

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.cor.2011.01.010

http://hdl.handle.net/10251/35409

Elsevier

Ruiz García, R.; Minella, GG.; Ciavotta, M. (2011). Restarted Iterated Pareto Greedy
algorithm for multi-objective flowshop scheduling problems. Computers and Operations
Research. 38(11):1521-1533. doi:10.1016/j.cor.2011.01.010.

Restarted Iterated Pareto Greedy algorithm for

Multi-Objective Flowshop Scheduling problems

Gerardo Minella∗, Rubén Ruiz, Michele Ciavotta

Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,

Universidad Politécnica de Valencia, Valencia, Spain.

{mgerar,mciavotta}@iti.upv.es, rruiz@eio.upv.es

September 10, 2010

Abstract

Multi-objective optimisation problems have seen a large impulse in the last decades.

Many new techniques for solving distinct variants of multi-objective problems have

been proposed. Production scheduling, as with other operations management �elds,

is no di�erent. The �owshop problem is among the most widely studied scheduling

settings. Recently, the Iterated Greedy methodology for solving the single-objective

version of the �owshop problem has produced state-of-the-art results. This paper

proposes a new algorithm based on Iterated Greedy technique for solving the multi-

objective permutation �owshop problem. This algorithm is characterised by an e�ec-

tive initialisation of the population, management of the Pareto front, and a specially

tailored local search, among other things. The proposed multi-objective Iterated

Greedy method is shown to outperform other recent approaches in comprehensive

computational and statistical tests that comprise a large number of instances with

objectives involving makespan, tardiness and �owtime. Lastly, we use a novel graph-

ical tool to compare performances of stochastic Pareto fronts based on Empirical

Attainment Functions.

Keywords: scheduling, �owshop, multi-objective, iterated greedy

∗Corresponding author. Tel: +34 96 387 99 52, Fax: +34 96 387 72 39

1

1 Introduction and problem description

In many industrial environments the term job usually refers to a set of tasks to be carried out by

machines over semi-�nished goods and/or raw materials in order to obtain a �nal product. Flow-

shop is a production layout in which every job consists of the same set of ordered tasks. The goal

for this problem is to �nd a solution (i.e., a sequence of jobs for each machine) that optimizes a

given objective function. In this work we deal with the permutation �owshop scheduling problem

(PFSP), a special case in which, due to shortage of inter-machine bu�ering or lack of automated

handling systems, among other reasons, all machines must process the same sequence of jobs.

Each job is de�ned by a set of data mainly depending on the criterion to optimize. In this paper

we use the processing time of each job j, j ∈ N on each machine i, i ∈M , pij and the due date

dj that represents the delivery date for each job, i.e., job must preferably be �nished before dj .

The completion time of job j on machine i is denoted as Cij . The completion time of a job j in

the last machine m, commonly indicated as Cj , is the time needed to complete that job in the

shop.

Most literature referring to PFSP focuses on the optimisation of one single objective. The

most studied objective in the scheduling theory is, beyond any doubt, the maximum comple-

tion time minimisation or makespan, Cmax = max {Cj} = max {Cm,j}, j ∈ N , i.e., the time

needed to complete the processing of all the jobs. Minimising makespan is closely related to the

increase of throughput and machine utilisation. A second common criterion is the total �owtime,

TFT =
∑n

j=1 Fj . The �owtime for a job is the time elapsed between its release time and its

completion time: Fj = Cj − rj . The release time in the earliest possible starting time for a job,

in this paper we assume rj = 0, ∀j ∈ N . Another widely studied objective is the total tardiness,

TT =
∑n

j=1 Tj , where, Tj is the tardiness of job j, de�ned as Tj = max{Cj−dj , 0} and represents
the delay in its completion with respect to its due date. Reviews and comparative evaluations

for �owshop and makespan objective are presented in Framinan et al. (2004), Ruiz and Maroto

(2005) and Hejazi and Sagha�an (2005) and Gupta and Sta�ord (2006). Total tardiness criterion

is considered in Vallada et al. (2008). Finally, El-Bouri et al. (2005) and Rajendran and Ziegler

(2005), among many others, consider the total �owtime criterion in their studies.

It is not enough to study each objective separately, as real life problems are often intrinsically

multi-objective. A processing sequence with a very good makespan might result in a poor tar-

diness and viceversa. To take e�ective decisions, multiple objectives must be considered simul-

taneously. Multi-objective optimisation has received a big impulse in the last decade and many

theoretical and practical results have been obtained. Furthermore, many new e�ective techniques

have been presented for single-objective optimisation in the PFSP, as for example the Iterated

Greedy (IG) of Ruiz and Stützle (2007). These techniques have been seldom explored in multi-

objective settings.

In this paper we propose a novel multi-objective algorithm based on the successful ideas of the

Iterated Greedy methodology. An e�cient management of the Pareto front, a modi�ed crowding

2

selection operator, an e�ective local search and other techniques are employed in order to obtain

high quality and well spread Pareto fronts.

This paper is organised as follows: In Section 2 we provide a short review of multi-objective op-

timisation results for the PFSP. Section 3 describes the general Iterated Greedy algorithm (IG)

and the multi-objective extension. Section 4 presents a description of performance measures, the

benchmark used in the computational campaign, the algorithm calibration and the analysis of

the results. Finally, conclusions are given in section 5.

2 Literature review

There are several di�erent approaches to multi-objective optimisation. The most immediate and

commonly employed methodology is the so-called �a priori� scheme. As the name implies, this

methodology requires some desirability or a prioristic information given by the decision maker.

The simplest method in this class is the weighted combination of all objectives into one single

function, which e�ectively transforms the problem into a single-objective one. The main drawback

of this approach is the need of weights for each objective. Setting these weights is not intuitive.

Furthermore, di�erent objectives are usually measured in di�erent scales, making the choice of

the weighs even more complicated. Broadly speaking, the other class of techniques are referred

to as �a posteriori� methods. In this case no former information is provided and a whole set of

compromise solutions is returned.

The �nal goal of an �a posteriori� approach is to provide a set of non-dominated solutions that

cover the trade-o� between the studied objectives. This set of non-dominated solution is referred

to as the Pareto frontier. The decision maker, after the optimisation has been carried out, selects

the desired solution from the Pareto frontier. It is out of the scope of this paper to provide

a comprehensive and thorough treatment of multi-objective optimisation. Zitzler et al. (2003)

presented an extensive notation for multi-objective problems, later extended by Paquete (2005)

and by Knowles et al. (2006).

Recently, Minella et al. (2008) presented a comprehensive literature review and computational

analysis of multi-objective approaches for the PFSP. The literature review that we present now

is therefore brief, since most of the existing research is already studied in Minella et al. (2008).

Three methods were identi�ed as the best performers in the review of Minella et al. (2008).

The �rst one is an improved version of the simulated annealing of Varadharajan and Rajendran

(2005) MOSAIIM that provided state-of-the-art over other 22 compared methods. The second

one was a hybrid genetic algorithm with local search, referred to as MOGALS from Arroyo and

Armentano (2005). The third best performer turned out to be an advanced tabu search method,

also hybridised with local search, referred to as MOTS and proposed by Armentano and Arroyo

(2004).

Recently, other methods have been proposed and they were not included in the review of Minella

3

et al. (2008). One example is the MOIGS algorithms of Framinan and Leisten (2008), a multi-

objective iterated greedy algorithm, based on the Iterated Greedy algorithm of Ruiz and Stützle

(2007). Notice that this is the �rst work that implements the iterated greedy ideas into a multi-

objective setting. Another recent method is that of Yandra and Tamura (2007), referred to as

hMGA, which is a multi-objective genetic algorithm with heterogeneous populations. As we will

later show, we include these two last methods in our computational experiments.

