
Sampled Fictitious Play for Approximate Dynamic Programming

Marina Epelman∗, Archis Ghate†, Robert L. Smith‡

January 5, 2011

Abstract

Sampled Fictitious Play (SFP) is a recently proposed iterative learning mechanism for com-
puting Nash equilibria of non-cooperative games. For games of identical interests, every limit
point of the sequence of mixed strategies induced by the empirical frequencies of best response
actions that players in SFP play is a Nash equilibrium. Because discrete optimization problems
can be viewed as games of identical interests wherein Nash equilibria define a type of local op-
timum, SFP has recently been employed as a heuristic optimization algorithm with promising
empirical performance. However there have been no guarantees of convergence to a globally
optimal Nash equilibrium established for any of the problem classes considered to date. In this
paper, we introduce a variant of SFP and show that it converges almost surely to optimal policies
in model-free, finite-horizon stochastic dynamic programs. The key idea is to view the dynamic
programming states as players, whose common interest is to maximize the total multi-period
expected reward starting in a fixed initial state. We also offer empirical results suggesting that
our SFP variant is effective in practice for small to moderate sized model-free problems.

∗Industrial and Operations Engineering, University of Michigan, Ann Arbor; mepelman@umich.edu
†Industrial and Systems Engineering, University of Washington, Seattle; archis@uw.edu
‡Industrial and Operations Engineering, University of Michigan, Ann Arbor; rlsmith@umich.edu

1

1 Introduction

In this paper, we introduce a variant of a game theoretic learning mechanism called Sampled
Fictitious Play (SFP) [20] to solve model-free stochastic dynamic programming problems, and
investigate its convergence properties and empirical performance. The defining feature of model-
free problems is that the state space, immediate rewards resulting from choosing an action in
a state, and state transition probabilities are not known explicitly, and hence, system behavior
must be “learned” off-line or on-line by repeated computer simulations or system runs. This rules
out methods like backward induction, value iteration and mathematical programming. Examples
of model-free problems include control of queueing networks with complicated service disciplines
whose state transitions are available only through simulation via computer programs [3], control of
manufacturing processes where the effect of a decision on the process is calculated by simulating
the process [18], and dynamic portfolio optimization or financial derivative pricing problems where
the performance of the underlying financial instrument is obtained by simulating complex computer
models. Algorithms for model-free problems are termed “simulation based” methods [3, 9, 26, 32]
and typically provide an approximate solution. Thus, these simulation based techniques, including
our SFP variant, fall within the realm of Approximate Dynamic Programming (ADP) [26].

Stochastic search methods rooted in game theory have recently been applied to large-scale
discrete optimization problems, with special focus on cases where the objective function is available
only through computationally expensive simulations [2, 10, 14, 15, 16, 20, 21, 22]. Consequently, the
hope is to at least find local optima, as stronger forms of optimality are nearly impossible to attain,
and very difficult to check. These techniques have been numerically tested with encouraging results
on problems in transportation [10, 14, 22], power management in sensor networks [16], network
optimization [15], and manufacturing systems [2].

Such heuristic optimization algorithms are applied to problems of the form

max u(y1, y2, . . . , yn) s.t. (y1, y2 . . . , yn) ∈ (Y 1 × Y 2 × . . .× Y n), (1)

where (Y 1 × Y 2 × . . . × Y n) denotes the Cartesian product of finite sets Y 1 through Y n. The
main idea is then to animate (1) as a game between n players (corresponding to decision variables
y1, . . . , yn), who share the identical interest of maximizing the objective function u(·). Recall that
a Nash equilibrium is a collection of probability distributions over each player’s actions with the
property that no player can unilaterally improve its utility in expectation by changing its own
distribution [13]. Such an equilibrium serves as a type of coordinate-wise local optimum of (1), and
hence, the goal is to implement a computationally efficient procedure to find it.

Most of these game theory based techniques for discrete optimization employ variants of Fic-
titious Play (FP) [6, 29], a well-known iterative learning technique for computing Nash equilibria.
At every iteration of FP, each player chooses a strategy that is a best response (with respect to
that player’s expected utility, which depends on decisions of all players) to the other players’ strate-
gies, assuming they will be chosen based on the empirical probability distribution induced by the
historical frequency of their best response decisions in all previous iterations. Suitability of the
FP approach for optimization stems from its convergence properties. In particular, for a game of
identical interests, every limit point of the sequence of mixed strategies induced by the empirical
frequencies of best response actions is a Nash equilibrium irrespective of the structure of the objec-
tive function [24]. This is termed the “fictitious play property.” Another advantage of such methods
is that they are easily parallelizable, making them potentially suitable for large-scale optimization
problems. However, the best response problem for each player in FP is computationally intractable
for realistic problems since an exact computation of the expected utility for a player may require
evaluation of the utility function for every possible combination of actions for all players.

2

As a result, two of the authors and a co-author recently proposed Sampled Fictitious Play
(SFP) [20], a modified version of FP where the players choose an action that is a best reply to
an independent sample of actions of other players drawn according to the empirical probability
distribution of actions they used in all previous iterations. SFP offers significant computational
advantage over FP, and for games of identical interests, almost surely exhibits the fictitious play
property if the sample size is increased at a polynomial rate with iterations [20]. However, efficacy
of the original version of SFP for optimization problems has the following significant limitations:
(i) the fictitious play property guarantees convergence to only an equilibrium solution rather than
an optimal solution, (ii) SFP may converge to a mixed strategy equilibrium, whereas in many
applications, and especially in optimization, a pure strategy equilibrium is desirable, (iii) the best
response computation becomes increasingly expensive as the sample size grows without bound with
iterations, (iv) it is computationally very expensive to force every player in large-scale problems
to perform a best reply computation in every iteration, and, finally, (v) problem form (1) excludes
optimization problems with constraints across variables. Thus, practical implementations of SFP
[2, 10, 21] have attempted ad-hoc variations of the original version. Unfortunately, the original
convergence results for SFP in [20] do not hold for these ad-hoc variants. Consequently, the
question as to whether one can design an SFP variant that provably finds optimal solutions to an
important class of optimization problems by surmounting the above difficulties, has remained open.
We answer this question in the affirmative by introducing an SFP variant that solves finite-horizon
stochastic dynamic programs.

The key idea is to view the states of the dynamic programming problem as players engaged in
a non-cooperative game of identical interests, where the objective of each player is to maximize the
expected multi-period reward from the initial state. The problem structure inherent in dynamic
programming, and specifically, the principle of optimality, help our SFP players coordinate their
actions and hence solve the problem to optimality. Viewing the states as players also has the
important advantage that all combinations of feasible actions of these players are jointly feasible
so that the resulting problem is an unconstrained one of the form (1). Importantly, since the
objectives of all players are aligned with one another, it suffices for a very small fraction of the
players to participate in the game in each iteration, naturally leading to an asynchronous procedure.
The procedure to determine which players will participate in an iteration adaptively favors optimal
actions (and hence the states they deliver) from the recent past. Specifically, unlike the original SFP
in [20], we provide the players with only finite memory. Moreover, we allow players to sample only
one action at a time (unlike the original SFP version in [20] which requires an increasing action
sample size), and we deliberately add exogenous noise to this selection procedure so that every
player in theory gets an opportunity to perform a best response computation infinitely often with
probability one even in the asynchronous case. We also remark that if the inherent randomness in
state transitions of the system is such that all states will be observed infinitely often with probability
one irrespective of the policy implemented, then this exogenous noise is not needed (even in the
asynchronous case).

This paper is organized as follows. We develop the necessary notation and formulate our
dynamic programming problem in the second section. This is followed by a precise description
of our SFP algorithm in the third section. Convergence results and proofs appear in the fourth
section. Numerical experiments are presented in the fifth section. Since our SFP variant falls within
the realm of simulation-based algorithms for Approximate Dynamic Programming (ADP) [26], a
detailed discussion of similarities and differences between our approach and existing simulation-
based techniques for ADP is provided in the sixth section, along with other specific conclusions,
and future research directions.

3

2 Problem Formulation

Even though our SFP approach is applicable to any finite-state, finite-action, finite-horizon stochas-
tic dynamic program, it is presented here for the case of model-free problems [3, 26]. In particular,
consider the following T period sequential decision problem. The initial state of a system is s1. In
each period t = 1, 2, . . . , T , we observe state st of the system and make a decision xt, which must
be chosen from a finite set Xt(st) of feasible decisions in state st, as determined by a feasibility
oracle Ft. This feasibility oracle receives st as input and produces a finite set Xt(st) as output.
Then, another oracle Ot receives st and xt as input and returns the (stochastic) state of the system
st+1 in the next period, and a one period deterministic reward rt(st, xt). It is common in the
literature to consider deterministic one period rewards [7, 33]. The slightly more general case of
random one period rewards can also be handled by our algorithm, and the convergence results in
Section 4 can be extended to that case without much difficulty. All states of the form sT+1 are
“terminal” states and there are no feasible actions in these states. We adopt the convention that
terminal states have no intrinsic value. Our results generalize in a straightforward manner to prob-
lems where nonzero values are assigned to terminal states as for example in our TIC-TAC-TOE
example in Section 5. We use St to denote the set of feasible states at the beginning of period t,
t = 1, 2, . . . , T + 1 with S1 = {s1}. Let S denote the finite set of all feasible states of the system,
i.e., S = S1∪S2 . . .∪ST+1. The sets S2, S3, . . . , ST+1, and (hence) the state space S are not known
a priori, but must be “discovered” by repeatedly querying oracles Ft and Ot.

