left.  The above procedure 

terminates once all of the customers have been dealt with. 

 

3.5.3 Different initial customer based on the sweep algorithm 

A procedure presented in this section is quite similar to the IS procedure discussed in 

section 3.4.2 where |C| sets of initial solutions are obtained and each solution starts with 
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a different customer on route 1 using the sweep algorithm as presented in the previous 

section. The processes for constructing vehicle routes remain the same such that we start 

a new route with a customer who has the minimum polar angle.  In this new procedure 

step 0 is added in the sweep algorithm, whilst step 1 of the sweep algorithm is modified.    

The pseudocode of both steps is therefore 

 

Step 0 

For all customers i∈C: 

• Set flag = 0, this is a flag to indicate that we are going to construct route 1 

• startNode = i, this would be the first customer on route 1 

• Perform IS(startNode, flag) 

 

end for  

 

Step 1 

The next customer to be visited on the current emerging route is 

If flag = 0 then 

   Choose startNode to be the first customer on route 1 and set flag = 1 

else 

Choose the unrouted customer i, i∈B that has the minimum polar angle to be the 

first customer on the route. 

end if 

 

In step 0 above we set a flag to indicate that we are going to construct a new set of initial 

solutions with a different initial customer as the first customer on route 1.  In step 1 we 

add a customer to be visited on the current emerging route. 
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Note here that after running this procedure, we have |C| sets of initial solutions from the 

sweep algorithm. Even though the total computational time for constructing these initial 

solutions is high, the approach may be worthwhile for trying to find the best initial 

solution that we can have using the sweep algorithm. 

 

3.6 Benchmark problems 

Two sets of benchmark problems are used to test the algorithms in the thesis.  The 

details of both problem sets are explained in the next sub-section. 

  

3.6.1 Waste collection VRPTW benchmark problems 

The main objective of this thesis is to develop good metaheuristics for solving waste 

collection VRPTW, particularly a real life waste collection benchmark problem obtained 

from Kim et al (2006).  It consists of ten test problems, involving up to 2092 customers 

and 19 waste disposal facilities as publicly available at: 

http://www.postech.ac.kr/lab/ie/logistics/WCVRPTW_Problem/benchmark.html.  The 

main characteristic of the test problems is shown in Table 3.5.1. 

 

The driver rest time window in this problem is [11:00, 12:00] and an unlimited number 

of homogeneous vehicles are considered in this problem. The maximum number of 

customers on each vehicle route is limited to 500 customers.  Moreover, the coordinates 

of the nodes (depot/customers/disposal facilities) provided in the data sets are in feet and 

then we calculate the distances between the nodes (in miles) using Manhattan distance 

as stated in Kim et al (2006). 
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Table 3.1: Characteristics of the waste collection VRPTW benchmark problems 

Problem Number of 
customers 

Number of 
disposal 
facilities 

Capacity of a 
vehicle 

Capacity allowed for 
a vehicle per day 

102 99 2 280 400 

277 275 1 200 2200 

335 330 4 243 400 

444 442 1 200 400 

804 784 19 280 10000 

1051 1048 2 200 800 

1351 1347 3 255 800 

1599 1596 2 280 800 

1932 1927 4 462 2000 

2100 2092 7 462 2000 

 

 

3.6.2 Multi-depot VRP with inter-depot routes (MDVRPI) benchmark problems 

The second set of benchmark problems that we use to test our algorithms is a MDVRPI 

benchmark set generated by Crevier et al (2007).  It consists of ten test problems, 

involving up to 288 customers and seven depots.  Note here that in this problem, the 

depots can act as intermediate replenishment facilities along a vehicle route.    The data 

sets and the best known solutions are available at 

http://www.hec.ca/chairedistributique/data/. The main characteristic of the test problems 

is shown in Table 3.2. 

 

No time windows and driver rest period are considered in this problem.  However, the 

number of collection vehicles used in this problem is limited for each test problem.  

Furthermore, the duration of a rotation (i.e. duration of a vehicle when it starts from the 

depot until it returns to the depot after servicing customers) must not exceed the total 
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duration allowed for a vehicle.  For these problems the distances between the nodes are 

calculated using Euclidean distance. 

 

Table 3.2: Characteristics of the MDVRPI benchmark problems 

Problem Number of 
customers 

Number of 
depots 

Number of 
vehicles 

Maximum 
duration of a 

rotation 

Capacity of 
a vehicle 

a2 48 5 4 600 150 

b2 96 5 4 1150 200 

c2 144 5 4 1700 250 

d2 192 5 3 2250 300 

e2 240 5 3 2800 350 

f2 288 5 3 3350 400 

g2 72 7 4 950 175 

h2 144 7 4 1800 250 

i2 216 7 3 2650 325 

j2 288 7 3 3500 400 

 

 

3.7 Results 

The algorithms presented in this thesis are coded in C++ and run on a 3.16GHz pc (Intel 

Core2 Duo) with 3.23Gb memory.  Computational results of all IS procedures used to 

construct initial routes for both sets of benchmark problems are reported in the next 

sections. 

 

3.7.1 Computational results for the waste collection VRPTW problems 

Table 3.3(a) shows the solutions from Kim et al (2006) for the waste collection VRPTW 

problems using their clustering heuristic (using simulated annealing), in terms of the 

number of vehicles used, total distance travelled and computation time. Note here that 

results are presented in Kim et al (2006) for an insertion heuristic (also using simulated 
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annealing). However some of the insertion heuristic results reported are incorrect 

(involving for example fewer vehicles than can possibly be used) and based on Kim 

(2009) we disregard these results. In any event for seven of the ten test problems the 

results for the clustering heuristic are (in terms of distance travelled) better than the 

results for the insertion heuristic. 

 

Table 3.3 a) Solutions from Kim et al (2006) for the waste collection VRPTW 

problems 

Problem 
Total number of vehicles 

used 
Total distance 

(mile) 
Total computation time 

(s) 

102 3 205.1 3 

277 3 527.3 10 

335 6 205.0 11 

444 11 87.0 16 

804 5 769.5 92 

1051 18 2370.4 329 

1351 7 1039.7 95 

1599 13 1459.2 212 

1932 17 1395.3 424 

2100 16 1833.8 408 

Average 160 

 

Their clustering heuristic (using simulated annealing) was implemented in the C 

language and run on a Microsoft Server 2003 machine with a 3.05 GHz Xeon processor 

with 1.0 GB of RAM.  Computation times for Kim et al (2006) in the last column are 

taken from their paper, and relate to a different computer than we used.  Utilising 

Dongarra (2009) it is possible to make an approximate estimate of the relative speed of 

the hardware involved. On this basis we estimate that the Kim et al (2006) heuristic 

would (on average) require 31 seconds on our 3.16GHz pc.  Hereafter, we assume Kim 

et al (2006) average computation time is 31 seconds for comparison with our work.  In 
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terms of the number of vehicles used, in total they use 99 collection vehicles to solve the 

test problems. 

 

Table 3.3(b) shows computational results of the test problems using our IS procedure 

(refer to Section 3.3).  A number of these test problems contain customers for which the 

amount to be collected is zero, but in our results we explicitly visit these customers 

(based on Kim, 2009) to be comparable with the results of Kim et al (2006).  Note too 

here that for some of these test problems the daily vehicle capacity is such that the 

vehicle finishes its work and returns to the depot before the driver rest period (associated 

with a lunch break).  For these problems we regard the driver rest period as being taken 

at the depot.  

 

Table 3.3 b) Solutions from our IS procedure for the waste collection VRPTW 

problems 

Problem 
Total number of 

vehicles used 
Total distance 

(mile) 
Total computation 

time (s) 

% Improvement 
in distance over 
Kim et al (2006) 

102 3 206.8 1 -0.83 

277 3 473.8 1 10.15 

335 6 213.3 2 -4.05 

444 11 92.9 3 -6.78 

804 6 863.3 8 -12.19 

1051 17 2645.1 13 -11.59 

1351 8 984.3 20 5.33 

1599 14 1578.1 29 -8.15 

1932 16 1346.1 41 3.53 

2100 16 1823.6 49 0.56 

Average 16.7 -2.40 

 

The last column in Table 3.3(b) gives the percentage improvement in distance when 

compared to the result of Kim et al (2006), namely 100(Kim et al (2006) solution 
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distance – our solution distance)/(Kim et al (2006) solution distance).  Using this 

measure a positive number indicates we have a better result, a negative number indicates 

we have a worse result.  The results indicate that four of the ten test problems using our 

IS procedure are better.  However, on average our initial solutions travel approximately 

2.4% more than Kim et al (2006) with 16.7 seconds of computational time.  With 

respect to the number of vehicles used our initial solutions involve (in total) 100 

vehicles, those of Kim et al (2006) 99 vehicles, so slightly worse. 

 

Note that the solutions reported in Kim et al (2006) and given in Table 3.3(a) are 

the final solutions after applying their metaheuristics.  They did not report their 

initial solutions for the test problems.  Thus, the comparison results reported in 

this section are between their final solutions and our initial solutions.  In later 

chapters we will present our metaheuristics to improve our initial solutions. 

 

Figure 3.3 shows an example of initial routes from our IS procedure for the waste 

collection VRPTW problems, in particular the test problem 102.  This problem consists 

of 99 customers and two disposal facilities.  Solution for this problem as shown in Table 

3.3(b) indicates that our solution travels approximately 0.83% more distance than Kim 

et al (2006).  With respect to the number of vehicles used our solution involves three 

vehicles as in Kim et al (2006). 
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Figure 3.3: Initial routes for the 102 problem using our IS procedure 
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Table 3.3(c) shows the summary of the computational results of the same test problems 

using other IS procedures.  Here for reasons of space we have chosen a summary 

comparison rather than present full detailed results.  The table shows the algorithm used 

to solve the test problems, the section number where the algorithm is presented in this 

chapter, the total number of vehicles used, the average of the computation time in 

seconds and as well as the average of the percentage improvement in distance when 

compared to the result of Kim et al (2006).  These averages are computed over the ten 

test problems given by Kim et al (2006).  

 

Table 3.3 c) Solutions from other IS procedures for the waste collection VRPTW 

problems 

 
Algorithm 

 
 

 
Section Total number 

of vehicles 
used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

Current IS procedure as 
Table 3.3(b) 

 
3.3 100 16.7 -2.40 

Farthest from depot 3.4.1 103 18.0 -6.41 

Savings approach 3.5.1 103 39.8 -2.80 

Sweep algorithm 3.5.2 155 19.0 -183.90 

Different initial customer:  
3.4.2 a) current IS procedure 98 413.7 4.75 

b) sweep algorithm 3.5.3 150 4331.2 -161.67 

 

Of all the algorithms used in this thesis to construct initial solutions for the waste 

collection VRPTW problems, the solution from the different initial customer procedure 

based on our IS procedure shows the best result in terms of the number of vehicles used 

as well as the average of the percentage improvement in distance.  Here, we use one less 

vehicle than Kim et al (2006) and a reduction of around 4.75% in average of the total 

distance travelled. Even though we use more computation time than Kim et al (2006), 
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but note that in this procedure, we run |C| times for each test problem.  The total number 

of customers involved in the ten test problems is 9940.  Thus, in total we have 9940 

initial solutions.  The total computation time to construct the 9940 solutions is 4137 

seconds.  That means we only take less than 0.5 seconds for each initial solution. 

 

Considering Table 3.3(c) it appears that the sweep algorithm is not suitable for 

constructing initial solutions for the test problems.  Besides travelling more distance, the 

solutions also involve more vehicles than Kim et al (2006) even though we have run |C| 

times to get the best initial solution that we can have for every test problem.  On average 

we can only reduce the distance from 183.9% (sweep algorithm) to 161.67% (different 

initial customer based on sweep algorithm) and reduce five vehicles (from 155 to 150 

vehicles used).  Yet, these solutions are still far from Kim et al (2006).  Hence, we hope 

that these initial solutions can be significantly improved after applying our 

metaheuristics.  

 

Initial solutions from the farthest from depot procedure and savings approach also on 

average travel more distance than those of Kim et al (2006), particularly 6.41% and 

2.80%  respectively.  However, the solutions are not as bad as solutions from the sweep 

algorithm.  Both procedures use four more vehicles than Kim et al (2006). 

 

 

 

 



Chapter 3: IS procedures 
 

60 

 

 

 

 

Figure 3.4: Initial routes for the 102 problem using the different initial customer 

(here customer 96) based on our IS procedure 
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Since the different initial customer based on our IS procedure produces the best solution 

(as shown in Table 3.3(c)) for the waste collection VRPTW problems, Figure 3.4 shows 

an example of initial routes for the 102 problem constructed by this procedure.  Note 

here that this procedure produces |C|=99 number of solutions for the 102 problem.  Each 

solution starts with a different customer as the first customer on the first route 

constructed.  Computational results indicate that the first route (as shown in the figure) 

which starts with customer 96 has the lowest distance travelled compared to the other 

solutions.  Comparison result with the solution from Kim et al (2006) shows that this 

solution reduces the total distance travelled of around 10.14% and uses three vehicles as 

in Kim et al (2006). 

 

3.7.2 Computational results for the MDVRPI problems 

Table 3.4(a) shows computational results of the MDVRPI problems from Crevier et al 

(2007) for their tabu search algorithm as well as integer programming model, in terms of 

the number of vehicles used and total distance travelled.  Computation time is not 

reported in their paper.  

 

Their tabu search algorithm was coded in the C language and run on a Prosys, 2 Ghz 

computer.  In total they use 31 vehicles to solve the test problems. Computational results 

using our IS procedure (refer to Section 3.3) is presented in Table 3.4(b). 

 

 

 



Chapter 3: IS procedures 
 

62 

 

Table 3.4 a) Solutions from Crevier et al (2007) for the MDVRPI problems 

Problem Total number of vehicles used Total distance 

a2 4 997.94 

b2 3 1307.28 

c2 3 1747.61 

d2 3 1871.42 

e2 3 1942.85 

f2 3 2284.35 

g2 3 1162.58 

h2 3 1587.37 

i2 3 1972.00 

j2 3 2294.06 

 

Table 3.4 b) Solutions from our IS procedure for the MDVRPI problems 

Problem 
Total number of 

vehicles used 
Total 

distance 
Total computation 

time (s) 

% Improvement in 
distance over 

Crevier et al (2007) 

a2 5 1604.36 1 -60.77 

b2 3 1636.97 1 -25.22 

c2 3 2344.79 1 -34.17 

d2 3 2556.26 1 -36.59 

e2 3 2802.56 1 -44.25 

f2 3 3326.04 2 -45.60 

g2 4 1572.16 1 -35.23 

h2 3 2113.21 1 -33.13 

i2 3 2678.79 1 -35.84 

j2 3 3439.59 2 -49.93 

Average     1.2 -40.07 

Number of 
infeasible 
solutions 1 

 

The last row in Table 3.4(b) shows the number of infeasible solutions obtained from the 

IS procedure in solving the ten test problems.  And the last column in the table gives the 

percentage improvement in distance when compared to the result of Crevier et al (2007), 

namely 100(Crevier et al (2007) solution distance – our solution distance)/(Crevier et al 

(2007) solution distance).  Using this measure a positive number indicates we have a 
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better result, a negative number indicates we have a worse result.  The results clearly 

show that solutions from Crevier et al (2007) outperform our initial solutions using the 

IS procedure presented in section 3.3.  Besides involving two extra collection vehicles 

(for test problems a2 and g2), we are also travelling more distance than those of Crevier 

et al (2007), on average over these ten problems approximately 40.07% more with 1.2  

seconds of computational time.   

 

Note here that the solutions reported in Crevier et al (2007) are the final solutions 

after applying their metaheuristics.  They did not report their initial solutions for 

the test problems.  Thus in this section, we are also comparing our initial solutions 

with their final solutions.  In later chapters we will present our metaheuristics to 

improve the initial solutions. 

 

As stated before, our IS procedure is developed for the waste collection VRPTW 

problems which have an unlimited number of vehicles.  Thus when it is applied to this 

problem, unsurprisingly there are some of the initial solutions are not feasible.  For 

example initial solution for a2 problem in Table 3.4(b) actually is not feasible.  The total 

number of vehicles available for a2 is four (refer to Table 3.2) but our initial solution 

needs five vehicles.  However, this is an initial solution so we hope that this solution can 

be improved after the improvement phase. 
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Figure 3.5: Initial routes for the a2 problem using our IS procedure 
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Figure 3.5 shows five initial routes constructed using our IS procedure for the a2 

problem.  The first customer on each route is shown in the figure.  These customers are 

the closest customers to the depot when the route is constructed.  For example customer 

36 is the closest customer to the depot when route 1 is constructed and customer 14 is 

the closest to the depot when route 2 is constructed.  When route 5 (last route) is 

constructed there is only one customer left (customer 18) with waste not having being 

collected.  As mentioned earlier the initial solution for this problem is not feasible 

because it involves one extra vehicle.  Because of route 5 has only one customer, this 

route can possibly be eliminated when we apply our route improvement procedures in 

later chapters. 

 

Other IS procedures as applied to the waste collection VRPTW problems are also 

applied to these test problems to investigate the effectiveness of other IS procedures for 

this problem.  The summary of the computational results using these procedures is 

shown in Table 3.4(c) which has the same format as Table 3.3(c) except that the last 

column in this table shows the number of infeasible solutions obtained from the 

procedures in solving the ten test problems. 

 

Results in Table 3.4(c) also indicate that solutions from Crevier et al (2007) are better 

than other IS procedures applied on the test problems.  Even though initial solutions 

from the savings approach and the different initial customer procedure based on our IS 

procedure involve the same number of vehicles used as in Crevier et al (2007), but on 

average both procedures travel approximately 20.73% more distance for the savings 
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approach and 25.28% more distance for the different initial customer based on our IS 

procedure. 

 

Table 3.4 c) Solutions from other IS procedures for the MDVRPI problems 

Algorithm 
 
 

 
 

Section 
Total 

number of 
vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement 

in distance 
over Crevier 
et al (2007) 

Number of 
infeasible 
solutions 

Current IS 
procedure as Table 
3.4(b) 

 
 

3.3 33 1.2 -40.07 

 
 
1 

Farthest from depot 3.4.1 34 1.2 -42.94 1 

Savings approach 3.5.1 31 1.2 -20.73 0 

Sweep algorithm 3.5.2 43 1.4 -164.05 8 

Different initial 
customer: 

 
 
 

3.4.2 

 

a) current IS 
procedure 31 1.7 -25.28 

 
0 

b) sweep algorithm 3.5.3 40 10.5 -152.37 5 

 

Once again, it appears that the sweep algorithm is not suitable for constructing initial 

solutions for the test problems.  Besides travelling more distance, the solutions also used 

more vehicles than what they have.  Thus, most of the initial solutions obtained from 

this procedure are not feasible.  

 

3.8 Conclusion 

In this chapter we have presented a number of IS procedures used for constructing initial 

solutions for two benchmark problem sets, waste collection VRPTW and MDVRPI.  

Some of the IS procedures are adapted from the literature. 
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Because both problem sets have some characteristic differences such as  

• the size of the test problems (i.e. waste collection VRPTW problems involved up 

to 2092 customers, whereas the MDVRPI problems only involved up to 288 

customers) 

• time windows of the nodes (depot/customer/disposal facility) 

• limited/unlimited number of vehicles 

• rest time period 

 

the best initial solution for both problems are obtained from the different IS procedures.  

