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Optimal solutions for the Balanced Minimum

Evolution Problem

Roberto Aringhieri∗ Daniele Catanzaro† Marco Di Summa‡

February 24, 2011

Abstract

Phylogenies are trees representing the evolutionary relationships of a
set of species (called taxa). Phylogenies find application in several scien-
tific areas ranging from medical research to drug discovery, epidemiology,
systematics and population dynamics. In these applications the available
information is usually restricted to the leaves of a phylogeny and is rep-
resented by molecular data extracted from the species analysed. On the
contrary, the information about the phylogeny itself is generally missing
and must be determined by solving an optimisation problem, called the
Phylogeny Estimation Problem (PEP), whose versions depend on the cri-
terion used to select a phylogeny among plausible alternatives.

In this paper, we investigate one of the most significant versions of the
PEP, called the Balanced Minimum Evolution Problem. We propose an
exact algorithm based on the enumeration of non-isomorphic trees and the
subsequent solution of quadratic assignment problems. Furthermore, by
exploiting the underlying parallelism of the algorithm, we present a parallel
version of the algorithm which shows a linear speed-up with respect to the
sequential version. Extensive computational results prove the effectiveness
of the proposed algorithms.
Keywords: combinatorial optimisation, quadratic assignment, computa-
tional biology, balanced minimum evolution.

1 Introduction

Molecular phylogenetics studies the hierarchical evolutionary relationships
among organisms (also called taxa). Starting from the evaluation of dissim-
ilarity of molecular data extracted from taxa, molecular phylogenetics aims at
reconstructing the evolutionary history (phylogeny) that, from a hypothetical
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sité Libre de Bruxelles (U.L.B.). Boulevard du Triomphe, CP 210/01, B-1050, Brussels,
Belgium.
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common ancestor, have given rise to the various taxa that can be observed at
present.

Phylogenies find application in several scientific areas ranging from medical
research to drug discovery, epidemiology, systematics and population dynam-
ics [16, 19]. In these applications the available information is usually restricted
to taxa, which are represented by means of molecular data extracted from the
species analysed, such as DNA, RNA, amino acid or codon fragments. On the
contrary, the information about the phylogeny itself is generally missing and
can be determined by solving an optimisation problem, called the Phylogeny
Estimation Problem (PEP), whose versions depend on the criterion used to se-
lect a phylogeny among plausible alternatives [8]. In this article we investigate
one of the most significant versions of the PEP, first introduced by Pauplin [21]
and known as the Balanced Minimum Evolution Problem (BMEP).

Homo

Pan

Gorilla

76

82

14

94

70

199 Pongo

457 Macaca

Leaf or taxon
(observed species)

Edge
 (evolutionary relationship)

Internal vertex
(hypothetical
 ancestor)

Figure 1: An example of a phylogeny with five taxa (Homo, Pan, Gorilla, Pongo
and Macaca) and three internal vertices (•). The picture is from [8].

A phylogeny is usually represented by means of a weighted tree (see Fig-
ure 1). The leaves of the tree correspond to taxa, whereas the internal vertices
represent the intermediate ancestors. Edges indicate evolutionary relationships
between organisms. Every edge has a weight, which is a measure of the dis-
similarity between the species associated with its endpoints.1 Without loss of
generality, every internal vertex is assumed to have degree equal to 3: if this is
not the case, it is easy to add dummy nodes and edges with weight zero so that
an equivalent phylogeny is obtained, where the degree of each internal vertex
is 3 [8].

1This dissimilarity measure is based on molecular data extracted from the species (see,
e.g., [10] for a discussion of this topic).
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Given a set Γ of n taxa, consider an n × n symmetric distance matrix D,
whose generic entry dij , i, j ∈ Γ, represents a measure of dissimilarity between
the corresponding pair of molecular data. Then the BMEP consists in finding a
phylogeny T , having Γ as leaf set, that minimises the following length function:

`(T ) =
∑

e∈T
we =

∑

i,j∈Γ

dij

2τ
T
ij

, (1)

where we is the weight of the edge e in the phylogeny T , and for i, j ∈ Γ, τTij
is the number of edges belonging to the path between i and j in T . In the
following, for the sake of simplicity, we write τij instead of τTij . In other words,
the set of feasible solutions of the BMEP is the set of all phylogenies with n
leaves, and one is required to select a phylogeny minimising function (1).