A policy π is a deterministic decision rule that assigns a feasible decision xt to every state st

in S. Thus, π is a |S|-dimensional vector, and the decision that policy π assigns to state st ∈ S
is denoted by π(st). We use Π to denote the set of all feasible policies of this form. Therefore,
for each st ∈ S, any policy π ∈ Π must have the property that π(st) ∈ Xt(st). Let Vπ(s1) be the
value of state s1 under policy π, i.e., the total T -period expected reward from the initial state if
we implement decisions prescribed by policy π in every period. Mathematically,

Vπ(s1) = r1(s1, π(s1)) + E

(
T∑

i=2

ri(si, π(si))

)
,

where si ∈ Si for i = 2, . . . , T and the expectation is with respect to the joint distribution induced
by oracles O1,O2, . . . ,OT . Our goal is to find a policy that solves the problem

π∗ ≡ argmax
π∈Π

Vπ(s1). (2)

We define V ∗(s1) ≡ Vπ∗(s1). We assume for simplicity that there is a unique policy π∗ optimal to
problem (2). The extension to the case of multiple optimal policies is straightforward (see [17]).
We next describe our SFP approach in detail.

3 Algorithm Description

Recall that we view the states in S as players engaged in a game of identical interest, namely,
that of maximizing the total T -period expected reward from the initial state s1. Consequently, we
henceforth use terms “players” and “states” interchangeably. The central idea in our algorithm is
borrowed from SFP: in each iteration, players (i) sample actions according to probability distribu-
tions derived from the empirical frequency of their past best responses, (ii) calculate best responses
to actions sampled by other players, and (iii) update empirical frequencies of best responses.

4

3.1 Preliminaries: a synchronous approach

To facilitate discussion, first consider the simpler version of the above model-free problem where
the state space and feasible actions are known at the outset, while rewards and state transitions
may still be available only through oracles. Suppose the players in this SFP procedure each sample
one action in every iteration. These sampled actions then define a policy, and each player can
find a best response action simply by comparing an estimate of the value of this policy with the
corresponding value estimates of policies that result if the player unilaterally changed its action
to each of its other feasible actions. Conceptually, such an SFP procedure would then lead to a
synchronous method as outlined in the pseudo-code below:

A Synchronous Version of Sampled Fictitious Play for Approximate Dynamic
Programming

1. Action sampling: Each player, independently of the other players, samples one action from
its (finite) history of past best responses. (In the first iteration, when the histories are empty,
each player samples a feasible action randomly.)

2. Best response: Each player, independently of the other players, estimates (in the manner
described in detail in our asynchronous algorithm in Section 3.2) the expected utility (namely
the total expected reward from the initial state s1) corresponding to each one of its feasible
actions assuming that the other players have chosen the actions they sampled in Step 1 above,
and selects an action that yields the highest reward.

3. History update: Each player updates its own history of best responses by appending it with
the best response action chosen in Step 2 above, ensuring through a FIFO procedure that
history-length remains less than a preset finite bound.

One can show, using the backward induction technique presented in Section 4, that every entry in
every player’s history will eventually be optimal with probability one. Thus, we have established
that for the class of optimization problems at hand — namely, stochastic finite-horizon dynamic
programs — a properly designed variant of SFP finds an optimal solution.

Proposition 3.1. In the above synchronous Sampled Fictitious Play algorithm for Approximate
Dynamic Programming, the probability that there exists an iteration after which all entries in the
finite histories of all players are optimal is one.

Proof. By backward induction as in the proof of Theorem 4.1 in Section 4, and hence omitted.

However, the above synchronous approach is not viable when the entire state space and feasible
actions in each state are not known at the outset. Even if they were available, performing action
sampling, value estimation and best response computation for every player in every iteration would
be computationally expensive. Thus, the problem setting in Section 2 calls for an asynchronous
extension of the above conceptual SFP procedure wherein only some of the players perform action
sampling, value estimation and best response calculation in each iteration. However, this introduces
new hurdles such as the need to include deliberate exploration to ensure that all players are chosen
infinitely often to perform these activities to ensure convergence, and the need to clearly specify
a sequence in which players are chosen. Our SFP based asynchronous procedure described below
first in text and then as pseudo-code surmounts this difficulty.

5

3.2 The asynchronous procedure

Each iteration of our asynchronous algorithm consists of two phases: the choose players phase and
the best response phase.
The Choose Players Phase: In the choose players phase, T players, one each from sets S1, . . . , ST ,
are chosen to perform a best response calculation, and are said to be in play in that iteration. The
precise way in which these players are selected will be explained later. In simple terms, they are
selected by drawing a sequence of player-action pairs {(st, yt)}Tt=1 starting at player s1 and ending
at some terminal state, where yt ∈ Xt(st) is sampled using the history of past plays of player st and
st+1 is the state obtained by sending state-action pair (st, yt) to oracle Ot. We denote the sequence
of player-action pairs drawn this way in iteration k by {(sk

t , y
k
t)}Tt=1. Observe that corresponding

to each player sk
t in this sequence, there is a realized reward Ut(sk

t) defined as

Ut(sk
t) =

t−1∑
i=1

ri(sk
i , y

k
i).

The choose players phase ends here.
The Best Response Phase: In this phase, each player sk

t , t = 1, 2, . . . , T that is selected to
be in play in the choose players phase uses each of its feasible actions xt ∈ Xt(sk

t) to generate a
“path.” A path starting at player sk

t and action xt ∈ Xt(sk
t) is a sequence of player-action pairs

{(σk
t+j , z

k
t+j)}

T−t
j=1 , where σk

t+1 is received by sending (sk
t , xt) to Ot, player σk

r uses its history of past
plays to sample action zk

r for r = t + 1, . . . , T , and σk
r+1 is obtained by sending the player-action

pair (σk
r , zk

r) to the oracle Or for r = t + 1, . . . , T − 1. We remark that other names for paths in
the ADP literature include “episode” and “trajectory” [4, 32]. We denote such a path by pk(sk

t , xt)
and define the corresponding reward as

R(pk(sk
t , xt)) =

T−t∑
j=1

rt+j(σk
t+j , z

k
t+j). (3)

For any player st ∈ St, and any positive integer m let I(st,m) denote the set of iterations in which
player st is in play up to and including iteration m. We now define the best response problem for
player sk

t that is in play in iteration k. In this iteration k, player sk
t estimates that if it chooses

action xt ∈ Xt(sk
t), its objective, namely, the total T -period expected reward from the initial state

s1, is

V k(s1; (sk
t , xt)) = Ut(sk

t) + rt(sk
t , xt) +

1
|I(sk

t , k)|
∑

i∈I(sk
t ,k)

R(pi(sk
t , xt)), (4)

where pi(sk
t , xt) is the path drawn by the player-action pair (sk

t , xt) in the ith iteration in which
player sk

t was in play. Player sk
t then solves the following best response problem:

x̄k(sk
t) ≡ argmax

xt∈Xt(sk
t)

(
V k(s1; (sk

t , xt))
)

, (5)

which is equivalent to the best response problem

x̄k(sk
t) ≡ argmax

xt∈Xt(sk
t)

rt(sk
t , xt) +

1
|I(sk

t , k)|
∑

i∈I(sk
t ,k)

R(pi(sk
t , xt))

 (6)

since Ut(sk
t) does not depend on xt and therefore there is no need to actually compute Ut(sk

t) in an
algorithmic implementation. Ties in the above problem are broken by choosing an action with the

6

lowest index (note that since there is a finite number of feasible actions in each state, the actions
can be indexed). Finally, for brevity, we define

W k(sk
t , xt) ≡

1
|I(sk

t , k)|
∑

i∈I(sk
t ,k)

R(pi(sk
t , xt)) (7)

and rewrite the above best response problem as

x̄k(sk
t) ≡ argmax

xt∈Xt(sk
t)

(
rt(sk

t , xt) + W k(sk
t , xt)

)
. (8)

Recall that in the Reinforcement Learning [32] parlance, the quantity rt(sk
t , xt) + W k(sk

t , xt) in
Equation (8) would be called the “Q-value estimate” (see Equations (13)-(14) below for the defini-
tion of “Q-value”). In light of Equation (3) it appears that to use estimation Equation (7), player
sk
t must know |I(sk

t , k)| and perhaps every sequence of player-action pairs {(σi
t+j , z

i
t+j)}

T−t
j=1 that sk

t

generated in iterations i ∈ I(sk
t , k). Although the former is true, the latter is not. To see this, note

that I(sk
t , k) = I(sk

t , k − 1) ∪ k and in particular |I(sk
t , k)| = 1 + |I(sk

t , k − 1)|. As a result,

W k(sk
t , xt) =

1
|I(sk

t , k)|
∑

i∈I(sk
t ,k)

R(pi(sk
t , xt)) =

1
1 + |I(sk

t , k − 1)|
∑

i∈{I(sk
t ,k−1)∪k}

R(pi(sk
t , xt))

=
1

1 + |I(sk
t , k − 1)|

 ∑
i∈I(sk

t ,k−1)

R(pi(sk
t , xt)) + R(pk(sk

t , xt))


=

1
1 + |I(sk

t , k − 1)|

(
|I(sk

t , k − 1)| ×W k−1(sk
t , xt) + R(pk(sk, xt))

)
. (9)

Therefore, in order to compute W k(sk
t , xt), player sk

t needs to know only |I(sk
t , k−1)|, W k−1(sk

t , xt)
and the reward R(pk(sk

t , xt)) associated with the player-action pairs {(σk
t+j , z

k
t+j)}

T−t
j=1 that it gen-

erated in the current iteration k. Based on Equation (9), throughout the algorithm each player st

stores the number of times it has been in play (denoted by N(st)) and an estimate W (st, xt) that
is updated every iteration st is in play as follows:

W (st, xt)←
(N(st)×W (st, xt) + R(p(st, xt)))

1 + N(st)
. (10)

Note that at iteration k, N(st) = |I(st, k)| is used in the algorithm implementation, whereas our
proofs use the notation I(st, k) to make the dependence on k explicit. Similarly for W (st, xt) and
W k(st, xt).
Description of History of Past Plays: We define the term “history” here. Let L be a positive
integer. For each state st ∈ St, t = 1, 2, 3, . . . , T , its history Hk(st) after iteration k is (an ordered
list) composed of (at most) L actions in Xt(st) that were the solutions to the best response problem
for state st in the (at most) L most recent iterations in which it was in play. Thus, history of a
state is updated each time after it performs a best response computation, and is not updated at
any other time. Note that Hk(st) is a FIFO list of length at most L; namely, if |I(st, k)| ≥ L, then
|Hk(st)| = L, and if |I(st, k)| < L, then |Hk(st)| = |I(st, k)|.