For example, computational results show that the best initial solution for the waste 

collection VRPTW problems is obtained from the different initial customer based on our 

IS procedure.  The logic here is that our IS procedure is designed for the waste 

collection VRPTW problems.  Thus, when we run this procedure |C| times, each time 

with a different initial customer as the first customer on route 1, we found the best initial 

solution for each test problem.  Computational results show that our initial solution 

without applying metaheuristics is already better than solutions by Kim et al (2006) in 

terms of the total number of vehicles used as well as the total distance travelled.  Hence, 

if we spend more computation time to run |C| times for the ten test problems, this 

solutions show that our IS procedure is able to construct good feasible initial routes for 

the waste collection VRPTW problems. 

 

On the other hand, initial solutions from the savings approach and the different initial 

customer procedure based on our IS procedure are the best procedures for the MDVRPI 
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problems because both procedures manage to produce feasible initial routes for the ten 

test problem.  However in terms of the total distance, the solution from the savings 

approach travelled less distance than the different initial customer solution procedure.   
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CHAPTER 4 

 

ROUTE IMPROVEMENT PROCEDURES 

 

This chapter is divided into five sections.  The first section presents our procedure to 

evaluate a given route, which involves inserting into the route (if necessary) disposal 

facility visits.  In the second and the third sections, we present procedures to improve a 

solution, both in terms of the distance travelled and in terms of the number of vehicles 

used.  In the fourth section, computational results for both procedures tested on two 

benchmark problem sets are reported.  Finally, a summary of this chapter is presented. 

 

4.1 Route evaluation 

In this section we indicate how we evaluate a given route.  One complication here is that 

in the local search procedure we present later in this chapter, we move customers 

between routes.  If we move a customer onto a route then it is possible that the route 

after addition of the customer will be infeasible when we evaluate it (e.g. because the 

vehicle exceeds its collection capacity).  However if we were to schedule into the route 

an extra disposal facility visit the route may become feasible.  Preliminary 

computational experience indicated that incorporating extra disposal facility visits was 

of benefit, and so in evaluating a given route we allow such extra visits to be 

incorporated.  
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In a similar fashion there may be benefit in allowing the time at which the rest period 

occurs to vary from the time that was initially scheduled as we evaluate a route and so 

we also allow this to change (although the rest period must still occur within its time 

window).  In evaluating a given route we regard it as comprising a fixed sequence 

of places - starting at the depot, then a mix of customers and disposal facilities, 

finally a disposal facility (to empty the vehicle), followed by the depot.   

 

Note here that in our work in evaluating the quality of any given set of feasible vehicle 

routes we evaluate them using total distance travelled.  We do not constrain the distance 

travelled by vehicles, rather we constrain vehicle operating times via the depot time 

window.  Amending the algorithms presented below to deal with vehicle distance 

constraints is however a simple task.  In pseudocode our procedure for route evaluation 

is: 

 

Start the route at time E0 (set T=E0) 

Repeat until all places on the route have been dealt with: 

• Perform Step 2 of our IS procedure (refer to Section 3.3 in Chapter 3) to 

schedule the rest period if possible 

• If travelling to the next place in the fixed sequence would exceed the vehicle 

capacity then schedule in an extra visit to the nearest disposal facility; formally 

suppose the current place at the end of the route is customer r and the current 

time is T, then insert a visit to disposal facility n(r,T) at this point in the sequence 

• Travel to the next place (customer/disposal facility/depot) in the fixed sequence  
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• If the vehicle arrives before the time window for the place opens then wait until 

the time window opens (we wait as we are trying to operate the sequence) 

• Deal with this place (collection or disposal or arrival back at the depot) 

 

As we run through the fixed sequence we update the current time T, also keeping track 

of the loads – where the procedure returns INFEASIBLE if at any point we violate the 

constraints of the problem (e.g. vehicle load exceeded or the vehicle arrives after the 

time window for a place has closed), otherwise the procedure returns FEASIBLE (also 

returning the sequence used since we may have added extra disposal facility visits, and 

the total distance associated with the route). 

 

4.2 Route improvement – local search 

In order to improve vehicle routes we adopt a local search procedure which is based on 

our route improvement procedure presented in Benjamin and Beasley (2010) (refer to 

Appendix 1).  The procedure published in that paper is tested only on the waste 

collection VRPTW problems.  The computational results show that our routes 

outperform previous work presented in the literature.  However when it was tested on 

the MDVRPI problems, the solutions from Crevier et al (2007) are better than our 

solutions.  Thus in a further attempt to improve the solution, we consider more 

movements between the customers on the routes to be evaluated. 
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In Benjamin and Beasley (2010), two different phases were associated with this 

procedure: 

• moving customers/disposal facilities elsewhere on the same route; also changing 

disposal facilities on the same route 

• interchanging the positions of two customers in the different routes. 

 

However, in this thesis we consider moving customers and interchanging the positions 

of two customers on the same route as well as on the different routes.  We deal with 

each of these in turn.  In both phases, we use the neighbour set for a customer to prevent 

the number of customer moves/interchanges we have to examine being excessive.  The 

procedures for both phases are presented in the next two sub-sections. 

 

4.2.1 Phase 1 

In this phase we evaluate repositioning customers and the disposal facilities.  In 

pseudocode we: 

 

For all customers i∈C: 

For all customers j∈N(i,K): 

• Move j immediately before/after i (here we check positioning j before/after i)  

• Evaluate these new routes with j moved to this new position and if 

they are better than the original route (both are FEASIBLE and of 

lower total distance) then keep them, else do not. Note here that this 

includes two cases, one where i and j are on the same route, one where 

i and j are on different routes 

end for 

end for 
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For all routes: 

For all disposal facilities i∈D on the route: 

• Remove i from the route 

• Add i to every possible position on the route in turn 

• Evaluate this new route with i added to this new position and if it is better than 

the original route (FEASIBLE and of lower total distance) then keep it, else do 

not 

end for 

end for 

 

Preliminary computational experience indicated that we could also improve routes by 

changing disposal facilities. This can happen (for example) if we have a disposal facility 

visited as the last place on the vehicle route before travel back to the depot, but in fact 

there is a better disposal facility to use in terms of travel back to the depot. In addition it 

is worthwhile to check for whether disposal facilities on the route can be removed (since 

in the route evaluation procedure we only ever add disposal facilities, never remove 

them). Therefore as part of this phase we also do: 

 

For all routes: 

For all disposal facilities i∈D on the route: 

• Remove disposal facility i from the route  

• Evaluate this new route with the disposal facility removed and if it is better 

than the original route (FEASIBLE and of lower total distance) then keep it, 

else do not 

end for 

end for 
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For all routes: 

For all disposal facilities i∈D on the route: 

For all disposal facilities j∈D, j≠i: 

• Replace disposal facility i on the route by disposal facility j 

• Evaluate this new route with the disposal facilities changed and if it is better 

than the original route (FEASIBLE and of lower total distance) then keep it, 

else do not 

end for 

end for 

end for 

 

4.2.2 Phase 2 

In a further attempt to improve the solution, in this phase we interchange the positions of 

two customers on the same route as well as on the different routes.  In pseudocode we: 

 

For all customers i∈C: 

For all customers j∈N(i,K): 

• we interchange customers i and j, i.e. customer i moves to the position that 

customer j occupied on its route and customer j moves to the position that 

customer i occupied on its route 

• Evaluate the two routes that are involved in this interchange.  If both are 

FEASIBLE and their total distance is lower than the total distance for the two 

routes before the interchange then keep the interchange, else do not.  Note 

here that this includes two cases, one where i and j are on the same route, one 

where i and j are on different routes 

end for 

end for 
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Computationally we repeat phases 1 and 2 in turn until no further improvement can be 

achieved. We will then have a locally optimal solution.  Hereafter, finding the initial 

solution followed by the phase 1 and phase 2 procedures are called ISP1P2 in this thesis.  

 

4.3 Vehicle reduction (VR) procedure 

Our solution procedure has no direct control over the number of vehicles used, although 

in this thesis we also attempt to minimise the number of vehicles used by utilising a 

vehicle as much as possible.  Examination of preliminary computational results 

indicated that, for some test problems, the number of customers serviced on the last 

vehicle route constructed from our IS procedure (refer to Section 3.3) was so small that 

(given judicious rearrangement of customers on earlier routes) it might well be possible 

to reduce the number of vehicles used.  Thus in reducing the number of vehicles used, 

the VR procedure as presented in Benjamin and Beasley (2010) moved customers from 

the last vehicle route constructed to earlier routes (provided that this is feasible, and 

irrespective of the effect on distance travelled). 

 

However, solution obtained from other IS procedures (i.e. savings approach, sweep 

algorithm etc) shows that the small number of customers serviced is not only on the last 

route.  It may also happen on earlier routes.  In this thesis, we change the VR procedure 

presented in Benjamin and Beasley (2010) to move customers from the route that has 

the smallest number of customers (which may or may not be the last route constructed in 

the initial solution) to other routes of the solution.  In pseudocode we: 
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Repeat until no more customers can be moved from the route that has the smallest 

number of customers (say route α): 

For all customers i∈C that are on route α: 

• Add i to every possible position on every other route in turn 

• Evaluate this new route with i added to this new position and if it is 

FEASIBLE then keep it, else do not 

end for 

Perform phases 1 and 2 above, but excluding from consideration in those phases 

route α  (since we are seeking to eliminate all customers from that route) 

 

end repeat 

If all customers have been moved from route α then keep the routes else do not 

 

The logic here is that we, provided it is feasible, move customers off the route that has 

the smallest number of customers to other routes, where we use ISP1P2 to reorder 

customers on these other routes (thereby potentially enabling further customers to be 

moved off the route).  Note here that if we are already using a minimal number of 

vehicles, as is the case if max[|C|/S*,
i C∈

∑ qi/Q
*] (when rounded up to the nearest integer) 

is equal to the number of vehicles used, there is no point in applying this procedure. 

 

4.4 Results 

This section reports improvements results of the initial solutions (reported in Chapter 3) 

using the ISP1P2 and VR procedures.  For both sets of benchmark problems waste 

collection VRPTW and MDVRPI, two sets of solutions are reported.  First, a set of 

solutions without VR procedure (i.e. initial solutions are improved using the ISP1P2) is 

reported.  Then, we report the effect of the VR procedure on the solution. 
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4.4.1 Computational results for the waste collection VRPTW problems 

In this section, computational results of the waste collection VRPTW problems using 

our improvement procedures are reported.  Note here that we use the neighbour set for a 

customer to prevent the number of customer moves/interchanges we have to examine 

being excessive.  In improving the solutions, preliminary computational experience 

indicated that the suitable size of the neighbour set for the waste collection VRPTW 

problems is K=50.  Computational results using our ISP1P2 when K = 50 are reported in 

Table 4.1(a) and (b).  Recall here that ISP1P2 starts from the solution given after our IS 

procedure and the computation times given in both tables Table 4.1(a) and (b) include 

the time taken to generate this solution.  In Table 4.1(a) we also include final solution 

from Kim et al (2006) and our IS solution as presented in Chapter 3 (refer to Table 

3.3(a) and (b), respectively). 

 

Examining Table 4.1(a) it is clear that our ISP1P2 solutions use less distance for all test 

problems than those of Kim et al (2006), on average approximately 9.31% less.  With 

respect to the number of vehicles used, ISP1P2 solutions also involve (in total) 100 

vehicles as our IS solution, those of Kim et al (2006) 99 vehicles, so slightly worse.  In 

terms of computation time, ISP1P2 solutions take a longer time than the Kim et al 

(2006) heuristic, but produce solutions involving significantly less distance. 
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Table 4.1 a) ISP1P2 solutions for the waste collection VRPTW problems for our IS 

procedure  

Problem Algorithm 

Total 
number of 
vehicles 

used 

Total 
distance 
(mile) 

Total 
computation 

time (s) 

% Improvement 
in distance over 
Kim et al (2006) 

102 Kim et al (2006) 3 205.1 3 

IS 3 206.8 1 -0.83 

ISP1P2 3 181.9 3 11.31 

277 Kim et al (2006) 3 527.3 10 

IS 3 473.8 1 10.15 

ISP1P2 3 462.9 15 12.21 

335 Kim et al (2006) 6 205.0 11 

IS 6 213.3 2 -4.05 

ISP1P2 6 196.8 28 4.00 

444 Kim et al (2006) 11 87.0 16 

IS 11 92.9 3 -6.78 

ISP1P2 11 79.9 57 8.16 

804 Kim et al (2006) 5 769.5 92 

IS 6 863.3 8 -12.19 

ISP1P2 6 716.7 199 6.86 

1051 Kim et al (2006) 18 2370.4 329 

IS 17 2645.1 13 -11.59 

ISP1P2 17 2131.8 257 10.07 

1351 Kim et al (2006) 7 1039.7 95 

IS 8 984.3 20 5.33 

ISP1P2 8 907.5 305 12.72 

1599 Kim et al (2006) 13 1459.2 212 

IS 14 1578.1 29 -8.15 

ISP1P2 14 1395.2 362 4.39 

1932 Kim et al (2006) 17 1395.3 424 

IS 16 1346.1 41 3.53 

ISP1P2 16 1187.8 695 14.87 

2100 Kim et al (2006) 16 1833.8 408 

IS 16 1823.6 49 0.56 

ISP1P2 16 1676.8 829 8.56 

Average Kim et al (2006) 99 160 

IS 100 16.7 -2.40 

ISP1P2 100 275 9.31 
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Figure 4.1: ISP1P2 routes for the 102 problem starting from the initial solution 

using our IS procedure 
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Figure 4.1 shows our ISP1P2 routes for the 102 problem.  Comparison of the result with 

the initial solution shows that our phase 1 and phase 2 procedures reduce the total 

distance travelled of around 100(206.8-181.9)/206.8=12.04%.  Thus, our solution for the 

102 problem now travels 11.31% less distance than Kim et al (2006). 

 

Table 4.1(b) shows ISP1P2 solutions starting from the solution given after other IS 

procedures.  For easy comparison between solutions from the IS and ISP1P2, in Table 

4.1(b) we include IS solutions reported in the last chapter (refer to Table Table 3.3(c)). 

 

Table 4.1 b) ISP1P2 solutions for the waste collection VRPTW problems for other 

IS procedures 

Algorithm 
 

Total number of 
vehicles used 

 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

IS – current IS procedure as 
Table 3.3(b) 100 16.7 -2.40 

ISP1P2 as Table 4.1(a) 100 275.0 9.31 

IS - Farthest from depot 103 18.0 -6.41 

ISP1P2 103 388.3 6.23 

IS - Savings approach 103 39.8 -2.80 

ISP1P2  101 411.2 6.94 

IS - Sweep algorithm 155 19.0 -183.90 

ISP1P2  154 290.7 -18.76 

IS - Different initial customer: 

a) current IS procedure 98 413.7 4.75 

    ISP1P2 98 657.0 13.00 

b) sweep algorithm 150 4331.2 -161.67 

    ISP1P2 150 4611.4 -16.16 

 

Results in Table 4.1(b) indicate that ISP1P2 starting from the solution given after the 

different initial customer based on our IS procedure produces the best solutions (on 

average).  The distance travelled is reduced by up to 13% with one less vehicle used 
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than Kim et al (2006).  In addition, ISP1P2 starting from the solutions given after the 

farthest from depot procedure and the savings approach also produce better results than 

Kim et al (2006) with a reduction of 6.23% and 6.94%, respectively in the distance 

travelled.  However in terms of the number of vehicles used, both solutions involve 

more vehicles than Kim et al (2006).  On the other hand, ISP1P2 starting from the 

solutions given after the sweep algorithm and the different initial customer based on 

sweep algorithm are still worse compared to Kim et al (2006), in terms of distance 

travelled and also the number of vehicles used. 

 

Figure 4.2 shows our best solution for the 102 problem starting from the solution given 

after the different initial customer based on our IS procedure.  This solution travels 

158.28 miles (approximately 22.8% less distance than Kim et al (2006)) with three 

vehicles. 
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Figure 4.2: ISP1P2 routes for the 102 problem starting from the initial solution 

using the different initial customer (here customer 96) based on our IS procedure 
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Results in Table 4.1(a) and (b) were produced without using our VR procedure. To 

illustrate the effect of the VR procedure, the results obtained when it is applied (denoted 

by VRISP1P2) are shown in Table 4.1(c) and (d), respectively.  For reasons of space we 

only show in Table 4.1(c) those problems where a reduction in the number of vehicles 

was achieved.  Note here that for two of the problems shown in Table 4.1(a) (problems 

102 and 335) our solutions already use the minimal number of vehicles (as can be 

deduced from consideration of total customer demand and vehicle capacity). 

 

Table 4.1 c) VRISP1P2 solutions for the waste collection VRPTW problems for our 

IS procedure 

Problem Algorithm 

Total 
number of 
vehicles 

used 

Total 
distance 
(mile) 

Total 
computation 

time (s) 

% Improvement 
in distance over 
Kim et al (2006) 

1351 Kim et al (2006) 7 1039.7 95 

IS 8 984.3 20 5.33 

ISP1P2 8 907.5 305 12.72 

VRISP1P2 7 1010.9 545 2.77 

Average Kim et al (2006) 99 160.0 

IS 100 16.7 -2.40 

ISP1P2 100 275 9.31 

VRISP1P2 99 296.6 8.32 

 

Table 4.1(c) has the same format as Table 4.1(a), except that now we apply our vehicle 

reduction procedure to the routes that result from ISP1P2. For ease of comparison the 

averages shown at the foot of Table 4.1(c) are the averages over all ten problems, 

computed by combining the results for the problem explicitly shown in Table 4.1(c) 

with the results shown in Table 4.1(a) for the other nine problems. Note here that the 

average time given at the foot of Table 4.1(c) includes the time for applying our vehicle 

reduction procedure to all problems (whether successful or not).  Considering Tables 
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4.1(a) and (c) then with respect to the number of vehicles used our solutions now 

involve (in total) 99 vehicles, as in Kim et al (2006).   

 

Table 4.1 d) VRISP1P2 solutions of the waste collection VRPTW problems for 

other IS procedures 

Algorithm 
 

Total number 
of vehicles 

used 

Average 
computation time 

(s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

IS - Current IS procedure 100 16.7 -2.40 

ISP1P2 100 275.0 9.31 

VRISP1P2 99 296.6 8.32 

IS - Farthest from depot 103 18.0 -6.41 

ISP1P2  103 388.3 6.23 

VRISP1P2 101 430.0 4.30 

IS - Savings approach 103 39.8 -2.80 

ISP1P2  101 411.2 6.94 

VRISP1P2 99 479.3 7.05 

IS - Sweep algorithm 155 19.0 -183.90 

ISP1P2  154 290.7 -18.76 

VRISP1P2 107 2427.9 -22.86 

IS - Different initial customer: 

a) current IS procedure 98 413.6 4.75 

     ISP1P2 98 657.0 13.00 

    VRISP1P2 97 678.2 11.26 

b) Sweep algorithm 150 4331.2 -161.67 

     ISP1P2 150 4611.4 -16.16 

    VRISP1P2 109 6545.3 -21.58 

 

Table 4.1(d) shows the improvement solution of ISP1P2 for other IS solutions after 

applying our VR procedure.  The results indicate that all VRISP1P2 solutions use less 

vehicles compared to ISP1P2 solutions.  The decreasing numbers in the last column 

indicate that VRISP1P2 solutions involve more distance than ISP1P2 solutions even 

though they use fewer vehicles except for VRISP1P2 solution for savings approach.  