3 The Restarted Iterated Pareto Greedy algorithm

The Iterated Greedy (IG) algorithm was �rst proposed in Ruiz and Stützle (2007) and it basically

consists in iteratively destructing some elements of a solution, reconstructing a new one using

a constructive greedy technique and, �nally improving it by means of an optional local search

procedure. Hence, it is possible to identify inside the algorithm two main phases: the destruc-

tion/reconstruction and the local search. During the �rst phase, some elements of the current

solution are randomly removed, and then reinserted in such a way that a new complete, and hope-

fully better solution is obtained. The reinsertion procedure for the PFSP is based on the well

known NEH heuristic of Nawaz et al. (1983). Basically, the NEH is a greedy constructive method

that tests every removed element into all possible positions of the current partial solution. The

element is placed in the position resulting in the best objective function value. IG is currently

being studied in many other research works. For example, Ruiz and Stützle (2008) extended the

IG method to other objectives and to sequence-dependent setup times. Ying (2008) applied IG to

multistage hybrid �owshop scheduling problems with multiprocessor tasks. Toyama et al. (2008)

used Iterated Greedy algorithms for node placement in street networks. Zhi et al. (2008) applied

IG algorithms to train scheduling problems and �nally Tasgetiren et al. (2009) used IG for single

machine scheduling problems with sequence dependent setup times.

In the next sections we describe how we have instantiated the IG methodology for the multi-

objective PFSP. It has to be noted that IG was originally devised as a non population-based

method and therefore, several extensions and improvements are needed in order to accommodate

multiple objectives.

3.1 Basic Iterated Pareto Greedy algorithm

The main contribution of this new algorithm is the handling of a population of non-dominated

solutions as a working set instead of just a single solution. In order to make this possible, at

each iteration, one solution from the working set has to be selected for further processing. We

developed a selection operator which picks up a solution from the working set in such a way so to

accelerate the search and to maximize the spread of the �nal Pareto front. The selected solution is

then processed by the greedy phase, in which some elements are removed, like in the original IG.

Next, the reconstruction procedure generates a whole set of non-dominated solutions by inserting

4

each removed element into a population of partial solutions. This step is clearly di�erent from the

original IG which works with one solution at a time. The working set is updated with the recently

created set of non-dominated solutions from the reconstruction procedure. The local search phase

is also very di�erent to that of the original IG. Recall that after the greedy phase, the working

set is updated, possibly with new solutions. Therefore, the solution selected previously for the

greedy phase might not be present in the working set anymore because of being dominated by

other new solutions. As a result, the selection operator is applied again to select one solution

that will undergo local search. These two phases, namely, greedy and local search, are repeated

until a termination criterion is met.

This is the basic version of what we call Iterated Pareto Greedy (IPG). The basic IPG, as we

will later elaborate, showed a weak spot. For large problems, the basic IPG resulted in top

performance. However, for small instances, premature convergence appeared. As a result of

this, the basic IPG was extended with a simple Restart operator. Experimental results reported

in section 4 demonstrate that the addition of the restart phase increases the quality of the

Pareto front for small and mid sized instances, while the performance for large instances remains

unchanged. Another interesting point is the relevance of the initial solutions. One has to be

careful, since good initial solutions are preferred but at the same time, a su�ciently diverse initial

working set is needed. After adding the restart phase, the proposed method has been referred

to as Restarted Iterated Pareto Greedy (RIPG). In what follows, we detail all aforementioned

aspects of the proposed RIPG.

3.2 Initialisation and Selection Operator

Initial experiments clearly showed that a good initial working set greatly improves the quality of

RIPG. This is certainly expected as it is also the case with the single objective PFSP. In the single

objective version, most proposed algorithms from the literature use the well known NEH heuristic

for the makespan criterion. In the multi-objective version, at least two objectives are considered.

Ideally, we should look for a good solution for each objective. To this end, we select two well

known heuristics, the aforementioned NEH heuristic of Nawaz et al. (1983) which gives good

results for makespan and total �owtime and the heuristic proposed in Rajendran and Ziegler

(1997), suited for total tardiness. We apply each heuristic changing the objectives, obtaining

four initial solutions for two-objective problems. Further treatment is needed. First, there is no

guarantee that these initial four solutions will be well spread in the Pareto front. Secondly, the

greedy phase is capable of greatly improving initial solutions. However, in some situations, this

is not always a positive thing. Selecting only one of the initial solutions for the greedy phase

could have a negative result: all other initial solutions could be dominated after this phase. As

a result, we loose diversity and coverage in the Pareto front. If all initial solutions are removed

in the �rst step, the search will discard promising search directions. With this in mind, in the

�rst step of the RIPG, all initial solutions are processed by the greedy phase, without applying

5

the selection operator, and for each one, a non-dominated set is obtained. After this, all sets of

solutions are joined together and dominated solutions are discarded. After this initialisation, the

working set of non-dominated solutions is ready for the main algorithm phases.

In subsequent iterations the Modi�ed Crowding Distance Assignment (MCDA) procedure assigns

a �tness value to each element in working set and, based on this value, a solution is selected for

the greedy phase. This method is based on the well known Crowding Distance operator initially

proposed by Deb (2002). The original method divides the working set into dominance levels,

i.e., the set of non-dominated solutions form the �rst-level Pareto front. Once we remove these

elements, we have another non-dominated set of solutions, which correspond with the second-

level Pareto front. This procedure is repeated until all solutions are assigned to a Pareto front.

Afterwards, the Crowding Distance operator assigns a value to each solution of the working set

based on the distance between it and its nearest neighbors belonging to the same Pareto front

level. Such technique favors the selection of the most isolated solutions of the �rst frontier. The

idea is that solitary solutions need to be further explored in order to close gaps in the objective

solution space. Recall that in multi-objective optimisation, a good coverage of the ideal Pareto

front is sought. The main drawback of this technique is that it does not keep track of how many

times a solution has been previously selected, because of that, it keeps choosing it again and

again. After selection, RIPG applies the greedy and local search phases. Therefore, applying

the standard Crowding Distance procedure results in an algorithm that gets easily stuck, as if

no improvements are found after the greedy and local search phases, the Pareto fronts do not

change and the same solution is selected repeatedly. To avoid this, we add a selection counter

to each solution which counts the number of times each solution has been selected. In this way,

the probability of selecting a solution from the working set diminishes as the selection counter

increases. The proposed Modi�ed Crowding Distance Assignment is given in pseudo-code form

in �gure 1).