Now we are ready to describe exactly how states are chosen in the choose players phase of each
iteration to perform a best response computation. This selection is done inductively starting from

7

state s1 (because that is the only state in S1). In iteration k, suppose states s1, s2, . . . , st have been
selected so far. Note that st may or may not have a history of past best responses. If its histroy
is empty, an action is selected from the set Xt(st) of its feasible actions uniformly at random. On
the other hand, if the history is not empty, with probability 1− αk one action is drawn uniformly
at random from this history, whereas with probability αk one action is drawn uniformly at random
from Xt(st). Suppose this selected action is xt. Then the pair (st, xt) is sent to the oracle Ot

to receive a state st+1 from set St+1 as output. This is repeated until we reach a terminal state
sT+1. The parameter αk is asymptotically reduced to zero as k increases in a way that ensures that
every state is selected infinitely often with probability one. Finally, in the best response phase, the
procedure to sample actions (and hence paths) is the same as above except that players do not use
parameter αk while drawing actions when the history is not empty.

Asynchronous Sampled Fictitious Play for Approximate Dynamic Programming

1. Initialize: Set k ← 1, choose a decreasing sequence {αk}∞k=1 ⊂ [0, 1], fix some positive integer
L, N(s1) ← 0, W (s1, x1) ← 0 for all x1 ∈ X1(s1) obtained by sending s1 to oracle F1, and
H0(s1)← ∅.

2. Choose Players: Starting at player s1, inductively select a sequence of players s1 ≡ sk
1, s

k
2, . . . , s

k
T

said to be in play in iteration k, where sk
t ∈ St for t = 1, . . . , T , as follows:

for t = 1, . . . , T :

• If Hk−1(sk
t) = ∅, then obtain Xt(sk

t) by sending sk
t to the feasibility oracle Ft, sample

an action yk
t uniformly at random from Xt(sk

t), set N(sk
t) = 0, and W (sk

t , xt) = 0 for all
xt ∈ Xt(sk

t).

• Else let u be a Uniform [0, 1] random variable; if u ≤ 1−αk sample an action yk
t uniformly

at random from Hk−1(sk
t) else sample an action yk

t uniformly at random from Xt(sk
t).

• Send the player-action pair (sk
t , y

k
t) to oracle Ot to receive player sk

t+1 as output.

end for.

3. Best Response: For each player sk
t that is in play:

(a) for each xt ∈ Xt(sk
t)

draw a path pk(sk
t , xt) = {(σk

t+1, z
k
t+1), . . . , (σ

k
T , zk

T)} inductively as follows: send (sk
t , xt)

to oracle Ot to receive σk
t+1 as output, and then

• for j = 1, . . . , T − t:
– If Hk−1(σk

t+j) = ∅ then sample an action zk
t+j uniformly at random from Xt+j(σk

t+j)
obtained by sending σk

t+j to the feasibility oracle Ft+j .

– Else sample an action zk
t+j uniformly at random from Hk−1(σk

t+j).

– Send the player-action pair (σk
t+j , z

k
t+j) to oracle Ot+j to receive player σk

t+j+1

as output.
• end for.

Set W (sk
t , xt)← 1

1+N(sk
t)

(
N(sk

t)×W (sk
t , xt) + R(pk(sk

t , xt))
)
.

end for.

(b) Find x̄k(sk
t) by solving the best response problem (8) where ties are broken via the lowest

index first rule.

8

(c) Append history Hk−1(sk
t) by x̄k(sk

t) in a FIFO manner to keep its length at most L and
set N(sk

t)← N(sk
t) + 1.

4. Decrease αk to αk+1, increase iteration counter to k +1 and go to Step 2 (the Choose Players
phase).

A few comments on the algorithm are in order.
We will present sufficient conditions on the sequence {αk} to ensure desirable convergence

properties in the next section (see Lemma 4.2). It should be noted that deliberate introduction
of stochastic noise in choosing players to perform best response computations through parameter
αk is not required in theory if the underlying stochastic behavior of the system itself ensures
that every state will be visited infinitely often irrespective of decisions in earlier periods. More
generally, the choose players phase and the best response phase are entirely decoupled and the only
information the latter needs from the former is a set of players chosen to perform a best response
computation. Our convergence results remain valid irrespective of the details of the mechanism
used to select this set of players as long as the mechanism ensures that all players are chosen
infinitely often with probability one. In the extreme case, every player may be chosen to perform
a best response calculation in every iteration resulting in the synchronous procedure outlined in
Section 3.1. We reiterate the slight difference between the action sampling mechanisms in the
choose players phase and the best response phase: the latter does not employ αk. This ensures
that the estimates W (st, xt) are based on actions that were best responses in earlier iterations,
thus avoiding unnecessary stochastic errors in best response calculations. This leads to stronger
convergence results and potentially better practical performance.

The idea of using history of finite length in FP-type algorithms has been used with much success
in computational game theory in the past (see for example the Adaptive Play (AP) algorithm in
[35]). In our context, as mentioned earlier, it is intended to reduce correlation between early and late
iterations, progressively producing better value estimates. The stochastic noise and finite history
in the sampling process may also be viewed as the players themselves being bounded rational [19].

To assess the computational effort in each iteration, note that since Xt(st) is a finite set for all
st ∈ St and t = 1, 2, . . . , T , there exists a positive integer A such that |Xt(st)| ≤ A for all t and st.
Therefore, the number of paths pk(sk

t , xt) that player sk
t samples in the best response phase is at

most A. Each of these paths includes T − t + 1 players. The number of players who participate in

one iteration is therefore at most A
T∑

t=1
(T − t + 1) = AT (T + 1)/2. This observation will be used in

comparing our procedure with a benchmark in the numerical results Section 5.
In the parlance of existing simulation-based asynchronous ADP algorithms for model-free finite-

horizon problems, Step 2 above can be seen as a mechanism to select states at which policies will
be updated. Step 3 (a) can be viewed as an approximate policy evaluation step, whereas Step 3
(b) regarded as a policy improvement mechanism. The probability distribution from which actions
will be sampled in the next iteration is updated in Step 3 (c) (indirectly) through changes to the
history of plays. In the next two paragraphs, we briefly mention fundamental features of some
other simulation-based table look-up methods for the reader to contrast with our SFP procedure.
(For a more detailed comparison, and a discussion of convergence results, see Section 6.)

In Monte Carlo methods, the state-action value, that is, Q-value estimate only of each state-
action pair on the selected path in Step 2 is updated in Step 3 (a) by adding total reward on that
path following the occurrence of that state-action pair and then smoothing. In comparison, the
state-action value estimate of each state on the selected path and each action feasible in that state is
updated in our SFP procedure. Thus the counterpart of Step 3 (a) in typical Monte Carlo methods

9

is simpler than in the pseudo-code above. The decision in each state on the selected path is then set
to be optimal with respect to the current Q-value estimates (Steps 3 (b) and 3 (c)). This updated
policy is then used in the next iteration to select a new path. See Figure 5.4 in [32].

Temporal Difference methods, unlike Monte Carlo methods, employ bootstrapping to update
Q-value estimates of state-action pairs on the selected path. That is, instead of simply adding
total reward following the occurrence of a state-action pair on the selected path, Q-value estimates
“downstream” on the selected path are used in the update mechanism. See Figure 6.9 in [32].
The well-known Q-learning [34] algorithm also uses bootstrapping and can in fact be viewed as
an extension of a particular Temporal Difference method [4]. See Figure 6.12 in [32]. The SFP
pseudo-code above, on the other hand, does not bootstrap.

We present convergence results for our asynchronous SFP algorithm in the next section.

4 Convergence Results

We first introduce some notation. We define the value of any state st ∈ St for t = 1, 2, 3, . . . , T
under policy π ∈ Π as

Vπ(st) = rt(st, π(st)) + E

(
T∑

i=t+1

ri(si, π(si))

)
,

where the expectation is with respect to the joint distribution induced by oracles Ot,Ot+1, . . . ,OT .
The corresponding optimal value is defined as

V ∗(st) ≡ max
π∈Π

Vπ(st). (11)

The above maxima are achieved because the set Π is finite. It is well-known [3, 27] that the optimal
values satisfy the following recursive equation

V ∗(st) = max
xt∈Xt(st)

(
rt(st, xt) + EOt(st,xt)[V

∗(st+1)]
)
, (12)

where the subscript on the expectation operator asserts that the expectation is with respect to the
probability distribution of state st+1 over St+1 as induced by the stochastic oracle Ot that receives
state-decision pair (st, xt) as input. Note here that V ∗(sT+1) = 0 for all terminal states sT+1 by
assumption. The decision prescribed in state st by the optimal policy π∗ is given by

π∗(st) = argmax
xt∈Xt(st)

rt(st, xt) + EOt(st,xt)[V
∗(st+1)]︸ ︷︷ ︸

Q(st,xt)

 , that is, (13)

π∗(st) = argmax
xt∈Xt(st)

Q(st, xt). (14)

For t = 1, . . . , T and any st ∈ St, let γ(st) be the event that there exists an iteration Kst such
that for all iterations k ≥ Kst , each of the L entries in the history of the player corresponding
to state st is the optimal decision π∗(st). Similarly, for any t = 1, . . . , T , let Ω(t) be the event
that there exists an iteration Kt such that for all iterations k ≥ Kt, all L entries in the history of
the player corresponding to any state s ∈ St ∪ St+1 . . . ∪ ST equal the optimal action π∗(s). Note

10

that

(⋂
r=t,...,T

⋂
sr∈Sr

γ(sr)

)
⇒ Ω(t) since we can choose Kt = max

r=t,...,T
max
sr∈Sr

Ksr . This implies that

P [Ω(t)] ≥ P

[⋂
r=t,...,T

⋂
sr∈Sr

γ(sr)

]
. Similarly,

(⋂
st−1∈St−1

γ(st−1)

)⋂
Ω(t)⇒ Ω(t− 1).