This solution has improved in terms of number of vehicles used (from 101 to 99 
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vehicles) as well as the total distance travelled (from 6.94% to 7.05%).  VRISP1P2 

solution for the sweep algorithm and the different initial customer based on sweep 

algorithm are still worse than Kim et al (2006).   

   

4.4.2 Computational results for the  MDVRPI problems 

In this section, computational results of the MDVRPI problems using our improvement 

procedures are reported.  Note here that we use the neighbour set for a customer to 

prevent the number of customer moves/interchanges we have to examine being 

excessive.  Since the size of the test problems of MDVRPI is much smaller than waste 

collection VRPTW, we choose to evaluate all possible moves/interchanges of customers 

on the routes.  Thus, for this problem we use K=|C| for the size of the neighbour set.  

Computational results using our ISP1P2 when K=|C| are reported in Table 4.2(a) and 

(b).  Recall here that ISP1P2 starting from the solutions given after other IS procedures 

presented in the previous chapter and the computation times given in both tables include 

the time taken to generate these solutions.  In Table 4.2(a) we also include final solution 

from Crevier et al (2007) and the IS solutions as reported in Chapter 3 (refer to Table 

3.4(a) and (b), respectively). 
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Table 4.2 a) ISP1P2 solutions for the MDVRPI problems for our IS procedure  

Problem 
 
 

Algorithm 
 
 

Total 
number 

of 
vehicles 

used 

Total 
distance 

 
 

Total 
computation 

time (s) 
 

% 
Improvement 

in distance 
over Crevier 
et al (2007) 

a2 Crevier et al (2007) 4 997.94     

  IS 5 1604.36 1 -60.77 

  ISP1P2 5 1134.93 2 -13.73 

b2 Crevier et al (2007) 3 1307.28     

  IS 3 1636.97 1 -25.22 

  ISP1P2 3 1503.85 7 -15.04 

c2 Crevier et al (2007) 3 1747.61     

  IS 3 2344.79 1 -34.17 

  ISP1P2 3 1978.75 23 -13.23 

d2 Crevier et al (2007) 3 1871.42     

  IS 3 2556.26 1 -36.59 

  ISP1P2 3 2130.00 46 -13.82 

e2 Crevier et al (2007) 3 1942.85     

  IS 3 2802.56 1 -44.25 

  ISP1P2 3 2415.59 101 -24.33 

f2 Crevier et al (2007) 3 2284.35     

  IS 3 3326.04 2 -45.60 

  ISP1P2 3 2639.74 138 -15.56 

g2 Crevier et al (2007) 3 1162.58     

  IS 4 1572.16 1 -35.23 

  ISP1P2 4 1352.61 3 -16.35 

h2 Crevier et al (2007) 3 1587.37     

  IS 3 2113.21 1 -33.13 

  ISP1P2 3 1767.10 15 -11.32 

i2 Crevier et al (2007) 3 1972.00     

  IS 3 2678.79 1 -35.84 

  ISP1P2 3 2347.10 66 -19.02 

j2 Crevier et al (2007) 3 2294.06     

  IS 3 3439.59 2 -49.93 

  ISP1P2 3 2835.93 139 -23.62 

Average IS  33   1.2 -40.07 

  ISP1P2  33   54 -16.60 
Number of 
infeasible 
solutions 

1 
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Note here the negative numbers on the last column indicate that our solutions are worse 

than Crevier et al (2007).  Thus, results in Table 4.2(a) clearly show that for the ten test 

problems our ISP1P2 solutions are worse than Crevier et al (2007).  Besides involving 

two extra collection vehicles (for test problems a2 and g2), we also travel more distance 

than those of Crevier et al (2007), on average over these ten problems approximately 

16.60% more with 54 seconds of computational time and one infeasible solution, 

namely the solution of the a2 problem. 

 

Figure 4.3 shows our ISP1P2 solution for the a2 problem.  Because of our solution still 

involves five vehicles, the solution for this problem is not feasible.  Besides involving 

one extra vehicle, our solution also travels approximately 13.7% more distance than 

Crevier et al (2007).  However compared with the initial solution, our phase 1 and phase 

2 procedures produce less total distance travelled.  In particular, our ISP1P2 routes 

travels approximately 100(1604.36-1134.93)/1604.36=29.3% less. 
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Figure 4.3: ISP1P2 routes for the a2 problem starting from the initial solution using our IS procedure 
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Table 4.2(b) shows ISP1P2 starting from the solution given after other IS procedures.  In 

this table we include IS solutions shown in the last chapter (refer to Table 3.4(c)).  The 

computation times given in Table 4.2(b) include the time taken to generate these 

solutions. 

 

Table 4.2 b) ISP1P2 solutions for the MDVRPI problems for other IS procedures 

Algorithm 
 
 

Total 
number of 
vehicles 

used 
 

Average 
computation 

time (s) 
 

Average % 
improvement 

in distance 
over Crevier 
et al (2007) 

Number of 
infeasible 
solutions 

 

IS - Current IS procedure as 
Table 3.4(b) 33 1.2 -40.07 1 

ISP1P2  33 54.0 -16.60 1 

IS - Farthest from depot  34 1.2 -42.94 1 

ISP1P2  33 56.7 -18.29 0 

IS - Savings approach 31 1.2 -20.73 0 

ISP1P2   31 36.3 -14.14 0 

IS - Sweep algorithm 43 1.4 -164.05 8 

ISP1P2  41 58.1 -14.36 6 

IS - Different initial customer: 

a) current IS procedure 31 1.7 -25.28 0 

    ISP1P2 31 52.8 -13.57 0 

b) sweep algorithm 40 10.5 -152.37 5 

    ISP1P2 40 110.8 -15.20 5 

 

Results in Table 4.2(b) show that the distance for all IS solutions have been reduced 

after applying our ISP1P2.  However the solution from Crevier et al (2007) still 

outperforms all ISP1P2 solutions.  From the table, we can say that the ISP1P2 solutions 

are slightly different for all IS procedures, on average they travel approximately 13.57% 

to 16.60% more distance than Crevier et al (2007).  In terms of number of vehicles used, 

two ISP1P2 solutions use less vehicles compared to their IS solutions, particularly 
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ISP1P2 for farthest from depot (reduce from 34 to 33 vehicles) and ISP1P2 for sweep 

algorithm (reduce from 43 to 41 vehicles).  Thus, ISP1P2 for farthest from depot now 

produces feasible solutions for all the test problems, whereas ISP1P2 for sweep 

algorithm reduces two infeasible solutions. 

 

Results in Table 4.2(a) and (b) were produced without using our VR procedure. To 

illustrate the effect of our VR procedure, the results obtained when it is applied (denoted 

by VRISP1P2) are shown in Table 4.2(c) and (d), respectively.  For reasons of space we 

only show in Table 4.2(c) those problems where a reduction in the number of vehicles 

was achieved. 

 

Table 4.2 c) VRISP1P2 solutions for the MDVRPI problems for our IS procedure  

Problem 
 
 

Algorithm 
 
 

Total 
number of 
vehicles 

used 

Total 
distance 

 
 

Total 
computation 

time (s) 
 

% 
Improvement 

in distance 
over Crevier 
et al (2007) 

a2 Crevier et al (2007) 4 997.94     

  IS 5 1604.36 1 -60.77 

  ISP1P2 5 1134.93 2 -13.73 

  VRISP1P2 4 1113.98 4 -11.63 

g2 Crevier et al (2007) 3 1162.58     

  IS 4 1572.16 1 -35.23 

  ISP1P2 4 1352.61 3 -16.35 

  VRISP1P2 3 1330.60 6 -14.45 

Average IS 33 1.2 -40.07 

  ISP1P2 33 54 -16.60 

  VRISP1P2 31 55.3 -16.20 

Number 
of 

infeasible 
solutions 

0 
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Table 4.2(c) has the same format as Table 4.2(a), except that now we apply our vehicle 

reduction procedure to the routes that result from ISP1P2. For ease of comparison the 

averages shown in Table 4.2(c) are the averages over all ten problems, computed by 

combining the results for the two problems explicitly shown in Table 4.2(c) with the 

results shown in Table 4.2(a) for the other eight problems. Note here that the average 

time given at the foot of Table 4.2(c) includes the time for applying our vehicle 

reduction procedure to all problems (whether successful or not).  Considering Tables 

4.2(a) and (c) then with respect to the number of vehicles used our solutions now 

involve (in total) 31 vehicles, as in Crevier et al (2007).  In addition, VRISP1P2 

produces feasible solutions for all test problems. 

 

Table 4.2(d) shows the improvement solution of ISP1P2 for other IS solutions after 

applying our VR procedure.  The results indicate that the VR procedure does not give 

any effect to VRISP1P2 for farthest from depot procedure, savings approach and 

different initial customer based on our IS procedure.  However VRISP1P2 for another 

three IS procedures are improved in terms of the number of vehicles used, total distance 

travelled as well as the number of infeasible solutions.  Improved solutions are 

highlighted in Table 4.2(b). 
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Table 4.2 d) VRISP1P2 solutions for the MDVRPI problems for other IS 

procedures 

Algorithm 
 
 
 

Total 
number of 
vehicles 

used 

Average 
computation 

time (s) 
 

Average % 
improvement in 

distance over 
Crevier et al (2007) 

 
Number of 
infeasible 
solutions 

IS - Current IS procedure 33 1.2 -40.07 1 

ISP1P2 33 54.0 -16.60 1 

VRISP1P2 31 55.3 -16.20 0 

IS - Farthest from depot 34 1.2 -42.94 1 

ISP1P2  33 56.7 -18.29 0 

VRISP1P2 33 57.7 -18.29 0 

IS - Savings approach 31 1.2 -20.73 0 

ISP1P2  31 36.3 -14.14 0 

VRISP1P2 31 37.3 -14.14 0 

IS - Sweep algorithm 43 1.4 -164.05 8 

ISP1P2  41 58.1 -14.36 6 

VRISP1P2 38 79.1 -14.41 3 
IS - Different initial 
customer: 

a) current IS procedure 31 1.7 -25.28 0 

     ISP1P2 31 52.8 -13.57 0 

    VRISP1P2 31 53.8 -13.57 0 

b) Sweep algorithm 40 10.5 -152.37 5 

     ISP1P2 40 110.8 -15.20 5 

    VRISP1P2 37 134.3 -14.82 3 

 

 

4.5 Conclusion 

In this chapter, we have outlined how we can improve the initial solution using the two 

phases discussed in Section 4.2.  We also discussed how we can reduce the number of 

vehicles used (refer to Section 4.3).  Computational results of these two procedures are 

reported separately in Section 4.4 so that we can clearly see the effectiveness of both 

procedures on the test problems.  The results indicate that even though our VR 

procedure reduces the number of vehicles used for some test problems the total distance 
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travelled may/may not be reduced.  Because the MDVRPI problems have a limited 

number of vehicles available to use, the VR procedure is important to solve these test 

problems to generate feasible solutions by reducing the number of vehicles used.  In the 

next chapter we discuss our metaheuristic algorithms for the problems. 

 

 



Chapter 5: Metaheuristics 
 

94 

 

CHAPTER 5 

 

METAHEURISTICS 

 

This chapter begins with general descriptions of tabu search (TS) and variable 

neighbourhood search (VNS).  Next, our three metaheuristic algorithms used in this 

thesis, namely TS, VNS and variable neighbourhood tabu search (VNTS) are presented.  

VNTS is a metaheuristic where the variable neighbourhood is searched via tabu search.  

Then, computational results of these metaheuristics tested on two benchmark problem 

sets are reported.  Finally, a summary of this chapter is presented.   

 

5.1 General description of tabu search (TS) 

In this section, we describe the main ideas behind the metaheuristic algorithm called 

tabu search (TS) which was developed by Fred Glover in 1986.  A basic TS algorithm is 

based on an adaptive memory that allows a search heuristic such as a hill climbing 

method to escape local optima and seek better solutions by allowing non-improving 

moves.  In the hill climbing method a neighbour solution of the current solution is 

generated.  The solution is accepted only if it is better than the current one.  This process 

is repeated until a solution is found such that in its neighbourhood it cannot be improved 

and then the algorithm will terminate.  The problem with the hill climbing method is that 

it can easily get stuck in a local optimum.  However, this problem can be solved by 

using TS which is an extension of the hill climbing method.  In the TS algorithm, we 
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allow a search heuristic to go beyond points of local optimality by permitting non-

improving moves through an adaptive memory called a tabu list. 

 

The tabu list is used to prevent cycling when moving away from local optima through 

non-improving moves because it keeps the information as to the past moves of the 

search.  Once the information as to past move enters into the tabu list, this move (or its 

reverse) cannot be made and will stay in the tabu list for a certain period of time.  Here, 

tabu tenure is set to indicate how long moves are going to stay in the tabu list. 

 

However if a tabu move produces a new solution with an objective value better than the 

current best-known solution, the TS algorithm will accept this solution because it has 

definitely not been explored yet.  The function in TS that allows revoking the tabu move 

while exploiting new solutions is called the aspiration criteria. 

 

Moreover, in the process of finding new solutions using TS we may also get trapped in a 

space of local optimum.  Thus in order to search other parts of the solution space to look 

for the global optimum, search diversification is performed in TS where it is applied to 

diversify the solution space to the areas that are largely unexplored so far. 

 

Here we have highlighted the main functions in the TS algorithm.  Further information 

with regard to TS can be found in Glover and Laguna (1993, 1997) and Gendreau 

(2003).  Our TS algorithm used in the thesis is presented in Section 5.3. 
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5.2 General description of variable neighbourhood search (VNS)   

In this section the metaheuristic algorithm called variable neighbourhood search (VNS) 

is briefly described.  VNS algorithm was developed by Hansen and Mlandenovic in 

1997 (Hansen and Mlandenovic, 1997).  As with other metaheuristics in the literature, 

VNS also attempts to avoid being trapped in local optimum while improving the current 

solution.  This algorithm escapes a local optimum by a systematic change of 

neighbourhood within a local search algorithm.  In other words, a VNS algorithm 

involves iterative exploration of a different structure of neighbourhoods (e.g. starts with 

a small neighbourhood to a larger and larger neighbourhood) around a given local 

optimum until an improvement is found after which time the search across expanding 

neighbourhoods is repeated.   

 

In the process of finding new solutions, a local optimum for one neighbourhood 

structure may not be a local optimum for another neighbourhood structure.  Thus by 

switching from one neighbourhood to the other, different parts of the search space can 

be explored and better solutions could be found.  In this case it is clear that a global 

optimum is a local optimum for all possible neighbourhood structures.  As with all 

metaheuristics neither TS nor VNS can guarantee to find the global optimum. 

 

For further information relating to VNS see Mladenović and Hansen (1997), Hansen and 

Mladenović (2001).  Our VNS algorithm used in the thesis is presented in Section 5.4. 
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5.3. Tabu search (TS) 

In this section we discuss our metaheuristic algorithm for the problem using tabu search 

(TS).  The move that we consider in our TS heuristic is an interchange of two customers, 

who may or may not be on the same route. This move is similar to that in the phase 2 

procedure discussed in Chapter 4 (refer to Section 4.2.2).  Here we again use the 

neighbour set for a customer to prevent the number of customer interchanges we have to 

examine being excessive. We do these interchanges however in a tabu search framework 

(so we allow interchanges that worsen the solution).  

 

In our approach we apply tabu status to customers.  So if a customer is tabu it cannot be 

considered for any possible move.  Note that we do not consider disposal facilities with 

regard to using tabu.  This is because of the fact that a disposal facility may appear on 

more than one route, and so considering disposal facilities for tabu would entail keeping 

track of which route they are on (since we may wish to move a disposal facility on one 

route but leave it in its current position, i.e. tabu, on another route).  Customers, by 

contrast, can only be on one route.  For our TS heuristic let:  

• ∆ be the tabu tenure, how long a customer stays tabu for 

• M be an iteration counter 

• δ(i) be the last iteration at which customer i was moved, we use δ(i) to judge 

whether moving i is tabu or not 

• Zcurrent be the current solution value (this being the solution from which we are 

examining potential moves) 

• Zmove be the solution value associated with the move we are currently examining 
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• Zbest be the value of the best solution we have encountered during our algorithm 

(before we start TS both Zcurrent and Zbest will be the value of the locally optimal 

solution as derived in the previous chapter) 

• m be a counter of the number of times we examine all pairs of customers without 

improving Zbest 

• Znon be the value of the solution associated with the “best” non-improving move, 

and α and β be the customers associated with this best non-improving move 

• φ be a diversification factor such that any non-improving solution from Zcurrent that 

we consider has to have value ≥ Zcurrent+φ 

 

The role of φ is to diversify the solution by forcing the new solution after a non-

improving move to be “far” from the current solution.  Computational experiences for 

choosing a suitable value for φ are shown in Appendix 2.  Five different values of φ 

(0.01, 0.001, 0.01(Zbest), Zbest/20|C| and Zbest/30|C|) have been tested on the test 

problems.  Here for reasons of space we only show results of the test problem 102.  

Computational results indicated that our solutions are improved when φ= Zbest/20|C| and 

Zbest/30|C|.  These two cases produce appropriate gap between Zbest and Zcurrent.  

Because Zbest/20|C| involved more iterations than Zbest/30|C|, in this thesis we choose 

Zbest/20|C| for φ. 

 

The majority of papers in the literature used ∆=7.  In this thesis, preliminary 

computational experience also indicated that ∆=7 produced good solutions for the waste 
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collection VRPTW problems within reasonable computational times.  Thus, our 

metaheuristic solutions reported in this thesis are obtained when ∆=7.   

 

In pseudocode our TS heuristic is: 

Initialise 

Set M=m=0 (counters set to zero); δ(i)=-(∆+1) ∀i∈C (this ensures that all customers are 

not tabu) 

 

Step 1 

Set Znon=∞; set m=m+1; set flag=0, this is a flag to signify whether we have changed 

Zbest or Zcurrent during this step 

 

For all customers i∈C: 

For all customers j∈N(i,K): 

• Interchange customers i and j, i.e. customer i moves to the position that customer j 

occupied on its route and customer j moves to the position that customer i occupied 

on its route (these customers may be on the same route, may be on two different 

routes) and evaluate the routes that result 

• If the route(s) involved in this interchange are not FEASIBLE then disregard the 

interchange and go to consider a new pair, i.e. go to DONEPAIR.  

 

Here the route(s) are FEASIBLE, check for: 

• improving Zbest, irrespective of tabu status (so aspiration) 

• improving Zcurrent (if not tabu) 

• a better non-improving move Znon (if not tabu) 

 

Improving the best solution (aspiration) 



Chapter 5: Metaheuristics 
 

100 

 

If the total distance, Zmove, associated with the entire (feasible) solution after 

interchange (so considering not just any routes involved in the interchange but also 

any routes not involved) is strictly less than Zbest (i.e. Zmove< Zbest) then:  

we keep the interchange (i.e. keep the moved customers where they are); 

update Zbest to the value of this new improved solution, so Zbest=Zmove; 

update the current solution, so Zcurrent=Zbest; set the tabu status for 

customers i and j using δ(i)= δ(j)=M; set M=M+1; reset the value of the 

solution for the best non-improving move Znon=∞; set m=0 as Zbest has 

been improved; set flag=1 to indicate that the solution has changed; and 

go to DONEPAIR to consider a new pair. 

end if 

 

Tabu status (check for whether the customers are tabu) 

If |M - δ(i)|≤∆ or |M - δ(j)|≤∆ (so the move is tabu) then go to DONEPAIR. 