3.3 Greedy Phase

The greedy phase works in two steps: First, a block of d consecutive elements is randomly removed

from the MCDA-selected solution. Note that in the original IG, the removal is not carried out

by groups of elements. The second step iteratively reconstructs the solution by reinserting, one

by one, all the d removed elements into all possible positions of a group of partial solutions. In

the �rst iteration, the �rst of the d removed elements is inserted in all positions of the partial

solution (selected solution without the d removed elements). This generates n−d+1 new partial

solutions. The next removed element, will be inserted in all positions of all previous n − d + 1

partial solutions, generating a new set of partial solutions of size (n− d+ 1)× (n− d+ 2). This

process is repeated until the last removed element is inserted and a set of complete solutions is

generated. At the end of this process the total number of generated complete solutions would be

6

procedure Modi�ed Crowding Distance Assignment

WorkingSet := Current set of solutions
for each m ∈ Objectives
Sort WorkingSet using the current objective m
//Set the distance of the extreme elements on the WorkingSet to ∞
fmaxm := maximum value for objective m in WorkingSet
fminm := minimum value for objective m in WorkingSet
//Calculate the distance of all other elements in the WorkingSet
for i := 2, . . . ,WorkingSetLastElement−1

WorkingSeti.distance :=WorkingSeti.distance+
(WorkingSeti+1.Objetivem−WorkingSeti−1.Objetivem)

(fmax
m −fmin

m)

end for

end for

//Adjust the �tness value with the selection counter in each individual
//First obtain the extreme distance values (for normalising)
MaxDist := max (WorkingSet.distance)
MinDist := min (WorkingSet.distance)
for each i ∈WorkingSet

//The In�nite values of the extreme solutions should be replaced
//by the maximum acceptable value (1)
if WorkingSeti.distance =∞ then

WorkingSeti.fitness :=
1

(WorkingSeti.SelectionCounter+1)

else

WorkingSeti.fitness :=
WorkingSeti.distance+MinDist

MaxDist+MinDist
(WorkingSeti.SelectionCounter+1)

end if

end for

Figure 1: Modi�ed Crowding Distance Assignment Procedure (MCDA).

equal to:
d∏
i=1

(n− d+ i) ≥
d∏
i=1

(n− d) +
d∏
i=1

i = (n− d)d + d!

Note how this procedure is radically di�erent to the destruction and reconstruction phase of the

regular IG method of Ruiz and Stützle (2007) where only one complete solution is kept at all

times and the regular constructive NEH heuristic is used. Our proposed method actually keeps

a population of partial solutions to which each removed element is reinserted.

The proposed procedure has one main drawback. Note how for large d values, the size of the

partial solutions grows exponentially. For example, for n = 25 and d = 5 the number of complete

�nal solutions would be more than 3× 106. To overcome this problem, each time a set of partial

solutions is generated, only the non-dominated partial solutions are kept and the dominated ones

are discarded. In the next step, the next removed element is only reinserted in the non-dominated

partial solutions. This greedy phase is precisely described in the pseudo-code of Figure 2.

7

The solution set obtained from the greedy phase is added to the working population and the

procedure Greedy Phase

SelectedSolution := MCDA-selected solution
PartialSolution := destruct SelectedSolution by removing a block of d consecutive elements
DestructedElements := Set of d elements removed from SelectedSolution
PartialSolutionsSet := PartialSoluction //Set of partial solutions used in this phase

for each i ∈ DestructedElements
for each n ∈ PartialSolutionsSet
Counter := 0
for each position j of PartialSolutionsSetn
NewPartialSolutionsSetCounter := Insert Element i in position j of PartialSolutionsSetn
Counter := Counter + 1

end for

end for

PartialSolutionsSet := remove dominated partial solutions of NewPartialSolutionsSet
end for

return PartialSolutionsSet

Figure 2: Greedy phase pseudo-code.

dominated elements are removed. Finally, the MCDA is applied on this working set and a new

solution is selected for the local search phase.

3.4 Local Search Phase

A simple local search phase has been designed to re�ne the search in the space close to the selected

solution. As our goal is to have a light, reliable and fast algorithm, we tried not to turn to more

complex and time consuming local search techniques.

The local search phase consists in randomly selecting each time, one element from the selected

solution, and reinserting it into the nneigh adjacent positions to the right and to the left of the

original position, where nneigh is a user-speci�ed parameter. The above procedure is repeated

SelectionCounter times. This is because if a solution has been selected previously, its closest

neighbourhood has been already explored. In the hope of improving the selected solution further,

a deeper local search has to be carried out. An upper bound is imposed to the number of removed

elements.

Similar to the greedy phase, instead of keeping one full solution in this local search phase, we

keep a local working set of solutions. At each step, a removed element is reinserted, and we add

the new solutions to the local working set. For each of the removed elements, nneigh × 2 new

solutions are added to the local working set. After the local search phase, dominated elements

are removed from the local working set and the remaining solutions are �nally added to the

algorithm's working set.

8

3.5 Restart Phase

The last phase is the restart procedure and consists in archiving the current working set, and

then creating a new one with randomly generated solutions. This is the simplest possible restart

scheme that still allows the algorithm to escape from a situation in which the current working

set is stalled.

One of the di�culties of this phase is to know when to perform the restart. A very simple approach

is to restart when the working population has not changed for a given number of iterations. The

issue of determining when a working set has not changed is not trivial, as this can be measured

in a number of ways. Following our ideal that the proposed RIPG has to be simple, we choose to

trigger the restart when the size of the working set has not changed for a number of user-speci�ed

iterations. Furthermore, initial tests showed that this number of iterations can be set according

to the size of the input instance to n × 2. This value was obtained as result of a calibration

experiment that will be presented later in section 4.

Figure 3 shows the complete �owchart of the �nal versión for de RIPG algorithm with all its

phases.

End

Start

Initialisation

Selection Local Search

Restart

Selection

Yes TerminationNo Yes

Greedy Phase

Restart Phase

Figure 3: Final RIPG algorithm �owchart

4 Experimental analysis

In single objective optimisation a single value is obtained as the result of the application of a given

algorithm. Therefore, comparing results of di�erent algorithms is relatively easy. Multi-objective

optimisation however, is much more complicated. Recall that the outcome of a multi-objective

method is actually an approximation of the optimal Pareto front with potentially hundreds of

solutions. Furthermore, in the introductory section we have already commented the concept of

dominance and how two solutions can be even incomparable. As a matter of fact, the only case

9

in which the comparison of the outcomes of two multi-objective algorithms is clear is when the

approximation of the Pareto front of the �rst algorithm completely dominates that of the second.

This only happens when all solutions of the second Pareto front are dominated by at least one

solution of the �rst Pareto front. Nowadays, the issue of comparing multi-objective algorithm in

a sound way is still a hot topic of research.

Commonly, Pareto fronts are condensed in single �gure performance measures for comparison

purposes. These are commonly referred to as performance indicators. However, these are not the

only possible performance measures. Recently, Zitzler et al. (2008) carried out a comprehensive

study of such existing performance measures. The results show that some metrics frequently used

in multi-objective research are not Pareto-compliant, i.e., in some cases, a non-Pareto-compliant

performance measure can assign a better value to a Pareto frontier B respect to frontier A even

if A dominates B. Again, this result highlights the fact that comparing Pareto fronts it not an

easy task at all.

In this paper we employ two performance indicators that were shown to be Pareto-compliant in

Zitzler et al. (2008). The �rst is the Hypervolume Indicator IH presented in Zitzler and Thiele

(1999) and more precisely, its unary version from Zitzler et al. (2003). This indicator measures

the hypervolume of the objective space dominated by a given Pareto set of points. Notice that

in the comparison of two Pareto fronts, a higher value of IH indicates a better frontier. The

hypervolume needs a reference point for closing the volume. In our case, this reference point

is obtained by multiplying the worst objective values by 20%. As the objective values are nor-

malised, the maximum IH value can by obtained by the product of the reference point values:

1.2× 1.2 = 1.44. Below there is a more formal description of the IH indicator.

having

S a set of solutions

sεS a solution

Obj number of objectives

n number of elements of S

I1H(s) =
∑

1≤o≤Obj

∑
1≤i≤n

si,o −minSo
maxSo −minSo

The second performance indicator is the so called Unary Epsilon Indicator I1ε , de�ned formally

below, proposed by Knowles et al. (2006) which measures the minimum distance between a given

Pareto front and the optimal or reference Pareto front. The objective values are normalised before

calculating the I1E , this way the indicator varies between 1 and 2. A value close to 1 means that

the given Pareto front is close to the reference set.