The rest of this section is devoted to the proof of the following Theorem.

Theorem 4.1. P [Ω(1)] = 1, that is, the probability that there exists an iteration K1 such that
for all iterations k ≥ K1 of asynchronous SFP for ADP, all L entries in the histories of players
corresponding to all states s ∈ S = S1 ∪ . . . ST equal the optimal action π∗(s) is one.

We employ an intuitive backward induction proof technique. In particular, we first show that
players in ST are able to compute optimal actions the first time they are in play. Once all players
in ST have been in play at least once (this is ensured by Lemma 4.2), players in ST−1 are able to
generate increasingly accurate estimates of the total expected reward obtained on playing each of
their actions. Consequently, players in ST−1 are eventually able to compute their optimal actions
after being in play in a sufficiently large number of iterations (this again is ensured by Lemma 4.2).
This process is then propagated backwards through periods T −1, T −2, . . ., 1. In particular, after
a sufficiently large number of iterations, all best responses are “correct” implying that every entry
in the players’ history is optimal. These ideas are now formalized.

Observe that, by problem definition, every state st+1 ∈ St+1 is reachable from the initial state s1

(otherwise st+1 would not be a member of St+1). That is, for every st+1 ∈ St+1, there exists a state-
action pair (st, xt) with st ∈ St and xt ∈ Xt(st) such that the probability that oracle Ot returns
state st+1 upon receiving (st, xt) as input is strictly positive. Because we have a finite number of
states and actions, there is a uniform (over all periods t, all states st+1, and all state-action pairs
(st, xt)) lower bound q > 0 on these strictly positive probabilities.

Lemma 4.2. If αk ≥ (1
k)1/T for all iterations k then every player is in play infinitely often with

probability one.

Proof. Let Ej(st) be the event that the player corresponding to a specific state st ∈ St is in play
in iteration j and t − 1 players in stages 1, 2, . . . , t − 1 each sampled actions randomly from their
sets of feasible actions (as opposed to sampling from their history of best responses) in the choose

players phase. Observe that P [Ej(st)] ≥ (q αj

A)T ≥
(q

A

)T 1
j and hence

∞∑
j=1

P [Ej(st)] = ∞. Since

events E1(st), E2(st), . . . are independent, the probability that infinitely many of them occur is one
by the second Borel-Cantelli lemma [12].

Note that a fixed constant strictly positive value of αk for all k, such as αk = 1 clearly satisfies
the sufficient condition in Lemma 4.2 above. However, the importance of decreasing values of αk is
that they employ asymptotically diminishing exploration in the choose players phase, giving more
and more weight to best response results of previous iterations along the progress of the algorithm.
Potential practical benefits of changing the rate of exploration over iterations instead of using a
constant rate have been discussed in the literature, for instance in [32]. An interesting question
in our context then is how small a value of αk can be used still guaranteeing that each player is
chosen infinitely often with probability one. Lemma 4.2 provides a simple bound on such a value.

Proof of Theorem 4.1 employs the following inductive statement.

Induction Statement Mt: P [Ω(t)] = 1, that is, the probability that there exists an iteration Kt

such that for all iterations k ≥ Kt of asynchronous SFP for ADP, all L entries in the histories of
players corresponding to all states s ∈ St ∪ . . . ST equal the optimal action π∗(s) is one.

11

Lemma 4.3. MT is true, that is P [Ω(T)] = 1.

Proof. Consider any state sT ∈ ST . This player is in play infinitely often with probability one owing
to Lemma 4.2. Moreover, every iteration k in which this player is in play, it solves the best reply
problem x̄k(sT) = argmax

xT∈XT (sT)
rT (sT , xT) since W k(sT , xT) = 0 in problem (8) for all xT ∈ XT (sT).

Thus, x̄k(sT) = π∗(sT) in every such iteration k owing to the principle of optimality and uniqueness
of π∗. Let KsT be the iteration in which this player is in play for the Lth time (such an iteration
exists with probability one, again owing to Lemma 4.2). Then for all iterations k ≥ KsT , each of
the L entries in this player’s history is π∗(sT). Since sT ∈ ST was arbitrary, P [γ(sT)] = 1 for every
sT ∈ ST . Then it is easy to see that P

[⋂
sT∈ST

γ(sT)
]

= 1. This implies that P [Ω(T)] = 1.

Now we prove an intermediate lemma.

Lemma 4.4. Mt implies that for every player-action pair (st−1, xt−1) with st−1 ∈ St−1 and
xt−1 ∈ Xt−1(st−1), the estimate W k(st−1, xt−1) converges to EOt−1(st−1,xt−1)V

∗(st) as k → ∞
with probability one. As a result, rt−1(st−1, xt−1) + W k(st−1, xt−1) converges to rt−1(st−1, xt−1) +
EOt−1(st−1,xt−1)V

∗(st) as k →∞ with probability one.

Proof. Recall that I(st−1, k) is the set of iterations up to and including iteration k in which the
player corresponding to state st−1 is in play. Let J(st−1,m, n) be the set of iterations between
iterations m and n (not including m but including n) in which the player corresponding to state
st−1 is in play. Let Kt be as defined in the induction statement above and k ≥ Kt be any iteration
large enough such that |I(st−1, k)| > 0 (such an iteration exists with probability one by Lemma
4.2). We have

|W k(st−1, xt−1)− EOt−1(st−1,xt−1)V
∗(st)|

=

∣∣∣∣∣∣ 1
|I(st−1, k)|

∑
i∈I(st−1,k)

T−t∑
j=0

rt+j(σi
t+j , x

i
t+j)− EOt−1(st−1,xt−1)V

∗(st)

∣∣∣∣∣∣ .
Using I ≡ I(st−1,Kt) and J ≡ J(st−1,Kt, k) for brevity, the above right hand side becomes

=

∣∣∣∣∣∣ 1
|I|+ |J |

∑
i∈{I∪J}

T−t∑
j=0

rt+j(σi
t+j , x

i
t+j)− EOt−1(st−1,xt−1)V

∗(st)

∣∣∣∣∣∣ ,
which in turn is bounded above by∣∣∣∣∣∣ 1
|I|+ |J |

∑
i∈I

T−t∑
j=0

rt+j(σi
t+j , x

i
t+j)

∣∣∣∣∣∣ +

∣∣∣∣∣∣ 1
|I|+ |J |

∑
i∈J

T−t∑
j=0

rt+j(σi
t+j , x

i
t+j)− EOt−1(st−1,xt−1)V

∗(st)

∣∣∣∣∣∣ .
Since the state and decision spaces are finite, the absolute values of one period deterministic rewards
are uniformly bounded above, say by a positive number R. As a result, the above right hand side
is at most ∣∣∣∣ |I|R(1 + T − t)

|I|+ |J |

∣∣∣∣+
∣∣∣∣∣∣ 1
|I|+ |J |

∑
i∈J

T−t∑
j=0

rt+j(σi
t+j , x

i
t+j)− EOt−1(st−1,xt−1)V

∗(st)

∣∣∣∣∣∣
=
∣∣∣∣ |I|R(1 + T − t)

|I|+ |J |

∣∣∣∣+ |J |
|I|+ |J |

∣∣∣∣∣∣ 1
|J |
∑
i∈J

T−t∑
j=0

rt+j(σi
t+j , x

i
t+j)− EOt−1(st−1,xt−1)V

∗(st)

∣∣∣∣∣∣ .
12

The first term above converges to zero as k →∞ with probability one since J(st−1,Kt, k)→∞ as
k →∞ with probability one owing to Lemma 4.2. Similarly, |J |

|I|+|J | → 1 as k →∞ with probability
one. Thus we only focus on the remaining term∣∣∣∣∣∣ 1

|J |
∑
i∈J

T−t∑
j=0

rt+j(σi
t+j , x

i
t+j)− EOt−1(st−1,xt−1)V

∗(st)

∣∣∣∣∣∣ .
Note that Mt implies that for all iterations i ∈ J(st−1,Kt, k), xi

t+j = π∗(σi
t+j) for j = 0, . . . , T − t.

Moreover, when state-decision pair (st−1, xt−1) is sent to the oracle Ot−1, the sums

T−t∑
j=0

rt+j(σi
t+j , π∗(σ

i
t+j))

are independent and identically distributed for iterations i ∈ J(st−1,Kt, k). Therefore,

1
|J |
∑
i∈J

T−t∑
j=0

rt+j(σi
t+j , x

i
t+j)→ EOt−1(st−1,xt−1)V

∗(st) as k →∞

with probability one by the strong law of large numbers and the definition of V ∗(st) for any st ∈ St.
Thus the above term of interest converges to zero with probability one. Thus |W k(st−1, xt−1) −
EOt−1(st−1,xt−1)V

∗(st)| is bounded below by zero and bounded above by a term that converges to
zero as k →∞ with probability one. Therefore, W k(st−1, xt−1) converges to EOt−1(st−1,xt−1)V

∗(st)
as k →∞ with probability one. This completes the proof.

The above intermediate lemma helps us restore the inductive hypothesis as follows.

Lemma 4.5. Mt implies Mt−1.

