
An Effective Multilevel Tabu Search

Approach for Balanced Graph Partitioning

Una Benlic and Jin-Kao Hao ∗
LERIA, Université d’Angers

2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

To appear in Computers and Operations Research
(accepted on October 11, 2010)

Abstract

Graph partitioning is one of the fundamental NP-complete problems which is widely
applied in many domains, such as VLSI design, image segmentation, data mining
etc. Given a graph G = (V, E), the balanced k-partitioning problem consists in
partitioning the vertex set V into k disjoint subsets of about the same size, such
that the number of cutting edges is minimized. In this paper, we present a multilevel
algorithm for balanced partition, which integrates a powerful refinement procedure
based on tabu search with periodic perturbations. Experimental evaluations on a
wide collection of benchmark graphs show that the proposed approach not only
competes very favorably with the two well-known partitioning packages METIS and
CHACO, but also improves more than two thirds of the best balanced partitions
ever reported in the literature.

Keywords: Balanced partitioning; multilevel approach; iterated tabu search.

1 Introdution

Given an undirected graph G = (V,E), where V and E denote sets of vertices
and edges respectively, the balanced k-partitioning problem consists in parti-
tioning the vertex set V into k (k ≥ 2) disjoint subsets of approximately equal
size, such that the number of cutting edges (i.e. edges whose endpoints belong
to different subsets) is minimized. The particular partitioning case when k

∗ Corresponding author.
Email addresses: benlic@info.univ-angers.fr (Una Benlic),

hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 11 October 2010

is set to two is often called bisection. The class of partitioning problems is
notable for its applicability to a wide range of important applications such as
VLSI design [1,26], data mining [30], and image segmentation [24].

The general graph k-partitioning problem is NP-complete, and it remains NP-
complete even for the case of bisection (k = 2) [11]. Therefore, approximate
methods constitute a natural and useful solution approach to address this
problem. In recent years, many efforts have been made in devising a number
of efficient and powerful heuristics.

One of the most popular graph bisection heuristics is the famous Kernighan-
Lin (KL) algorithm [19] that iteratively refines an existing bisection. The idea
is to find two subsets of vertices of about the same cardinality, one for each
bisection part, and to improve the quality of the bisection by swapping two
vertices of the two subsets of the bisection. Fiduccia and Mattheyses [10] pre-
sented an improvement of the KL algorithm by introducing the concept of
cell gain and an efficient data structure to calculate cell gains. Additional KL-
like heuristics are reported, for instance, in [17] for bisection and in [8,18,28]
for k-partitioning. Other well-known algorithms are based on popular meta-
heuristics such as tabu search [7,23,3], simulated annealing [15], genetic and
evolutionary algorithms [27,5,20,25,26].

To handle large and very large graphs, the so-called multilevel paradigm proves
to be quite useful [2,8,18,28,21]. The basic idea of a multilevel approach is to
successively create a sequence of progressively smaller graphs by grouping ver-
tices into clusters (coarsening phase). This phase is repeated until the size of
the smallest graph falls below a certain coarsening threshold. Afterward, a
partition of the coarsest graph is generated (initial partitioning phase), and
then successively projected back onto each of the intermediate graphs in re-
verse order (uncoarsening phase). The partition at each level is improved by a
dedicated refinement algorithm before moving to the upper level. Even though
almost all multilevel algorithms employ the same or similar heuristics in the
coarsening phase, they differ greatly in the way the initial partition is gener-
ated, and how the successive partitions are refined throughout each uncoars-
ening phase.

As illustrated in [29], the multilevel paradigm is a useful approach to solving
combinatorial optimization problems. Basically, the approach allows one to
approximate the initial problem by solving successively smaller (and easier)
problems. Moreover, the coarsening helps filter the solution space by placing
restrictions on which solutions the refinement algorithm can visit.

This work is based on the multilevel paradigm. The main contribution reported
in this paper is a perturbation-based iterated tabu search procedure which is
specially devised for balanced k-partitioning and used for partition refinement

2

of each coarsened graph. Integrated within the multilevel approach, our Mul-
tiplevel Iterated Tabu Search (MITS) algorithm competes very favorably with
the two well-known partitioning packages METIS [16] and CHACO [8]. In-
deed, extensive experiments performed on the whole set of benchmark graphs
from the University of Greenwich graph partitioning archive reveal that MITS
is able to find better partitions (with fewer cutting edges) than METIS and
CHACO for a large portion of these benchmark graphs. Furthermore, when
the running time is prolonged up to one hour, MITS even improves some two
thirds of the current best balanced partitions ever reported in the literature
while many of these best partitions were obtained by previous algorithms using
a significantly longer running time (up to one week).

The rest of the paper is organized as follows. In the next Section, we pro-
vide the formal graph partitioning description, as well as some notations used
throughout this paper. In Section 3, we describe the multilevel paradigm, and
detail the phases of the proposed multilevel algorithm. In Section 4, we present
the perturbation-based tabu search algorithm, which is the key partition re-
finement mechanism in our multilevel approach. In Section 5, we present com-
putation results and comparisons on the benchmark graphs. Finally, in Section
6 we investigate two important features of the the proposed MITS algorithm.

2 Problem description and notations

Given an undirected graph G = (V,E), V and E being the set of vertices and
edges respectively, and a fixed number k, a k-partitioning of G can be defined
as a mapping (partition function) π : V → {1, 2, ..., k} that distributes the
vertices of V among k disjoint subsets S1 ∪ S2 ∪ ... ∪ Sk = V of roughly equal
size.

The partition function π induces a new graph Gπ = Gπ(S,Ec), where S =
{S1, S2...Sk} and an edge {Sx, Sy} ∈ Ec exists if there are two adjacent vertices
u, v ∈ V such that u ∈ Sx and v ∈ Sy. The set Ec corresponds to the set of
cutting edges of G induced by the partition. Vertices u and v of a cutting edge
{u, v} ∈ Ec are called border vertices of the partition.

Throughout this paper, the initial input graph G is supposed to have a unit
cost weight for both vertices and edges. However, as explained in Section
3.2, the multilevel approach generates intermediate (coarsened) graphs where
vertices and edges may have different weights (see Section 3.2). As a general
rule, these weights increase during the coarsening phase, and decrease during
the uncoarsening phase. Let |v| denote the weight of a vertex v. Then, the
weight W (Si) of a subset Si is equal to the sum of weights of the vertices in
Si, W (Si) =

∑
v∈Si
|v|.

3

The optimization objective f of our balanced partition problem is to find a
balanced partition with the minimum sum of weights of cutting edges Ec.

3 Multilevel Tabu Search graph partitioning

3.1 General procedure

Our Multilevel Tabu Search approach follows the general mulitlevel paradigm
[8,4,2].

Let G0 = (V0, E0) be the initial graph, and let k denote the number of partition
subsets. The multilevel paradigm can be summarized by the following steps.

(1) Coarsening phase: The initial graph G0 is transformed into a sequence
of smaller graphs G1, G2, ..., Gm such that |V0| > |V1| > |V2| > ... >
|Vm|. This phase stops when |Vm| reaches a fixed threshold (coarsening
threshold).

(2) Partitioning phase: A k-partition Pm of the coarsest graph Gm = (Vm, Em)
is generated.

(3) Uncoarsening phase: Partition Pm is progressively projected back to each
intermediate Gi (i = m − 1,m − 2, ..., 0). Before each projection, the
partition is first refined (improved) by a refinement algorithm.

This process leads thus to a sequence of partitions Pm, Pm−1, Pm−2, ...P0. The
last one, i.e. P0 is returned as the final partition of the original graph G0.

Our Multilevel Iterated Tabu Search (MITS) algorithm follows this general
scheme and is described in Algorithm 1.

3.2 Coarsening phase

Creating a coarser graph Gi+1 = (Vi+1, Ei+1) from G = (Vi, Ei) consists in
finding an independent subset of graph edges Γ ⊂ Ei, and then collapsing the
two vertices of each edge of Γ. A set of edges is independent if no two edges in
the set are incident to the same vertex, which implies that exactly two vertices
are collapsed each time. If a vertex is not incident to any edge of subset Γ, it
is simply copied over to Gi+1.