10

having

P the Pareto Front or a Reference Set

S an approximation to the pareto front

I1ε = Iε(S, P)

where

Iε(S, P) = inf
εεR
{∀x2εP∃x1εS : x1 � x2}

x1 � x2 ⇐⇒ ∀iε1..n : fi(x
1) ≤ ε+ fi(x

2)

This approach of using two performance indicators allows to detect incomparability situations

when the two indicators give contradictory results. This approach was successfully employed for

comparing more than 20 multi-objective heuristics for the PFSP in Minella et al. (2008).

Another interesting procedure is a graphical tool called the empirical attainment function or EAF.

It was �rst proposed by Grunert da Fonseca et al. (2001) and later analysed in more detail by

Zitzler et al. (2008). EAF basically depicts the probability for an algorithm to dominate a given

point of the objective space in a single run. Since algorithms can be stochastic, di�erent Pareto

fronts might be obtained in di�erent runs even for the same instance. EAFs use color gradients to

show the relative number of times that each region of the objective space is dominated. Contrary

to performance indicators, EAF do not condense information and the behaviour over the whole

Pareto front can be observed. In this work we use the Di�erential Empirical Attainment Function

or Di�-EAF recently proposed by López-Ibáñez et al. (2006). This graphical methodology consists

in showing the di�erences between two EAFs in a single chart. By analyzing Di�-EAF images one

can easily see in which part of the solution space a method is better than the other. Di�-EAFs

show the results for two algorithms and for one single instance in one plot. The main drawback of

this analysis method is that one plot has to be generated for each instance and pair of compared

methods.

We use the same benchmark set of instances used in Minella et al. (2008) which in turn is based

on the �rst 110 instances of Taillard (1993). The benchmark is organised in 11 groups with 10

instances each. Each group contains di�erent combinations of number of jobs n and number of

machines m. The n ×m combinations are: {20, 50, 100} × {5, 10, 20} and 200 × {10, 20}. The

processing times (pij) are generated from a uniform distribution in the range [1, 99]. As regards the

due dates for the tardiness criterion we use the same approach of Hasija and Rajendran (2004). A

tight due date dj is assigned to each job j ∈ N following the expression: dj = Pj×(1+random·3)
where Pj =

∑m
i=1 pij is the sum of the processing times over all machines for job j and random

is a random number uniformly distributed in [0, 1]. The whole set of instances is available at

http://soa.iti.es.

11

http://soa.iti.es

There is still the issue of the reference Pareto front. In the same web page we have published the

best known Pareto fronts for each objective combination and instance. Basically, each reference

Pareto front has been constructed from all non-dominated solutions found from all tested methods

and experiments. Notice that these reference Pareto fronts are only needed for the calculation of

the Unary Epsilon Indicator I1ε .

4.1 Algorithm calibration

Before comparing RIPG with the best performing algorithms from the literature, we carry out a

calibration experiment. The objective of the calibration is to determine the best value for each

parameter of the RIPG algorithm. We also use this calibration experiment in order to gauge the

importance and relevance of each algorithm feature.

We employ the Design of Experiments (DOE) technique for the experiment, where the factors

a�ecting the performance of the RIPG are tested in a full factorial experiment which is later

analysed by means of the multifactor analysis of variance (ANOVA). There are �ve factors to be

tested: 1) The initialisation at two levels: Random or our proposed method. 2) The size of the

destruction block d, which has been tested with two levels: 5 and 10. 3) The size of the local

search neighbourhood or nneigh, which has been tested at two levels: 3 and 5. 4) Number of

local search iterations, which has been tested at two levels: 5 and SelectionCounter (recall that

SelectionCounter is the number of times that a selected solution was previously selected). 5)

Restart operator, which has been tested at three levels: no restart, restart after 10 non-improving

iterations and restart after n× 2 non-improving iterations, where n is the number of jobs in the

tested instance. More speci�cally, the factors 3) and 4) are actually combined into a single factor

with �ve levels where the �fth level is actually not using local search at all.

As a result, there are four factors at 2, 2, 5 and 3 levels, respectively. This gives a total of 60

algorithm con�gurations. Each con�guration is tested with the 110 instances and 10 replicates

are run for each instance. A total number of 66,000 results is therefore obtained. RIPG was coded

in Delphi 2007 and run on a cluster of 12 computers with Intel Core 2 Duo E6600 processors

running at 2.4 GHz and 1 GByte of RAM memory. Only one core is used at each computer.

Each con�guration is run during the exact same CPU time stopping criterion that depends on

the size of the input instance: TCPU = n ·m/2 · t ms. where t = 100. The total calibration time

has been therefore 41.57 CPU days. The response variables of the ANOVA experiment are the

Hypervolume and Epsilon indicators.

Since the ANOVA is a parametric statistical inference tool, it is necessary to check the three main

hypotheses which are normality, homoskedasticity and independence of the residuals. From the

analysis of the residuals resulting from the experimental data all three hypotheses are easily satis-

�ed. After the calibration we observed that a random initialisation had a very poor performance.

Therefore, our proposed initialisation proves to be much better. The best size for the destruction

block resulted to be d = 5. The other factors were �xed as follows: nneigh = 5 and number of

12

local search iterations �xed to SelectionCounter. Lastly, the number of non-improving iterations

after which Restart is applied is �xed to n× 2.

As previously mentioned, during this experiment we also tested the relevance of each phase of our

proposed RIPG. Some of these results are presented in �gure 4 for epsilon (a) and hypervolume

(b) indicators, respectively. The con�gurations reported in the picture are: GP , which indicates

that only the greedy phase without local search and without restart is tested, GP + LS that is

the basic algorithm IPG made of only greedy and local search phases (no restart), GP +R that

consists only in the greedy and restart phases, and �nally GP + LS + R that consists of all the

phases working together and conform the RIPG algorithm.

As we can see, each algorithm phase improves results as GP is the worst performer. Surprisingly,

the impact of the restart phase on the results is very high, as GP+R produces better results than

the local search GP + LS. This result not only justi�es the inclusion of this restart phase inside

our algorithm but also encourages the development of such methods of solution improvements.

Algorithm

E
p
si

lo
n

G
P

+
L

S
+

R

G
P

+
R

G
P

+
L

S

G
P

1.07

1.08

1.09

1.1

1.11
(a)

G
P

+
L

S
+

R

G
P

+
R

G
P

+
L

S

H
y
p
er

v
o
lu

m
e

G
P

1.22

1.23

1.24

1.25

1.26

1.27
(b)

Figure 4: Means plot and 99% Tukey intervals for the Epsilon indicator (a) and and
hypervolume indicator (b) in the ANOVA experiment for several con�guration of RIPG

algorithm.