The meaning and the properties of length function (1) have been discussed
in depth in [12, 21]. Specifically, the peculiar expression of the objective mainly
derives from a modification of the Ordinary Least-Squares edge weight estima-
tion model [8] in which each edge weight, inducing a bipartition on the set of
leaves of T , is independent of the cardinality of such subsets. Such a mod-
ification makes the length function independent of the edge weights we and
dependent only on the topological distances τij . We refer the interested reader
to the seminal works of [12, 21] for an introduction and to [14, 9] for a systematic
discussion of the combinatorial nature of the BMEP.

The optimal solution T ∗ of the BMEP is known to be statistically consis-
tent, i.e., as the amount of molecular data analysed from taxa increases, T ∗

approaches the phylogeny that one would obtain if all the molecular data from
taxa were available [12]. For this reason at least, solving exactly the BMEP is
highly desirable. To the best of our knowledge, the only attempts to exactly
solve instances of the BMEP are restricted to the use of implicit enumeration
algorithms, such as those recently proposed by Pardi [20]. Specifically, from
the combinatorial interpretation of the length function (1) given in [24], Pardi
derived a number of lower bounds for the problem that led to an exact branch-
and-bound algorithm.

Though it is not known whether the BMEP is NP-hard, this problem seems
to be very difficult to solve. This has justified the development of heuristic solu-
tion approaches, such as that proposed by Desper and Gascuel [12]. Specifically,
the authors proposed a O(n3) constructive greedy heuristic that, starting from
a partial phylogeny Tm of Γ, i.e., an m-leaf phylogeny whose leaves are taxa of
a subset Γ′ ⊂ Γ with |Γ′| = m, iteratively constructs partial phylogenies with
an increasing number of leaves until all taxa in Γ are included.

In this paper we propose an innovative method to find exact solutions of
the BMEP based on an explicit enumeration approach. More specifically, we
exploit a tree coding model to provide an efficient representation of BMEP
solutions, and the isomorphism between trees to reduce the solution space,
i.e., the number of solutions enumerated. (By “tree isomorphism” we mean a
bijection between the vertex sets of two trees that preserves node adjacency; see
Section 2 for a more formal definition.) The resulting algorithm can be seen as
an interaction of a first phase in which unlabeled non-isomorphic spanning trees
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are generated, and a second phase in which a Quadratic Assignment Problem
(QAP) [11] is solved. Furthermore, by exploiting the underlying parallelism
of the algorithm, we present a parallel version of the algorithm which shows a
linear speed-up with respect to the sequential version.

The rest of the paper is organised as follows. In Section 2 we investigate
the relationship between the BMEP and the QAP. In Section 3 we present
our algorithms for the BMEP and we point out that our approach can be
easily extended to deal with the problem of finding the optimal phylogeny with
respect to other evaluation criteria. In Section 4 we discuss the computational
experiments carried out on some biological datasets and compare our results
with those obtained by our implementation of Pardi’s algorithm [20]. Section 5
closes the paper.

2 The BMEP and the QAP

Given a set Γ of n taxa, we formally define a phylogeny for Γ as a tree T such
that the leaf set of T is Γ and every non-leaf node of T has degree 3. Note
that any phylogeny for Γ has exactly (n−2) non-leaf nodes (also called internal
nodes). We denote by T the set of all phylogenies for Γ.

We remark that we are not interested in labeling the internal nodes of a
phylogeny. In fact, when reconstructing the evolutionary history of the taxa in
Γ, the ancestors (i.e., the internal nodes) are not known; once a phylogeny T
for Γ is given, the biological role of the internal nodes is implicitly determined
by the structure of T itself.

Two phylogenies T1, T2 ∈ T are said to be isomorphic if there exists a graph
isomorphism between T1 and T2, i.e., if there exists a bijection ϕ from the vertex
set of T1 to that of T2 such that any two nodes u, v are adjacent in T1 if and only
if ϕ(u), ϕ(v) are adjacent in T2. Thus, if we ignore the labels of the leaves (i.e.,
the correspondence between leaves and taxa), it is impossible to distinguish
between two isomorphic phylogenies. Hence, given a phylogeny T , we consider
all phylogenies that are isomorphic to T as a single unlabeled phylogeny. More
formally, an unlabeled phylogeny can be seen as an equivalence class with re-
spect to the relation of isomorphism on the set of phylogenies. To stress the
contrast with unlabeled phylogenies, we will sometimes use terminology labeled
phylogenies to indicate phylogenies.

Note that the operation of selecting a phylogeny for Γ can be thought as a
sequence of two sub-operations: first choosing an unlabeled phylogeny and then
assigning taxa to leaves (as observed above, we are not required to consider the
assignment of intermediate ancestors to internal nodes.) We now show that
if we ignore the former sub-operation and restrict ourselves to a given class
of isomorphic phylogenies, then the BMEP reduces to an instance of the well
known Quadratic Assignment Problem (QAP) [11].