When vertices v1, v2 ∈ Vi are collapsed to form a vertex vc ∈ Vi+1, the weight
of the resulting vertex vc is set equal to the sum of weights of vertices v1

and v2. The edge that is incident to vc becomes the union of all the edges

4

Algorithm 1 Multilevel Iterated Tabu Search partition approach
Require: An undirected graph G0 = (V0, E0); An integer k
Ensure: A partition P0 of G0

Begin
i := 0
while |Vi| > coarsening threshold do

Gi+1 = Coarsen(Gi) {Section 3.2}
i := i + 1

end while
Pi = Initial Partition(Gi, k) {Section 3.3}
Pi = Tabu Refinement(Pi) {Section 4}
while i > 0 do

i := i− 1
Pi = Project(Pi+1, Gi) {Section 3.3.1}
Pi = Tabu Refinement(Pi)

end while
Return(P0)
End

incident to v1 and v2, minus the edge {v1, v2} ∈ Ei. Therefore, during the
coarsening process, both the vertex and edge weight increases. At any level
of the coarsening phase, the weight of a vertex (an edge) corresponds to the
number of aggregated vertices (edges) of the initial graph G0.

One key issue here is the selection of the independent subset of graph edges
Γ to be collapsed at each step of the coarsening phase. This can be achieved
by finding a maximum matching of the graph. Recall that a matching of a
graph is a subset of edges such that no two edges share the same vertex [22].
There exist polynomial time algorithms for tackling this problem, with running
time of at least O(|V |2.5). Unfortunately, this is too slow to be applicable to
the partitioning problem. That is why we compute maximal matching using
an edge contraction heuristic called heavy-edge matching (HEM), which has
O(|E|) time complexity [17]. This method considers vertices in random order,
matching each unmatched vertex v with its unmatched neighbor u, if any, such
that the weight of edge {u, v} is maximum among all the edges incident to v.

3.3 Initial partition and its refinement

Once we have obtained a sequence of smaller graphs in the coarsening phase,
the next step is to generate an initial partition of the smallest graph Gm =
(Vm, Em). The initial partitioning phase of our algorithm consists of first as-
signing randomly the vertices of Vm to k subsets Si ∈ {S1, S2...Sk}, such that
the number of clustered vertices in each subset is evenly balanced, i.e. the num-
ber of represented vertices n of G0 in each subset {S1, S2...Sk} is n ≤ 	|Vm|/k
.

5

Afterward, we refine this initial partition by means of a dedicated Perturbation-
Based Tabu Search algorithm which is described in Section 4. This refine-
ment step is essential for our approach to improve progressively the quality
of partitions. It should be noted that for certain graphs, it is impossible to
obtain a perfectly balanced initial partition, since weights of vertices in the
coarsest graph can be greatly inhomogeneous. The imbalance ε of a partition
{S1, S2...Sk} is defined as ε = maxi∈{1..k}W (Si)/Wopt where Wopt = 	|V |/k
,
	x
 being the ceiling function returning the first integer ≥ x.

This imbalance is gradually reduced throughout each uncoarsening step, and
(usually) completely eliminated by the end of the algorithm execution.

3.3.1 Uncoarsening phase

The uncoarsening phase carries out the inverse of the coarsening phase. The
idea is to go from level to level, uncoarsening the clustered vertices in the
opposite way they were grouped during the coarsening phase. The partition
projection from a graph Gi = (Vi, Ei) onto a partition of the parent graph
Gi−1 = (Vi−1, Ei−1) is a trivial process. If a vertex v ∈ Vi is in subset Sm

of the partition of Gi, then the matched pair of vertices v1, v2 ∈ Vi−1 which
represents vertex v ∈ Vi will be in subset Sm of the projected partition of
Gi−1.

Before projecting a partition to the next level, we apply the perturbation-
based tabu search refinement algorithm (Section 4) to improve the partition
quality. As the uncoarsening/refining process proceeds, the partition quality of
graph Gi−1 is usually better than that of Gi because there is a greater degree
of freedom for refinement. This is one of the most attractive characteristics of
a multilevel algorithm.

4 Partition refinement by Perturbation-based Iterated Tabu Search

The refinement algorithm, used at each level for partition improvement, is
based on a perturbation-based iterated tabu search procedure. Basically, the
tabu search algorithm [13] ensures the intensification of the approach, while
the perturbation mechanism brings controlled diversification into the search.
Experiments show that the combination of these two mechanisms constitutes
a very effective refinement method for obtaining high quality partitions. Algo-
rithm 2 describes this refinement procedure, whose components are detailed
in the following sections.

6

Algorithm 2 Perturbation-based Tabu Search for Partition Refinement
Require: Graph Gi = (Vi, Ei) at level i; Initial partition Pi = {S1, S2...Sk}.
Ensure: The best partition Pi∗ of graph Gi

1: Initiate iteration counter, tabu list, tabu tenure, move frequency list
2: P ∗

i ← Pi {P ∗
i records the best partition found so far}

3: for each vertex v and each subset Sm of Pi such that v /∈ Sm do
4: Compute move gain g(v, m)
5: Insert v into the bucket structure corresponding to Sm {Section 4.1.3}
6: end for
7: repeat
8: {Apply neighborhoods N1 and N2 in token-ring way (Section 4.1.2)}
9: if turn to employ N1 then

10: {Apply move operator Single Move} {Sections 4.1.2 and 4.1.4}
11: Select target subset Sm and vertex vm for migration
12: Pi := Pi ⊕Move(vm, Sm) {Move vm to Sm to generate new partition}
13: Update tabu list and bucket sorting structure
14: else if turn to empoy N2 then
15: {Apply move operator Double Move} {Sections 4.1.2 and 4.1.4}
16: Select target subset Sm and vertex vm for migration
17: Pi := Pi ⊕Move(vm, Sm)
18: Select target subset Sn and vertex vn for migration
19: Pi := Pi ⊕Move(vn, Sn)
20: Update tabu list and bucket sorting structure
21: end if
22: {Update the best solution P ∗

i found so far}
23: if (f(Pi) ≤ f(P ∗

i)) and Pi is at least as well balanced as P ∗
i then

24: P ∗
i ← Pi

25: end if
26: if (P ∗

i not improved after γ iterations) then
27: Pi := Perturb(Pi, pstr) {Section 4.2}
28: end if
29: until stop condition not met

4.1 Tabu Search

In this subsection, we focus on the tabu search engine of our partition re-
finement algorithm. It explores the search space by repeatedly replacing the
current solution with a best non-recently visited neighboring solution, even if
the later deteriorates the solution quality. Since tabu search relies on the be-
lief that intelligent search should be based on learning, its underlying element
is the usage of flexible memory that exploits and keeps track of the search
history. In order to avoid possible cycling and go beyond local optimum, tabu
search introduces the notion of tabu list to forbid the recently visited solutions.

7

4.1.1 Objective and partition balance

The optimization objective f of our k-partitioning problem is to minimize the
sum of weights of cutting edges of a balanced partition. Note that, in the given
problem formulation, partition balance is imposed as a constraint. However,
as we have already mentioned earlier, it is often impossible to establish perfect
balance in coarsened graphs, since vertex weights can be extremely inhomo-
geneous. It is during the partition refinement of the levels which are closer to
the original graph that the balance condition is (usually) completely satisfied.

More precisely, our refinement algorithm uses two move operators that not
only help optimize the objective (number of cutting edges), but also take care
of partition imbalance (see Section 4.1.2). Typically, these move operators
transfer vertices to subsets with smaller weight. Applying these directional
moves generally allows the search to progressively establish perfect partition
balance towards the end of the backward projection process.

During the refinement process, the current solution Pi (k-partition) becomes
the new best solution P ∗ only if Pi is at least as good as P ∗ in terms of the
optimization objective and partition balance (see lines 23-25 of Algorithm 1).

4.1.2 Neighborhoods and their exploration

Our tabu search algorithm employs two neighborhood relations N1 and N2

that are based on two different move operators. These operators transfer re-
spectively one and two vertices between subsets of a partition.

To define these move operators, we first introduce the notion of move gain
which indicates how much a partition is improved according to the optimiza-
tion objective if a vertex is moved to another subset. Given a vertex v from
subset Sm, the gain g(v, n) can be computed for every other subset, Sn, m = n.
As we show in 4.1.3, the vertex with the best (highest) gain can be easily de-
termined using a special bucket data structure.

Let P = {S1, S2...Sk} be a k-partition, and let Smax be the subset with the
maximum weight, Smax = maxi∈{1..k}{W (Si)}. The two move operators are
given below.

Single Move (N1): Move one highest gain vertex vm. Choose randomly a
subset Sm, m = max. Then, select a highest gain vertex vm (see Section
4.1.4) whose current subset is Sc, such that Sc ∈ {Si ∈ P |W (Si) > W (Sm)}.
Finally, move the selected vertex vm to the target subset Sm.