4.2 Computational evaluation

We compare our algorithm with the three best performing algorithms according to the review of

Minella et al. (2008), along with two recent methods proposed later and that were not evaluated

by Minella et al. (2008). Table 1 shows the list of the re-implemented methods in more detail. All

algorithms are re-implemented in Delphi 2007 following the original papers. The only modi�cation

carried out is the accelerations included in the MOIGS of Framinan and Leisten (2008). We test

13

Algorithm Type Author/s Year

MOTS Taboo search Armentano and Arroyo 2004
MOGALS Genetic algorithm Arroyo and Armentano 2005
MOSAII Simulated annealing Varadharajan and Rajendran 2005
hMGA Genetic algorithm Yandra and Tamura 2007
MOIGS Iterated Greedy Framinan and Leisten 2008
MOSAIIM Simulated annealing MOSAII adaptation 2008
RIPG Iterated Greedy presented in this work

Table 1: List of re-implemented or adapted methods compared in this work.

two di�erent bi-objective combinations, makespan-�owtime and makespan-total tardiness. All

methods are run on the same cluster of computers mentioned in the calibration section. The

stopping criterion also changes with the instance size as: n ·m/2 · t milliseconds, where t is an

input value. By using this stopping criteria we give more computation time for bigger instances

which have larger solution spaces. Two di�erent values of t are used in the experiments: 100, 200

in order to check how di�erent times a�ect the tested methods. Each algorithm is run 10 times

(replicates) for each combination of stopping criterion and pair of objectives. For each run and

each algorithm, a computer from the cluster is selected randomly, and the results are collected

at the end of the experiment. A total of 7 [algorithms] × 10 [replicates] × 110 [instances] ×
2 [objectives] × 2 [CPU time termination criteria] = 30, 800 samples have been collected and

analysed by means of a multi-factor parametric Analysis of Variance test (ANOVA) along with

a non-parametric Friedman rank-based test on both performance indicators. We carry out two

statistical tests for each combination of objectives, performance indicators and stopping times for

a total of 16 statistical tests. Normality, homogeneity of variance and independence of residuals

hypothesis where checked on data before applying ANOVA tests. We are performing four di�erent

statistical tests on each set of results and therefore, a correction on the con�dence levels must

be performed since the same data set is being used to make more than one inference. In order

to counter this potential problem we employ the Bonferroni adjustment, and we set the adjusted

signi�cance level αs to α
4 = 0.05

4 ' 0.01. This means that all the tests are carried out at a

0.01 adjusted con�dence level for a real con�dence level of 0.05. The outcomes of those tests

are reported here in form of ANOVA charts with 99% Tukey con�dence intervals (95% adjusted

con�dence level). Notice that overlapping intervals of two algorithms indicates that there is no

statistical di�erence between their performance. For reasons of space only eight ANOVA graphs

and two tables have been included into this work. All other tests as well as the non-parametric

plots are available as online material and from http://soa.iti.es.

4.2.1 Makespan and Total Flowtime results

Table 2 shows the average values of hypervolume and epsilon indicators for the results with the

makespan and total �owtime criteria. Table 3 gives the same results but for makespan and total

14

http://soa.iti.es

tardiness. Both tables show the results for t = 100 and t = 200 CPU time termination criteria.

Each value is averaged across 110 instances and 10 replicates per instance (1,100 values). The

values in the tables are given in descending order with respect to the hypervolume indicator, this

means that the �rst algorithm appearing is the best performer for the hypervolume indicator.

The best values for both indicators are highlighted using bold characters. In a second column we

show the epsilon indicator values. Observing Table 2 it can be noticed that RIPG outperforms

Time 100 200
Method IH I1ε Method IH I1ε

1 RIPG 1.270630 1.078920 RIPG 1.295480 1.066000

2 MOSAIIM 1.227270 1.114630 MOSAIIM 1.248160 1.105500
3 MOIGS 1.170090 1.135420 MOIGS 1.212110 1.111510
4 MOSAII 1.154200 1.150990 MOSAII 1.146800 1.153970
5 MOGALS 1.130070 1.169700 MOGALS 1.151050 1.156690
6 MOTS 1.041530 1.230810 MOTS 1.066500 1.212490
7 hMGA 0.569154 1.547800 hMGA 0.592918 1.528700

Table 2: Results for the makespan and total �owtime criteria for t = 100 and t = 200
stopping times. The methods are sorted according to IH .

all other methods for both indicators and stopping times. The second position is occupied by the

MOSAIIM algorithm which is the modi�ed version of MOSAII. The previous table only shows

the total averages for all instances and replicates. A more detailed analysis can be carried out.

For example, Framinan and Leisten (2008) showed that their proposed MOIGS was better than

MOSAII. However, the authors only considered small and medium instances of up to 100 jobs. In

our experiment, for 200 jobs, MOSAII turns out to be better as shown in Figure 5 which depicts

the hypervolume and epsilon indicator results for the t = 100 CPU stopping time and makespan

and total tardiness criteria pair. Figure 6 shows the ANOVA test for t = 100 and I1ε , while

Number of jobs

H
y
p
er

v
o
lu

m
e

1.1

1.14

1.18

1.22

1.26

1.3

1.34

20 50 100 200

(b)

Algorithm

MOSAII
MOIGS

100 200

E
p
si

lo
n

1

1.04

1.08

1.12

1.16

20 50

(a)

Figure 5: Means plot and 99% Tukey intervals (for the epsilon indicator (a) and hypervol-
ume indicator (b) factors in the ANOVA experiment for MOIGS and MOSAII algorithms.

15

Figure 7 gives results for t = 100 and IH . Both �gures refer to makespan and total �owtime

criteria combination. Similarly, Figures 8 and 9 display the results for the same experiment

con�guration for the stopping time of t = 200. As we can see from the results, apart from

hMGA

MOTS

MOGALS

MOSAII

MOIGS

MOSAIIM

RIPG

1.1 1.2 1.3 1.4 1.5

Figure 6: Results of ANOVA test for epsilon indicator and t = 100 for makespan and total
�owtime objectives with 99% Tukey intervals (95% adjusted con�dence level).

0.6 0.8 1.0 1.2

MOIGS

MOSAIIM

RIPG

hMGA

MOTS

MOGALS

MOSAII

Figure 7: Results of ANOVA test for hypervolume indicator and t = 100 for makespan
and total �owtime objectives with 99% Tukey intervals (95% adjusted con�dence level).

some minor exceptions, all tested algorithms are shown to be statistically di�erent in all tests,

with RIPG showing clearly superior results in all cases.

The previous results are total averages, it is also interesting to study the behaviour of the di�erent

methods according to instance size. Figure shows the di�erent performance results obtained at

each instance group. In small instances, all the algorithms give similar results. However, for

16

MOTS

RIPG

MOSAIIM

MOIGS

MOSAII

MOGALS

hMGA

1.1 1.2 1.3 1.4 1.5

Figure 8: Results of ANOVA test for epsilon indicator and t = 200 for makespan and total
�owtime objectives with 99% Tukey intervals (95% adjusted con�dence level).

RIPG

MOSAIIM

MOIGS

MOGALS

MOSAII

MOTS

hMGA

0.6 0.8 1.0 1.2

Figure 9: Results of ANOVA test for hypervolume indicator and t = 200 for makespan
and total �owtime objectives with 99% Tukey intervals (95% adjusted con�dence level).

17

medium and large instances, we can see how the RIPG performs much better. Also MOIGS

deteriorates in the largest instances.