Let U be an unlabeled phylogeny for Γ and L be the set of leaves of U .
Then the BMEP, restricted to those labeled phylogenies T whose corresponding
unlabeled phylogeny is U , consists in assigning taxa to the leaves of U so that
the length function (1) is minimised. This problem can be formally stated as
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follows:

Formulation. Leaf-Assignment Problem:

Find a bijection σ : Γ 7→ L minimising
∑

i,j∈Γ

dij
2τσ(i)σ(j)

. (2)

The formulation given by (2) is an instance of the QAP. In the next section we
shall exploit the relation between the BMEP and the QAP to develop an exact
approach to determine an optimal solution of the problem.

3 An exact algorithm for the BMEP

Given a set Γ of n taxa, the number of possible phylogenies for Γ is |T | =
(2n − 5)!! = 1 · 3 · 5 · · · (2n − 5) (see [13]). A possible natural approach to
exactly solve instances of the BMEP consists in enumerating all phylogenies
T ∈ T , computing `(T ) for each T ∈ T , and returning a phylogeny for which
the value `(T ) is minimum. However, as the number of phylogenies grows up
exponentially in function of n, such an enumerative approach becomes quickly
intractable even for small values of n (e.g., n > 10).

Labeled Unlabeled
Taxa phylogenies phylogenies

4 3 1
5 15 1
6 105 2
7 945 2
8 10,395 3
9 135,135 4

10 2,027,025 11
11 34,459,425 18
12 654,729,075 37

Labeled Unlabeled
Taxa phylogenies phylogenies

13 ∼ 1.4 · 1010 66
14 ∼ 3.2 · 1011 135
15 ∼ 7.9 · 1012 265
16 ∼ 2.1 · 1014 552
17 ∼ 6.2 · 1015 1132
18 ∼ 1.9 · 1017 2410
19 ∼ 6.3 · 1018 5098
20 ∼ 2.2 · 1020 11,020
25 ∼ 2.5 · 1028 565,734

Table 1: Number of labeled and unlabeled phylogenies for a given number of
taxa.

However, as shown in Table 1, the number of unlabeled phylogenies, though
yet characterised by an exponential growth, is in general much smaller than
the number of labeled phylogenies. Hence, an alternative and possibly better
approach to solution of the BMEP could consists of the following phases:

1. Enumerate all unlabeled phylogenies with n leaves;

2. For each unlabeled phylogeny, solve the Leaf-Assignment Problem stated
in (2): this gives an optimal labeled phylogeny within a single class of
isomorphic phylogenies;

3. Among the optimal labeled phylogenies found in Step 2, return one min-
imising (1).
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Implementing this approach is however nontrivial, as it requires an efficient
algorithm for enumerating the unlabeled phylogenies for Γ and a fast optimi-
sation algorithm for solving the QAP (2). In the next subsections we discuss
how to implement this strategy.

3.1 Enumerating unlabeled phylogenies

The problem of generating the set of unlabeled phylogenies with n taxa can be
seen as a special case of the enumeration of degree-constrained trees. Aringhie-
ri, Hansen and Malucelli [1] proposed several new algorithms for generating this
kind of trees. In particular, they tested their algorithms generating the alkane
molecular family, which consists of trees having maximum degree equal to four.
Among the algorithms presented in [1], we adopt the one-to-one enumeration
method, as it can be easily extended to face the problem of generating unlabeled
phylogenies.

The one-to-one enumeration method simply generates a tree with k vertices
by adding t vertices to a tree with k − t vertices in such a way that the degree
constraint is still satisfied, where t is as small as possible. In the case of the
alkane family, t is equal to 1, whereas in the case of phylogenies, where the
degree of every internal node must be exactly equal to 3, t is equal to 2: a
phylogeny with k vertices can be obtained by connecting two new vertices to a
leaf belonging to a phylogeny with k − 2 vertices. Figure 2 depicts this type of
enumeration.

Figure 2: An example of one-to-one enumeration: tree with 8 vertices (5 taxa)
generated from a tree with 6 vertices (4 taxa).

To develop an efficient algorithm for degree-constrained trees enumeration,
trees should be suitably encoded, as a code can be easily handled by computer
programs. Several tree codes are proposed in the literature, see e.g., [17, 22, 26].
In our implementation, we use the CN -tuple code introduced in [15].