 

Improving the current solution  

If Zmove<Zcurrent (so the move improves on the current solution Zcurrent) then:  

update the current solution, so Zcurrent=Zmove; set the tabu status for 

customers i and j using δ(i)= δ(j)=M; set M=M+1; reset the value of the 

solution for the best non-improving move Znon=∞; set flag=1 to indicate 

that the solution has changed; and go to DONEPAIR to consider a new 

pair.  

end if 

 

Better non-improving move 

If Zmove<Znon (so the move improves on the current non-improving move Znon) and 

Zmove≥Zcurrent+φ (so the move is sufficiently far from Zcurrent) then: 

set the best non-improving move solution Znon=Zmove and record the 

customers associated with this best non-improving move using α=i, β=j 

end if 
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DONEPAIR: 

end for 

end for 

 

Step 2 

Terminate if sufficient iterations have been performed without improving the best 

solution Zbest. In our work we stop if m=5. 

 

If flag=1 then: 

we have made a change (either to Zbest or to Zcurrent), so go to Step 1 

else  

we have not made a change so we make the best non-improving move. In other 

words we interchange the customers α and β associated with the best non-

improving move; update the current solution Zcurrent to the solution after the 

move; set the tabu status for customers α and β using δ(α)=δ(β)=M; set 

M=M+1; and go to Step 1. 

end if 

 

5.4. Variable neighbourhood search (VNS) 

In our VNS heuristic we consider the same move as in our TS heuristic above.  However 

whilst that heuristic operates with a fixed value of K, the number of neighbours a 

customer has, in our VNS heuristic we vary K.  In our VNS heuristic define K*={set of 

values of K we will consider}.  As for TS we start from the locally optimal solution as 

derived in the previous chapter.  In terms of neighbourhood search (for a specified value 

of K) we use the same neighbourhood as in our TS heuristic.  However, unlike our TS 

heuristic we only accept moves that improve the best solution Zbest.  Our VNS heuristic 

is:  
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Set Γ= K* (initialise the set of K values we will consider)  

while |Γ|≠0 so there are still values of K to consider:  

Set K=min[k | k∈Γ] to choose the smallest value from Γ and set Γ=Γ-{K} 

For all customers i∈C: 

For all customers j∈N(i,K): 

• Interchange customers i and j and evaluate the routes that result 

• If the solution after interchange is FEASIBLE and better than Zbest  

then: accept the move, update Zbest; set Γ=K* (as we have improved the 

solution we are willing to reconsider all possible values of K) else 

disregard the interchange 

end for 

end for 

end while 

 

Our VNS heuristic terminates when we have a solution that cannot be improved by any 

move associated with any of the K values in K*. 

 

5.5. Variable neighbourhood tabu search (VNTS) 

In our VNTS heuristic we adopt the same variable neighbourhood as in our VNS 

heuristic above. However, whilst our VNS heuristic searches each neighbourhood for 

improved solutions, in VNTS we allow non-improving moves, i.e. we search each 

neighbourhood in a TS fashion.  Our VNTS heuristic is: 

 

Set Γ= K* (initialise the set of K values we will consider)  

while |Γ|≠0 so there are still values of K to consider:  

Set K=min[k | k∈Γ] to choose the smallest value from Γ and set Γ=Γ-{K} 
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Apply our TS heuristic with this value of K starting from Zbest  

If the best solution after applying TS has improved then set Γ=K*  

end while 

 

Our VNTS heuristic terminates when we have a solution that cannot be improved by TS 

associated with any of the K values in K*. 

 

5.6. Results 

This section reports our three metaheuristics (TS, VNS and VNTS) solution for both sets 

of benchmark problems waste collection VRPTW and MDVRPI. 

 

5.6.1. Computational results for the waste collection VRPTW problems 

Computational results for the waste collection VRPTW problems using our 

metaheuristics, namely TS, VNS and VNTS are reported in this section.  Note here that 

we use the neighbour set for a customer to prevent the number of customer 

moves/interchanges we have to examine being excessive.  For this set of benchmark 

problems, TS solutions are obtained when K=50 whilst for VNS and VNTS, we use 

K*={5,10,25,50}.  Solutions from these metaheuristics which start from the ISP1P2 

solutions discussed in Chapter 4 (refer to Table 4.1(a) and (b)) are reported in Table 

5.1(a) and (b).  Thus, the computation times given in both tables include the time taken 

to generate these solutions. 
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Table 5.1 a) Metaheuristic solutions for the waste collection VRPTW problems for 

our IS procedure without our VR 

Problem Algorithm 

Total number 
of vehicles 

used 

Total 
distance 
(mile) 

Total 
computation 

time (s) 

% Improvement 
in distance over 
Kim et al (2006) 

102 ISP1P2 3 181.9 3 11.31 

TS 3 181.8 5 11.36 

VNS 3 181.8 4 11.36 

VNTS 3 181.8 4 11.36 

277 ISP1P2 3 462.9 15 12.21 

TS 3 462.8 30 12.23 

VNS 3 462.9 20 12.21 

VNTS 3 462.8 21 12.23 

335 ISP1P2 6 196.8 28 4.00 

TS 6 196.8 51 4.00 

VNS 6 196.8 34 4.00 

VNTS 6 196.8 35 4.00 

444 ISP1P2 11 79.9 57 8.16 

TS 11 79.9 74 8.16 

VNS 11 79.9 65 8.16 

VNTS 11 79.9 66 8.16 

804 ISP1P2 6 716.7 199 6.86 

TS 6 716.7 250 6.86 

VNS 6 716.7 225 6.86 

VNTS 6 716.7 227 6.86 

1051 ISP1P2 17 2131.8 257 10.07 

TS 17 2127.6 377 10.24 

VNS 17 2127.6 294 10.24 

VNTS 17 2127.6 308 10.24 

1351 ISP1P2 8 907.5 305 12.72 

TS 8 907.5 426 12.72 

VNS 8 907.5 366 12.72 

VNTS 8 907.5 372 12.72 

1599 ISP1P2 14 1395.2 362 4.39 

TS 14 1392.3 572 4.58 

VNS 14 1395.2 432 4.39 

VNTS 14 1395.2 439 4.39 

1932 ISP1P2 16 1187.8 695 14.87 

TS 16 1187.8 991 14.87 

VNS 16 1187.8 786 14.87 

VNTS 16 1187.8 811 14.87 

2100 ISP1P2 16 1676.8 829 8.56 
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TS 16 1676.5 1079 8.58 

VNS 16 1676.8 943 8.56 

VNTS 16 1676.8 954 8.56 

Average ISP1P2 100 275.0 9.31 

TS 100 385.5 9.36 

VNS 100 316.9 9.34 

VNTS 100 323.7 9.34 

 

From the averages at the foot of Table 5.1(a), it is clear that our metaheuristic solutions 

produce better results than Kim et al (2006) in terms of the distance travelled.  In 

particular, TS produces the highest reduction in distance approximately 9.36% less than 

Kim et al (2006), whilst solutions from VNS and VNTS produce routes of similar 

quality (approximately 9.34% less distance than Kim et al (2006)).  Improved solutions 

compared to the ISP1P2 solutions are highlighted in the table.  However in some test 

problems, our metaheuristics do not improve on ISP1P2 solutions (i.e. 335, 444, 804, 

1351 and 1932 problems).  With respect to the number of vehicles used, no reduction 

occurs in any of the metaheuristic solutions.  Thus, our metaheuristic solutions also 

involve (in total) 100 vehicles as our ISP1P2 solutions, those of Kim et al (2006) 99 

vehicles, so slightly worse. 

 

Results in Table 5.1(a) indicate that our three metaheuristics (TS, VNS and VNTS) 

produce solutions of similar quality for the 102 problem.  Thus Figure 5.1 shows only 

our VNS routes for the problem.  Compared with our ISP1P2 solution, our 

metaheuristics just slightly improved the ISP1P2 solutions by some 100(181.9-

181.8)/181.9=0.05%.  Thus, our solution for the 102 problem travels approximately 

11.36% less distance than Kim et al (2006) with three vehicles. 
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Figure 5.1: VNS routes for the 102 problem 
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Table 5.1 b) Metaheuristic solutions for the waste collection VRPTW problems for 

other IS procedures without our VR 

Algorithm 
 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

ISP1P2 - current IS procedure as 
Table 4.1(a) 100 275 9.31 

TS 100 385.5 9.36 

VNS 100 316.9 9.34 

VNTS 100 323.7 9.34 

ISP1P2 - Farthest from depot 103 388.3 6.23 

TS 103 473.7 6.23 

VNS 103 432.1 6.23 

VNTS 103 458.4 6.23 

ISP1P2 - Savings approach 101 411.2 6.94 

TS 101 501.3 6.95 

VNS 101 455.6 6.95 

VNTS 101 464.3 6.95 

ISP1P2 - Sweep algorithm 154 290.7 -18.76 

TS 154 385.7 -18.73 

VNS 154 339.4 -18.72 

VNTS 154 362.3 -18.64 

Different initial customer: 

a) ISP1P2 - current IS procedure 98 657 13.00 

TS 98 741.3 13.02 

VNS 98 697.6 13.00 

VNTS 98 702.2 13.02 

b) ISP1P2 - sweep algorithm 150 4611.4 -16.16 

TS 150 4715.3 -16.14 

VNS 150 4679.8 -16.14 

VNTS 150 4715.1 -16.14 

 

Table 5.1(b) shows our metaheuristic solutions starting from the ISP1P2 solution for 

other IS procedures.  Examining Table 5.1(b) all ISP1P2 solutions are slightly improved 

after applying our metaheuristics (as highlighted) except for the ISP1P2 solution for the 

farthest from depot.  Our TS and VNTS solutions for the different initial solution based 

on our IS procedure produces the best solution for the waste collection VRPTW 
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problems.  On average those metaheuristics (TS and VNTS) produce a reduction of 

around 13.02% in distance travelled and involve one less vehicle than Kim et al (2006).  

Even though both metaheuristics show solution of similar quality, but VNTS requires 

less computation time than TS.  On the other hand, the negative numbers for the 

metaheuristic solutions for the sweep algorithm and the different initial solution based 

on sweep algorithm indicate that they are still worse than Kim et al (2006). 

 

Metaheuristic solutions presented in Table 5.1(a) and (b) were produced starting from 

the ISP1P2 solutions without using our VR procedure.  Next in Table 5.1(c) and (d), 

metaheuristic solutions starting from the VRISP1P2 solutions are reported. 

 
Table 5.1 c) Metaheuristic solutions for the waste collection VRPTW problems for 

our IS procedure with our VR 

Problem Algorithm 

Total number 
of vehicles 

used 

Total 
distance 
(mile) 

Total 
computation 

time (s) 

% Improvement 
in distance over 
Kim et al (2006) 

1351 
VRISP1P2 as 
Table 4.1(c) 7 1010.9 545 2.77 

TS 7 1010.9 665 2.77 

VNS 7 1010.9 605 2.77 

VNTS 7 1010.9 613 2.77 

Average VRISP1P2 99 296.6 8.32 

TS 99 410.1 8.37 

VNS 99 341.5 8.34 

VNTS 99 348.5 8.34 

 

As we can see in Table 5.1(c) our metaheuristics do not improve on the VRISP1P2 

solution for the 1351 problem.  The total distance travelled for the 1351 problem is 

1010.9 miles which is approximately 2.77% less distance than Kim et al (2006).  

However, on average our TS produces the best routes, with a reduction of 8.37% in the 

distance travelled and uses 99 vehicles as in Kim et al (2006). 
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Table 5.1 d) Metaheuristic solutions for the waste collection VRPTW problems for 

other IS procedures with our VR 

Algorithm 
 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

VRISP1P2 - Current IS procedure 99 296.6 8.32 

TS 99 410.1 8.37 

VNS 99 341.5 8.34 

VNTS 99 348.5 8.34 

VRISP1P2 - Farthest from depot 101 430 4.30 

TS 101 519.5 4.30 

VNS 101 478.9 4.30 

VNTS 101 507.7 4.30 

VRISP1P2 - Savings approach 99 479.3 7.05 

TS 99 568.2 7.05 

VNS 99 525.9 7.05 

VNTS 99 534.5 7.05 

VRISP1P2 - Sweep algorithm 107 2427.9 -22.86 

TS 107 2551.1 -22.78 

VNS 107 2486.3 -22.77 

VNTS 107 2509.9 -22.84 

Different initial customer: 107 

VRISP1P2 - current IS procedure 97 678.2 11.26 

TS 97 765.8 11.28 

VNS 97 722.1 11.27 

VNTS 97 726.7 11.28 

VRISP1P2 - sweep algorithm 109 6545.3 -21.58 

TS 109 6651.5 -21.58 

VNS 109 6615.8 -21.58 

VNTS 109 6646.9 -21.58 

 

Table 5.1(d) shows the metaheuristic solutions starting from the VRISP1P2 solutions for 

other IS procedures.  As highlighted in the table, three VRISP1P2 solutions are slightly 

improved after applying our metaheuristics (i.e. VRISP1P2 solutions for current IS 

procedure, sweep algorithm and the different initial customer based on our IS 

procedure).   The rest remain the same as VRISP1P2 solutions.  Of all our three 



Chapter 5: Metaheuristics 
 

110 

 

metaheuristics, the results show that VNS has lower average computation times than 

either TS or VNTS. 

 

5.6.2. Computational results for the MDVRPI problems   

In this section, computational results of the MDVRPI problems using our metaheuristics 

(TS, VNS and VNTS) are reported.  Here we also use the neighbour set for a customer 

to prevent the number of customer moves/interchanges we have to examine being 

excessive.  For this set of benchmark problems, TS solutions are obtained when K=|C| 

whilst for VNS and VNTS, we use K*={5,10,25,|C|}.  Solutions from these 

metaheuristics which starting from the ISP1P2 solutions discussed in Chapter 4 (refer to 

Table 4.2(a) and (b)) are reported in Table 5.2(a) and (b).  Thus, the computation times 

given in both tables include the time taken to generate these solutions. 

 

Table 5.2 a) Metaheuristic solutions for the MDVRPI problems for our IS 

procedure without our VR 

Problem Algorithm 

Total 
number of 
vehicles 

used 
Total 

distance 

Total 
computation 

time (s) 

% Improvement in 
distance over 

Crevier et al (2007) 

a2  ISP1P2 5 1134.93 2 -13.73 

  TS 5 1134.93 3 -13.73 

  VNS 5 1134.93 3 -13.73 

  VNTS 5 1134.93 3 -13.73 

b2  ISP1P2 3 1503.85 7 -15.04 

  TS 3 1503.85 10 -15.04 

  VNS 3 1503.85 9 -15.04 

  VNTS 3 1503.85 9 -15.04 

c2  ISP1P2 3 1978.75 23 -13.23 

  TS 3 1978.75 31 -13.23 

  VNS 3 1978.75 27 -13.23 

  VNTS 3 1978.75 27 -13.23 



Chapter 5: Metaheuristics 
 

111 

 

d2  ISP1P2 3 2130.00 46 -13.82 

  TS 3 2129.29 72 -13.78 

  VNS 3 2130.00 54 -13.82 

  VNTS 3 2130.00 54 -13.82 

e2  ISP1P2 3 2415.59 101 -24.33 

  TS 3 2415.59 137 -24.33 

  VNS 3 2415.59 116 -24.33 

  VNTS 3 2415.59 116 -24.33 

f2  ISP1P2 3 2639.74 138 -15.56 

  TS 3 2639.74 191 -15.56 

  VNS 3 2639.74 160 -15.56 

  VNTS 3 2639.74 161 -15.56 

g2  ISP1P2 4 1352.61 3 -16.35 

  TS 4 1352.61 5 -16.35 

  VNS 4 1352.61 4 -16.35 

  VNTS 4 1352.61 4 -16.35 

h2  ISP1P2 3 1767.10 15 -11.32 

  TS 3 1767.10 24 -11.32 

  VNS 3 1767.10 19 -11.32 

  VNTS 3 1767.10 19 -11.32 

i2  ISP1P2 3 2347.10 66 -19.02 

  TS 3 2347.10 92 -19.02 

  VNS 3 2347.10 77 -19.02 

  VNTS 3 2347.10 77 -19.02 

j2  ISP1P2 3 2835.93 139 -23.62 

  TS 3 2835.93 192 -23.62 

  VNS 3 2835.93 161 -23.62 

  VNTS 3 2835.93 162 -23.62 

Average  ISP1P2  33   54.0 -16.60 

  TS  33   75.7 -16.60 

  VNS  33   63.0 -16.60 

  VNTS  33   63.2 -16.60 

Number of 
infeasible 
solutions 

 
1 
 

 

Results in Table 5.2(a) show that only the ISP1P2 solution for the d2 problem is 

improved using TS.  The total distance travelled for this problem is slightly reduced 

from 2130 to 2129.29.  However, this small reduction does not improve on the averages 
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at the foot of the table.  We travel approximately 16.6% more distance and use two extra 

vehicles than Crevier et al (2007).  Here TS requires more computational time than 

either VNS or VNTS even though they produce routes of similar quality.   

 

Table 5.2 b) Metaheuristic solutions for the MDVRPI problems for other IS 

procedures without our VR 

Algorithm 
 
 

Total 
number of 
vehicles 

used 
 

Average 
computation 

time (s) 
 

Average % 
improvement 

in distance 
over Crevier 
et al (2007) 

Number of 
infeasible 
solutions 

 

ISP1P2 -Current IS 
procedure as 33 54 -16.60 1 

TS 33 75.7 -16.60 1 

VNS 33 63.0 -16.60 1 

VNTS 33 63.2 -16.60 1 

ISP1P2 - Farthest from depot 33 56.7 -18.29 0 

TS 33 80.0 -18.16 0 

VNS 33 65.9 -18.29 0 

VNTS 33 66.3 -18.16 0 

ISP1P2 - Savings approach 31 36.3 -14.14 0 

TS 31 56.6 -14.10 0 

VNS 31 44.8 -14.11 0 

VNTS 31 45.0 -14.10 0 

ISP1P2 - Sweep algorithm 41 58.1 -14.36 6 

TS 41 85.3 -14.33 6 

VNS 41 66.8 -14.35 6 

VNTS 41 67.1 -14.25 6 

Different initial customer: 6 

a) ISP1P2 - current IS 
procedure 31 52.8 -13.57 0 

TS 31 78.4 -13.52 0 

VNS 31 61.6 -13.57 0 

VNTS 31 62.1 -13.45 0 

b) ISP1P2 - sweep 
algorithm 40 110.8 -15.20 5 

TS 40 133.3 -15.20 5 

VNS 40 119.5 -15.20 5 

VNTS 40 119.7 -15.20 5 
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Table 5.2(b) shows our metaheuristic solutions starting from the ISP1P2 solutions for 

other IS procedures.  The results clearly show that solutions from Crevier et al (2007) 

are still better than us.  However, our metaheuristics do improve on some of the ISP1P2 

solutions.  For example, on average our TS and VNTS solutions improve the ISP1P2 

solutions for the farthest from depot (from -18.29% to -18.16%) and the savings 

approach (from -14.14% to -14.10%).  In both improvements, VNTS has lower 

computation time than TS even though they produce solutions of similar quality.  In 

addition, on average VNTS also produce the biggest reduction in distance travelled than 

either TS or VNS for the ISP1P2 solutions for the sweep algorithm and the different 

initial customer based on our IS procedure (from -14.36% to -14.25% and from -13.57% 

to -13.45%, respectively).  On the other hand, our metaheuristics do not improve on 

ISP1P2 solutions for the current IS procedure and the different initial customer based on 

sweep algorithm.  Since there is no vehicle reduction in the metaheuristic solutions, the 

numbers of infeasible solutions in the last column of the table remain the same as 

ISP1P2 solutions. 