Proof. Consider δ(st−1) defined as follows:

δ(st−1) = min
π∗(st−1) 6=xt−1∈Xt−1(st−1)

(
V ∗(st−1)− rt−1(st−1, xt−1)− EOt−1(st−1,xt−1)V

∗(st)
)
,

that is, δ(st−1) is the difference between the optimal value of state st−1 and the value of the next-
best feasible action in st−1. The above minimum is well-defined since Xt−1(st−1) is a finite set. The
definition of V ∗(st−1) implies that δ(st−1) ≥ 0 whereas uniqueness of the optimal policy implies
that δ(st−1) > 0. The best reply problem (8) for the player corresponding to state st−1 implies
that if |rt−1(st−1, xt−1)+EOt−1(st−1,xt−1)V

∗(st)− rt−1(st−1, xt−1)−W k(st−1, xt−1)| < δ(st−1)/2 for
all xt−1 ∈ Xt−1(st−1), then x̄k(st−1) = π∗(st−1). For any ε > 0, let Aε(st−1, xt−1) be the event that
there exists an integer Nε(st−1, xt−1) such that for all iterations k ≥ Nε(st−1, xt−1),

|rt−1(st−1, xt−1) + W k(st−1, xt−1)− rt−1(st−1, xt−1)− EOt−1(st−1,xt−1)V
∗(st)| < ε.

Note that the almost sure convergence

rt−1(st−1, xt−1) + W k(st−1, xt−1)→ rt−1(st−1, xt−1) + EOt−1(st−1,xt−1)V
∗(st)

is equivalent (see [30]) to P [Aε(st−1, xt−1)] = 1. Therefore,

P

 ⋂
xt−1∈Xt−1(st−1)

A δ(st−1)

2

(st−1, xt−1)

 = 1.

13

More specifically, choosing N δ(st−1)

2

(st−1) = max
xt−1∈Xt−1(st−1)

N δ(st−1)

2

(st−1, xt−1), the probability that

|rt−1(st−1, xt−1) + W k(st−1, xt−1)− rt−1(st−1, xt−1)− EOt−1(st−1,xt−1)V
∗(st)| <

δst−1

2

for all xt−1 ∈ Xt−1(st−1) and for all iterations k ≥ N δ(st−1)

2

(st−1) is one. As a result, since the

player corresponding to state st−1 is in play infinitely often with probability one, the probability
that there exists an iteration K ′

st−1
such that x̄k(st−1) = π∗(st−1) for all iterations k ≥ K ′

st−1
is one.

This implies that P [γ(st−1)] = 1. Then it is easy to see that P

[⋂
st−1∈St−1

γ(st−1)

]
= 1. Together

with Mt, i.e., P [Ω(t)] = 1, this implies that P [Ω(t− 1)] = 1. That is, Mt−1 holds.

By the principle of induction, Lemmas 4.3 and 4.5 imply that M1 is true, that is, P [Ω(1)] = 1.
This concludes the proof of Theorem 4.1.

Since MT , . . . ,Mt, . . . ,M1 are true, Lemma 4.4 implies that for any t = 1, . . . , T − 1, and any
state-decision pairs (st, xt) with st ∈ St and xt ∈ Xt(st), W k(st, xt) converges to EOt(st,xt)V

∗(st+1)
as k → ∞ with probability one. In addition, Theorem 4.1 above states that with probability one,
there exists an iteration K1 such that for all iterations k ≥ K1, every entry in the history of the
player corresponding to state s1, denoted by hk(s1), is π∗(s1). We thus have the following “value
convergence” result.

Corollary 4.6. r1(s1, hk(s1))+W k(s1, hk(s1)) converges with probability one to V ∗(s1) as k →∞.

Let Ek(st) denote the event that state st ∈ St is in play in iteration k. Given event Ek(st),
let yk(st) denote the feasible action sampled by state st in the choose players phase of the SFP
algorithm of Section 3.2. Similarly, let Dk(st) denote the event that state st gets the opportunity
to sample an action in the best response phase in iteration k, and given Dk(st), let zk(st) denote
an action sampled by st. Then Theorem 4.1 and the ideas discussed in its proof imply the following
“solution convergence” result.

Corollary 4.7. For any 0 < ε < 1, there exists an iteration Kε such that P [yk(st) = π∗(st)|Ek(st)] >
1− ε for all k ≥ Kε. That is, sufficiently far along the progress of the algorithm, the actions sam-
pled by players in the choose players phase are optimal with arbitrarily high probability. Similarly,
P [zk(st) = π∗(st)|Dk(st)] = 1 for sufficiently large k. That is, sufficiently far along the progress of
the algorithm, the actions sampled by players in the best response phase are optimal.

In summary, the version of SFP designed here uses action samples of size one, finite history of
past best responses, and allows players to make sampling mistakes. It is much simpler to implement
in practice and computationally more efficient than the original approach in [20], and yet exhibits
stronger convergence behavior. In the next section, we present numerical results that suggest our
asynchronous SFP procedure is effective in practice.

5 Numerical Results

We apply SFP to two stochastic inventory control examples from [7] and to the game of TIC-TAC-
TOE against nature. The state spaces in the inventory control examples are small, whereas in
TIC-TAC-TOE the state space is moderate.

14

5.1 Stochastic Inventory Control Example 1

This example is taken from [7]. Our main reason for choosing this example is the same as given
in [7], namely, that it can be solved either by using inventory theory or by stochastic dynamic
programming backward recursion as described in [7], and hence it is easy to test the performance
of SFP. Moreover, it provides us the opportunity to compare the performance of SFP with that of
a recent simulation-based method for stochastic dynamic programming.

Consider the following T period inventory control problem. At the beginning of period t =
1, 2, . . . , T , we observe inventory level st of a single product and decide whether to order an amount
q of the product or not. The ordered amount arrives immediately. The inventory levels are bounded
above by a positive integer M . Note that an order can be placed only if st + q ≤ M . A random
demand Dt is realized after receiving the placed order. The distribution of this demand is not
explicitly specified to the decision maker, however, it is known that demand is an integer from the
set {0, 1, . . . , D}, where D is a positive integer. The inventory st+1 at the beginning of the next
period is given by st+1 = max{st + xt −Dt, 0}, that is, backlogging is not allowed and unsatisfied
demand is lost. We incur three types of cost. There is a fixed cost of K every time we place an
order, that is, every period t in which xt = q. Every unit of inventory left over at the end of period
t is charged an inventory holding cost of h. There is also a penalty cost of p per unit of lost demand.
The initial inventory at the beginning of the first period is s1. The objective is to decide the order
quantity for every possible inventory level in each period so as to minimize the expected total cost
over the entire horizon of T periods. Observe that this problem is slightly more general than the
generic formulation described in Section 2 in that one period cost for a given state-action pair is
random. In particular, the one period cost for ordering a feasible amount xt when the inventory is
st is given by

K × I(xt > 0) + h× (st + xt −Dt)+ + p× (st + xt −Dt)−,

where I(xt > 0) is the indicator function which equals one if xt > 0 and zero otherwise, (st +
xt − Dt)+ = max{0, (st + xt − Dt)}, and (st + xt − Dt)− = max{0,−(st + xt − Dt)}. We solve
this problem using the following data from [7]: T = 3, q = 10, M = 20, h = 1, and the demand
is a uniformly chosen integer from [0, 9]. SFP does not use this information about the demand
distribution, however this information is needed in our numerical experiments to implement the
oracles Ot. We use two value of K = 0, 5 and two values of p = 1, 10. The initial inventory is
s1 = 5. We wish to estimate V ∗(s1).

It is important to reiterate that even though the demand distribution is known to be uniform,
that information is used only by the backward recursion algorithm we employed to calculate optimal
values to be compared with the results of our SFP procedure. The SFP procedure does not
use this explicit demand distribution information but rather “learns” the distribution through
repeated samples generated from it. As a result, the challenge in this model-free version of the
stochastic inventory control problem with small action and state spaces is in accurately estimating
the expected rewards and then optimizing the ordering policy based on these estimates.

The first column in Table 1 below lists the values of K and p used. The second column lists
the corresponding optimal value V ∗(s1 = 5). The third column reports the average of the optimal
values estimated by our algorithm after 50 iterations over 30 independent runs when the players
remember only their most recent best response, i.e., L = 1. The fourth column lists this average
when the players remember their five most recent best responses, i.e., L = 5. Parameter αk was
taken to be (1/k)1/T for all iterations k in all runs as it satisfies the rate calculated in Lemma 4.2.
In order to estimate the optimal value of state st, the algorithm in [7], which the authors term
AMS for Adaptive Multistage Sampling, recursively samples N states from St+1 for each action in
st and proposes three different estimators: the first estimator uses a weighted average of Q-values,

15

the second estimator uses the maximum Q-value whereas the third one employs the Q-value of the
most frequently sampled action. For comparison, we have copied from [7] estimates of the optimal
value of state s1 = 5 using these three estimators with sample sizes N = 4 and N = 32 (these were
the smallest and the largest sample sizes used, respectively) in the last three columns of Table 1.
The evolution of our estimate of V ∗(s1 = 5) is plotted versus 50 iterations in Figure 1 and Figure
2.

The runtimes of SFP and the AMS algorithm of [7] can be assessed by looking at the number
of states sampled by these methods, since sampling is the bottleneck step of both algorithms.
This method of analysis provides a reasonable comparison of the algorithms, including the rate
of growth of runtime as number of iterations or problem size increases, without focusing on the
specifics of implementation or computers used. Since the optimal value of a state in AMS is
recursively estimated by sampling N states from the next stage for each action in the state at
hand, the number of states sampled in a problem with A actions, horizon T and sample size N is
(AN)T (page 129 of [7]). Since A = 2 and T = 3 in this inventory control example, the number of
states sampled by AMS is 512 with N = 4 and 262,144 with N = 32. Recalling the discussion of
the asynchronous algorithm in Section 3.2, the number of states sampled by SFP in 50 iterations
is 50×AT (T + 1)/2 = 50× 2× 12/2 = 600, and hence its computational effort for this problem is
comparable to the faster version (N = 4) of AMS.