In order to define the CN -tuple code of a tree, we need to recall the concept
of center of a tree. Given a tree, iteratively perform the following operation: if
the tree has more than two nodes, remove all the leaves. When only one or two
nodes are left, the remaining node (or each of the remaining nodes) is called
the center of the tree.

Now, the CN -tuple code of a tree can be defined as follows. If the tree
consists of a single node, its code is 0. Otherwise, we proceed recursively as
follows. Let r be the center of the tree and let g be the number of vertices
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(v1, v2, . . . , vg) adjacent to r; we remove node r from the tree; we compute the
code of the subtrees rooted at v1, v2, . . . , vg; then we concatenate these codes
in such a way as to obtain a lexicographically maximum sequence S; finally,
the CN -tuple of the tree is given by the concatenation of g and S. In the case
of two center nodes r1 and r2, the CN -tuple is the lexicographically maximum
code between the CN -tuple for r1 and for r2. For instance, the CN -tuple code
for the two trees in Figure 2 are 320000 (tree (a)) and 32002000 (tree (b)).

As pointed out in [1], tree enumeration algorithms need methods to guar-
antee the unique enumeration of a tree. Let us consider the tree in Figure 2(a),
from which four trees can be generated by adding two vertices to each of the
four leaves. Since we are dealing with unlabeled trees, these four trees are
in fact the same tree 32002000, i.e., the one in Figure 2(b). This illustrates
multiple generation of a tree from the same initial tree. Another possibility is
multiple generation of a tree from different initial trees.

The former case can be managed by inspection detecting symmetries in the
starting tree: the use of coded trees make the implementation of this approach
easier, as described in [1]. The detection of multiple generation of a tree from
different trees can require more sophisticated techniques: Aringhieri, Hansen
and Malucelli [1] proposed an extension of the reverse search technique intro-
duced by Avis and Fukuda for the enumeration of vertices of polyhedra [2, 3].
We implement a detection algorithm based on hashing data structure: in our
computational test, hashing technique proves to be more efficient than the re-
verse search even though it requires a larger use of main memory.

3.2 Solving the QAP

For the solution of the QAP (2) we make use of the branch-and-bound by
Burkard and Derigs [6] that solves QAPs to optimality by means of a pertur-
bation method.

A Fortran code [7] is available for this algorithm: the code qapbb.f is a
modified version of that presented in [6] – a linear term can be included – and
is quite efficient on problems of size n ≤ 15. This routine accepts as input an
arbitrary QAP instance of size at most n ≤ 33 with integer data and returns
an optimal assignment. Since the coefficients in objective function (2) are not
integer, before calling Burkard’s routine we need to convert the coefficients
in (2) into integer values: this can be done by multiplying them by 2M · 10K ,
where M is the maximum number of edges between two leaves in the unlabeled
phylogeny and K is the maximum number of decimals in dij for i, j ∈ Γ.

3.3 The algorithm

We are now ready to present our exact algorithm for the BMEP, which given the
number of taxa n and the matrix D = {dij} of evolutionary distances between
pairs of taxa, computes a phylogeny T ∗ minimising the length function (1). The
algorithm, named BMEPsolver, is described in pseudo-code.

The conversion of D into a matrix with integer entries (line 2 of the al-
gorithm) is performed as explained in Section 3.2. The unlabeled phylogenies
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Algorithm 1: Algorithm BMEPsolver

Input : n (number of taxa); D (n× n distance matrix).
Output: T ∗ (optimal solution of (1)).

begin1

transform D into an integral matrix;2

z∗ ← +∞;3

enumerate all unlabeled phylogenies with n leaves;4

for each unlabeled phylogeny U do5

for each pair of taxa i, j do compute the edge distance τij ;6

(σ, z)← optimal solution and optimal value of (2);7

T ← corresponding labeled phylogeny;8

if z < z∗ then (T ∗, z∗)← (T, z);9

end10

(line 4) are enumerated as described in Section 3.1. The calculation of val-
ues τij (line 6) can be easily implemented by an iterated depth-first search on
U . Finally, problem (2) (line 7) is solved by means of Burkard’s routine (see
Section 3.2).

We remark that if one wishes to solve several different instances of the
BMEP with the same number of taxa n, the routine for enumerating the un-
labeled phylogenies with n taxa needs to be run just once and the list of tree
codes can be stored in a text file. Line 4 will then consist in just reading a new
string from the text file.