Double Move (N2): Move two highest gain vertices vm and vn. Choose
vertex vm and its target subset Sm as for Single Move. Choose randomly

8

another target subset Sn ∈ P , n = max and n = m. Then, select a highest
gain vertex vn whose current subset is Sc, such that Sc ∈ {Si ∈ P |Si =
Sn, Si = Sm}. Move vm to Sm, and vn to Sn.

It is important to mention that a vertex v is considered to be moved to subset
Si if and only if v is adjacent to at least one vertex of Si (v is a border
vertex relative to Si). Otherwise, moving v to Si does not make any sense
and would only deteriorate the partition quality. Our move operators focus
thus on these critical vertices, reducing considerably the number of candidate
moves to be examined at each iteration of the search process. Consequently,
given the bucket data structure from Section 4.1.3, the worst-case complexity
of choosing a vertex v to be moved to a subset Si with any of the two move
operators is equal to the number of border vertices relative to Si.

Also note that these move operators progressively lead the search toward a bal-
anced partition since basically they constraint (partially with Double Move)
vertex migration from heavy weight subsets to light weight subsets. Indeed,
with Single Move and the first choice of Double Move, a vertex can never
move to a subset with a higher weight. The second choice of Double Move is
allowed to bring some diversification into the search.

In the case of k-partitioning (k > 2), the two neighborhoods N1 and N2 are
jointly explored by the tabu search algorithm in a token-ring way. In token-
ring search [12], one neighborhood search is applied to the local optimum
produced by the previous one, and this process continues until no improvement
is possible. In the case of bisection (k = 2), the neighborhood N2 is not suitable
and only N1 is employed.

4.1.3 Bucket sorting

To ensure a fast evaluation of the neighborhoods, our implementation uses a
bucket data structure which keeps vertices ordered by their gains. This data
structure is used to avoid unnecessary search for the highest gain vertex and
to minimize the time needed for updating the gains of vertices affected by
each move.

The bucket sorting structure was first proposed by Fiduccia and Mattheyses
[10] to improve the Kerninghan-Lin algorithm [19] for graph bisection. It con-
sists in placing all vertices with the same gain g in a bucket that is ranked
g. Then, finding a vertex with the maximum gain simply consists in finding
the non-empty bucket with the highest rank, and selecting a vertex from the
bucket (in MITS a vertex is selected from this bucket according to a policy
detailed in Section 4.1.4). After each move, the bucket structure is updated by
recomputing gains of the selected vertex and its neighbors, and transferring
these vertices to appropriate buckets. The bucket data structure, as suggested

9

in [10], maintains two arrays of buckets, one for each subset of a bisection,
and is not suitable for k-partitioning.

We propose an adaptation of this idea for k-partitioning, designed to be used
with the two neighborhood relations N1 and N2. In our implementation, we
maintain k arrays of buckets, one for each subset of the k-partition, where each
bucket of an array i, 1 ≤ i ≤ k is (as usually) represented by a double linked
list. Each doubly linked list contains vertices with the gain corresponding to
the rank of the link list in the given array of buckets. As proposed in [10], we
also keep an additional array of vertices where each element (vertex) points
to its corresponding vertex in the doubly linked lists. This enables a direct
access to the vertices in doubly linked lists of each array. During the update of
gains, this data structure also enables the transfer of vertices from one bucket
to another in constant time.

In the search process, only border vertices are considered, and thus included in
the bucket data structure. Therefore, given a vertex v with its current subset
Sc, for every other subset Sm, m = c, we calculate the gain g(v,m) in constant
time, and place vertex v to the array of buckets corresponding to subset Sm

only if there is at least one vertex in Sm adjacent to v, i.e. v is a border vertex
relative to Sm. The gains of all the vertices adjacent to v are recalculated
(in O(1)) and updated in the bucket structure in constant time (delete and
insert operations in the bucket are both of O(1) complexity). Therefore, the
complexity of moving vertex v from Sc to a target subset Sm is equal to the
number of vertices adjacent to v.

According to the complexity analysis, k has no influence on the performance of
the proposed algorithm in terms of computing time. However, it does require
a greater amount of memory as k increases.

10

Figure 1: An example of the bucket structure for 3-partitioning

An illustration of the proposed bucket sort data structure for 3-partitioning
of a graph with 7 vertices is provided in Figure 1.

4.1.4 Selection strategy for vertex migration

As previously explained, when the non-empty bucket with the highest rank
contains more than one vertex, a selection strategy is needed to determine
the vertex vm (and vn) to be transferred to Sm (and vn to Sn). Our selection
strategy integrates several pieces of history information in order to make this
choice as pertinent as possible.

The selection strategy is first conditioned by the tabu status (see 4.1.5). Let
Vcand be the subset of candidate vertices (with the highest gain) for migration
to subset Sm. A vertex v ∈ Vcand, whose current subset is Sc, is considered
for migration to Sm if it is not tabu or moving v to Sm leads to a new par-
tition better than the best partition P ∗ found so far (this later case is called
aspiration in the tabu search terminology).

The vertex selection strategy employs two additional criteria which are based
on vertex move frequency and vertex weight. The move frequency is a long
term memory that records, for each vertex v, the number of times v has been
moved to a different subset. Our usage of this frequency information penalizes
moves with vertices having high frequency count, by giving priority to those
that have been moved less often. This long term memory is reset to zero only
before the beginning of each refinement phase (see line 2 in Algorithm 1). This
strategy favors the diversification of the search.

If there is more than one vertex with the same move frequency in the set
Vcand, we use the second criterion to distinguish them and prefer a vertex v
which, when moved to subset Sm, minimizes the weight difference between the
target subset Sm and the original subset Sc. This strategy helps to improve
the partition balance.

4.1.5 Tabu list and tabu tenure management

Each time a vertex v is moved from a subset Sc to another subset Sm, it is
forbidden to move v back to its original subset Sc for the next tt iterations
(tabu tenure). The tabu tenure tt of the move (v, Sc) is tuned dynamically
according to the number of border vertices relative to Sc,

tt(v, Sc) = |V (Sc)| ∗ α + random(0, 2),

11

where |V (Sc)| is the number of border vertices relative to Sc, α a coefficient
from {0.05, 0.1, 0.2, 0.3}, and random(0, 2) a random integer number in the
range [0, 2].

4.2 Perturbation mechanism

The tabu search algorithm described above employs an aggressive search strat-
egy to explore the search space. Indeed, for a transition from the current par-
tition to a new partition, only border vertices relative to the target subset
Sm are considered. Such a consideration helps the search to focus on critical
vertices and improve rapidly the solution quality.

To complement this search strategy, a perturbation mechanism is applied to
bring diversification into the search, if the best partition P ∗ is not improved
during γ iterations (see lines 26–28 of Algorithm 2). The perturbation consists
in moving pstr selected vertices (perturbation strength) to a given subset.

Precisely, let {S1, S2...Sk} be the current partition and let Smax be the sub-
set with the maximum vertex weight, Smax = maxi∈{1...k}{W (Si)}. Then the
perturbation phase is defined as follows.

(1) Randomly select a subset Sm ∈ {S1, S2, ..., Sk} − {Smax}.
(2) Randomly choose a vertex v whose current subset is Sc, such that Sc ∈
{S|W (S) > W (Sm)}.

(3) Move the selected vertex v to subset Sm.
(4) Repeat steps (1) to (3) pstr times.

The described mechanism is similar to the neighborhood relation N1. However,
there is a significant difference. Not only does it neglect the tabu status of a
vertex, but it also allows a vertex v to be moved to subset Sm even if it is not
a border vertex relative to Sm. This leads the search to new areas and helps
to escape from deep local optima (see also Section 6).