 

Table 5.2(c) has the same format as Table 4.2(c).  Examining results in Table 5.2(c), our 

three metaheuristics (TS, VNS and VNTS) do not improve on VRISP1P2 solutions for 

both test problems a2 and g2.  After applying our metaheuristics, on average we travel 

approximately 16.20% more distance than Crevier et al (2007) with 31 vehicles.  Again, 

from the foot of the table on average VNS has a lower computation time than either TS 

or VNTS. 
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 Table 5.2 c) Metaheuristic solutions for the MDVRPI problems for our IS 

procedure with our VR 

Problem 
 
 

Algorithm 
 
 

Total 
number of 
vehicles 

used 

Total 
distance 

 
 

Total 
computation 

time (s) 
 

% Improvement in 
distance over 

Crevier et al (2007) 

a2  VRISP1P2 4 1113.98 4 -11.63 

  TS 4 1113.98 5 -11.63 

  VNS 4 1113.98 5 -11.63 

  VNTS 4 1113.98 5 -11.63 

g2  VRISP1P2 3 1330.60 6 -14.45 

  TS 3 1330.60 8 -14.45 

  VNS 3 1330.60 7 -14.45 

  VNTS 3 1330.60 7 -14.45 

Average  VRISP1P2 31   55.3 -16.20 

  TS 31   76.9 -16.20 

  VNS 31   64.3 -16.20 

  VNTS 31   64.5 -16.20 

Number of 
infeasible 
solutions 

 
0 
 

 

Table 5.2 d) Metaheuristic solutions for the MDVRPI problems for other IS 

procedures with our VR 

Algorithm 
 
 
 

Total 
number of 
vehicles 

used 

Average 
computation 

time (s) 
 

Average % 
improvement in 

distance over 
Crevier et al (2007) 

 
Number of 
infeasible 
solutions 

VRISP1P2 - Current 
IS procedure 31 55.3 -16.20 0 

TS 31 76.9 -16.20 0 

VNS 31 64.3 -16.20 0 

VNTS 31 64.5 -16.20 0 

VRISP1P2 - Sweep 
algorithm 38 79.1 -14.41 3 

TS 38 105.4 -14.39 3 

VNS 38 88.0 -14.39 3 

VNTS 38 88.4 -14.39 3 

Different initial 
customer: 

VRISP1P2 - sweep 
algorithm 37 134.3 -14.82 3 

TS 37 156.6 -14.82 3 



Chapter 5: Metaheuristics 
 

115 

 

VNS 37 142.2 -14.82 3 

VNTS 37 142.3 -14.82 3 

 

Table 5.2(d) shows improved solutions compared to the VRISP1P2 solutions for other 

IS solutions after applying our three metaheuristics (TS, VNS and VNTS).  However, 

only the VRISP1P2 solution for the sweep algorithm has been improved (as highlighted 

in the table).  It is clearly shows that all metaheuristics produce routes of similar quality 

but on average VNS has the lowest computation times. 

 

5.7. Conclusion 

In a further attempt to improve the solutions for both sets of benchmark problems waste 

collection VRPTW and MDVRPI, in this chapter we have presented our three 

metaheuristics namely TS, VNS and VNTS.  These metaheuristics have been applied on 

the solutions of the ISP1P2 and VRISP1P2 which have been discussed in Chapter 4.  

Based on the computational results reported above, our metaheuristics give only small 

improvement on those solutions.   

 

Of all solutions obtained from our metaheuristics, the solution for the different initial 

customer based on our IS procedure gives the best solution for the waste collection 

VRPTW problems.  This solution outperforms Kim et al (2006) in terms of the distance 

travelled as well as the number of vehicles used.  This is followed by the solution from 

our IS procedure and the solution for the savings approach.  Both solutions are better 

than Kim et al (2006) in terms of the distance travelled and use 99 vehicles as in Kim et 

al (2006).  On the other hand, solution for the farthest from depot is only better than 
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Kim et al (2006) in terms of the distance travelled but use extra two vehicles than Kim 

et al (2006).  Moreover, solutions from the sweep algorithm and the different initial 

customer based on sweep algorithm are worse than Kim et al (2006) in terms of both 

distance travelled and number of vehicles used.   

 

For the MDVRPI problems, computational results reported above indicate that all our 

metaheuristic solutions are worse than Crevier et al (2007) in terms of the distance 

travelled.  However, three solutions (current IS procedures, savings approach and the 

different initial customer based on current IS procedure) involve (in total) 31 vehicles as 

in Crevier et al (2007).  

 

Examining the results in the tables presented above we could say that all our 

metaheuristics produce routes of almost similar quality for the test problems.  On this 

basis we would be justified in choosing the metaheuristic involving the lowest 

computation time.  From the average of all table presented above, clearly VNS is to be 

preferred, having a lower average time than either TS or VNTS.   

 

In the next chapter other procedures for route evaluation are presented.  Since some of 

the solutions from both sets of benchmark problems are still worse even after applying 

our metaheuristics, in the next chapter the route evaluation procedures are only tested on 

some of the solutions.  For the waste collection VRPTW problems, we choose the 

solution procedures which travel less distance than Kim et al (2006) and used at least the 
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same number of vehicles as in Kim et al (2006).  Hence, three IS procedures are selected 

for further examination in the next chapter: 

• Current IS procedure 

• Savings approach  

• Different initial customer based on current IS procedure 

 

However, for the MDVRPI problems, all of our solutions are worse than Crevier et al 

(2007) in terms of the distance travelled.  On this basis, we choose the solution 

procedures that produce feasible solutions for all the test problems.  Hence, four IS 

procedures are selected for further examination in the next chapter: 

• Current IS procedure 

• Farthest from depot 

• Savings approach  

• Different initial customer based on current IS procedure 
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CHAPTER 6 

 

OTHER LOCAL SEARCH PROCEDURES 

 

In the first section of this chapter a route evaluation procedure, namely disposal facility 

positioning (DFP) is presented.  In the second and third sections, two procedures, 

namely change tracking and reverse order are presented.  The change tracking procedure 

aims to reduce the computation time by evaluating only necessary changes on the routes 

whereas the reverse order procedure aims to reduce the distance travelled.  In the fourth 

section, computational results for all these procedures tested on two benchmark problem 

sets are reported.  Finally, a summary of this chapter is presented. 

 

6.1 Disposal facility positioning procedure (DFP) 

In this section a route evaluation procedure, disposal facility positioning (DFP) 

originally proposed by Hemmelmayr et al (2009) is presented.  Since the waste 

collection problem involves disposal facilities trips on the routes, this procedure is used 

for choosing the best disposal facilities to go on the route.  In Chapter 3 (refer to Section 

3.5), we have used this procedure for evaluating initial routes constructed from the 

savings approach and the sweep algorithm.  In this chapter, this procedure is used to 

evaluate routes for our phase 1 and phase 2 procedures as well as the three metaheuristic 

algorithms (TS, VNS and VNTS) in solving both sets of benchmark problems waste 

collection VRPTW and MDVRPI.  
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Note here that in evaluating a given route we regard it as comprising a fixed sequence of 

places - starting at the depot, then a mix of customers and disposal facilities, finally a 

disposal facility (to empty the vehicle), followed by the depot.  Although in our route 

evaluation procedure presented in Chapter 4 (refer to Section 4.1) allows the insertion of 

extra disposal facilities to try (if necessary) to ensure that the route remains feasible with 

respect to capacity it is clear that as we evaluate a large number of routes, and as we 

move customers between routes as we attempt to improve the solution, the positioning 

of disposal facilities is crucial. 

 

In the DFP procedure presented below, dynamic programming is used to generate a 

candidate route by “optimally” positioning disposal facilities.  Here we use “optimal” in 

inverted commas, as we cannot actually optimally position disposal facilities, as we 

have to take into account the rest period and time windows for the waste collection 

VRPTW problems.  This contrasts with the problem considered by Hemmelmayr et al 

(2009) where such complications did not arise.  However, this approach can be used to 

suggest positions for disposal facilities in a route that we can then evaluate taking the 

rest period and time windows into account. 

 

As in the route evaluation procedure we start with a fixed sequence of places for which 

we wish to investigate disposal facility positioning.  Suppose the route (but now 

excluding any disposal facilities in this fixed sequence) is given by Γ(1)→Γ(2) 

→…→Γ(m) so there are m places on the route with Γ(1)=Γ(m) being the depot, Γ(2) 

being the first customer, Γ(3) the second customer, etc and Γ(m-1) the last customer.  
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Clearly we will need to position a disposal facility been the last customer Γ(m-1) and 

the depot Γ(m), but we may also need to position other disposal facilities as well (to try 

and feasibly operate the route). 

 

In order to try and avoid excessive computation time we, for all pairs of 

customers/depot, pre-determine the best disposal facility to insert. More formally let: 

b(i,j) = arg min [dik+dkj | k∈D]  i∈{0}∪C; j∈{0}∪C; i≠j 

 

Here b(i,j) is the best disposal facility to insert between i and j based on the total 

distance travelled. This (obviously) ignores the issue of customer and disposal facility 

time windows.  Note here that b(i,j) can be computed once before any routes are 

calculated. 

 

We can now construct a graph to assist in disposal facility positioning.  This graph is a 

directed, acylic graph where there are m nodes, node i (i≠1,m) representing customer 

Γ(i) and nodes 1 and m being the depot.  Here we distinguish the depot twice, once at 

the start of the route (node 1) and once at the end of the route (node m). 

 

In this graph there is an arc between nodes i and j (j>i) if and only if it is feasible (in 

terms of vehicle capacity) to visit all of the customers between Γ(i) and Γ(j-1) inclusive 

i.e. if and only if 
j-1

k=i

∑ qΓ(k) ≤ Q (where we define q0=0 to ease the notation).  If this arc 

between nodes i and j exists then it indicates that we will visit the customers between 
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Γ(i) and Γ(j-1) in their fixed sequence, then go to disposal facility b(Γ(j-1),Γ(j)) before 

going to customer Γ(j). The cost π(i,j) of this arc is given by the total travel distance 

involved, i.e. π(i,j) = 
j-2

k=i

∑ dΓ(k), Γ(k+1) + dΓ(j-1),b(Γ(j-1), Γ(j)) + db(Γ(j-1), Γ(j)), Γ(j)  

 

If we now find the shortest (least cost) path in this graph between node 1 and node m, 

where the arc costs are given by π(i,j) then we will have “optimally” positioned disposal 

facilities. In other words the arcs that make up the least cost path from node 1 to node m 

each (by definition) have a disposal facility associated with them.  Thus, by knowing the 

arcs used in the least cost path we know which disposal facilities to position where in 

the route.  

 

For example, suppose the shortest (least cost) path in this graph between node 1 and 

node m involves the arc from 1 to k and the arc from k to m.  Then we will be 

positioning two disposal facilities: 

• one just before Γ(k), this will be the disposal facility b(Γ(k-1),Γ(k)) 

• one just before Γ(m), this will be the disposal facility b(Γ(m-1), Γ(m)) 

 

We then evaluate the fixed sequence of places depot=Γ(1)→Γ(2) →…→Γ(k-1)→ 

b(Γ(k-1), Γ(k))→Γ(k) →Γ(k+1)→…→ Γ(m-1) → b(Γ(m-1),Γ(m))→ Γ(m)=depot 

 

This evaluation is done using our route evaluation procedure so we take into account the 

rest period and the time windows. There is no guarantee that this route with disposal 
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facilities “optimally” positioned will (once we take account of the rest period and time 

windows) be either feasible or better than the route (involving disposal facilities) we had 

originally. However this procedure does offer one way to position disposal facilities 

across the whole route that may be worthwhile. 

 

Finding the least cost path between node 1 and node m in the directed graph with arc 

costs π(i,j) can be accomplished using dynamic programming, e.g. using an algorithm 

due to Dijkstra (1959).  However since here we have an acyclic graph we can use a more 

specialised algorithm than the general algorithm for finding shortest paths. 

 

6.1.1 Least cost path finding 

In this section a procedure for finding least cost paths in a computationally efficient 

manner is presented.  Here, we use the above procedure for disposal facility positioning 

each time we evaluate a route (fixed sequence of places).  Although finding a least cost 

path in a graph can be accomplished using algorithms such as those due to Dijkstra 

(1959) the graph in which we are finding a least cost path has a special structure, namely 

that all arcs go from some node i to some node j, where j>i.  As such we can find the 

least cost path from 1 to m in the manner presented below.  In the procedure presented 

we in fact combine establishing whether arcs in the graph exist (and if so their cost 

π(i,j)) simultaneous with calculating the least cost path. This is because we can move 

forward in the fixed sequence, from node 1 to node 2 to node 3, etc in an obvious 

manner. 
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Let Ω(i) be the cost of the least cost path from node 1 to node i and let σ(i) be the node 

before i in that path (i.e. the arc σ(i)→i is used in the path). 

  

Initialise Ω(i)=∞ and σ(i)=0 i=1,…m 

For all i=1,….,m-1 in turn do: 

 

Here we try an establish arcs from node i to later nodes in the fixed sequence 

Set Dtemp=Qtemp=0; these are running totals of the distance/capacity involved in the arcs 

from i 

 

For all j=(i+1),…,m in turn do: 

If Qtemp+qΓ(j-1) > Q then go to DONEJ, as we cannot add an arc from i to j since the 

vehicle capacity would be exceeded, and this by implication means we cannot add an 

arc from i to any other node k>j 

 

Here we can add an arc from i to j 

 

Set π(i,j)=Dtemp+dΓ(j-1),b(Γ(j-1), Γ(j))+db(Γ(j-1), Γ(j)), Γ(j) set the arc length 

Update Ω(j) and σ(j) using: 

If i=1 and π(i,j)< Ω(j) then: 

Ω(j)= π(i,j)    update the length of the shortest path from 1 to j 

σ(j)=i    update the node before j in the shortest path 

end if 

 

If Ω(i)+π(i,j)< Ω(j) then: 

Ω(j)= Ω(i)+π(i,j)   update the length of the shortest path from 1 to j 

σ(j)=i    update the node before j in the shortest path 

end if 

Set Qtemp=Qtemp+qΓ(j-1)   update the capacity used 
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Set Dtemp=Dtemp+dΓ(j-1), Γ(j)  update the distance travelled 

 

end for 

 

DONEJ: 

end for 

 

Computationally this procedure requires O(m2) operations. 

 

In order to trace out the sequence of disposal facilities (and customers) at the end of the 

procedure (for use in evaluating whether this sequence, when we consider rest periods 

and time windows, is feasible) we start from node m (=depot) in the procedure below. 

 

Set i=m 

While i≠1 do: 

Insert disposal facility b(Γ(i-1), Γ(i)) before customer Γ(i) 

Set i=σ(i) 

end while 

 

Figure 6.1 illustrates an example of a vehicle route when the DFP procedure is applied 

for positioning disposal facilities on the route.  The route consists of 20 nodes (starts 

from node 1 to node 20) where node 1=node 20=depot.  In this example the shortest 

(least cost) path between node 1 and node 20 involves four arcs: 

• Arc from node 1 to node 5 

• Arc from node 5 to node 12 

• Arc from node 12 to node 18 
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• Arc from node 18 to node 20 

 

After the shortest (least cost) path is defined, then the disposal facilities will be inserted 

on the route.  Using the procedure presented above, a disposal facility will be inserted 

just before node i (b(Γ(i-1), Γ(i)).  Here we start with i=m=20.  Thus, the first disposal 

facility is inserted before node 20.  The second disposal facility is inserted before node 

18 (i.e. i=σ(i) =σ(20)=18).  This process is repeated if i≠1.  So in this example the last 

disposal facility inserted on the route is before node 5.  Then the procedure is terminated 

(i.e. i=σ(5)=1).  The logic here is that node 1=depot.  So when i=1 no disposal facility 

can be inserted before the depot. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: An example of a vehicle route when the DFP procedure is applied 

 

Preliminary computational experiments indicated that this procedure is effective by 

reducing distance travelled for the test problems which have multiple disposal facilities.  

But for a problem with only one disposal facility it does not have much effect and will 
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produce almost the same quality routes as our route evaluation procedure.  This is 

because our procedures (refer to Section 4.1 and Section 4.2) do allow us to move 

disposal facilities.  If we have just one disposal facility, the DFP procedure adds little to 

our existing approaches.  

 

Preliminary computational experiments indicated that this DFP procedure is very time 

consuming.  For example, on the largest problem with 2092 customers including the 

DFP procedure requires approximately 1.5 hours to solve the problem.  Hence in the 

next section we present a procedure, namely change tracking, to overcome this problem 

by evaluating only necessary changes on the routes. 

  

6.2 Change tracking procedure 

In our local search algorithms (e.g. phase 1 and phase 2 procedures) the majority of the 

changes that we examine involve two customers (who may or may not be on the same 

route), so for example we: 

• add customer j before/after a customer i   

• interchange two customers i and j 

 

With the DFP procedure the evaluation of any change is now computationally quite 

expensive.  So one thing we can do is cut down on “unnecessary” evaluations.  Suppose 

we examine an interchange of two customers i and j and find it is not successful (in 

terms of leading to an improvement in the current solution) – we go on to examine many 
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more changes but at some point we may come back to examining the same pair of 

customers. Now if since we last examined this pair: 

• i is still on the same route and the route that i is on has not changed at all; 

AND 

• j is still on the same route and the route that j is on has not changed at all 

then it is clear that re-examining the interchange of i and j cannot be successful in terms 

of leading to an improvement in the current solution. 

 

Hence if we can identify when we come to examine a pair that any change cannot be 

successful (i.e. it satisfies the above condition) we can skip evaluating it – saving on 

computation time. 