Instance Size

H
y

p
er

v
o

lu
m

e

2
0
x

5

2
0
x

1
0

2
0
x

2
0

5
0
x

5

5
0
x

1
0

5
0
x

2
0

1
0

0
x

5

1
0

0
x

1
0

1
0

0
x

2
0

2
0

0
x

1
0

2
0

0
x

2
0

E
p

si
lo

n

1

1.08

1.16

1.24
(a)

2
0
x

5

2
0
x

1
0

2
0
x

2
0

5
0
x

5

5
0
x

1
0

5
0
x

2
0

1
0

0
x

5

1
0

0
x

1
0

1
0

0
x

2
0

2
0

0
x

1
0

2
0

0
x

2
0

1.05

1.15

1.25

1.35

(b)

Method

MOIGS

MOSAIIM

RIPG

Figure 10: Means plot and 99% Tukey intervals for the epsilon (a) and hypervolume (b)
indicators in the ANOVA experiment for all algorithms against instance size. Makespan

and total �owtime objectives.

4.2.2 Makespan and Total Tardiness results

Table 3 presents results for the makespan and total tardiness criteria. The RIPG algorithm turns

out to be again the best performer in terms of IH and I1ε , the second one in the ranking is

MOSAIIM while the worst is hMGA. The same conclusions can be drawn from the statistical

tests whose results are displayed in Figures from 11 to 14. As we can see, most plots indicate

Time 100 200
Method IH I1ε Method IH I1ε

1 RIPG 1.256220 1.08086 RIPG 1.280370 1.066090

2 MOSAIIM 1.214630 1.11139 MOSAIIM 1.234290 1.102120
3 MOIGS 1.153630 1.13636 MOIGS 1.194390 1.113260
4 MOSAII 1.147280 1.14568 MOSAII 1.136630 1.149310
5 MOGALS 1.026660 1.24139 MOGALS 1.046410 1.227070
6 MOTS 0.890548 1.33638 MOTS 0.917784 1.318060
7 hMGA 0.611876 1.51659 hMGA 0.636000 1.497120

Table 3: Results for the makespan and total tardiness for t = 100 and t = 200 stopping
times. The methods are sorted according to IH .

that there are strong and statistically signi�cant di�erences between the algorithms. It has to be

18

MOGALS

MOSAIIM

HMGA

MOTS

MOSAII

MOIGS

RIPG

1.1 1.2 1.3 1.4 1.5

Figure 11: Results of ANOVA test for epsilon indicator and t = 100 for makespan and
total tardiness objectives with 99% Tukey intervals (95% adjusted con�dence level).

RIPG

MOSAIIM

MOIGS

MOSAII

MOGALS

MOTS

HMGA

0.6 0.8 1.0 1.2

Figure 12: Results of ANOVA test for hypervolume indicator and t = 100 for makespan
and total tardiness objectives with 99% Tukey intervals (95% adjusted con�dence level).

MOGALS

1.1 1.2 1.3 1.4 1.5

HMGA

MOTS

MOSAII

MOIGS

MOSAIIM

RIPG

Figure 13: Results of ANOVA test for epsilon indicator and t = 200 for makespan and
total tardiness objectives with 99% Tukey intervals (95% adjusted con�dence level).

19

MOGALS

0.6 0.8 1.0 1.2

RIPG

MOSAIIM

MOIGS

MOSAII

MOTS

HMGA

Figure 14: Results of ANOVA test for hypervolume indicator and t = 200 for makespan
and total tardiness objectives with 99% Tukey intervals (95% adjusted con�dence level).

noted though that for this combination of objectives, the di�erences are more acute. Similar to

the previous experiment, we also show here the performance of the algorithms against instance

size. Figure 15 shows the corresponding plot. It is interesting to note that all three methods

behave very similarly than with the previous experiment with makespan and total �owtime.

E
p
si

lo
n

1

1.04

1.08

1.12

1.16

1.2

1.24
(a)

Instance Size

2
0

x
5

2
0

x
1

0

2
0

x
2

0

5
0

x
5

5
0

x
1

0

5
0

x
2

0

1
0

0
x

5

1
0

0
x

1
0

1
0

0
x

2
0

2
0

0
x

1
0

2
0

0
x

2
0

H
y
p
er

v
o
lu

m
e

1

1.1

1.2

1.3

1.4
(b)

2
0

x
5

2
0

x
1

0

2
0

x
2

0

5
0

x
5

5
0

x
1

0

5
0

x
2

0

1
0

0
x

5

1
0

0
x

1
0

1
0

0
x

2
0

2
0

0
x

1
0

2
0

0
x

2
0

Method

MOIGS

MOSAIIM

RIPG

Figure 15: Means plot and 99% Tukey intervals for the epsilon (a) and hypervolume (b)
indicators in the ANOVA experiment for all algorithms against instance size. Makespan

and total tardiness objectives.

4.3 Di�erential Empirical Attainment Functions

The comparison of algorithms by means of unary indicators is objectively limited because a

large piece of information about the behaviour of the methods in the objectives space is lost.

Hence, although Pareto-compliant unary indicators tell us whether a frontier (weakly) dominates

or is dominated by another one, there is no way to infer in which part of the objective space

20

each algorithm performs better. The Attainment function is a possible answer for this issue. It

describes the probability for an algorithm to generate, in a single run, a Pareto approximation set

that dominates an arbitrary point in the space of the objectives. The following formal description

of attainment functions is obtained from Grunert da Fonseca et al. (2001). Let x ∈ Rd be an

arbitrary vector and SS = {sj ∈ Rd, j = 1, . . . ,M} a solution set made of non-dominated

elements. The attainment function is characterised by AF (x) = P (∃sj ∈ SS : sj E x) which

describes the probability of the algorithm producing, in a single run, at least one solution that

weakly dominates x. In the case of stochastic algorithms it is not possible to express this function

in a closed form but one can approximate it empirically using the outcomes of several runs. This

approximation is called Empirical Attainment Function or EAF and is de�ned in Grunert da

Fonseca et al. (2001) as:

EAF (x) =
1

k

k∑
i=1

I(SSi E x) (1)

where SS1, SS2, . . . , SSi, . . . , SSk represent k Pareto set approximations obtained in k indepen-

dent algorithm's runs. In order to complete the analysis of the results presented previously, we

compare RIPG against MOSAIIM , the best second performer according to our experiment using

EAF graphical tests. These tests graphically show, for a certain instance, which area is more

likely to be dominated by each algorithm. We use a gradient of colors (blue and red) to indicate

zones with high probability to be dominated (intense colors) from zones hardly dominated (light

colors). We report here only the EAFs of these two algorithms for two instances. The remaining

plots are available as online material and from http://soa.iti.es. Although EAF is a powerful

tool which gives us a spacial description of the statistical behavior of one algorithm, its major

drawback is that it does not allow for a direct comparison between methods. In order to solve

such problem, we use the Di�erential Empirical Attainment Function or Di�-EAF proposed by

López-Ibáñez et al. (2006). Di�-EAF is a function that expresses for each point of the solution

space the probability to be dominated by only one of the two compared algorithms. This function

is obtained by calculating the di�erence between the EAFs of two di�erent methods. We assign

two gradients of color (blue and red) to positive and negative values of Di�-EAF, respectively.

This way, we are able to display the two EAFs as an image which allows identifying which algo-

rithm prevails in each zone of the objective space. The intensity of the color assigned for each

algorithm show the probability of dominating a point in the space, of that algorithm over the

other algorithm. Points of low color intensity show lower di�erences between the algorithms.

Notice that white or no color indicates that algorithms can not generate solutions dominating

this region, or both algorithm have the same probability of generating dominating points and

hence the di�erence is zero. Figure 16 depicts, as subplots, the two EAFs and the Di�-EAF of

RIPG and MOSAIIM calculated after 100 runs of each method over a big size instance with 200

jobs and 10 machines (Ta091), and considering the makespan and total tardiness. The Di�-EAF

clearly shows that the RIPG turns out to dominate MOSAIIM all over objective space for this

21

http://soa.iti.es

instance. Similarly, Figure 17 shows a similar plot but in this case for instance Ta021 with 20

jobs and 20 machines.