5 Experimental results

5.1 Benchmark instances

To evaluate the efficiency of the proposed approach, we carry out extensive
experiments on a set of well-known benchmark graphs that are frequently used
to assess graph partitioning algorithms. These graphs correspond to real-life
problems arising in different applications. They can be downloaded from the

12

Table 1
The list of benchmark graphs together with their characteristics

Size Degree

Graph |V | |E| Max Min Avg Type

add20 2395 7462 123 1 6.23 20-bit adder

data 2851 15093 17 3 10.59 3D FEM

3elt 4720 13722 9 3 5.81 2D nodal graph

uk 4824 6837 3 1 2.83 2D dual graph

add32 4960 9462 31 1 3.82 32-bit adder

bcsstk33 8738 291583 140 19 66.74 3D stiffness matrix

whitaker3 9800 28989 8 3 5.92 2D nodal graph

crack 10240 30380 9 3 5.93 2D nodal graph

wing nodal 10937 75488 28 5 13.80 3D nodal graph

fe 4elt2 11143 32818 12 3 5.89 2D FEM

vibrobox 12328 165250 120 8 26.8 Sparse matrix

bcsstk29 13992 302748 70 4 43.27 3D stiffness matrix

4elt 15606 45878 10 3 5.88 2D nodal graph

fe sphere 16386 49152 6 4 5.99 3D FEM

cti 16840 48232 6 3 5.73 3D semi-structured graph

memplus 17758 54196 573 1 6.10 Memory circuit

cs4 22499 43858 4 2 3.90 3D nodal graph

bcsstk30 28924 1007284 218 3 69.65 3D stiffness matrix

bcsstk31 35588 572914 188 1 32.197 3D stiffness matrix

fe pwt 36519 144794 15 0 7.93 3D FEL

bcsstk32 44609 985046 215 1 44.1636 3D stiffness matrix

fe body 45097 163734 28 0 7.26 3D FEM

t60k 60005 89440 3 2 2.98 2D dual graph

wing 62032 121544 4 2 2.57 3D dual graph

brack2 62631 366559 32 3 11.71 3D nodal graph

finan512 74752 261120 54 2 6.99 stochastic programming matrix

fe tooth 78136 452591 39 3 11.58 3D FEM

fe rotor 99617 662431 125 5 13.30 3D FEM

598a 110971 741934 26 5 13.37 3D FEM

fe ocean 143437 409593 6 1 5.71 3D dual graph

University of Greenwich Graph Partitioning Archive 1 in the same format as
used by JOSTLE, CHACO and METIS. Table 1 provides the whole set of the
graphs together with their sizes, vertex degrees and types.

1 http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

13

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

Table 2
Settings of important parameters

Parameters Description Values

ct coarsening threshold 200

α tabu tenure management factor [0.05, 0.1, 0.2, 0.3]

pstr perturbation strength 0.02 ∗ |V |
γ non-improvement TS iterations before perturbation 0.01 ∗ |V |

5.2 Experimental protocol

Our partition algorithm is programmed in C++, and compiled with GNU gcc
on a Xeon E5440 with 2.83 GHz and 8GB.

To assess the performance of our MITS algorithm, we report computational
results of two experiments: a comparison with two state-of-art graph parti-
tioning packages (METIS [16] and CHACO [8]), and a comparison with the
best partitions ever reported in the literature. The parameter settings of MITS
applied in both experiments are given in Table 2, and are determined by a
preliminary experiment using a small number of graph instances.

5.3 Comparison with the state-of-art solvers

In this section, we compare the partitions obtained by our approach in short
computing time (limited to 2.5 minutes), with those obtained with the two
packages METIS and CHACO. In both cases, we use the latest versions
(METIS-4.0, CHACO-2.2). For METIS, we use the multilevel pMetis algo-
rithm, and for CHACO we choose the multilevel KL algorithm with recursive
bisection and a coarsening threshold of 100. Since pMetis and CHACO do not
allow repeating runs in a randomized way, we run our MITS algorithm only
once. In addition, we fix the parameter α (see Section 4.1.5) to 0.1. The cutoff
limit depends on the size of graph, and is from 1 seconds (for graphs with up
to 3000 vertices) to 2.5 minutes (for the largest graph fe ocean).

Tables 3 and 4 present, for each graph and each value of k, the number of
cutting edges of the partition obtained with the packages and our proposed
algorithm. METIS, CHACO and our approach are labeled as pMetis, CHACO
and MITS respectively. The last row in each table with heading Total gives
the number of times each algorithm produced the best partition over the 30
benchmark graphs. From tables 3 and 4, we observe that for each value of k
MITS performes far better than either of the two packages in terms of partition
quality.

From these tables, we also note that for k ≥ 32, some partitions found with

14

Table 3
Comparison of our approach with pMetis and CHACO for k equal to 2, 4 and 8

k=2 k=4 k=8

Graph pMetis CHACO MITS pMetis CHACO METIS pMetis CHACO MITS

add20 729 742 708 1292 1329 1224 1907 1867 1750

data 218 199 189 480 433 427 842 783 679

3elt 108 103 90 231 234 214 388 389 352

uk 23 36 23 67 69 47 101 119 113

add32 21 11 11 42 56 40 81 115 74

bcsstk33 10205 10172 10171 23131 23723 22492 40070 39070 34568

whitaker3 135 131 127 406 425 385 719 765 672

crack 187 225 184 382 445 371 773 777 720

wing nodal 1820 1823 1797 4000 4022 3715 6070 6147 5481

fe 4elt2 130 144 130 359 402 423 654 718 621

vibrobox 12427 11367 11184 21471 21774 19811 28177 33362 24840

bcsstk29 2843 3140 2852 8826 9202 8572 16555 18158 17014

4elt 154 158 139 406 433 390 635 688 615

fe sphere 440 424 386 872 852 774 1330 1302 1243

cti 334 372 366 1113 1117 1039 2110 2102 1838

memplus 6337 7549 5696 10559 11535 9982 13110 14265 12642

cs4 414 517 377 1154 1166 987 1746 1844 1529

bcsstk30 6458 6563 9812 17685 17106 22436 36357 37406 36373

bcsstk31 3638 3391 2820 8770 9199 8751 16012 15551 15262

fe pwt 366 362 360 738 911 1249 1620 1670 1531

bcsstk32 5672 6137 6936 12205 15704 9864 23601 25719 24435

fe body 311 1036 271 957 1415 728 1348 2277 1293

t60k 100 91 86 255 235 226 561 524 522

wing 950 901 861 2086 1982 1770 3205 3174 2686

brack2 738 976 731 3250 3462 3291 7844 8026 7644

finan512 162 162 162 324 325 405 810 648 729

fe tooth 4297 4642 3827 8577 8430 7460 13653 13484 12083

fe rotor 2190 2151 2122 8564 8215 7765 15712 15244 13558

598a 2504 2465 2402 8533 8975 8159 17276 17530 16270

fe ocean 505 499 468 2039 2110 2850 4516 5309 4272

Total 7 2 26 5 1 24 4 1 25

pMetis and our approach are not perfectly balanced. For these cases, we indi-
cate the partition imbalance in parentheses. As it will be seen from the second
experiment, MITS in some cases requires more computation time to establish
partition balance. Unlike pMetis and our algorithm, CHACO generates per-
fectly balanced partitions for every value of k since it uses recursive bisection.

15

Table 4
Comparison of our approach with pMetis and CHACO for k equal to 16, 32 and 64

k=16 k=32 k=64

Graph pMetis CHACO MITS pMetis CHACO MITS pMetis CHACO MITS

add20 2504 2297 2120 NAN 2684 2524 (1.03) 3433 (1.07) 3349 3219 (1.03)

data 1370 1360 1167 2060 (1.01) 2143 1933(1.01) 3116 (1.03) 3145 2924 (1.07)

3elt 665 660 585 1093 1106 1053 1710 1722 1606 (1.03)

uk 189 211 163 316 (1.01) 343 296 (1.01) 495 (1.02) 540 496 (1.03)

add32 128 174 143 288 (1.01) 303 266 (1.01) 626 (1.02) 730 571 (1.01)

bcsstk33 59791 61890 55538 86008 84613 90438 116203 (1.01) 115530 131639 (1.05)

whitaker3 1237 1218 1120 1891 1895 1758 2796 (1.01) 2811 2628

crack 1255 1253 1157 1890 1962 1741 2847 (1.01) 2904 2628 (1.01)

wing nodal 9290 9273 8465 13237 13258 12238 17899 (1.01) 17783 16258 (1.01)

fe 4elt2 1152 1135 1039 1787 1796 1688 2765 (1.01) 2781 2590

vibrobox 37441 43064 34392 46112 51006 47048(1.01) 53764 (1.01) 58392 54503

bcsstk29 28151 28629 26055 41190 42935 38346 62891 (1.01) 63576 59548 (1.01)

4elt 1056 1083 1005 1769 1766 1631 2953 2921 2676(1.01)

fe sphere 2030 2037 1855 2913 2920 2701 4191 4151 3776

cti 3181 3083 3033 4605 4532 4479 6461 6334 6181

memplus 14942 16433 14097 17303 17936 NAN 19140 (1.01) 18978 NAN

cs4 2538 2552 2293 3579 3588 3137 4791 4817 4286

bcsstk30 77293 81069 79265 131405 128694 117414 191691 191445 175845 (1.02)

bcsstk31 27180 28557 25787 42645 45354 40029 66526 68375 61150

fe pwt 2933 3200 2857 6029 6036 6596 9310 9231 8487

bcsstk32 43371 47829 39902 70020 73377 64138 106733 108855 96197

fe body 2181 2947 2076 3424 4194 3290 5843 6326 5097

t60k 998 977 937 1613 1594 1539 2484 2506 2345

wing 4666 4671 4188 6700 6843 6067 9405 9308 8123

brack2 12655 13404 12240 19786 20172 18411 28872 29223 27130

finan512 1377 1296 1458 2592 2592 2592 10842 11962 11077

fe tooth 19346 20887 18336 29215 29849 26110 40162 40306 35988

fe rotor 23863 23936 21687 36225 36367 32746 53623 52497 48206

598a 28922 29674 26565 44760 45780 40980 64307 65094 57303

fe ocean 9613 9690 8397 14613 15059 13358 23317 22692 21212

Total 2 1 27 3 2 26 3 3 24

5.4 Comparison with the best known partitions

The second comparison is with the best balanced partitions reported at the
Graph Partitioning archive. The majority of these best known results were
generated with a very powerful algorithm presented by Soper et al. [25], which
combines an evolutionary search approach with the JOSTLE multilevel proce-
dure used as a black box. Since each run consists of 50,000 calls to JOSTLE,
this approach requires significant running time of up to one week for large
graphs. Another great portion of these best partitions were produced with the

16

T
ab

le
5.