To do this: 

• set up a counter COUNT that is increased by one each time we do a route 

evaluation (using our new DFP approach) 

• let ROUTE(v) v=1,2,….,number of vehicles be the COUNT value at which route 

v was last changed 

• Initially ROUTE(v)=0 ∀v and when we make a change to a route at any point in 

the algorithm set ROUTE(v) for that route equal to the current COUNT value 

 

Define  

• last_time(i,j,1) to be the COUNT value when we last examined placing j before 

customer i (both i and j on the same route);  

• last_time(i,j,2) to be the COUNT value when we last examined placing j after 

customer i (both i and j on the same route);  

• last_time(i,j,3) to be the COUNT value when we last examined placing j before 

customer i (both i and j on the different routes);  
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• last_time(i,j,4) to be the COUNT value when we last examined placing j after 

customer i (both i and j on the different routes); 

• last_time(i,j,5) to be the COUNT value when we last examined interchanging 

customers i and j, both are on the same route (since when we swap the pair (i,j) 

this is the same as the pair (j,i) we need to always have last_time(i,j,5)= 

last_time(j,i,5)) 

• last_time(i,j,6) to be the COUNT value when we last examined interchanging 

customers i and j, both are on the different routes (since when we swap the pair 

(i,j) this is the same as the pair (j,i) we need to always have last_time(i,j,6)= 

last_time(j,i,6)) 

 

Now when we come to examine a change we need only bother with examining this 

change if: 

• placing j before customer i (on the same route): 

o last_time(i,j,1) < ROUTE(route i on), since if this is true then the route 

that i is on has changed since the last time we examined placing j before i 

• placing j after customer i (on the same route): 

o last_time(i,j,2) < ROUTE(route i on), since if this is true then the route 

that i is on has changed since the last time we examined placing j after i 

• placing j before customer i (on the different routes): 

o last_time(i,j,3) < maximum (ROUTE(route i on), ROUTE(route j on)), 

since if this is true then the routes that i and j are on have changed since 

the last time we examined placing j before i 

• placing j after customer i (on the different routes): 

o last_time(i,j,4) < maximum (ROUTE(route i on), ROUTE(route j on)), 

since if this is true then the routes that i and j are on have changed since 

the last time we examined placing j after i 

• interchanging i and j (on the same route): 

o last_time(i,j,5) < ROUTE(route i on), since if this is true then the route 

that i and j is on has changed since the last time we examined 

interchanging i and j 
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• interchanging i and j (on the different routes): 

o last_time(i,j,6) < maximum (ROUTE(route i on), ROUTE(route j on)) 

since if this is true then the routes that i and j are on have changed since 

the last time we examined interchanging i and j 

 

The change tracking procedure discussed above is added only at certain parts of the 

phase 1 and phase 2 procedures where repositioning/interchanging of the customers are 

involved.  Thus, our phase 1 and phase 2 procedures become as below  

 

Before phase 1 and phase 2, set: 

COUNT=0 

last_time(i,j,1)=last_time(i,j,2)=last_time(i,j,3)=last_time(i,j,4)=last_time(i,j,5)=last_tim

e(i,j,6)=-1 ∀i,j (setting it to –1 ensures we always examine a change at least once) 

ROUTE(v)=0 ∀v 

 

Phase 1 

In this phase we evaluate repositioning customers using our new DFP procedure.  In 

pseudocode we: 

For all customers i∈C: 

For all customers j∈N(i,K): 

If i and j are on the same route: 

then: 

If last_time(i,j,1) < ROUTE(route i on) then: 

•    set COUNT=COUNT+1; set last_time(i,j,1)=COUNT 

• Add j immediately before i (here we check positioning j before i on the same 

route as it was originally on) 

• Evaluate this new route with j added to this new position using our new DFP 

procedure and if it is better than the original route (FEASIBLE and of lower 

total distance) then keep it (and set ROUTE(route i on)=COUNT), else do not 
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endif 

If last_time(i,j,2) < ROUTE(route i on) then: 

• set COUNT=COUNT+1; set last_time(i,j,2)=COUNT 

• Add j immediately after i (here we check positioning j after i on the same route 

as it was originally on) 

• Evaluate this new route with j added to this new position using our new DFP 

procedure and if it is better than the original route (FEASIBLE and of lower 

total distance) then keep it (and set ROUTE(route i on)=COUNT), else do not 

end if 

endif 

 

If i and j are on the different routes: 

then: 

If last_time(i,j,3) <maximum (ROUTE(route i on), ROUTE(route j on)) then: 

•    set COUNT=COUNT+1; set last_time(i,j,3)=COUNT 

• Add j immediately before i (here we check positioning j before i on the routes 

as they were originally on) 

• Evaluate the two routes that are involved in this change using our new DFP 

procedure and if both are FEASIBLE and their total distance is<the total 

distance for the two routes before the change then keep them (and set 

ROUTE(route i on)=ROUTE(route j on)=COUNT), else do not 

endif 

If last_time(i,j,4) < maximum (ROUTE(route i on), ROUTE(route j on)) then: 

• set COUNT=COUNT+1; set last_time(i,j,4)=COUNT 

• Add j immediately after i (here we check positioning j after i on the routes as 

they were originally on) 

• Evaluate the two routes that are involved in this change using our new DFP 

procedure and if both are FEASIBLE and their total distance is<the total 

distance for the two routes before the change then keep them (and set 

ROUTE(route i on)=ROUTE(route j on)=COUNT), else do not 

end if 
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endif 

end for 

end for 

 

Phase 2 

In this phase we evaluate interchanging customers using our new DFP procedure.  In 

pseudocode we: 

 

For all customers i∈C: 

For all customers j∈N(i,K): 

If i and j are on the same route AND last_time(i,j,5) < ROUTE(route i on) then: 

• set COUNT=COUNT+1; set last_time(i,j,5)= 

last_time(j,i,5)=COUNT;  

• we interchange customers i and j, i.e. customer i moves to the position 

of customer j and customer j moves to the position of customer i on the 

route 

• Evaluate this new route using our new DFP procedure and if it is 

better than the original route (FEASIBLE and of lower total distance) 

then keep it (and set ROUTE(route i on)=COUNT), else do not 

end if 

 

If i and j are on the different routes (serviced by a different vehicle) AND 

last_time(i,j,6) < maximum (ROUTE(route i on), ROUTE(route j on)) 

then: 

• set COUNT=COUNT+1; set last_time(i,j,6)= 

last_time(j,i,6)=COUNT; 

• we interchange customers i and j, i.e. customer i moves to the position 

that customer j occupied on its route and customer j moves to the 

position that customer i occupied on its route 
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• Evaluate the two routes that are involved in this interchanges using 

our new DFP procedure. If both are FEASIBLE and their total 

distance is < the total distance for the two routes before the 

interchange then keep the interchange (and set ROUTE(route i 

on)=ROUTE(route j on)=COUNT), else do not  

end if 

end for 

end for 

 

Computationally we repeat phase 1 and phase 2 in turn until no further improvement can 

be achieved.  We will then have a locally optimal solution. 

 

Note here this procedure aims to reduce the computational time when the DFP 

procedure is used to evaluate vehicle routes.  Preliminary computational experiments 

indicated that including the DFP procedure in our phase 1 and phase 2 procedures for 

the test problems with more than 500 customers could take approximately 25 minutes.  

For example, Table 6.1 shows total computational time for the test problems of the 

waste collection VRPTW which involved more than 500 customers with/without 

applying the change tracking procedure.  The last column in the table gives the 

percentage reduction of the total time when the change tracking procedure is used, 

namely 100(total computation time without the change tracking procedure - total 

computation time with the change tracking procedure)/( total computation time without 

the change tracking procedure).  The last row in the table shows the average of the 

computation time of the phase 1 and phase 2 procedures with/without the change 

tracking procedure. 
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Table 6.1: Total computational time for the phase 1 and phase 2 procedures 

with/without the change tracking procedure 

Problem Total computation time (s) % reduction 

Without change 
tracking procedure 

With change tracking 
procedure 

804 1529 1151 24.72 

1051 840 390 53.57 

1351 2491 1905 23.52 

1599 2127 1581 25.67 

1932 3486 2966 14.92 

2100 5153 3337 35.24 

Average 1562.6 1133.0 29.61 

 
 

Examining Table 6.1 it shows that including the change tracking procedure in our phase 

1 and phase 2  procedures, the total computational time of the test problems could be 

reduced by up to 53.57%.  On average the computation time is decreased by some 

29.6%.  Furthermore, both solution sets with/without change tracking procedure have 

the same quality routes.  This is because by the nature of the change tracking procedure 

we must end up with the same routes as we end up with when we do not apply the 

change tracking procedure.  Thus, it is proved that our change tracking procedure is 

effective when it is included in our phase 1 and phase 2 procedures with the DFP 

procedure. 

 

Since the MDVRPI problems only involved up to 288 customers, this procedure is not 

included in our phase 1 and phase 2 procedures when generating the solutions for the 

problems. 
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6.3 Reverse order procedure  

 In a further attempt to improve the solution, this section presents our reverse order 

procedure where the objective of this procedure is to reduce crossing routes when we 

interchange two customers on the same route.  In this procedure after interchanging the 

two customers on the same route, the positions of other customers between this pair are 

changed in the reverse order.   

 

Figure 6.2 illustrates an example of a new route constructed with/without the reverse 

order procedure after two customers on the route have interchanged.  This example 

consists of one single depot, one disposal facility and five customers.  The original route 

(i.e. route a) starts from the depot→1→2→3→4→5→disposal facility→depot.  After 

interchanging between customer 2 and customer 5, the new route is 

depot→1→5→3→4→2→disposal facility→depot (i.e. route b).   

 

Here, we can see that many crossing arcs have occurred on this route.  Preliminary 

computational experiments indicated that by reducing these crossing arcs, the distance 

travelled can be improved.  In order to reduce the crossing arcs, the positions of 

customers 4 and 3 (customers between 5 and 2) are changed in a reverse order. Thus, 

after applying our reverse order procedure the new route becomes 

depot→1→5→4→3→2→disposal facility→depot (i.e. route c) and definitely with less 

crossing arcs. 
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Figure 6.2: An example of two routes with/without the reverse order procedure 

 

This procedure can be applied only in our phase 2 procedure but not in our phase 1 

procedure.  The logic here is that in our phase 1 procedure we move a customer 

immediately before/after its neighbour who may or may not be on the same route (refer 

to Section 4.2.1 in Chapter 4).  Thus, there is no customer between this pair that the 

reverse order can be applied to.  On the other hand, in our phase 2 procedure we 
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interchange the positions of two customers that may or may not be on the same route.  

But we can reduce crossing arcs that occurred on the same route.  Thus, this procedure is 

only included in our phase 2 procedure where we interchange two customers on the 

same route.   

 

Phase 2 

In pseudocode we: 

For all customers i∈C: 

For all customers j∈N(i,K): 

If i and j are on the same route then: 

• we interchange customers i and j, i.e. customer i moves to the position 

of customer j and customer j moves to the position of customer i on the 

route 

• reverse the positions of the customers between i and j on the route 

• Evaluate this new route.  If it is better than the original route 

(FEASIBLE and of lower total distance) then keep it, else do not 

end if 

end for 

end for 

 

6.4 Results 

This section reports computational results for the phase 1 and phase 2 procedures as well 

as our three metaheuristics (TS, VNS and VNTS) with the DFP, reverse order and 

change tracking procedures discussed above.  For both sets of benchmark problems 

waste collection VRPTW and MDVRPI, three sets of solutions are reported: 
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• First, computational results with reverse order only (DFP=No and 

Reverse=Yes).  For this solution, every move (i.e. moving/swapping customers) 

that we have made on the vehicle routes with the reverse order procedure is 

evaluated using our route evaluation procedure discussed in Chapter 4 (refer to 

Section 4.1). 

• Second, computational results with DFP procedure only (DFP=Yes and 

Reverse=No).    For this solution, the reverse order procedure is not applied in 

improving the vehicle routes.  Every move (i.e. moving/swapping customers) 

that we have made on the vehicle routes is evaluated using the DFP procedure.   

• Third, computational results with DFP and reverse order procedures (DFP=Yes 

and Reverse=Yes).  For this solution, every move (i.e. moving/swapping 

customers) that we have made on the vehicle routes with the reverse order 

procedure is evaluated using the DFP procedure. 

For each set of solutions, ISP1P2, TS, VNS and VNTS solutions are reported 

before/after applying our VR procedure discussed in Chapter 4 (refer to Section 4.3). 

 

6.4.1 Computational results for the waste collection VRPTW problems 

Computational results for the DFP and reverse order procedures tested on waste 

collection VRPTW problems are reported in this section.  Table 6.2(a) reports solutions 

of ISP1P2 and our three metaheuristics (TS, VNS and VNTS) with DFP=No, 

Reverse=Yes before applying the VR procedure.  Note here that we use the neighbour 

set for a customer to prevent the number of customer moves/interchanges we have to 

examine being excessive.  In the same manner as results reported in the previous 
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chapter, here ISP1P2 and TS solutions are also obtained when K=50 and for the VNS 

and VNTS, we use K*={5,10,25,50). 

   

Table 6.2 a) DFP=No, Reverse=Yes without our VR procedure for the waste 

collection VRPTW problems 

Algorithm 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

Current IS procedure: 

ISP1P2 100 406.6 12.52 

TS 100 596.2 12.53 

VNS 100 527.3 12.53 

VNTS 100 553.2 12.53 

Savings approach: 

ISP1P2 102 432.6 10.17 

TS 102 712.4 10.21 

VNS 102 617.8 10.18 

VNTS 102 744.4 10.19 

Different initial customer based on 
current IS procedure: 

ISP1P2 98 850.7 14.48 

TS 98 1080.7 14.49 

VNS 98 1018.0 14.48 

VNTS 98 1127.6 14.50 

 

Results in Table 6.2(a) shows that our solutions from three different IS procedures (i.e. 

current IS, savings approach and different initial customer based on current IS 

procedure) travel less distance than Kim et al (2006). However, in terms of the total 

number of vehicles used only solutions from the different initial customer based on 

current IS procedure use one less vehicle than Kim et al (2006) whilst solutions from the 

IS procedure use one extra vehicle and the solutions from the savings approach use three 

extra vehicles.  Of all solutions reported in the table, VNTS from the different initial 

customer based on current IS procedure produces the best solution, travels 
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approximately 14.5% less distance and uses one less vehicle than Kim et al (2006) with 

1127.6 seconds of computational time.  Note here that for space reasons we, in this table 

as in other tables in this chapter, do not give individual results for the test problems. 

 

Table 6.2 b) DFP=No, Reverse=Yes with our VR procedure for the waste collection 

VRPTW problems 

Algorithm 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

Current IS procedure: 

ISP1P2 97 545.8 11.67 

TS 97 737.0 11.68 

VNS 97 669.1 11.68 

VNTS 97 698.8 11.68 

Savings approach: 

ISP1P2 97 573.2 10.20 

TS 97 1059.7 10.23 

VNS 97 891.5 10.21 

VNTS 97 1124.0 10.23 

Different initial customer based on 
current IS procedure: 

ISP1P2 97 920.8 13.54 

TS 97 1202.7 13.56 

VNS 97 1113.0 13.54 

VNTS 97 1224.8 13.57 

 

Table 6.2(b) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=No, 

Reverse=Yes after applying our VR procedure.  Now, all of our solutions are better than 

Kim et al (2006) in terms of the total number of vehicles used as well as the distance 

travelled.  Here, all solutions use two less vehicles than Kim et al (2006).  However, the 

reduction of the vehicles used does not guarantee that the distance travelled also will be 

reduced.  For example, before applying VR procedure the best solution from VNTS for 

the different initial customer based on current IS procedure travel approximately 14.5% 
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less distance than Kim et al (2006) with 98 vehicles (from Table 6.2(a)).   Now with 97 

vehicles, the solution travel approximately 13.57% less distance than Kim et al (2006). 

 
Table 6.3 a) DFP=Yes, Reverse=No without our VR procedure for the waste 

collection VRPTW problems 

Algorithm 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

Current IS procedure: 

ISP1P2 100 1032.4 11.29 

TS 100 1567.3 11.30 

VNS 100 1301.0 11.30 

VNTS 100 1368.6 11.30 

Savings approach: 

ISP1P2 101 937.0 7.83 

TS 101 1438.0 7.83 

VNS 101 1165.7 7.83 

VNTS 101 1206.6 7.83 

Different initial customer based on 
current IS procedure: 

ISP1P2 98 1470.2 13.40 

TS 98 1958.8 13.41 

VNS 98 1755.7 13.40 

VNTS 98 1844.1 13.41 

 

Table 6.3(a) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=Yes, 

Reverse=No before applying the VR procedure.  Results in the table show that the best 

solutions are from TS and VNTS for the different initial customer based on current IS 

procedure.  Both solutions are better than Kim et al (2006) in terms of the number of 

vehicles used (i.e. one less vehicle than Kim et al (2006)) as well as distance traveled 

(i.e. approximately 13.41% less distance).  However VNTS is to be preferred, having a 

lower average time than TS.  On the other hand, other solutions (i.e. for the current IS 
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procedure and savings approach) involve more vehicles than Kim et al (2006), yet in 

terms of the distance traveled they are still outperform solutions from Kim et al (2006).  

     

Table 6.3 b) DFP=Yes, Reverse=No with our VR procedure for the waste collection 

VRPTW problems 

Algorithm 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

Current IS procedure: 

ISP1P2 97 1345.8 9.88 

TS 97 1908.1 9.88 

VNS 97 1622.6 9.88 

VNTS 97 1694.4 9.88 

Savings approach: 

ISP1P2 97 1191.1 7.60 

TS 97 1671.2 7.60 

VNS 97 1434.7 7.60 

VNTS 97 1498.6 7.60 

Different initial customer based on 
current IS procedure: 

ISP1P2 97 1555.0 12.08 

TS 97 2046.3 12.09 

VNS 97 1791.3 12.08 

VNTS 97 1812.7 12.09 

 

Table 6.3(b) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=Yes, 

Reverse=No after applying the VR procedure.  Results in the table show that all 

solutions have reduced the number of vehicles used (e.g. solutions for the current IS 

procedure reduce from 100 vehicles to 97 vehicles).  The decreasing positive numbers 

on the last column in the table compared with the last column in Table 6.3(a) indicate 

that with fewer vehicles all solutions in this table travel more distance than before.  

However, all solutions shows in the table are better than Kim et al (2006) in terms of the 

total number of vehicles used as well as distance travelled. Again, VNTS and TS for the 
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different initial customer based on current IS procedure produce the best solutions.  

They travel approximately 12.09% less distance and use two less vehicles than Kim et al 

(2006).  Yet, VNTS has lower computation times than TS. 

 

Table 6.4 a) DFP=Yes, Reverse=Yes without our VR procedure for the waste 

collection VRPTW problems 

Algorithm 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

Current IS procedure: 

ISP1P2 100 1189.9 12.85 

TS 100 1819.7 12.85 

VNS 100 1513.6 12.85 

VNTS 100 1606.7 12.87 

Savings approach: 

ISP1P2 101 1176.7 10.23 

TS 101 1815.7 10.24 

VNS 101 1515.7 10.24 

VNTS 101 1606.2 10.24 

Different initial customer based 
on current IS procedure: 

ISP1P2 98 1731.1 14.87 

TS 98 2532.1 14.89 

VNS 98 2062.3 14.88 

VNTS 98 2143.3 14.90 

 

Table 6.4(a) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=Yes, 

Reverse=Yes before applying the VR procedure.  As results presented in Table 6.2(a) 

and 6.3(a) above, here in this table all solutions also travel less distance than Kim et al 

(2006) but only solutions for the different initial customer based on current IS procedure 

use fewer vehicles than Kim et al (2006).  The best solution is from VNTS involves 98 

vehicles and travels approximately 14.9% less distance than Kim et al (2006) with 

2143.3 seconds of computation time. 
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Table 6.4 b) DFP=Yes, Reverse=Yes with our VR procedure for the waste 

collection VRPTW problems 

Algorithm 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

Current IS procedure: 

ISP1P2 97 1607.7 11.85 

TS 97 2289.4 11.89 

VNS 97 1959.6 11.85 

VNTS 97 2102.4 11.86 

Savings approach: 

ISP1P2 97 1559.1 10.03 

TS 97 2260.1 10.10 

VNS 97 1904.6 10.05 

VNTS 97 1993.7 10.05 

Different initial customer based 
on current IS procedure: 

ISP1P2 97 1937.2 14.09 

TS 97 2740.7 14.11 

VNS 97 2268.7 14.10 

VNTS 97 2349.3 14.12 

 

Table 6.4(b) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=Yes, 

Reverse=Yes after applying the VR procedure.  Our three metaheuristics (TS, VNS and 

VNTS) produce solutions of almost similar quality with their ISP1P2 solutions.  They 

clearly show that all solutions are better than Kim et al (2006) in terms of the total 

number of vehicles used and the distance travelled.  The best solution travels 

approximately 14.12% less distance than Kim et al (2006) with 97 vehicles and 2349.3 

seconds of computation time (as highlighted in the table). 
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6.4.2 Conclusions for the waste collection VRPTW problems 

In order to choose the best initial solution procedure for the waste collection VRPTW 

problems, Table 6.5 reports the best metaheuristic solution for every initial solution 

procedure taken from the tables presented above.   