22

11
,6

00
11

,5
00

11
,4

00
11

,3
00

11
,2

00
11

,1
00

11
,0

00
10

,9
00

93
0,

00
0

92
5,

00
0

92
0,

00
0

91
5,

00
0

91
0,

00
0

90
5,

00
0

90
0,

00
0

89
5,

00
0

89
0,

00
0

88
5,

00
0

88
0,

00
0

87
5,

00
0

87
0,

00
0

86
5,

00
0

86
0,

00
0

85
5,

00
0

85
0,

00
0

84
5,

00
0

84
0,

00
0

83
5,

00
0

83
0,

00
0

82
5,

00
0

82
0,

00
0

81
5,

00
0

81
0,

00
0

 0
%

 1
0%

 2
0%

 3
0%

 4
0%

 5
0%

 6
0%

 7
0%

 8
0%

 9
0%

10
0% 11

,6
00

11
,5

00
11

,4
00

11
,3

00
11

,2
00

11
,1

00
11

,0
00

10
,9

00

93
0,

00
0

92
5,

00
0

92
0,

00
0

91
5,

00
0

91
0,

00
0

90
5,

00
0

90
0,

00
0

89
5,

00
0

89
0,

00
0

88
5,

00
0

88
0,

00
0

87
5,

00
0

87
0,

00
0

86
5,

00
0

86
0,

00
0

85
5,

00
0

85
0,

00
0

84
5,

00
0

84
0,

00
0

83
5,

00
0

83
0,

00
0

82
5,

00
0

82
0,

00
0

81
5,

00
0

81
0,

00
0

 0
%

 1
0%

 2
0%

 3
0%

 4
0%

 5
0%

 6
0%

 7
0%

 8
0%

 9
0%

10
0%

11
,6

00
11

,5
00

11
,4

00
11

,3
00

11
,2

00
11

,1
00

11
,0

00
10

,9
00

93
0,

00
0

92
5,

00
0

92
0,

00
0

91
5,

00
0

91
0,

00
0

90
5,

00
0

90
0,

00
0

89
5,

00
0

89
0,

00
0

88
5,

00
0

88
0,

00
0

87
5,

00
0

87
0,

00
0

86
5,

00
0

86
0,

00
0

85
5,

00
0

85
0,

00
0

84
5,

00
0

84
0,

00
0

83
5,

00
0

83
0,

00
0

82
5,

00
0

82
0,

00
0

81
5,

00
0

81
0,

00
0

 1
00

%
 9

0%
 8

0%
 7

0%
 6

0%
 5

0%
 4

0%
 3

0%
 2

0%
 1

0%

0%
 -1

0%
 -2

0%
 -3

0%
 -4

0%
 -5

0%
 -6

0%
 -7

0%
 -8

0%
 -9

0%
-1

00
%

(a
) R

IP
G

(b
) M

O
SA

II
M

(c
) R

IP
G

 v
s M

O
SA

II
M

M
ak

es
pa

n

Total Flowtime

F
ig
u
re

16
:
A
tt
ai
n
m
en
t
fu
n
ct
io
n
p
lo
t.

t
=

10
0
m
ak
es
p
an

an
d
to
ta
l
�
ow

ti
m
e
fo
r
th
e
M
O
S
A
II
M

an
d
R
IP
G

al
go
ri
th
m
s.

(a
)

re
p
re
se
n
ts

th
e
at
ta
in
m
en
t
fu
n
ct
io
n
fo
r
th
e
R
IP
G
,
(b
)
fo
r
th
e
M
O
S
A
II
M
.

(c
)
re
p
re
se
n
ts

th
e
d
i�
er
en
ce

b
et
w
ee
n
at
ta
in
m
en
t

fu
n
ct
io
n
s
(a
)-
(b
)
or

D
i�
-E
A
F
.
In
st
an
ce

T
a0
91

w
it
h
20
0
jo
b
s
an
d
10

m
ac
h
in
es

23

2,
43

0
2,

42
0

2,
41

0
2,

40
0

2,
39

0
2,

38
0

2,
37

0
2,

36
0

2,
35

0
2,

34
0

2,
33

0
2,

32
0

2,
31

0
2,

30
0

3,
60

0

3,
40

0

3,
20

0

3,
00

0

2,
80

0

2,
60

0

2,
40

0

2,
20

0

2,
00

0

1,
80

0

1,
60

0

1,
40

0

1,
20

0

1,
00

0

80
0

60
0

40
0

20
0 0

10
0%

90
%

80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

0% -1
0%

-2
0%

-3
0%

-4
0%

-5
0%

-6
0%

-7
0%

-8
0%

-9
0%

-1
00

%

2,
43

0
2,

42
0

2,
41

0
2,

40
0

2,
39

0
2,

38
0

2,
37

0
2,

36
0

2,
35

0
2,

34
0

2,
33

0
2,

32
0

2,
31

0
2,

30
0

3,
60

0

3,
40

0

3,
20

0

3,
00

0

2,
80

0

2,
60

0

2,
40

0

2,
20

0

2,
00

0

1,
80

0

1,
60

0

1,
40

0

1,
20

0

1,
00

0

80
0

60
0

40
0

20
0 0

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

2,
43

0
2,

42
0

2,
41

0
2,

40
0

2,
39

0
2,

38
0

2,
37

0
2,

36
0

2,
35

0
2,

34
0

2,
33

0
2,

32
0

2,
31

0
2,

30
0

3,
60

0

3,
40

0

3,
20

0

3,
00

0

2,
80

0

2,
60

0

2,
40

0

2,
20

0

2,
00

0

1,
80

0

1,
60

0

1,
40

0

1,
20

0

1,
00

0

80
0

60
0

40
0

20
0 0

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

(a
) R

IP
G

(b
) M

O
SA

II
M

(c
) R

IP
G

 v
s M

O
SA

II
M

Total Flowtime

M
ak

es
pa

n

F
ig
u
re

17
:
A
tt
ai
n
m
en
t
fu
n
ct
io
n
p
lo
t.

t
=

10
0
m
ak
es
p
an

an
d
to
ta
l
�
ow

ti
m
e
fo
r
th
e
M
O
S
A
II
M

an
d
R
IP
G

al
go
ri
th
m
s.

(a
)

re
p
re
se
n
ts

th
e
at
ta
in
m
en
t
fu
n
ct
io
n
fo
r
th
e
R
IP
G
,
(b
)
fo
r
th
e
M
O
S
A
II
M
.

(c
)
re
p
re
se
n
ts

th
e
d
i�
er
en
ce

b
et
w
ee
n
at
ta
in
m
en
t

fu
n
ct
io
n
s
(a
)-
(b
)
or

D
i�
-E
A
F
.I
n
st
an
ce

T
a0
21

w
it
h
20

jo
b
s
an
d
20

m
ac
h
in
es

24

5 Conclusions and future research

In this work we have presented the Restarted Iterated Pareto Greedy algorithm, devoted to the

solution of multi-objective permutation �owshop problems. A comprehensive computational and

statistical analysis of each one of its phases was carried out. With this we want to highlight the

relevance of a scienti�c and algorithm engineering approach in designing and developing algo-

rithms. RIPG has been compared against three state-of-the-art performing methods presented

in a recent review (see Minella et al. (2008)) and against two newly proposed algorithms.