C
om

pa
ri

so
n

w
it

h
th

e
be

st
pa

rt
it

io
ns

fo
un

d
in

lit
er

at
ur

e
fo

r
k

eq
ua

l
to

2,
4

an
d

8
k

=
2

k
=

4
k

=
8

G
ra

p
h

B
es

t
b

M
IT

S
A

v
g

S
td

B
es

t
b

M
IT

S
A

v
g

S
td

B
es

t
b

M
IT

S
A

v
g

S
td

a
d
d
2
0

5
9
6

6
3
6

7
0
9
.5

2
7
.9

4
1
2
0
3

1
1
7
6

1
2
0
1
.1

7
1
2
.5

6
1
7
1
4

1
6
9
7

1
7
1
3
.2

0
1
9
.4

3

d
a
ta

1
8
9

1
8
9

1
9
0
.9

7
3
.2

3
8
3

3
8
3

3
9
6
.6

3
1
0
.6

8
6
7
9

6
7
2

6
8
0
.1

6
8
.4

9

3
el

t
9
0

9
0

9
0
.0

0
.0

2
0
1

2
0
1

2
0
5
.7

3
2
.9

7
3
4
8

3
4
6

3
4
9
.3

3
4
.4

1

u
k

2
0

2
0

2
1
.7

7
1
.9

3
4
3

4
2

4
4
.8

3
2
.2

5
8
9

8
6

8
9
.8

3
2
.7

9

a
d
d
3
2

1
1

1
0

1
1
.1

6
1
.0

0
3
4

3
3

3
4
.3

1
.9

5
7
5

6
6

6
9
.3

1
.8

4

b
cs

st
k
3
3

1
0
1
7
1

1
0
1
7
1

1
0
2
2
7
.5

2
9
3
.8

7
2
1
7
1
9

2
1
7
7
9

2
2
4
1
8
.8

3
8
1
.1

9
3
4
5
7
9

3
4
4
6
4

3
4
5
6
7
.1

6
6
.5

7

w
h
it

a
k
er

3
1
2
7

1
2
7

1
2
7
.0

0
.0

3
8
2

3
8
2

3
8
3
.4

2
.7

3
6
6
1

6
5
7

6
6
1
.9

2
.5

2

cr
a
ck

1
8
4

1
8
4

1
8
4
.1

6
0
.8

9
3
6
8

3
6
6

3
6
6
.6

0
0
.4

9
6
8
7

6
8
0

6
9
3
.0

3
6
.7

5

w
in

g
n
o
d
a
l

1
7
0
7

1
7
0
7

1
7
5
4
.1

0
4
8
.1

8
3
5
8
1

3
5
7
7

3
6
2
5
.5

3
3
2
.8

3
5
4
4
3

5
4
3
9

5
4
9
5
.9

3
3
9
.2

5

fe
4
el

t2
1
3
0

1
3
0

1
3
0
.0

0
0
.0

3
4
9

3
4
9

3
4
9
.2

6
0
.5

1
6
1
0

6
1
0

6
1
6
.4

3
5
.2

2

v
ib

ro
b
o
x

1
0
3
4
3

1
0
3
4
3

1
0
3
7
2
.5

3
8
.8

3
1
9
2
4
5

1
9
1
4
3

1
9
6
5
8
.5

3
1
1
.0

2
2
4
7
1
5

2
4
6
0
9

2
4
8
3
8
.6

1
2
6
.7

5

b
cs

st
k
2
9

2
8
4
3

2
8
4
3

2
8
5
1
.5

7
2
.6

5
8
1
5
9

8
4
7
5

8
5
5
4
.4

4
3
.0

9
1
4
3
2
2

1
5
2
4
5

1
6
1
7
7
.4

4
8
2
.5

4
el

t
1
3
9

1
3
9

1
4
1
.8

3
1
0
.6

3
2
6

3
2
7

3
4
0
.5

7
1
3
.6

2
5
4
8

5
4
7

5
6
2
.7

6
1
6
.7

8

fe
sp

h
er

e
3
8
6

3
8
6

3
8
6
.0

0
.0

7
7
0

7
7
0

3
4
0
.2

6
1
1
.8

3
1
1
9
3

1
1
6
7

1
1
8
5
.9

3
1
8
.5

2

ct
i

3
3
4

3
3
4

3
3
4
.0

0
.0

9
6
3

9
5
5

9
9
2
.3

3
3
2
.5

6
1
8
1
2

1
7
9
7

1
8
4
4
.0

7
3
2
.1

1

m
em

p
lu

s
5
5
1
3

5
6
7
2

5
6
7
2
.0

0
.0

9
6
4
3

9
6
7
7

9
8
2
3
.5

1
4
8
.2

9
1
1
8
7
2

1
1
8
5
8

1
2
3
0
9
.1

1
7
6
.7

cs
4

3
7
1

3
7
4

3
7
6
.0

3
1
.7

9
6
4

9
3
9

9
6
9
.9

1
2
.4

3
1
4
9
6

1
4
5
1

1
4
7
3
.9

3
1
1
.7

5

b
cs

st
k
3
0

6
3
9
4

6
3
9
4

7
9
9
7
.0

2
0
8
4
.6

9
1
6
6
5
2

1
6
6
8
6

1
8
2
4
9
.5

1
6
5
5
.3

9
3
4
9
2
1

3
4
8
9
8

3
6
4
2
8
.0

3
4
8
0
.4

9

b
cs

st
k
3
1

2
7
6
2

2
7
6
2

3
0
3
8
.1

7
6
2
9
.6

7
7
4
6
9

7
3
9
5

7
8
4
5
.3

4
1
2
.0

1
3
8
1
2

1
3
3
7
1

1
3
7
2
2
.6

2
9
3
.5

3

fe
p
w

t
3
4
0

3
4
0

3
5
8
.8

3
5
.0

4
7
0
9

7
0
7

7
2
0
.5

6
.5

3
1
4
6
5

1
4
5
0

1
4
9
0
.0

3
7
.1

7

b
cs

st
k
3
2

4
6
6
7

4
6
6
7

5
7
2
6
.9

8
4
0
.2

6
9
4
9
2

9
4
0
1

1
0
4
9
9
.8

1
0
3
3
.4

2
2
7
5
7

2
1
1
0
2

2
2
7
0
9
.1

5
8
9
.9

3

fe
b
o
d
y

2
6
2

2
6
2

2
6
4
.5

7
8
.3

1
7
0
3

6
2
1

6
7
4
.1

3
9
.5

1
2
3
4

1
0
4
8

1
0
9
3
.1

2
7
.0

8

t6
0
k

7
9

8
2

9
4
.8

3
2
0
.6

1
2
1
3

2
1
9