 

Table 6.5: The best metaheuristic solution for every initial solution procedure 

Algorithm 

 
 
 

Table 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

Current IS procedure 6.3(b) 97 2289.4 11.89 

Savings approach 6.1(b) 97 1059.7 10.23 

Different initial customer 
based on current IS 
procedure 

 

 

6.3(b) 97 2349.3 14.12 

 

Examining Table 6.5 it shows that all solutions use two less vehicles than Kim et al 

(2006).  But in terms of the distance travelled, on average the solution from the different 

initial customer based on current IS procedure shows the highest percentage 

improvement over Kim et al (2006), travelling approximately 14.12% less distance than 

Kim et al (2006).  Moreover our solution from this procedure even without our VR 

procedure is still better than Kim et al (2006) (refer to Table 6.4(a)) in terms of the 

number of vehicles used (i.e. one less vehicle) as well as the distance travelled (i.e. 

approximately 14.90% less distance travelled).  Thus, in this thesis we may conclude 

that the different initial customer based on current IS procedure is the best initial 

solution procedure for the waste collection VRPTW problems. 
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This thesis reports four sets of computational results for the waste collection VRPTW 

problems (as shown in Table 6.6). 

 

Table 6.6: Four solution procedures with the DFP and reverse order 

Reverse 

Yes No 

DFP 

 

Yes (a) (c) 

No (b) (d) 

   

Note here that computational results for the DFP=No, Reverse=No (d) case are reported 

in Chapter 5 whereas other results (a, b, and c) are reported in this section.  In order to 

choose the best solution procedure for the waste collection VRPTW problems, Table 6.7 

reports the best solution from every case for the different initial customer based on 

current IS procedure (since this is the best procedure for the waste collection VRPTW 

problems).  Our metaheuristic solutions discussed in the previous section (Section 6.4.1) 

indicate that our VNS has a lower average computation time than either TS or VNTS.  

However in terms of the distance travelled, solutions from our VNTS and TS are better 

than the solution from our VNS.  Both procedures VNTS and TS produce routes of 

similar quality yet our VNTS has a lower computation time than TS.  Thus, VNTS is to 

be preferred for solving the waste collection VRPTW problems.   
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Table 6.7: Four solution procedures for the different initial customer based on 

current IS procedure 

 Procedures 

 
 
 
 

Table 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Kim et al (2006) 

DFP=No, Reverse=No 5.1(d) 97 726.7 11.28 

DFP=No, Reverse=Yes 6.1(b) 97 1224.8 13.57 

DFP=Yes, Reverse=No 6.2(b) 97 1812.7 12.09 

DFP=Yes, Reverse=Yes 6.3(b) 97 2349.3 14.12 

 

Four solution procedures from our chosen metaheuristic (VNTS) in Table 6.7 show that 

they use two less vehicles than Kim et al (2006).  On average DFP=Yes, Reverse=Yes 

solution produces the largest improvement in distance over Kim et al (2006) compared 

to other solution sets (as highlighted in the table).  Even though this solution has the 

highest average computation time (2349.3 seconds which is approximately 40 minutes) 

than other solutions, the time taken to obtain the best solution that we can achieve with 

the DFP and reverse order procedures is worthwhile to solve the waste collection 

VRPTW problems.  Moreover, solutions in this table show that the reverse order 

procedure has a better effect on the test problems (approximately 13.57% less distance 

travelled) compared to the DFP procedure (approximately 12.09% less distance 

travelled).  Combining these two procedures with our phase 1 and phase 2 procedures as 

well as our VNTS produce the best solution for the waste collection VRPTW problems. 

 

6.4.3 Computational results for the MDVRPI problems 

This section reports computational results for the DFP and reverse order procedures 

tested on MDVRPI problems.  Table 6.8(a) reports solutions of ISP1P2 and our three 
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metaheuristics (TS, VNS and VNTS) with DFP=No, Reverse=Yes before applying the 

VR procedure.  Note here that we use the neighbour set for a customer to prevent the 

number of customer moves/interchanges we have to examine being excessive.  In the 

same manner as results reported in the previous chapter, here ISP1P2 and TS solutions 

are also obtained when K=|C| and for the VNS and VNTS, we use K*={5,10,25,|C|). 

 

Table 6.8 a) DFP=No, Reverse=Yes without our VR procedure for the MDVRPI 

problems 

Algorithm 

Total 
number of 
vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Crevier et al (2007) 

Number of 
infeasible 
solutions 

Current IS 
procedure: 

ISP1P2 33 110.3 -10.69 1 

TS 33 170.4 -10.50 1 

VNS 33 133.0 -10.69 1 

VNTS 33 133.2 -10.56 1 

Farthest from depot: 

ISP1P2 33 90.2 -12.63 0 

TS 33 155.3 -12.53 0 

VNS 33 117.7 -12.59 0 

VNTS 33 112.6 -12.58 0 

Savings approach: 

ISP1P2 31 97.3 -11.85 0 

TS 31 166.1 -11.73 0 

VNS 31 119.4 -11.85 0 

VNTS 31 120.3 -11.78 0 

Different initial 
customer based on 
current IS procedure: 

ISP1P2 31 97.1 -10.21 0 

TS 31 153.5 -10.16 0 

VNS 31 120.0 -10.21 0 

VNTS 31 120.7 -10.21 0 
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Note here the negative numbers on the fourth column indicate that our solutions for four 

different IS procedures (i.e. current IS, farthest from depot, savings approach and 

different initial customer based on current IS procedure) reported in this chapter are 

worse than Crevier et al (2007).  The smallest negative number on that column is the 

best solution that we have for the test problems (as highlighted in the table).  Solutions 

for the savings approach and the different initial customer based on current IS procedure 

involve the same total number of vehicles used as in Crevier et al (2007) whilst other 

solutions used two extra vehicles.  Since our phase 1 and phase 2 procedures have no 

direct control over the number of vehicles used, solutions for our IS procedure produce 

one infeasible solution for the ten test problems.  On the other hand, other solutions are 

feasible. 

  

Table 6.8 b) DFP=No, Reverse=Yes with our VR procedure for the MDVRPI 

problems 

Algorithm 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Crevier et al (2007) 

Number of 
infeasible 
solutions 

Current IS 
procedure: 

ISP1P2 31 111.4 -9.72 0 

TS 31 171.7 -9.50 0 

VNS 31 134.1 -9.72 0 

VNTS 31 134.4 -9.57 0 

Farthest from depot: 

ISP1P2 31 92.4 -12.09 0 

TS 31 157.7 -11.94 0 

VNS 31 119.8 -12.04 0 

VNTS 31 114.8 -11.99 0 
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Table 6.8(b) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=No, 

Reverse=Yes after applying the VR procedure.  Here, we only show solutions that have 

vehicles reduction after using the VR procedure (i.e. solutions for the current IS and 

farthest from depot procedures).  Both solutions reduce two vehicles.  Solutions for our 

IS procedure now are all feasible for the test problems.  In terms of the distance 

travelled, our solutions are still worse than Crevier et al (2007) but TS solutions for our 

IS procedure is the best of all solutions reported in the table.  The solution involves 31 

vehicles as in Crevier et al (2007) and travels approximately 9.50% more distance than 

Crevier et al (2007) with 171.7 seconds of the computation time. 

 

Table 6.9 a) DFP=Yes, Reverse=No without our VR procedure for the MDVRPI 

problems 

Algorithm 

Total 
number of 
vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Crevier et al (2007) 

Number of 
infeasible 
solutions 

Current IS procedure: 

ISP1P2 33 300.4 -12.51 1 

TS 33 464.4 -12.49 1 

VNS 33 357.2 -12.51 1 

VNTS 33 359.0 -12.49 1 

Farthest from depot: 

ISP1P2 33 274.2 -13.45 0 

TS 33 443.1 -13.44 0 

VNS 33 330.0 -13.45 0 

VNTS 33 331.3 -13.44 0 

Savings approach: 

ISP1P2 31 205.9 -12.29 0 

TS 31 355.0 -12.26 0 

VNS 31 260.4 -12.29 0 

VNTS 31 262.2 -12.27 0 

Different initial 
customer based on 
current IS procedure: 
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ISP1P2 31 279.7 -10.49 0 

TS 31 397.6 -10.48 0 

VNS 31 322.4 -10.49 0 

VNTS 31 325.3 -10.46 0 

 

Table 6.9(a) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=Yes, 

Reverse=No before applying the VR procedure.  Again, solutions from Crevier et al 

(2007) are better than us in terms of the distance travelled. Solutions for the savings 

approach and the different initial customer based on current IS procedure use 31 

vehicles as in Crevier et al (2007) whilst other solutions use two extra vehicles.  All 

solutions are feasible except for one solution for our IS procedure.  The best solution 

shown in the table is the VNTS solution for the different initial customer based on 

current IS procedure.  It travels approximately 10.46% more distance than Crevier et al 

(2007) with 31 vehicles and 325.3 seconds of the computation time. 

 

Table 6.9 b) DFP=Yes, Reverse=No with our VR procedure for the MDVRPI 

problems 

Algorithm 

Total 
number of 
vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Crevier et al (2007) 

Number of 
infeasible 
solutions 

Current IS procedure: 

ISP1P2 31 302.0 -11.72 0 

TS 31 466.0 -11.70 0 

VNS 31 358.8 -11.72 0 

VNTS 31 360.6 -11.70 0 

Farthest from depot: 

ISP1P2 31 276.6 -13.65 0 

TS 31 445.8 -13.64 0 

VNS 31 332.4 -13.65 0 

VNTS 31 333.7 -13.64 0 
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Table 6.9(b) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=Yes, 

Reverse=No after applying the VR procedure.  Solutions for the savings approach and 

the different initial customer based on current IS procedure remain the same as reported 

in Table 6.9(a).  On the other hand, solutions for the current IS procedure and the 

farthest from depot reduce two vehicles.  After reducing the vehicles, the distance 

travelled for the current IS solutions have reduced as well (e.g. on average the % 

improvement in distance over Crevier et al (2007) for ISP1P2 solution reduces from -

12.51% (refer to Table 6.9(a)) to -11.72%) whilst the distance travelled for the farthest 

from depot solutions have increased (e.g. on average the % improvement in distance 

over Crevier et al (2007) for ISP1P2 solution increases from -13.45% (refer to Table 

6.9(a)) to -13.65%).  However, all solutions are still worse than Crevier et al (2007) but 

they involve the same total number of vehicles used as in Crevier et al (2007). 

 

Table 6.10(a) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=Yes, 

Reverse=Yes before applying the VR procedure. Here, all solutions are feasible for the 

ten problems but solutions from Crevier et al (2007) are better than us in terms of the 

distance travelled.  In terms of the total number of vehicles used, only solutions for the 

farthest from depot involve two extra vehicles than Crevier et al (2007).  The rest use 

the same number of vehicles as in Crevier et al (2007).  TS solution for the current IS 

procedure is the best solution that we have which travels approximately 7.87% more 

distance than Crevier et al (2007) with 31 vehicles and 544 seconds of computational 

time. 
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Table 6.10 a) DFP=Yes, Reverse=Yes without our VR procedure for the MDVRPI 

problems 

Algorithm 

Total 
number of 
vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Crevier et al (2007) 

Number of 
infeasible 
solutions 

Current IS procedure: 

ISP1P2 31 359.2 -7.88 0 

TS 31 544.0 -7.87 0 

VNS 31 428.2 -7.88 0 

VNTS 31 430.1 -7.88 0 

Farthest from depot: 

ISP1P2 33 358.0 -10.92 0 

TS 33 528.6 -10.92 0 

VNS 33 425.6 -10.92 0 

VNTS 33 427.4 -10.90 0 

Savings approach: 

ISP1P2 31 280.9 -10.62 0 

TS 31 475.9 -10.62 0 

VNS 31 350.4 -10.62 0 

VNTS 31 352.0 -10.62 0 

Different initial 
customer based on 
current IS procedure: 

ISP1P2 31 305.3 -9.49 0 

TS 31 531.8 -9.42 0 

VNS 31 401.1 -9.49 0 

VNTS 31 382.7 -9.45 0 

 

Table 6.10 b) DFP=Yes, Reverse=Yes with our VR procedure for the MDVRPI 

problems 

Algorithm 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Crevier et al (2007) 

Number of 
infeasible 
solutions 

Farthest from depot: 

ISP1P2 32 359.5 -10.58 0 

TS 32 530.2 -10.58 0 

VNS 32 427.1 -10.58 0 

VNTS 32 428.9 -10.56 0 
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Table 6.10(b) reports solutions of ISP1P2, TS, VNS and VNTS with DFP=Yes, 

Reverse=Yes after applying the VR procedure.  Only solutions for the farthest from 

depot have an effect after applying the VR procedure.  They use one less vehicle and 

travel less distance than before (e.g. the average % improvement in distance over 

Crevier et al (2007) decreases from -10.92% (refer to Table 6.10(a)) to -10.58% for the 

ISP1P2 solution).  However even after applying the VR procedure, this solution still 

uses one extra vehicle than Crevier et al (2007) but other solutions use the same number 

of vehicles as in Crevier et al (2007).  In terms of the distance travelled all solutions are 

worse than Crevier et al (2007). 

 

6.4.4 Conclusions for the MDVRPI problems 

In order to choose the best initial solution procedure for the MDVRPI problems, Table 

6.11 reports the best metaheuristic solution for every initial solution procedure taken 

from the tables presented above. 

  

Examining Table 6.11 it is clear that all solutions involve the same number of vehicles 

as in Crevier et al (2007).  However the negative numbers in the last column indicate 

that in terms of the distance travelled, our solutions are worse than Crevier et al (2007).  

The best solution that we can achieve for the test problems is from our current IS 

procedure, travelling approximately 7.87% more distance than Crevier et al (2007) with 

544 seconds of the computation time.  Thus, in this thesis we may conclude that our 

current IS procedure is the best initial solution procedure for the MDVRPI problems. 
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Table 6.11: The best metaheuristic solution for every initial solution procedure 

Algorithm 

 
 
 

Table 

Total 
number of 
vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement in 

distance over 
Crevier et al (2007) 

Current IS procedure 6.10(a) 31 544.0 -7.87 

Farthest from depot 6.8(b) 31 157.7 -11.94 

Savings approach 6.10(a) 31 350.4 -10.62 

Different initial customer 
based on current IS 
procedure 

 
 

6.10(a) 31 531.8 -9.42 

 

This thesis also reports four set of computational results for the MDVRPI problems 

(refer to Table 6.6).  Computational results for the DFP=No, Reverse=No (d) case for 

this problems are reported in Chapter 5 whereas other results (a, b, and c) are reported in 

this section.  In order to choose the best solution procedure for the MDVRPI problems, 

Table 6.12 reports the best solution from every case for the current IS procedure (since 

this is the best procedure for the MDVRPI problems).   

 

Table 6.12: Four solution procedures for our IS procedure 

 Procedures 

 
 
 
 

Metaheuristic 

 
 
 
 

Table 

Total number 
of vehicles 

used 

Average 
computation 

time (s) 

Average % 
improvement 

in distance 
over Crevier et 

al (2007) 

DFP=No, 
Reverse=No 

 
VNS 

 
5.2(d) 31 64.3 -16.20 

DFP=No, 
Reverse=Yes 

 
TS 

 
6.4(b) 31 171.7 -9.50 

DFP=Yes, 
Reverse=No 

 
VNTS 

 
6.5(b) 31 360.6 -11.70 

DFP=Yes, 

Reverse=Yes 

 

TS 

 

6.6(a) 31 544.0 -7.87 
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Four solution procedures in Table 6.12 are obtained from our different metaheuristics.  

All solutions use the same total number of vehicles as in Crevier et al (2007).  The VR 

procedure is applied for all solution procedures in order to reduce the number of 

vehicles used except for the DFP=Yes, Reverse=Yes.  However in terms of the distance 

travelled, all solutions are worse than Crevier et al (2007).  Our TS solution with the 

DFP and reverse order procedures is the best that we can achieve for the MDVRPI 

problems (as highlighted in the table).    Moreover, solutions in this table show that the 

reverse order procedure have a better effect on the test problems (approximately 9.5% 

more distance travelled) compared to the DFP procedure (approximately 11.7% more 

distance travelled).  Since the average computation time shown in the table is reasonable 

for every solution procedure, our metaheuristic that produces the best solution (TS) is to 

be preferred.  Thus, in this thesis we can conclude that combining DFP and the reverse 

order procedures with our phase 1 and phase 2 procedures as well as our chosen 

metaheuristic (TS) are the best algorithms for solving the MDVRPI problems.    

 

6.5 Conclusion 

In this chapter, we have presented another route evaluation procedure namely DFP 

procedure based on Hemmelmayr et al (2009).  This procedure improves the solution for 

both benchmark problems waste collection VRPTW and MDVRPI by choosing the best 

disposal facilities and the best position to place the disposal facilities on the routes.  

However, this DFP procedure is very time consuming.  Thus to overcome this problem 

we have presented one procedure, namely change tracking, to evaluate only necessary 
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changes on the routes.  The effectiveness of this procedure when it is included in our 

phase 1 and phase procedures is shown in Table 6.1.   

 

In a further attempt to improve the solution we also present one procedure, namely 

reverse order, to improve distance travelled by reducing crossing arcs which occurred 

after two customers on the same route are interchanged.   

 

Four solution procedures are reported in this thesis: 

• DFP=No, Reverse=No (both procedures DFP and reverse order are not applied)  

• DFP=No, Reverse=Yes (only reverse order procedure is applied) 

• DFP=Yes, Reverse=No (only DFP procedure is applied) 

• DFP=Yes, Reverse=Yes (both procedures DFP and reverse order are applied) 

 

As mentioned earlier, all solution procedures have been discussed in this chapter except 

for the DFP=No, Reverse=No.  This solution procedure is discussed in Chapter 5.   

 

Computational results show that when our phase 1 and phase 2 procedures as well as our 

chosen metaheuristics (i.e. VNTS for the waste collection VRPTW problems and TS for 

the MDVRP problems) are combined with the DFP and reverse order procedures 

(DFP=Yes, Reverse=Yes), they produce the best solutions for both benchmark problems 

waste collection VRPTW and MDVRPI.  However in terms of the time taken to 

generate the solutions, this solution procedure has the largest average time than either 

DFP=No, Reverse=Yes or DFP=Yes, Reverse=No.  Yet with our change tracking 
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procedure, the time taken to generate the solutions is still reasonable.  Thus, including 

both procedures DFP and reverse order in our phase 1 and phase 2 procedures and our 

chosen metaheuristics (VNTS and TS) are worthwhile.   

 

In this chapter, we also conclude that the best initial solution procedure to construct 

initial routes for the MDVRPI problems is our current IS procedure.  Our metaheuristics 

for this procedure produce the best solutions compared to metaheuristics solutions for 

other IS procedures used in this thesis.  However, the best solution that we can achieve 

for the MDVRPI problems is still worse than Crevier et al (2007).  On average our 

solution travels approximately 7.87% more distance than Crevier et al (2007) with 31 

vehicles (in total) as in Crevier et al (2007).   

 

On the other hand, the best initial solution procedure to construct initial routes for the 

waste collection VRPTW problems is the different initial customer based on our IS 

procedure.  Our metaheuristics solutions for this procedure outperform the solution from 

Kim et al (2006).  The best solution for the waste collection VRPTW problems involves 

97 vehicles (in total) which is two less vehicles than Kim et al (2006) and on average it 

travels approximately 14.12% less distance than Kim et al (2006). 