For the computational experiments we have employed two Pareto-compliant performance indica-

tors, two combinations of three commonly used objectives in �owshop problems and two stopping

criteria. We have also used a new type of graphical analysis tool strictly related to EAF, the

Di�erential Empirical Attainment Function, that allows the direct comparison of two algorithms.

In all computational tests, all performance measures, all objective combinations and stopping

times, the proposed RIPG algorithm clearly yields better results and many times in a signi�cant

way. The closest competing algorithm, the MOSAIIM has been shown in the Di�-EAF plots to

be dominated by RIPG in all regions of the objective space, specially in the largest instances.

Future work stems from the consideration of other problem characteristics like the presence of

parallel machines inside one of more stages of the �ow-line (hybrid �owshops), the use of setup

times or precedence constraints are other clear examples. Another possible research direction

consists in improving and generalizing the Di�-EAF idea in such a way it could take into account

a whole set of instances instead of just one.

Acknowledgements

This work is partially funded by the Spanish Ministry of Science and Innovation, under the

projects �SMPA - Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Ad-

vances� with reference DPI2008-03511/DPI. The authors should also thank the IMPIVA - In-

stitute for the Small and Medium Valencian Enterprise, for the project OSC with reference

IMIDIC/2009/198 and the Polytechnic University of Valencia, for the project PPAR with refer-

ence 3147.

References

Armentano, V. A. and Arroyo, J. E. C. (2004). An application of a multi-objective tabu search
algorithm to a bicriteria �owshop problem. Journal of Heuristics, 10(5):463�481.

Arroyo, J. E. C. and Armentano, V. A. (2005). Genetic local search for multi-objective �owshop
scheduling problems. European Journal of Operational Research, 167(3):717�738.

Deb, K. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions

on Evolutionary Computation, 6(2):182�197.

El-Bouri, A., Balakrishnan, S., and Popplewell, N. (2005). A neural network to enhance local
search in the permutation �owshop. Computers & Industrial Engineering, 49(1):182�196.

25

Framinan, J. and Leisten, R. (2008). A multi-objective iterated greedy search for �owshop
scheduling with makespan and �owtime criteria. OR Spectrum, 30:787�804.

Framinan, J. M., Gupta, J. N. D., and Leisten, R. (2004). A review and classi�cation of heuristics
for permutation �ow-shop scheduling with makespan objective. Journal of the Operational

Research Society, 55(12):1243�1255.

Grunert da Fonseca, V., Fonseca, C. M., and Hall, A. O. (2001). Inferential performance assess-
ment of stochastic optimisers and the attainment function. In Evolutionary Multi-Criterion

Optimization, First International Conference, vol. 1993 of Lecture Notes in Computer Science.

Spring-Verlang, 1993:213�225.

Gupta, J. N. D. and Sta�ord, Jr., E. F. (2006). Flowshop scheduling research after �ve decades.
European Journal of Operational Research, 169(3):699�711.

Hasija, S. and Rajendran, C. (2004). Scheduling in �owshops to minimize total tardiness of jobs.
International Journal of Production Research, 42(11):2289�2301.

Hejazi, S. R. and Sagha�an, S. (2005). Flowshop-scheduling problems with makespan criterion:
a review. International Journal of Production Research, 43(14):2895�2929.

Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial on the performance assessment of
stochastic multiobjective optimizers. Technical Report 214, Computer Engineering and Net-
works Laboratory (TIK), ETH Zurich, Switzerland. revised version.

López-Ibáñez, M., Paquete, L., and Stützle, T. (2006). Hybrid population-based algorithms
for the bi-objective quadratic assignment problem. Journal of Mathematical Modelling and

Algorithms, 5(1):111�137.

Minella, G., Ruiz, R., and Ciavotta, M. (2008). A review and evaluation of multi-objective
algorithms for the �owshop scheduling problem. Informs Journal on Computing, 20(3):451�
471.

Nawaz, M., Enscore, Jr, E. E., and Ham, I. (1983). A heuristic algorithm for the m machine,
n job �owshop sequencing problem. Omega-International Journal of Management Science,
11(1):91�95.

Paquete, L. F. (2005). Stochastic Local Search Algorithms for Multiobjective Combinatorial Op-

timization: Method and Analysis. PhD thesis, Computer Science Department. Darmstadt
University of Technology. Darmstadt, Germany.

Rajendran, C. and Ziegler, H. (1997). A heuristic for scheduling to minimize the sum of weighted
�owtime of jobs in a �owshop with sequence-dependent setup times of jobs. Computers &

Industrial Engineering, 33(1-2):281�284.

Rajendran, C. and Ziegler, H. (2005). Two ant-colony algorithms for minimizing total �owtime
in permutation �owshops. Computers & Industrial Engineering, 48(4):789�797.

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation �owshop
heuristics. European Journal of Operational Research, 165(2):479�494.

Ruiz, R. and Stützle, T. (2007). A simple and e�ective iterated greedy algorithm for the permu-
tation �owshop scheduling problem. European Journal of Operational Research, 177(3):2033 �
2049.

Ruiz, R. and Stützle, T. (2008). An iterated greedy heuristic for the sequence dependent setup
times �owshop problem with makespan and weighted tardiness objectives. European Journal

of Operational Research, 187(3):1143�1159.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational

Research, 64(2):278�285.

Tasgetiren, M. F., Pan, Q.-K., and Liang, Y.-C. (2009). A discrete di�erential evolution algorithm
for the single machine total weighted tardiness problem with sequence dependent setup times.

26

Comput. Oper. Res., 36(6):1900�1915.

Toyama, F., Shoji, K., and Miyamichi, J. (2008). An iterated greedy algorithm for the node
placement problem in bidirectional manhattan street networks. In GECCO '08: Proceedings

of the 10th annual conference on Genetic and evolutionary computation, pages 579�584, New
York, NY, USA. ACM.

Vallada, E., Ruiz, R., and Minella, G. (2008). Minimising total tardiness in the m-machine
�owshop problem: A review and evaluation of heuristics and metaheuristics. Computers &

Operations Research, 35(4):1350 � 1373.

Varadharajan, T. and Rajendran, C. (2005). A multi-objective simulated-annealing algorithm
for scheduling in �owshops to minimize the makespan and total �owtime of jobs. European

Journal of Operational Research, 167(3):772�795.

Yandra and Tamura, H. (2007). A new multiobjective genetic algorithm with heterogeneous pop-
ulation for solving �owshop scheduling problems. International journal of computer integrated

manufacturing, 20(5):465�477.

Ying, K.-C. (2008). An iterated greedy heuristic for multistage hybrid �owshop scheduling prob-
lems with multiprocessor tasks. IEEE, Transactions on Evolutionary Computation, 60(6):810�
817.

Zhi, Y., Armin, F., Henning, H., Prasanna, B., Thomas, S., and Michael, S. (2008). Iterated
greedy algorithms for a real-world cyclic train scheduling problem. In Hybrid Metaheuristics,
pages 102�116. Springer Berlin.

Zitzler, E., Knowles, J., and Thiele, L. (2008). Quality assessment of pareto set approximations. In
Multiobjective Optimization: Interactive and Evolutionary Approaches, pages 373�404, Berlin,
Heidelberg. Springer-Verlag.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Computation,
3(4):257�271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Grunert da Fonseca, V. (2003). Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE, Transactions
on Evolutionary Computation, 7(2):117�132.

27