Comparing the optimal value estimates obtained by SFP to those obtained by AMS using
N = 4, which requires similar computational effort, we observe (Table 1) that, for the cases
(K, p) = (0, 1), (0, 10), (5, 10), SFP estimates are significantly closer to the optimal value than those
obtained by AMS with either of the three estimators. Comparing SFP estimates for these three
cases to AMS with N = 32, we see that SFP estimates are more accurate than those obtained with
the first estimator and only slightly worse than ones obtained with the other two estimators, even
though SFP requires only 0.23% of the samples that AMS with N = 32 does. When (K, p) = (5, 1),
the SFP estimate outperforms the first estimator with N = 4, but is worse in other cases. Finally,
the tables indicate that SFP performance is not very different for L = 1 and L = 5, although L = 1
seems to work slightly better for this problem.

Table 1: Estimates V (s1 = 5) of V ∗(s1 = 5) for stochastic inventory control Example 1 averaged
over 30 independent runs of 50 iterations of SFP with L = 1 and L = 5. The three estimates
reported in [7] each with sample sizes N = 4 and N = 32 are listed in the last three columns for
comparison.

SFP estimates AMS estimates from [7]

(K,p) V ∗(s1 = 5) L = 1 L = 5
Estimate 1 Estimate 2 Estimate 3
N=4, N=32 N=4, N=32 N=4, N=32

(0,1) 10.440 10.8856 11.4699 15.03, 11.23 9.13, 10.45 9.56, 10.49
(0,10) 24.745 24.9614 25.7516 30.45, 26.12 19.98, 24.73 20.48, 24.74
(5,1) 10.490 12.4176 12.3314 18.45, 11.47 10.23, 10.46 10.41, 10.46
(5,10) 31.635 31.183 32.6679 37.52, 33.11 26.42, 31.62 26.92, 31.64

Like any other finite-horizon dynamic programming algorithm, the computational effort in
our procedure depends on the length of problem horizon. This is illustrated for the inventory
control example at hand in Table 2. The table lists average of our optimal value estimate over 30
independent runs of 50 iterations each as in Table 1 for L = 1 and various values of T . Optimal
values are also listed for comparison. The percentage relative error in our optimal value estimates

16

Table 2: Sensitivity of the accuracy of optimal value estimates to horizon T in stochastic inventory
control Example 1. The first column lists various horizon lengths. The other columns present the
optimal values V ∗(s1 = 5), and optimal value estimates V (s1 = 5) averaged over 30 independent
trials of 50 iterations of SFP with L = 1 (separated by a comma) for different combinations of
(K, p). The percentage relative error between V ∗(s1 = 5) and V (s1 = 5) is plotted in Figure 3.
Note that the first row of results is copied from Table 1.

T (K = 0, p = 1) (K = 0, p = 10) (K = 5, p = 1) (K = 5, p = 10)
3 10.440, 10.8856 24.745, 24.9614 10.490, 12.4176 31.635, 31.183
4 14.4752, 14.3797 31.8861, 31.6529 14.9452, 17.6562 40.9761, 40.9536
5 18.0422, 18.5967 39.0273, 39.0144 19.4368, 23.6745 50.3198, 50.7654
6 22.5475, 23.0523 46.1685, 47.4667 23.9345, 29.498 59.6634, 59.5954
7 26.587, 27.8457 53.3097, 54.4915 28.4351, 34.5876 69.0071, 70.549
8 30.6267, 32.6117 60.4509, 62.0641 32.9351, 39.6497 78.3507, 80.1529
9 34.6663, 36.9863 67.5921, 70.732 37.4351, 43.9118 87.6944, 89.0752
10 38.706, 42.1640 74.7333, 79.6176 41.9351, 50.7621 97.038, 101.505

after 50 iterations is plotted versus horizon length in Figure 3. We remark that our algorithm was
able to reach closer to the optimal values in all cases after running more iterations; however, this is
not apparent in Table 2 since we deliberately fixed the iterations to 50 to bring out the sensitivity
of error to horizon T . To illustrate this point, we have included Table 3, which compares optimal
value estimates obtained for T = 10 with 50 and 200 iterations. Plots of optimal value estimates
over 200 SFP iterations for T = 10 are also shown in Figure 4. The choice of 200 was motivated
by the fact that complexity of the standard backward recursion method of dynamic programming
grows linearly with horizon (Section 5.1 of [5]); since we used 50 iterations for T = 3, 200 iterations
for T = 10 seem appropriate.

Table 3: Comparison of optimal value estimates averaged over 30 independent runs with 50 and
200 iterations for Example 1 with T = 10.

(K,p) V ∗(s1 = 5) 50 iterations 200 iterations % improvement
(0,1) 38.706 42.1640 40.7585 3.33%
(0,10) 74.7333 79.6176 77.3510 2.84%
(5,1) 41.9351 50.7621 47.6187 6.19%
(5,10) 97.038 101.505 98.5661 2.89%

5.2 Stochastic Inventory Control Example 2

Our second example is also taken from [7] and is similar to Example 1 above except that we may
now order any integer amount {0, 1, . . . , 20} (and so A=21). Since SFP performed slightly better
with L = 1 for the first example, we only focus on that case for the second example. The numerical
results are presented in Table 4. The second column lists the average estimate of optimal value over
30 independent runs of 5000 iterations each. As before, we include for comparison three estimates
obtained by the AMS algorithm of [7] with the smallest (N = 21) and the largest (N = 35) sample

17

Estimate of optimum value Vs iterations
K=0 p=1 L=1

5

6

7

8

9

10

11

1 11 21 31 41

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

Estimate of optimum value Vs iterations
 K=0 p=10 L=1

5

10

15

20

25

1 11 21 31 41

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

(a) (b)

Estimate of optimum value Vs iterations
K=5 p=1 L=1

8

9

10

11

12

13

1 11 21 31 41

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

Estimate of optimum value Vs iterations
K=5 p=10 L=1

14

16

18

20

22

24

26

28

30

32

1 11 21 31 41

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

(c) (d)

Figure 1: Evolution of the optimal value estimate with iterations for four test problems with L = 1
in Example 1. Each plot shows the estimates averaged over thirty independent runs, and the
corresponding standard error bars. The optimal value reported in Table 1 is shown on each plot
with a flat line.

18

Estimate of optimum value Vs iterations
K=0 p=1 L=5

4

5

6

7

8

9

10

11

12

1 11 21 31 41

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

Estimate of optimum value Vs iterations
K=0 p=10 L=5

5

10

15

20

25

30

1 11 21 31 41

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

(a) (b)

Estimate of optimum value Vs iterations
K=5 p=1 L=5

6

7

8

9

10

11

12

13

1 11 21 31 41

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

Estimate of optimum value Vs iterations
K=5 p=10 L=5

10

15

20

25

30

35

1 11 21 31 41

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

(c) (d)

Figure 2: Evolution of the optimal value estimate with iterations for four test problems with L = 5
in Example 1. Each plot shows the estimates averaged over thirty independent runs, and the
corresponding standard error bars. The optimal value reported in Table 1 is shown on each plot
with a flat line.

19

Sensitivity of error to horizon length
for K=0, p=1, L=1

0

1

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10

horizon length T

e
st

im
a
ti

o
n

 e
rr

o
r

e
 a

ft
e
r

5
0

it

e
ra

ti
o

n
s

Sensitivity of error to horizon length
for K=0, p=10, L=1

-1

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10

horizon length T

e
st

im
a
ti

o
n

 e
rr

o
r

e
 a

ft
e
r

5
0

it

e
ra

ti
o

n
s

(a) (b)

Sensitivity of error to horizon length
for K=5, p=1, L=1

0

5

10

15

20

25

3 4 5 6 7 8 9 10

horizon length T

e
st

im
a
ti

o
n

 e
rr

o
r

e
 a

ft
e
r

5
0

it

e
ra

ti
o

n
s

Sensitivity of error to horizon length
for K=5, p=10, L=1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3 4 5 6 7 8 9 10

horizon length T

e
st

im
a
ti

o
n

 e
rr

o
r

e
 a

ft
e
r

5
0

it

e
ra

ti
o

n
s

(c) (d)

Figure 3: Sensitivity of the accuracy of our optimal value estimates to problem horizon in stochastic
inventory control Example 1. The percentage relative error between optimal values and their
estimates in Table 2 is given by e = 100 × |V (s1 = 5) − V ∗(s1 = 5)|/V ∗(s1 = 5). In each plot,
these relative errors are shown as black dots and are connected by a smoothed solid black line to
illustrate the error trend. The dashed trend lines in each plot were obtained by fitting either a
quadratic (in (a), (b), (d)) or a linear (in (c)) curve to the error data.

20

Estimate of optimum value Vs iterations
K=0 p=1 L=1 T=10

0

5

10

15

20

25

30

35

40

45

50

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

Estimate of optimum value Vs iterations
K=0 p=10 L=1 T=10

0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

(a) (b)

Estimate of optimum value Vs iterations
K=5 p=1 L=1 T=10

0
3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

Estimate of optimum value Vs iterations
K=5 p=10 L=1 T=10

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

(c) (d)

Figure 4: Evolution of the optimal value estimate with iterations for four test problems with L = 1
in Example 1 for T = 10. Each plot shows the estimates for 200 SFP iterations averaged over 30
independent runs, and the corresponding standard error bars. The optimal value is shown on each
plot with a flat line.

21

sizes that were reported there. The convergence behavior of our average optimal value estimate
with iterations is illustrated in Figure 5.

We again turn to the number of states sampled to compare computational effort of SFP and
AMS. The number of states sampled by AMS is (AN)T = (21 × 21)3 = 85,766,121 when N = 21
and (21× 35)3 =397,065,375 when N = 35, whereas it is 5000× 21× 12/2 =630,000 in SFP.

Table 4 shows that, in spite of the significantly smaller number of states sampled by SFP,
its optimal value estimates are considerably more accurate than those of AMS for twenty of the
twenty four combinations of parameter values (K, p), estimator type and sample size, and close in
the remaining four instances. The percentage relative error 100×|V (s1=5)−V ?(s1=5)|

V ?(s1=5) in SFP estimates
across problem instances and estimator types is on average about 15 times smaller than that of
AMS with N = 21, and about 8 times smaller with N = 35, even though in these two cases SFP
samples only 0.74% and 0.16%, respectively, of the states sampled by AMS.