 

Note here that our solutions for the waste collection VRPTW problems have been 

published in Benjamin and Beasley (2010).  However, there are some differences (as 

shown in Table 6.13) regarding the procedures used in that paper with the procedures 
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used in the thesis that produces the best solution for the waste collection VRPTW 

problems. 

 

Table 6.13: Procedures differences used in Benjamin and Beasley (2010) and the 

thesis 

Procedure Benjamin and Beasley (2010) Thesis 

Initial solution Current IS procedure Different initial customer based on 
current IS procedure 

 

Phase 1 and 
Phase 2 

• Moving customers/disposal 
facilities on the same route 
 

• Interchanging two 
customers on different 
routes 

 

• DFP=No, Reverse=No 

• Moving customers/disposal 
facilities on the same/different 
route(s) 

 

• Interchanging two customers on 
the same/different route(s) 
 

• DFP=Yes, Reverse=Yes  
 

VR Use our route evaluation 
procedure 
 

Use the DFP procedure 

TS, VNS and 
VNTS 

DFP=No, Reverse=No DFP=Yes, Reverse=Yes 

 

Solutions in Benjamin and Beasley (2010) indicate that our metaheuristics produce 

routes of similar quality.  On this basis we have justified in choosing the metaheuristic 

involving the lowest computation time. In that paper our chosen metaheuristic was VNS, 

having a lower average time than either TS or VNTS.  The last column in Table 6.13 

shows the procedures that are results indicate our best.  In terms of which metaheuristic 

to use we would choose VNTS. 

 

Note here that in Benjamin and Beasley (2010) two solutions with/without our VR 

procedure for the waste collection VRPTW problems have been reported.  The solution 
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in the paper and our new solution from this thesis without the VR procedure are 

compared in Table 6.14 whereas both solutions with the VR procedure are compared in 

Table 6.15. 

 

Table 6.14: Comparison results without our VR procedure 

Problem Solution Number of 
vehicles 

used 

Total 
distance 
(mile) 

Total 
computation 

time (s) 

% improvement 
in distance over 
Kim et al (2006) 

102 Paper (2010) 3 183.5 3 10.53 

Thesis 3 156.9 16 23.50 

277 Paper (2010) 3 464.5 8 11.91 

Thesis 3 454.7 272 13.77 

335 Paper (2010) 6 204.5 16 0.24 

Thesis 6 186.7 219 8.93 

444 Paper (2010) 11 89.1 19 -2.41 

Thesis 11 79.7 273 8.39 

804 Paper (2010) 6 756.3 62 1.72 

Thesis 5 641.8 2152 16.60 

1051 Paper (2010) 17 2251.6 124 5.01 

Thesis 17 2123.8 637 10.40 

1351 Paper (2010) 8 915.1 119 11.98 

Thesis 8 874.7 2698 15.87 

1599 Paper (2010) 14 1410.4 172 3.34 

Thesis 13 1206.1 2556 17.35 

1932 Paper (2010) 16 1262.8 285 9.50 

Thesis 16 1127.7 6541 19.18 

2100 Paper (2010) 16 1749.0 332 4.62 

Thesis 16 1558.1 6069 15.03 

Average Paper (2010) 100  107 5.64 

Thesis 98  2143.3 14.90 

 

Solutions for the ten test problems in Table 6.14 show that our new solutions in the 

thesis have improved in terms of the distance travelled as well as the number of vehicles 

used compared to our solution in Benjamin and Beasley (2010).  On average the 

percentage of the improvement in distance over Kim et al (2006) has increased from 

5.64% to 14.90% and now we use one less vehicle than Kim et al (2006).  Since our new 
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solution in the thesis saves two more vehicles than before (100-98) and provides a 

reduction in distance compared to Kim et al (2006) of some 100(14.90-5.64)/5.64 = 

164% over and above the reduction provided by Benjamin and Beasley (2010), the 

average time shown at the foot of the table is worthwhile. 

 

Figure 6.3 and 6.4 show our final solution for the 102 problem from Benjamin and 

Beasley (2010) and from the thesis, respectively.  Our solution in the thesis has 

improved by some 100(183.5-156.9)/183.5=14.5% compared with our solution from the 

paper.  However, both of our solutions are better than Kim et al (2006).  In particular, 

our solutions from the paper and the thesis travel approximately 10.53% and 23.50% 

less distance respectively.  With respect to the number of vehicles used, both solutions 

involve the same number as in Kim et al (2006). 
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Figure 6.3: Final routes for the 102 problem from Benjamin and Beasley (2010) 
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Figure 6.4: Final routes for the 102 problem from the thesis 
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Table 6.15: Comparison results with our VR procedure 

Problem Solution Number of 
vehicles 

used 

Total 
distance 
(mile) 

Total 
computation 

time (s) 

% improvement 
in distance over 
Kim et al (2006) 

804 Paper (2010) 5 725.6 72 5.71 

1351 Paper (2010) 7 1011.9 193 2.67 

Thesis 7 955.7 4736 8.08 

1599 Paper (2010) 13 1364.7 252 6.48 

Average Paper (2010) 97  123.0 5.43 

Thesis 97  2349.3 14.12 

 

Solutions in Table 6.15 show test problems where a reduction in the number of vehicles 

was achieved when the VR procedure is applied.  Both solutions involve two less 

vehicles than Kim et al (2006).   On average our new solution provides a reduction in 

distance compared to Kim et al (2006) of some 100(14.12-5.43)/5.43 = 160% over and 

above the reduction provided by Benjamin and Beasley (2010).  Again we could say that 

the average computation time, 2349.3 seconds to generate this new solution is 

worthwhile since it shows huge improvement from our solutions in Benjamin and 

Beasley (2010). 

 

In the next chapter conclusions from every chapter in this thesis are presented. 
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CHAPTER 7 

 

CONCLUSIONS 

 

This thesis considers a vehicle routing problem (VRP) that arises when a set of 

customers have waste that must be collected by vehicles. In such situations it is common 

for the amount of waste to be such that vehicles become full during their working day 

and have time to visit a waste disposal facility to empty themselves before going on to 

visit more customers and collect more waste. As such multiple visits to waste disposal 

facilities may be made during the working day.  

 

Moreover, there were a significant set of constraints relating to real-world 

considerations. Specifically we took into consideration time windows associated with 

customers, disposal facilities and the depot. We also took into consideration a driver rest 

period.  This problem is a single period node routing problem and is often encountered 

in terms of waste collection from commercial customers. 

 

This thesis considers exactly the same real life waste collection benchmark problems as 

in Kim et al (2006) involving multiple disposal facilities, driver rest period and 

customer/depot/disposal facility time windows.  It consists of ten test problems, 

involving up to 2092 customers and 19 waste disposal facilities as publicly available at: 

http://www.postech.ac.kr/lab/ie/logistics/WCVRPTW_Problem/benchmark.html.  
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Because Kim et al (2006) have made their test problems publicly available, a direct 

computational comparison with their work is made in this thesis. 

 

Furthermore, this thesis also considers a set of new benchmark instances generated by 

Crevier et al (2007) from those proposed by Cordeau et al (1997) for the multi-depot 

VRP (MDVRP).  These instances contain up to 288 customers and seven depots. In this 

case the depots can act as intermediate replenishment facilities along the route of a 

vehicle.   The instances and the best known solutions are available at 

http://www.hec.ca/chairedistributique/data/.  To the best of our knowledge, no previous 

works are available, thus the comparative results are only made with the authors. 

 

7.1 Chapter overview 

In Chapter 2 examples of heuristic techniques that have been used to solve the VRP for 

deliveries were presented.  We also reviewed some literature on VRP for collection.  

This included previous work dealing with waste collection as arc routing, as well as 

node routing; particularly skip problems and non-skip problems.  

 

In Chapter 3 the notation and neighbour sets used in the thesis were presented.  

Furthermore we also presented a number of initial solution (IS) procedures used for 

constructing initial routes for two set of benchmark problems.  Some of the IS 

procedures are adapted from the literature.  The IS procedures used in this thesis: 

• Our current IS procedure 

• Different initial customer based on our current IS procedure 
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• Farthest from depot procedure 

• The savings approach of Clarke and Wright (1964) 

• The sweep algorithm of Gillett and Miller (1974) 

• Different initial customer procedure based on the sweep algorithm of Gillett and 

Miller (1974) 

 

The main characteristics of the waste collection VRPTW problems (i.e. from Kim et al 

(2006)) and the MDVRPI problems (i.e. from Crevier et al (2007)) were shown in 

Chapter 3.  However, both benchmark problems have some characteristic differences 

such as: 

• the size of the test problems (i.e. waste collection VRPTW problems involved up 

to 2092 customers, whereas MDVRPI problems only involved up to 288 

customers) 

• time windows of the nodes (depot/customer/disposal facility) 

• limited/unlimited number of vehicles 

• rest time period 

 

Thus, the best initial solution for both problems were obtained from the different IS 

procedures.  For example, computational results show that the best initial solution for 

the waste collection VRPTW problems is obtained from the different initial customer 

based on our IS procedure.  This initial solution already outperforms the solution from 

Kim et al (2006).  In total it uses 98 vehicles (one less vehicle than Kim et al (2006)) 

and a reduction of around 4.75% on average of the total distance travelled.  
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On the other hand, initial solution from the savings approach is the best for the 

MDVRPI problems.  This procedure produces feasible solution for the ten test problems, 

involving 31 vehicles (in total) as in Crevier et al (2007).  However in terms of the 

distance travelled, on average it travels approximately 20.73% more distance than 

Crevier et al (2007). 

 

In Chapter 4 we presented our procedure to evaluate a given route, which involves 

inserting into the route (if necessary) disposal facility visits.  Moreover, we have 

outlined how we can improve the initial solution using our phase 1 and phase 2 

procedures.  We also discussed how we can reduce the number of vehicles used using 

our vehicle reduction (VR) procedure.  In order to prevent the number of customer 

moves/interchanges we have to examine being excessive when using both procedures, 

we use the neighbour set for a customer (i.e. K=50 for the waste collection VRPTW 

problems whereas K=|C| for the MDVRPI problems) to improve the solutions.  

Computational results for these two procedures were reported separately so that we can 

clearly see the effectiveness of both procedures on the two benchmark problem sets, 

waste collection VRPTW and MDVRPI.   

 

The best ISP1P2 solution for the waste collection VRPTW problems provides a 

reduction in distance compared to Kim et al (2006) of some 173.7% over and above the 

reduction provided by initial solution from the different initial customer based on 

current IS procedure.  The ISP1P2 solution involves 98 vehicles (in total).  On the other 

hand, the best ISP1P2 solution for the MDVRPI problems is worse than Crevier et al 
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(2007).  On average it travels approximately 14.14% more distance than Crevier et al 

(2007).  With respect to the number of vehicles used, the ISP1P2 solution involves 31 

vehicles (in total) as in Crevier et al (2007). 

 

After applying our VR procedure, the results indicated that even though the procedure 

reduces the number of vehicles used for some test problems, the total distance travelled 

may/may not be reduced.  For example the VRISP1P2 solution for the different initial 

customer based on current IS procedure for the waste collection VRPTW problems now 

uses one less vehicle than before.  But this solution travels more distance than ISP1P2 

solution.  On average the percentage improvement in distance over Kim et al (2006) has 

decreased from 13.0% to 11.26%. 

 

For the MDVRPI problems, the VRISP1P2 solution for the different initial customer 

based on current IS procedure shows the best solution for the problems.  The solution 

involves the same number of vehicles used as in Crevier et al (2007).  However in terms 

of the distance travelled, on average it travels approximately 13.57% more distance than 

Crevier et al (2007). 

 

In Chapter 5 we have presented our three metaheuristics namely TS, VNS and VNTS.  

Here we also used the neighbour set for a customer to prevent the number of customer 

moves/interchanges we have to examine being excessive.  For the waste collection 

VRPTW problems, the TS solutions were obtained when K=50 and for the VNS and 

VNTS, we used K*={5,10,25,50).  For the MDVRPI problems the TS solutions were 
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obtained when K=|C| and for the VNS and VNTS, we used K*={5,10,25,|C|}.  Solutions 

from these metaheuristics started from the ISP1P2 solutions and the VRISP1P2 solution.   

Computational results showed that our metaheuristics give only small improvement on 

those solutions. 

 

Of all solutions obtained from our metaheuristics, the solution for the different initial 

customer based on our IS procedure gives the best solution for the waste collection 

VRPTW problems.  This solution outperforms the solution from Kim et al (2006) in 

terms of the distance travelled as well as the number of vehicles used.  On average the 

best distance travelled that we achieved is approximately 13.02% less distance than Kim 

et al (2006) with 98 vehicles (in total).  However if we want to use the minimum number 

of vehicles to serve the customers, our solution shows that we may use 97 vehicles and 

travel approximately 11.28% more distance than Kim et al (2006).  In this chapter, we 

could say that all our metaheuristics produce almost the same quality routes for the test 

problems.  On this basis we are justified in choosing the metaheuristic involving the 

lowest computation time.  The results show that VNS is to be preferred, having a lower 

average time than either TS or VNTS. 

 

For the MDVRPI problems, our metaheuristic solutions were worse than Crevier et al 

(2007) in terms of the distance travelled.  However, three solutions (current IS 

procedures, savings approach and the different initial customer based on current IS 

procedure) involve (in total) 31 vehicles as in Crevier et al (2007).  Solution for the 
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different initial customer based on current IS procedure shows the best solution that we 

can achieve, travelling approximately 13.45% more distance than Crevier et al (2007).  

 

In Chapter 6 we have presented another route evaluation procedure namely DFP 

procedure based on Hemmelmayr et al (2009).  However, this DFP procedure is very 

time consuming.  Thus to overcome this problem we have presented one procedure, 

namely change tracking, to evaluate only necessary changes to the routes.  In a further 

attempt to improve the solution in this chapter we also present one procedure, namely 

reverse order, to improve distance travelled by reducing crossing arcs which occurred 

after two customers on the same route are interchanged. 

 

Since some of the solutions of both sets of benchmark problems presented in Chapter 5 

are still worse even after applying our metaheuristics, in this chapter the DFP and 

reverse order procedures are only tested on some of the solutions.  For the waste 

collection VRPTW problems, three IS procedures are selected (i.e. current IS procedure, 

savings approach and the different initial customer based on current IS procedure) 

whereas for the MDVRPI problems, four IS procedures are selected (i.e. current IS 

procedure, farthest from depot, savings approach and the different initial customer based 

on current IS procedure). 

 

This thesis reports four solution procedures: 

• DFP=No, Reverse=No (both procedures DFP and reverse order are not applied)  

• DFP=No, Reverse=Yes (only reverse order procedure is applied) 
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• DFP=Yes, Reverse=No (only DFP procedure is applied) 

• DFP=Yes, Reverse=Yes (both procedures DFP and reverse order are applied) 

 

All solution procedures are discussed in Chapter 6 except for the DFP=No, Reverse=No.  

This solution procedure was discussed in Chapter 5.   

 

Computational results presented in this chapter indicate that our best solution for the 

waste collection VRPTW problems is obtained from our VNTS with the DFP and 

reverse order procedures (DFP=Yes, Reverse=Yes) for the different initial customer 

based on current IS procedure.  On the other hand, the best solution for the MDVRPI 

problems is obtained from our VNS with the DFP and reverse order procedures 

(DFP=Yes, Reverse=Yes) for current IS procedure.  Even though the best solution for 

these two benchmark problem sets has an higher average time than other solutions 

presented in this thesis, the time taken is still reasonable and worthwhile to achieve the 

best solution for the problems.  

 

For the MDVRPI problems, the best solution from the algorithms mentioned earlier is 

still worse than Crevier et al (2007).  On average our solution travels approximately 

7.87% more distance than Crevier et al (2007) with 31 vehicles (in total) as in Crevier et 

al (2007).  On the other hand, the best solution for the waste collection VRPTW 

problems outperforms the solution from Kim et al (2006).  It involves 97 vehicles (in 

total) which is two less vehicles than Kim et al (2006) and on average it travels 

approximately 14.12% less distance than Kim et al (2006).  However if we want to 
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travel less distance than this solution, our solution shows that in total we could use 98 

vehicles (still better than Kim et al (2006)) and travel approximately 14.9% less distance 

than Kim et al (2006). 

 

Our solutions for the waste collection VRPTW problems have been published in 

Benjamin and Beasley (2010) in Computers and Operations Research.  However the 

solutions in that paper do not include the DFP and reverse order procedures.   Since the 

solutions indicate that our metaheuristics produce routes of similar quality, VNS 

becomes our preferred metaheuristic due to the lower average computation time than TS 

and VNTS. 

 

Comparison between our solutions in Benjamin and Beasley (2010) and the new 

solutions in this thesis for the waste collection VRPTW problems are discussed.  Before 

applying our VR procedure, Benjamin and Beasley (2010) use one extra vehicle than 

Kim et al (2006) but now our new solution is better than Kim et al (2006).  We use one 

less vehicle than Kim et al (2006).  In terms of the distance travelled, both of our 

solutions travel less distance than the solution from Kim et al (2006).  On average the 

percentage of the improvement in distance over Kim et al (2006) has increased from 

5.64% to 14.90%.  After applying our VR procedure, both of our solutions involve two 

less vehicles than Kim et al (2006).   Here, on average our new solution provides a 

reduction in distance compared to Kim et al (2006) of some 160% over and above the 

reduction provided by Benjamin and Beasley (2010).   
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In addition on average the time taken to generate our new solutions in this thesis 

with/without VR procedure are 2143.3 seconds and 2349.3 seconds, respectively. Both 

computation times are reasonable and worthwhile since our new solutions show a large 

improvement from our solutions in Benjamin and Beasley (2010). 

 

7.2 Contributions to knowledge 

In this section the contributions of this thesis to knowledge are summarised as follows: 

• This thesis presents three metaheuristic algorithms (TS, VNS and VNTS) for 

waste collection VRPTW problems that produce better quality solutions than 

previous work presented in the literature. 

• Our algorithms for the waste collection VRPTW problems have been published 

in Benjamin and Beasley (2010) in Computers and Operations Research.   

• Our initial solution procedure (indeed all our algorithms) are able to deal 

effectively with real world constraints such as time windows and rest periods. 

• Our initial solution procedure was especially developed for the waste collection 

VRPTW problem considered in this thesis. 

• This thesis presents a modified DFP procedure (originally proposed by 

Hemmelmayr et al (2009)) to select/position disposal facilities on a vehicle route 

for a problem with time windows and rest period.  This procedure is very time 

consuming but very effective for a problem with multiple disposal facilities. 

• Our metaheuristics are suitable to solve small/large test problems due to the 

change tracking and neighbour sets procedures presented. 
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7.3 Suggestions for further research 

This section presents a few suggestions to extend this thesis.  First, some experiments 

could be done to improve the solutions for the MDVRPI problems.  For example, we 

could vary the tabu tenure or number of iterations used in our metaheurstics for the 

MDVRPI problems.   

 

Moreover, we could also extend our metaheuristics by including the phase 1 procedure 

in a further attempt to improve the solutions.  New and emerging metaheuristic ideas 

(such as ant colony optimisation) could be applied to the problem. 

 

In a further attempt to test the effectiveness of our metaheuristics, these metaheuristics 

can be tested on other VRP for collection problems.  For a collection problem with 

single depot and multiple trips per day, our metaheuristics can directly solve this 

problem without any changes.  However, for a collection problem with single depot and 

one trip per day, our metaheuristics need slight changes.      
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