2
2
5
.1

6
6
.3

4
4
7
6

4
7
8

4
9
6
.0

3
1
2
.1

1

w
in

g
7
9
1

8
0
7

8
3
5
.5

3
1
9
.8

6
1
6
6
6

1
6
3
8

1
6
9
2
.1

3
3
2
.5

1
2
5
8
9

2
5
1
7

2
5
5
8
.9

3
2
3
.1

1

b
ra

ck
2

7
3
1

7
3
1

7
3
1
.0

0
.0

3
0
9
0

3
0
8
4

3
1
4
2
.6

3
5
7
.2

2
7
2
6
9

7
1
4
4

7
3
8
3
.0

1
4
2
.1

2

fi
n
a
n
5
1
2

1
6
2

1
6
2

1
6
2
.0

0
.0

3
2
4

3
2
4

4
2
9
.3

8
9
.1

6
4
8

6
4
8

7
2
3
.6

5
8
.9

0

fe
to

o
th

3
8
5
0

3
8
2
3

3
9
7
8
.2

3
1
5
2
.2

5
7
1
4
2

6
9
1
9

7
1
0
8
.4

1
3
6
.0

2
1
1
9
3
5

1
1
4
8
0

1
1
6
7
4
.7

1
3
2
.6

fe
ro

to
r

2
0
9
8

2
0
9
8

2
1
0
6
.5

1
1
.1

7
7
4
8
0

7
2
9
4

7
7
4
2
.3

3
2
2
5
.5

5
1
3
2
9
2

1
2
8
6
4

1
3
2
0
3
.1

2
2
8
.4

4

5
9
8
a

2
3
9
8

2
3
9
9

2
4
0
3
.0

7
3
.7

8
1
5
4

8
0
3
2

8
2
3
4
.7

4
0
2
.1

8
1
6
8
8
4

1
5
9
2
7

1
6
2
2
3
.1

1
9
7
.8

9

fe
o
ce

a
n

4
6
4

4
6
4

4
6
7
.7

6
0
.8

8
1
9
0
2

1
8
8
6

1
9
2
5
.2

1
1
3
.2

5
4
2
9
9

4
2
1
6

4
3
0
3
.5

8
3
.9

9

T
o
ta

l
2
8

2
4

1
2

2
4

4
2
8

17

T
ab

le
6.

C
om

pa
ri

so
n

w
it

h
th

e
be

st
pa

rt
it

io
ns

fo
un

d
in

lit
er

at
ur

e
fo

r
k

eq
ua

l
to

16
,
32

an
d

64
k

=
1
6

k
=

3
2

k
=

6
4

G
ra

p
h

B
es

t
b

M
IT

S
A

v
g

S
td

B
es

t
b

M
IT

S
A

v
g

S
td

B
es

t
b

M
IT

S
A

v
g

S
td

a
d
d
2
0

2
1
4
9

2
0
6
3

2
0
9
0
.0

7
1
3
.9

5
2
6
8
7

2
4
0
6

(1
.0

1
)

2
4
2
0
.5

1
0
.1

2
3
2
3
6

3
1
0
8

3
0
8
1
.3

3
2
3
.9

8

d
a
ta

1
1
6
2

1
1
4
6

1
1
6
4
.1

3
1
4
.2

3
1
8
6
5

1
8
3
8

(1
.0

1
)

1
8
6
3
.1

1
4
.9

3
2
7
9
8

2
8
6
2

(1
.0

4
)

2
8
7
8
.1

9
.7

4

3
el

t
5
8
1

5
7
6

5
8
1
.0

3
.8

4
9
6
9

9
7
0

9
7
5
.7

6
3
.2

1
5
6
4

1
5
5
9

(1
.0

1
)

1
5
6
9
.1

3
4
.6

9

u
k

1
5
9

1
5
3

1
5
9
.7

6
3
.3

3
2
8
0

2
6
5

(1
.0

1
)

2
7
5
.1

7
4
.8

4
4
3
8

4
6
3

4
5
9
.2

3
5
.6

5

a
d
d
3
2

1
2
1

1
1
7

1
2
8
.0

0
5
.5

5
2
3
0

2
1
2

(1
.0

1
)

2
2
4
.4

1
1
.9

9
4
9
3

5
2
2

(1
.0

1
)

5
4
0
.4

6
1
0
.3

5

b
cs

st
k
3
3

5
5
1
3
6

5
4
8
4
1

5
5
5
0
0
.1

4
1
3
.6

8
7
8
1
3
2

7
8
0
5
4

8
3
5
4
9
.0

5
9
2
4
.6

1
1
0
8
5
0
5

1
0
7
9
8
0

(1
.0

1
)

1
1
0
0
9
1
.0

7
8
7
6
.9

7

w
h
it

a
k
er

3
1
1
0
8

1
0
9
6

1
1
0
5
.2

5
.1

7
1
7
1
8

1
7
0
2

1
7
1
4
.1

3
6
.7

9
2
5
6
9

2
5
5
8

2
5
7
2
.0

3
7
.7

7

cr
a
ck

1
1
0
8

1
0
9
6

1
1
2
0
.9

7
1
2
.2

6
1
7
2
8

1
6
9
5

1
7
1
6
.4

1
2
.6

9
2
5
6
6

2
5
6
9

(1
.0

1
)

2
5
8
6
.5

7
8
.0

5

w
in

g
n
o
d
a
l

8
4
2
2

8
3
5
3

8
4
0
5
.8

7
1
3
.4

8
1
2
0
8
0

1
1
8
4
4

1
1
9
4
2
.3

4
5
.3

5
1
6
1
3
4

1
5
9
0
4

(1
.0

1
)

1
6
0
0
3
.7

4
8
.9

9

fe
4
el

t2
1
0
1
8

1
0
1
0

1
0
1
6
.1

5
.2

4
1
6
5
7

1
6
3
8

1
6
5
0
.7

3
7
.4

4
2
5
3
7

2
5
1
9

2
5
4
1
.2

7
8
.4

8

v
ib

ro
b
o
x

3
2
6
5
4

3
2
1
9
7

3
3
0
2
8
.7

3
7
6
.6

5
0

4
2
1
8
7

4
0
0
5
3

4
0
8
7
4
.7

9
1
6
.5

1
4
9
5
2
1

4
7
6
5
1

(1
.0

1
)

5
1
6
8
4
.2

2
3
4
4
.1

6

b
cs

st
k
2
9

2
2
8
6
9

2
3
2
6
2

2
5
5
4
1
.5

2
7
6
.1

6
3
6
1
0
4

3
5
4
2
2

3
6
4
4
5
.7

5
4
7
.2

1
5
7
0
5
4

5
7
0
7
4

(1
.0

1
)