Table 4: Estimates V (s1 = 5) of V ∗(s1 = 5) for stochastic inventory control Example 2 averaged
over 30 independent runs of 50 iterations of SFP with L = 1. The three estimates reported in [7]
each with sample sizes N = 21 and N = 35 are listed in the last three columns for comparison.

SFP estimates AMS estimates from [7]

(K,p) V ∗(s1 = 5) L = 1
Estimate 1 Estimate 2 Estimate 3

N=21, N=35 N=21, N=35 N=21, N=35
(0,1) 7.5 7.5920 24.06, 18.82 3.12, 6.26 9.79, 6.62
(0,10) 13.5 13.5874 29.17, 26.06 6.04, 12.23 12.06, 13.69
(5,1) 10.49 12.2923 33.05, 25.33 8.73, 10.96 18.62, 11.12
(5,10) 25.785 24.6296 39.97, 36.89 17.78, 24.71 26.76, 25.51

5.3 TIC-TAC-TOE Against Nature

TIC-TAC-TOE is a well-known relatively simple two-player game played on a 3 by 3 square grid
(called the game-board) where the two players take turns placing distinct tokens (typically an “X”
and an “O”) in empty squares on the grid. The first player to place three tokens in a horizontal
row, a vertical column, or a diagonal wins the game. Thus the game lasts for a total of at most
nine moves. It is well-known [32] that every game of TIC-TAC-TOE between two “expert players”
ends in a tie whereas an expert player never loses no matter whom it is pitted against [25].

In this section we focus on TIC-TAC-TOE against nature, where the second player places its
tokens in one of the empty squares chosen randomly. Such a player is also sometimes termed a
“novice player.” Thus, even when the first player employs a deterministic strategy, its game versus
a novice player unfolds stochastically. One web site [25] on TIC-TAC-TOE reports that out of a
thousand game experiments between an expert player and a novice player, the expert player won
nine hundred and seventy eight times whereas the other twenty two games ended in a tie. Thus,
roughly speaking, the probability that an expert player wins against a novice player is about 0.978
and that the game ends in a tie is about 0.022.

We model TIC-TAC-TOE against nature as a sequential decision problem where our decision
maker corresponds to the first player playing (say) “X” who makes the first move starting with
an empty game-board. The states of this problem correspond to the different possible game-board
configurations. Since every square on the board can either be empty, occupied with an “X” or an
“O”, the total number of states is 39 =19,683. In fact, one can provide a more compact description

22

Estimate of optimum value Vs iterations
K=0 p=1 L=1

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

1 1001 2001 3001 4001

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

Estimate of optimum value Vs iterations
K=0 p=10 L=1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 1001 2001 3001 4001

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

(a) (b)

Estimate of optimum value Vs iterations
K=5 p=1 L=1

10

11

12

13

14

15

16

17

18

19

20

21

1 1001 2001 3001 4001

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

Estimate of optimum value Vs iterations

20

25

30

35

1 1001 2001 3001 4001

iterations

E
st

im
a
te

 o
f

o
p

ti
m

u
m

 v
a
lu

e

(c) (d)

Figure 5: Evolution of the optimal value estimate with iterations for four test problems with L = 1
in Example 2. Each plot shows the estimates averaged over thirty independent runs, and the
corresponding standard error bars. The optimal value reported in Table 4 is shown on each plot
with a flat line.

23

of the state space of the game by taking into account rotational symmetries, but we deliberately
did not incorporate this into our implementation since we wanted to evaluate how SFP performs
with a larger state-space. Note that in a given state, the first player’s feasible actions correspond
to choosing one of the empty squares to place an “X.” Thus, the number of feasible actions is at
most nine in any state. Once the first player chooses an action in a specific state, this state-action
pair is “sent to an oracle” that essentially returns the new game-board, or equivalently, the state
reached after nature, i.e., the second player places an “O” on a randomly chosen empty square.
This sequence of events continues until the game ends either in a tie or with one of the two players
winning. The first player receives a reward of 1 for winning, a reward of -1 for losing and 0 for
a tie. Notice that rewards are earned at game termination and there are no intermediate rewards
along the way. Strictly speaking, terminal rewards do not fit into the assumptions of our analysis,
but our proofs can be modified in a straightforward manner to accommodate them. Our goal is to
find the optimal expected reward for the first player from the initial state where the game-board
is empty. Note that the numbers from the web site mentioned above imply that this reward is
roughly 0.978 (0.978 × 1 + 0.022 × 0) for an expert player. Thus we expect the optimal expected
reward to be very close to 0.978.

We ran 10 independent trials with 50,000 iterations each of asynchronous SFP on this problem.
We used αk = (1/k)1/9 and three different L values: L = 1, L = 5 and L = 10. The average of
our estimate of the optimal expected value over these 10 trials is plotted versus iterations in Figure
6. The average and standard deviation of estimates obtained after 50,000 iterations are shown
in Table 5. Note again that our SFP procedure does not exploit symmetries or the structure of
the game and does not know that the game is being played against nature but rather learns the
optimal expected reward by repeated stochastic simulations leading to a relatively high number of
iterations required.

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0.4

0.425
0.45

0.475
0.5

0.525
0.55

0.575
0.6

0.625
0.65

0.675
0.7

0.725
0.75

0.775
0.8

0.825
0.85

0.875
0.9

0.925
0.95

0.975
1

Iterations

Es
tim

at
e

of
 o

pt
im

al
 e

xp
ec

te
d

re
w

ar
d

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0.4

0.425
0.45

0.475
0.5

0.525
0.55

0.575
0.6

0.625
0.65

0.675
0.7

0.725
0.75

0.775
0.8

0.825
0.85

0.875
0.9

0.925
0.95

0.975
1

Iterations

Es
tim

at
e

of
 o

pt
im

al
 e

xp
ec

te
d

re
w

ar
d

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0.4

0.425
0.45

0.475
0.5

0.525
0.55

0.575
0.6

0.625
0.65

0.675
0.7

0.725
0.75

0.775
0.8

0.825
0.85

0.875
0.9

0.925
0.95

0.975
1

Iterations

Es
tim

at
e

of
 o

pt
im

al
 e

xp
ec

te
d

re
w

ar
d

(a) (b) (c)

Figure 6: Evolution of the estimate of optimal expected reward with iterations for TIC-TAC-TOE
against nature with (a) L = 1 (b) L = 5 and (c) L = 10.

Table 5: Average and standard deviation of optimal expected reward estimates over 10 independent
trials of 50,000 iterations each for TIC-TAC-TOE against nature.

L average standard deviation
1 0.975322 0.001299451
5 0.973054 0.00153441
10 0.97319 0.00127577

24

6 Discussion and Conclusions

We have presented a variant of Sampled Fictitious Play (SFP) that converges to a deterministic
optimal policy while solving model-free, finite horizon stochastic dynamic programs. This conver-
gence result is in stark contrast with the recently proposed, original version of SFP in [20], which
may only converge in a very weak sense to the set of mixed strategy Nash equilibria, i.e., to the set
of sub-optimal randomized policies. Our SFP variant adaptively biases the sampling mechanism
towards high quality actions by endowing the players with only finite recall, and allows the players
to make occasional sampling mistakes to ensure that all players will participate in the game in-
finitely often. Most importantly, it is computationally far less demanding than the original version
in [20]. It is well-known that table look-up simulation-based methods that explicitly store state
value or state-action value information, as in our SFP approach here, work well for small to moder-
ate sized model-free problems but are unlikely to successfully tackle very large problems [3, 4]. For
instance, the memory requirement for algorithms using state-action value (Q-value) information is
proportional to the product of the sizes of the state and action spaces. We expect SFP to have this
feature as well.

Our SFP procedure can be seen as an asynchronous version of a Q-value based [34] variant of
Monte Carlo-Optimistic Policy Iteration [4, 26, 33] for model-free finite-horizon ADP [3, 9, 26, 32]
(Optimistic Policy Iteration is a somewhat non-standard name used in [4] and [33], whereas in
[26] it is called hybrid value/policy iteration). In the infinite horizon case, synchronous versions
for such algorithms (see [33] Section 5) maintain Q-values for each state-action pair and generate
infinite trajectories starting at every state-action pair using greedy actions (actions that optimize
the Q-values) in every state visited. The Q-values are then updated by “smoothing” (commonly by
averaging) observed cumulative costs along these trajectories. Even though these methods are only
of academic interest [33] as they require generation of infinite trajectories, their analysis provides
significant insights into implementable model-free ADP algorithms. In addition, in some cases, as
for example where eventual absorption into a zero cost terminal state is inevitable along every tra-
jectory, these methods are indeed implementable in practice. Interestingly, even though variants of
Optimistic Policy Iteration have been known for some time, their detailed theoretical analyses have
been rare. In fact, in a list of important open questions in reinforcement learning, Sutton [31] had
posed whether synchronous Q-function based Monte Carlo-Optimistic Policy Iteration converges
to optimality. This question was recently resolved in the affirmative by Tsitsiklis [33] using mono-
tonicity properties of the dynamic programming operator. Also, non-convergence of asynchronous
Monte Carlo-Optimistic Policy Iteration is well-known [33] for infinite-horizon problems. We were
not able to find a rigorous proof for convergence of asynchronous Monte Carlo-Optimistic Policy It-
eration methods for the model-free finite-horizon case in the literature. We have shown that strong
convergence results for our model-free finite-horizon Monte Carlo algorithm are easy to prove using
backward induction, and the strong law of large numbers, even in the asynchronous case. Part of
this simplicity stems from the way in which Q-values are updated in our SFP procedure — update
is performed for every feasible action in a selected state rather than only for the action currently
estimated to be optimal (see the asynchronous SFP pseudo-code and discussion in Section 3).

As noted in the literature [4, 32], a key to ensuring convergence to optimality in simulation-
based asynchronous ADP algorithms without significantly sacrificing computational performance
is to bias the underlying action sampling procedure toward good actions and hence states, and
yet sample all states infinitely often, that is, to properly balance exploitation with exploration.
Most asynchronous techniques take an ad-hoc approach toward this issue [26]. Recently developed
algorithms that attempt to carefully tradeoff exploitation versus exploration for simulation-based
methods for model-free finite-horizon stochastic dynamic programs are surveyed in [8] with ex-

25

panded details appearing in [9]. Our approach in this paper is close in spirit to two Multi-stage
Adaptive Sampling Algorithms discussed in the second chapter of [9]. Of these, the Upper Confi-
dence Bound (UCB) algorithm from [7] exploits the theory of multi-armed bandit problems [1] to
sample actions to minimize expected regret (see Section 2.1.4 in [9]), whereas the Pursuit Learn-
ing Automata (PLA) technique samples actions from a probability distribution biased toward an
estimate of an optimal action essentially implementing a recursive extension of the Pursuit Algo-
rithm [28, 32]. This probability distribution is iteratively updated explicitly through an update
formula that increases the probability of sampling an action estimated to be optimal, that is, a
“greedy action”, by a fraction β (see Equation 2.12 in [32]). This “pursuit” of a greedy action
motivated the name “Pursuit Algorithm.” In our SFP approach as well, actions are sampled from
a probability distribution — the one induced by the history of recent plays. This probability dis-
tribution is adaptively updated, not by using an explicit formula as in PLA, but rather implicitly
and naturally as the history of plays evolves with iterations. Whereas the estimates of optimal
expected value in PLA converge in probability (Theorem 2.9 page 50 in [9]), we are able to obtain
almost sure convergence results because we do not have exogenous noise in the action sampling
mechanism employed in the best response process. Specifically, we proved in Theorem 4.1 that our
SFP variant converges to a deterministic optimal policy with probability one. Corollary 4.6 showed
that the value estimates generated by SFP converge with probability one to the optimal expected
multi-period reward. In contrast, the UCB technique converges in mean (Theorem 2.3 page 29 in
[9]).

Extension of results in this paper to infinite-horizon model-free problems is a natural direction
for future research. However, since it is not possible to sample an infinite path in practice, an
implementable procedure should approximate the infinite-horizon expected rewards with some ap-
propriately selected finite-horizon truncations. This will introduce an additional hurdle in proving
convergence to optimality.

In addition, the fundamental distinguishing features of our variant of SFP — finite memory, ac-
tion samples of size one, and occasional mistakes in sampling — appear to help, both in simplifying
convergence proofs, as well as enhancing computational performance as compared to the original
version of SFP in [20]. Therefore, we will focus on investigating theoretical and empirical proper-
ties of this variant when applied to combinatorial optimization problems that are not modeled as
dynamic programs. We have taken initial steps in this direction, obtaining encouraging numerical
results comparable to Genetic Algorithms [11], on multi-dimensional knapsack problems [17].

Researchers have recently proposed “payoff-based” dynamics for learning equilibria in multi-
player games [23]. In contrast to “action-based” mechanisms such as FP, or AP, these approaches
do not require a best response computation. For example, in the so-called safe experimentation
dynamics [23], players simply maintain a record of the best utility value they obtained in the past,
and the corresponding action they played at the time. These are called the baseline utility and
action, respectively. In each iteration k, each player samples its baseline action with probability
εk, and with probability 1 − εk, samples an action randomly. If the utility a particular player
receives for the joint action profile sampled by all players is higher than its baseline utility, that
player updates its baseline utility and action. It is easy to prove (Theorem 3.1 in [23]) that this
dynamic process converges almost surely to a pure strategy optimal Nash equilibrium for all games
of identical interests under a standard sufficient condition on εk similar to our condition on αk in
Lemma 4.2. In the future, it would be interesting to compare the computational performance of
such payoff-based processes on dynamic programs with the action-based approach in this paper.

26

Acknowledgments

This research was funded in part by the National Science Foundation under grants CMMI-0422752,
CCF-0830380, and CCF-0830092. Archis Ghate appreciates summer support from the University
of Washington.

References

[1] Auer, P., Cesa-Bianchi, N., Fisher, P., Finite-time analysis of the multiarmed bandit problem,
Machine Learning , 47, 235-256, 2002.

[2] Baumert, S., Cheng, S. F., Ghate, A. V., Reaume, D., Sharma, D., Smith, R. L., Joint op-
timization of capital investment, revenue management, and production planning in complex
manufacturing systems, Technical Report 05-05, Industrial and Operations Engineering, Uni-
versity of Michigan, Ann Arbor, 2005.

[3] Bertsekas, D. P., Dynamic programming and optimal control, volumes 1 and 2, Athena Scien-
tific, Belmont, MA, USA, 1995.

[4] Bertsekas, D. P., and Tsitsiklis, J. N., Neuro-dynamic programming, Athena Scientific, Bel-
mont, MA, USA,1996.

[5] Blondel, V. D., and Tsitsiklis, J. N., A survey of computational complexity results in systems
and control, Automatica, 36, 2000.

[6] Brown, G. W., Iterative solution of games by fictitious play, in Activity Analysis of Production
and Allocation, Wiley, New York, NY, USA, 1951.

[7] Chang, H. S., Fu, M.C., Hu, J., and Marcus, S. I., An adaptive sampling algorithm for solving
Markov decision processes, Operations Researh, 53 (1), 126-139, 2005.

[8] Chang, H. S., Fu, M. C., Hu, J., Marcus, S. I., A survey of some simulation-based algorithms
for Markov decision processes, Communications in Information and Systems, 7 (1), 59-92,
2007.

[9] Chang, H.S., Fu, M.C., Hu, J., Marcus, S.I., Simulation-based algorithms for Markov decision
processes, Springer, London, UK, 2007.

[10] Cheng, S. F., Epelman, M. A., Smith, R. L., CoSIGN: a parallel algorithm for coordinated
traffic signal control, IEEE Transactions on Intelligent Transportation Systems, 7 (4), 551-564,
2007.

[11] Chu, P. C., and Beasley, J. E., A genetic algorithm for the multi-dimensional knapsack problem,
Journal of Heuristics, 4, 63-86, 1998.

[12] Feller, W., An introduction to probability theory and its applications, John Wiley and Sons,
New York, NY, USA, 1970.

[13] Fudenberg, D., and Tirole, J., Game Theory, MIT Press, Cambridge, MA, USA, 1991.

[14] Garcia, A., Reaume, D., Smith, R.L., Fictitious play for finding system optimal routings in
dynamic traffic networks, Transportation Research B, Methods, 34 (2), 2000.

27

[15] Garcia, A. Patek, S. D., and Sinha, K., A decentralized approach to discrete optimization via
simulation: application to network flows, Operations Research, 55 (4), 2007.

[16] Garcia, A. and Campos, E., Game theoretic approach to efficient power management in sensor
networks, Operations Research, 56 (3), 2008.

[17] Ghate, A. V., Game theory, Markov chains and infinite programming: three paradigms for
optimization of complex systems, Ph.D. Thesis, Industrial and Operations Engineering, The
University of Michigan, Ann Arbor, 2006.

[18] Gershwin, S. B., Manufacturing systems engineering, Prentice-Hall, Englewood Cliffs, NJ,
USA, 1994.

[19] Gigerenzer, G., and Selten, R., Bounded rationality, MIT Press, Cambridge, MA, USA, 2002.

[20] Lambert, T.J., Epelman, M.A., and Smith, R.L., A fictitious play approach to large-scale
optimization, Operations Research, 53 (3), pp. 477-489, 2005.

[21] Lambert, T. J., and H. Wang, Fictitious play approach to a mobile unit situation awareness
problem, Technical Report, University of Michigan, Ann Arbor, 2003.

[22] Marden, J. R., Arslan, G., and Shamma, J. S., Joint strategy fictitious play with inertia for
potential games, 44th IEEE Conference on Decision and Control, December 2005.

[23] Marden, J. R., Young, H. P., Arslan, G., and Shamma, J. S., Payoff-based dynamics for
multiplayer weakly acyclic games, SIAM Journal of Control and Optimization, 48 (1), 373-
396.

[24] Monderer, D., Shapley, L., Fictitious play property for games with identical interests, Journal
of Economic Theory, 68, 258-265, 1996.

[25] Ostermiller, S., http://ostermiller.org/tictactoeexpert.html, last accessed August 3, 2010.

[26] Powell, W., Approximate dynamic programming: solving the curses of dimensionality, John
Wiley and Sons, New York, NY, USA, 2007.

[27] Puterman, M., Markov Decision Processes, John Wiley and Sons, New York, NY, USA, 1994.

[28] Rajaraman, K. and Sastry, P. S., Finite time analysis of the pursuit algorithm for learning
automata, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26 (4), 590-598,
1996.

[29] Robinson, J., An iterative method of solving a game, Annals of Mathematics, 54, 296-301,
1951.

[30] Stout, W., Almost sure convergence, Academic Press, New York, NY, 1974.

[31] Sutton, R. S. Open theoretical questions in reinforcement learning. In Fischer, P.,
and Simon, H.U. (Eds.), Proceedings of the Fourth European Conference on Compu-
tational Learning Theory (Proceedings EuroCOLT99), pages 11-17, 1999. Springer- Verlag.
ftp://ftp.cs.umass.edu/pub/anw/pub/sutton/sutton-99.ps

[32] Sutton, R., and Barto, A., Reinforcement learning: an introduction, MIT Press, Cambridge,
MA, USA, 1998.

28

[33] Tsitsiklis, J. N., On the convergence of optimistic policy iteration, Journal of Machine Learning
Research, 3, 59 - 72, 2002.

[34] Watkins, C., and Dayan, P., Technical Note: Q-Learning, Machine Learning , 8, 279-292, 1992.

[35] Young, H. P., Evolution of conventions, Econometrica, 61 (1), 57-84, 1993.

29