5
8
8
3
3
.4

2
0
9
9
.5

4

4
el

t
9
5
6

9
4
2

9
5
8

1
1
.1

5
1
5
9
2

1
5
6
4

1
5
9
0
.0

1
6
.4

3
2
6
3
6

2
5
9
5

2
6
1
8
.3

3
1
1
.5

0

fe
sp

h
er

e
1
7
5
0

1
7
3
7

1
7
4
2
.3

2
.7

8
2
5
6
7

2
5
4
3

2
5
6
9
.7

1
4
.1

4
3
6
6
3

3
6
3
4

3
6
7
2
.0

1
6
.4

5

ct
i

2
9
0
9

2
8
6
7

2
9
2
7
.5

2
7
.4

8
4
2
8
8

4
1
6
3

4
2
3
7
.5

3
3
.8

5
5
9
5
5

5
8
8
5

5
9
7
6
.0

4
1
.5

6

m
em

p
lu

s
1
3
5
1
6

1
3
0
6
2

1
3
1
7
0
.9

9
3
.3

3
1
4
6
3
4

1
4
2
2
0

1
4
5
3
3
.0

1
6
7
.6

1
1
7
4
4
6

1
6
6
6
5

1
6
4
3
3
.0

2
8
0
.8

8

cs
4

2
2
0
6

2
1
0
5

2
1
3
5
.7

3
1
5
.6

8
3
1
1
0

2
9
5
2

2
9
9
2
.7

7
1
6
.9

7
4
2
2
3

4
0
6
6

4
1
0
6
.1

7
1
7
.7

5

b
cs

st
k
3
0

7
2
0
0
7

7
0
6
8
1

7
3
1
3
3
.9

1
4
1
1
.9

1
1
9
1
6
4

1
1
4
4
9
3

1
1
6
8
1
1
.0

9
7
7
.2

2
1
7
3
9
4
5

1
7
2
9
2
9

1
7
4
4
5
6
.0

9
4
4
.4

5

b
cs

st
k
3
1

2
4
5
5
1

2
3
9
3
0

2
4
4
7
9
.7

2
6
1
.9

5
3
8
4
8
4

3
7
6
5
2

3
9
0
0
4
.7

5
9
7
.2

9
6
0
7
2
4

5
8
6
2
5

5
9
3
0
5
.5

3
8
8
.6

2

fe
p
w

t
2
8
5
5

2
8
3
8

2
8
4
8
.9

1
2
.8

2
5
7
5
8

5
6
8
3

5
8
1
3
.9

1
1
0
.3

5
8
4
9
5

8
3
3
5

8
3
7
9
.1

7
2
1
.9

3

b
cs

st
k
3
2

3
8
7
1
1

3
6
6
5
0

3
7
6
5
0
.3

7
0
0
.9

1
6
3
8
5
6

6
1
2
1
1

6
2
5
4
2
.6

6
7
2
.1

3
9
5
1
9
9

9
2
7
1
7

9
4
5
4
3
.3

7
7
8
.5

4

fe
b
o
d
y

2
0
5
7

1
7
7
4

1
8
4
9
.5

4
1
.3

7
3
3
7
1

2
9
3
5

2
9
9
4
.8

3
3
.7

2
5
4
6
0

4
8
7
9

4
9
6
3
.7

5
1
.0

6

t6
0
k

8
6
6

8
8
0

8
9
9
.0

7
.9

3
1
4
4
0

1
4
4
1

1
4
6
2
.6

7
1
4
.6

9
2
2
3
3

2
2
5
9

2
2
7
9
.8

3
1
0
.4

5

w
in

g
4
1
9
8

3
8
9
0

3
9
5
6
.7

7
2
5
.6

9
6
0
0
9

5
6
4
9

5
7
2
5
.8

3
3
5
.4

3
8
1
3
2

7
7
1
2

7
7
8
2
.0

7
3
6
.5

8

b
ra

ck
2

1
2
3
2
3

1
1
6
4
9

1
1
9
4
1
.0

1
2
5
.8

1
1
8
2
2
9

1
7
4
9
0

1
7
7
8
0
.0

1
4
1
.6

2
2
7
1
7
8

2
6
0
8
8

2
6
4
9
0
.6

1
5
9
.6

fi
n
a
n
5
1
2

1
2
9
6

1
2
9
6

1
3
4
4
.6

5
3
.7

3
2
5
9
2

2
5
9
2

2
5
9
2
.0

0
.0

1
0
5
6
0

1
0
5
6
0

1
0
7
7
2
.8

8
4
.0

4

fe
to

o
th

1
8
3
8
2

1
7
4
3
7

1
7
6
9
0
.6

1
3
4
.7

2
6
3
4
6

2
5
0
4
5

2
5
3
8
5
.1

1
5
6
.9

3
5
9
8
0

3
4
5
9
3

3
4
9
3
5
.9

1
2
8
.0

5

fe
ro

to
r

2
1
2
4
1

2
0
4
8
3

2
0
8
8
8
.8

1
7
8
.9

6
3
2
7
8
3

3
1
3
8
3

3
2
0
0
4
.9

2
6
1
.9

4
9
3
8
1

4
6
1
1
0

4
6
6
0
8
.4

2
9
1
.3

9

5
9
8
a

2
6
4
2
7

2
5
8
1
7

2
6
1
1
5
.2

1
2
9
.3

8
4
1
5
3
8

3
8
6
9
3

3
8
9
9
1
.2

1
3
8
.4

5
5
9
7
0
8

5
6
3
7
8

5
6
7
9
8
.5

2
5
4
.1

6

fe
o
ce

a
n

8
6
2
2

7
7
7
1

7
9
8
7
.6

1
1
2
.4

6
1
4
2
7
7

1
2
8
1
1

1
3
0
9
1
.0

1
0
9
.1

6
2
2
3
0
1

2
0
0
6
8

1
0
7
7
2
.8

8
4
.0

4

T
o
ta

l
3

2
8

3
2
8

7
2
4

18

iterative multilevel algorithm by Walshaw [29] which also makes a number of
calls to a multilevel procedure. The remaining best results are obtained with
several other approaches [9,21,6]. It should be mentioned that the majority of
these results were produced within very long computing time (up to one week
for larger graphs).

Our second experiment assesses the performance of MITS algorithm in terms
of partition quality relative to these state-of-the-art algorithms. For this ex-
periment, we use cutoff time limits ranging from 1 minute for the smallest
graph up to 1 hours for the largest one. Above this time limit, the algorithm
does not produce significantly better results. Given its stochastic nature, the
MITS algorithm is run 30 times for each graph and each value of k (see Table
2).

Tables 5 and 6 give, for each graph and each value of k, the best results ever
reported, the best results produced by our approach 2 , the average results as
well as the standard deviations after 30 executions of the proposed algorithm.
The row with heading Total gives the number of times our approach succeeded
to reach or improve a best known up-to-date partition.

The results show that, in the case of bisection, our approach succeeded to reach
the same solution quality of more than two thirds of the best reported balanced
bisections. It also improved the best bisection in two cases. Interestingly, as
k increases (4 ≤ k ≤ 64), our approach improved even 60%, 86%, 90%, 90%
and 76% of the current best k-partitions where k is equal to 4, 8, 16, 32 and
64 respectively.

As in the previous comparison, we note from Table 6 that in 12 cases where
k is equal to 32 and 64, our approach did not attain the perfect partition
balance (ε = 1.00). However, this imbalance is generally low, with an average
of 1.013 over these 12 imbalanced partitions. We also note that the number of
imbalanced partitions is now slightly minimized compared to the first experi-
ment when the running time was reduced. This implies that MITS sometimes
requires more iterations to establish good balance. If the partitions are imbal-
anced, we compare them with the best known partitions of the same balance,
which are also reported at the Graph Partitioning archive.

All these results show that the proposed approach is the overall winner when
it comes to generating balanced k-partitions for these benchmark graphs.

2 Results available at: http://www.info.univ-angers.fr/pub/hao/MITS.html

19

http://www.info.univ-angers.fr/pub/hao/MITS.html

6 Analysis

In this section, we turn our attention to the analysis of two important fea-
tures of the MITS algorithm and try to answer the following questions: Is the
perturbation mechanism (see Section 4.2) relevant for the MITS? Is the newly
proposed Double move, which is used to define the neighborhood relation N2

(see Section 4.1.2), a value-added one?

To answer these questions, we report in Table 7 the average results over 10 ex-
ecutions with MITS, when its two components (perturbation mechanism and
neighborhood N2) are included and excluded. We conduct these experiments
with k set to 4, 8, 16 and 32, on a set of 10 representative instances from
the Graph Partitioning archive. For each k, colon “+(PM&N2)” provides the
average results when both the perturbation mechanism and the neighborhood
N2 are used within MITS. Colons “−PM” and “−N2” report respectively the
average results when the perturbation mechanism or the neighborhood N2 is
disabled. Finally, the last colon “−(PM&N2)” gives the average results when
both features are excluded from the MITS algorithm. The last row with head-
ing Total shows the number of times each version of MITS produced the best
average result over the 10 graphs.

From Table 7, we see that the performance of our MITS algorithm decreases
when the perturbation mechanism or neighborhood N2, or both are disabled.
This confirms our previous observation that some diversification is needed to
complement the aggressive tabu search strategy, which only considers border
(critical) vertices. Indeed, although examining only border vertices for move
consideration decreases the number of candidate moves at each iteration, this
does not allow the search to escape from deep local optima. Therefore, this
experiment confirms this intuitive explanation.

We can also see from Table 7 that in most cases, MITS produces significantly
better partitions when the two neighborhoods N1 and N2 are jointly explored
(see Section 4.1.2). This can be explained by the fact that neighborhood N2

does not strictly impose the balance constraint as neighborhood N1 does. With
N2, there are more vertices which are considered to be moved to the target
subset, introducing thus a greater degree of freedom during the search process.
This complements the strict selection criterion of neighborhood N1.

From Table 7 we can see that in several cases the simplest version of MITS,
i.e. when both features are excluded, gives the best average results. However,
as can be expected, the initial MITS still outperforms the simplest version in
about 80% of cases. This implies that both of these elements are important
for the efficiency of the proposed MITS algorithm.

20

Table 7
The average results over 10 executions of MITS when the perturbation mechanism
and the neighborhood relation N2 are included and excluded.

k = 4 k = 8

Graph +(PM&N2) −PM −N2 −(PM&N2) +(PM&N2) −PM −N2 −(PM&N2)

3elt 206.1 253.0 223.2 255.3 349.8 359.3 372.2 377.1

uk 44.9 64.0 47.7 61.9 92.2 95.5 98.3 102.5

bcsstk33 22180.8 22310.9 22166.9 22579.9 34581.5 34563 34598.3 34614.1

crack 367.3 452.4 388.2 503.4 695.1 735.1 731.4 754.0

fe 4elt2 350.2 379.8 350.3 402.7 617.3 634.1 645.0 645.5

vibrobox 19601.7 23114.2 21757.3 23649.7 24804.6 27726.1 27904.6 27405.0

4elt 340.4 387.8 345.2 320.3 557.6 558.2 565.3 531.5

cs4 967.2 1093.6 980.6 1110.3 1478.6 1579.3 1485.2 1579.4

t60k 232.2 258 224.6 320.3 490.4 533.0 498.6 531.5

brack2 3149.4 4349.8 3150.3 4499.8 7404.2 7665.1 8489.7 7986.6

Total 7 0 1 2 8 1 0 1

k = 16 k = 32

Graph +(PM&N2) −PM −N2 −(PM&N2) +(PM&N2) −PM −N2 −(PM&N2)

3elt 582 586.4 630.8 625.6 976.9 992.3 984.8 980.6

uk 160.8 171.0 163.7 171.8 275.9 284.2 292.0 288.2

bcsstk33 55572.8 62445 55541.3 55548.8 88996.9 85913.5 78891.5 79327.9

crack 1116.7 1148.5 1184.9 1182.4 1713.4 1748.7 1820.1 1822

fe 4elt2 1015.4 1024.6 1020.4 1027.9 1652.0 1703.3 1680.2 1696

vibrobox 33250.4 36704.9 33471.8 33621.2 41074.6 51313 40654.5 42962.5

4elt 962.5 960.6 962 932.5 1581.5 1638.6 1605.3 1506.4

cs4 2146.6 2248.4 2163 2253.6 3003.4 3294.5 3152.4 3159.2

t60k 901.8 895.0 908.3 932.5 1469.0 1484.0 1499.7 1506.4

brack2 11995.7 12536.1 11962.1 12197.0 17814.0 18691.5 17907.3 18051.5

Total 6 1 1 2 6 0 2 1

7 Conclusion and remarks

In this paper, we presented MITS, a multilevel iterated tabu search approach
for balanced graph k-partitioning. The proposed algorithm follows the basic
idea of the multilevel approach and integrates a new and powerful tabu search
refinement procedure. The dedicated tabu search algorithm, which is the key
component of the approach, includes a number of interesting features like the
joint use of two neighborhoods, an adaptation of bucket sorting for incremental
evaluation of move gains, guided selection strategies for vertex migration based
on long term memory (move frequency) and a dynamic tabu tenure technique.
To reinforce the diversification of the search process, the tabu search algorithm
is combined with a perturbation mechanism to escape from deep local optima.

We assessed extensively the efficiency of the proposed algorithm with both
short and long run times, on a collection of benchmark graphs provided by

21

the Graph Partitioning Archive, with the cardinal number k set to 2, 4, 8, 16,
32 and 64. The results generated in short computation time (from 1 second
up to 2.5 minutes) are far better than those produced by the two well-known
partitioning packages METIS or CHACO. When the running time is prolonged
from 1 minute up to 1 hour, our approach succeeds even to improve more than
two thirds of the best balanced partitions ever reported in the literature (which
were often obtained with much longer computing time up to one week).

Finally, it is recognized that there may be a significant trade-off between
partition quality and balance. Indeed, allowing a certain degree of imbalance
usually leads to partitions of better quality. In this work, we aimed to produce
perfectly balanced partitions, and did not specifically address the possibility
to allow imbalance up to a certain limit. Yet, we tested our MITS algorithm
with the balance constraint relaxed up to certain degree. We observed that
the quality of these imbalanced partitions, even if they are not reported here,
remains highly competitive with respect to the best known partitions of the
same imbalance. In fact, we managed to improve once again a number of the
current best partitions, although the percentage of these improved partitions
was lower than in the case of balanced partitions.

Acknowledgment

We are grateful to the referees for their comments and questions which helped
us to improve the paper. The work is partially supported by the Pays de la
Loire Region (France) within the projects RaDaPop projects (2009-2013) and
LigeRO (2010-2013).

References

[1] C.J. Alpert and A.B. Kahng. Recent directions in netlist partitioning.
Integration: the VLSI Journal, 19(12): 1–81, 1995.

[2] S.T. Barnard and H.D. Simon. A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency:
Practice & Experience, 6(2): 101–117, 1994.

[3] R. Battiti and A. Bertossi. Greedy and prohibition-based heuristics for graph
partitioning. IEEE Transactions on Computers, 48: 361–385, 1999.

[4] T.N. Bui and C. Jones A heuristic for reducing fill-in in sparse matrix
factorization. In R.F Sincovec et al. (Eds), Parallel Processing for Scientific
Computing, SIAM, Philadelphia, 445–452, 1993.

22

[5] T.N. Bui and B.R. Moon. Genetic algorithm and graph partitioning. IEEE
Transactions on Computers, 45: 841–855, 1996.

[6] P. Chardaire, M. Barake, and G. P. McKeown. A PROBE based heuristic
for Graph Partitioning. IEEE Transactions on Computers, 56(12): 1707–1720,
2007.

[7] M. Dell’Amico and F. Maffioli. A Tabu Search approach to the 0-1 equicut
problem. In Meta Heuristics 1995: The State of the Art, Kluwer Academic
Publishers, 361–377, 1996.

[8] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In S. Karin. (Eds) Proceedings of the 1995 ACM/IEEE Conference
on Supercomputing, San Diego, ACM Press, New York, 1995.

[9] M. Holtgrewe, P. Sanders, and C. Schulz. Engineering a Scalable High Quality
Graph Partitioner. Technical Report, 2009.

[10] C. Fiduccia and R. Mattheyses. A linear-time heuristics for improving network
partitions. In: Proceedings of the 19th Design Automation Conference, 171–185,
1982.

[11] M. Garey and D. Johnson. Computers & Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

[12] L. Di Gaspero and A. Schaerf. Neighborhood portfolio approach for local
search applied to timetabling problems. Journal of Mathematical Modeling and
Algorithms, 5(1): 65–89, 2006.

[13] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
1997.

[14] B. Hendrickson and T.G. Kolda. Graph partitioning models for parallel
computing. Parallel Computing, 26(12): 1519–1534, 2000.

[15] D.S. Johnson, C.R. Aragon, L.A. Mcgeoch and C. Schevon. Optimization by
simulated annealing: an experimental evaluation; Part-I, graph partitioning.
Operations Research, 37: 865–892, 1989.

[16] G. Karypis and V. Kumar. MeTiS 4.0: Unstructured graphs partitioning and
sparse matrix ordering system. Technical Report, Department of Computer
Science, University of Minnesota, 1998.

[17] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):
359–392, 1998.

[18] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing, 48(1): 96–129, 1998.

[19] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49, 291–307, 1970.

23

[20] Peter Merz and Bernd Freisleben. Fitness Landscapes, Memetic Algorithms
and Greedy Operators for Graph Bi-Partitioning. Evolutionary Computation,
8(1): 6191, 2000.

[21] H. Meyerhenke, B. Monien, and T. Sauerwald. A new diffusion-based multilevel
algorithm for computing graph partitions of very high quality. In Proceedings
of the 22nd International Parallel and Distributed Processing Symposium
(IPDPS’08), 2008.

[22] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, 1982.

[23] E. Rolland, H. Pirkul and F. Glover. Tabu search for graph partitioning. Annals
of Operations Research, 63, 209–232, 1996.

[24] J. Shi and J. Malik. Normalized cuts and image segmentation. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
731–737, 1997.

[25] A.J. Soper, C. Walshaw, and M. Cross. A combined evolutionary search
and multilevel optimisation approach to graph-partitioning. Journal of Global
Optimization, 29(2): 225–241, 2004.

[26] A. Slowik and M. Bialko. Partitioning of VLSI circuits on subcircuits with
minimal number of connections using evolutionary algorithm. In L. Rutkowski
et al. (Eds.), ICAISC 2006, Lecture Notes in Artificial Intelligence 4029, pages
470–478, Springer-Verlag, 2006.

[27] E.-G. Talbi and P. Bessier̀e. A parallel genetic algorithm for the graph
partitioning problem. Proceedings of the 5th International Conference on
Supercomputing, pages 312 – 320, 1991.

[28] C. Walshaw and M. Cross. Mesh partitioning: a multilevel balancing and
refinement algorithm. SIAM Journal on Scientific Computing, 22: 63–80, 2000.

[29] C. Walshaw. Multilevel refinement for combinatorial optimisation problems.
Annals of Operations Research, 131: 325–372, 2004.

[30] H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite graph partitioning
and data clustering. Proceedings of the ACM 10th International Conference on
Information and Knowledge (CIKM 2001), pages 25–31, 2001.

24

	Introdution
	Problem description and notations
	Multilevel Tabu Search graph partitioning
	General procedure
	Coarsening phase
	Initial partition and its refinement

	Partition refinement by Perturbation-based Iterated Tabu Search
	Tabu Search
	Perturbation mechanism

	Experimental results
	Benchmark instances
	Experimental protocol
	Comparison with the state-of-art solvers
	Comparison with the best known partitions

	Analysis
	Conclusion and remarks
	References