We also point out that our approach can be seen as a general purpose algo-
rithm for determining the optimal phylogeny with respect to different evaluation
criteria, such as those reported in [8]: given an evaluation criterion defined on
unlabeled phylogenies, our approach can be adapted by simply including in
line 7 of the algorithm a procedure for determining the exact solution for the
corresponding optimisation problem.

3.4 Parallel implementation

Algorithm BMEPsolver is particularly fit for parallelization. Specifically, the
following straightforward parallelization is proposed: given processes p0, . . . , pk,
process p0 enumerates all unlabeled phylogenies; for each unlabeled phylogeny,
p0 sends the corresponding encoding to one of processes p1, . . . , pk, which exe-
cutes steps 6–8 of Algorithm BMEPsolver and then sends back the optimal
assignment to process p0. Figure 3 depicts our parallel implementation.

4 Computational experiments

In this section we discuss some computational experiments testing BMEP-
solver on a set of biological instances. We compare the performance of our
algorithm with that of our implementation of Pardi’s algorithm. Finally, we
discuss and test the parallel implementation of the algorithm.
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Figure 3: Description of the parallel algorithm.

4.1 Computational environments

All the algorithms proposed are coded in C standard and compiled using the
GNU compiler gcc. MPI [25] is used for the parallel version of the algorithm.
The tests comparing our sequential algorithm with that of Pardi were run on
a machine with 2.4 GHz CPU and 512 MB of RAM, while the experiments
comparing the sequential and the parallel version of BMEPsolver were run
on a cluster with 18 4-ways nodes AMD Opteron 2.2 GHz CPU single core and
2 GB of RAM, and 37 2-ways nodes with AMD Opteron 2.2 GHz CPU dual
core with 4 GB of RAM, running under Linux operating system and maintained
at Cilea, Italy.

An instance of BME is usually constituted by a set of molecular sequences
(typically DNA or protein sequences) that are appropriately preprocessed, e.g.,
by means of estimation procedures such as those described in [10], and trans-
formed in pairwise distances {dij}. Here we consider a number of real aligned
DNA datasets, as described in Table 2: for each dataset, we give the number
of molecular sequences (i.e., the number of taxa) contained in the dataset, the
number of characters that form each sequence, and the biological entity from
which the molecular sequences are taken. From each dataset we have extracted
the first 20 taxa (or all taxa if the dataset contains less than 20 taxa) and built
the associated distance matrices by using the General Time Reversible (GTR)
model of DNA sequence evolution [23, 18, 27]. The estimation method used
to obtained GTR distances is described in [10]. Moreover, from each distance
matrix we have extracted the corresponding k-th leading principal submatrices,
k ∈ {10, . . . ,max}, where max is 12 for Primates12, 17 for M17, 18 for M18,
and 20 for the remaining datasets, generating therefore an overall number of 84
real instances of the BMEP. The distance matrices are available at the following
url: http://homepages.ulb.ac.be/~dacatanz/COR_ACD.zip.

4.2 Comparison with Pardi’s algorithm

To the best of our knowledge, the only attempts to exactly solve instances of the
BMEP are restricted to the use of implicit enumeration algorithms. One of the
most efficient algorithms for the BMEP was recently proposed by Pardi [20].
Specifically, from the combinatorial interpretation of the length function (1)
given in [24], Pardi derived a number of lower bounds for the problem that
led to an exact branch-and-bound algorithm. We report on the comparison
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Number of Characters Extracted
Dataset name sequences per sequence from

M18/8128 18 8128 cetacea
M43/2086 43 2086 mammals
M62/3768 62 3768 hyracoidae
M82/2062 82 2062 fungi
M17/2550 17 2550 insects
RbcL55/1314 55 1314 rbcL gene
Rana64/1976 64 1976 ranoid frogs
Plant25/19784 25 19784 pinoles
Primates12/898 12 898 primates

Table 2: Description of the instances.

between the performance of BMEPsolver and our implementation of Pardi’s
algorithm.

First, we remark that, because of the observation made in Section 3.3, the
computing time for BMEPsolver does not include the time needed to generate
the list of encodings of all unlabeled phylogenies (anyway, this amount of time
is negligible – as reported in Table 3 – since in our case the largest instances
have 20 taxa).

Unlabeled Time
Taxa phylogenies (s)

20 11020 0.070
21 23846 0.161
22 52233 0.387
23 114796 1.008

Unlabeled Time
Taxa phylogenies (s)

24 254371 2.796
25 565734 8.400
26 1265579 24.537
27 2841632 71.496

Table 3: Computing time for enumerating unlabeled phylogenies.

We tried to solve the instances described in Section 4.1 both with Pardi’s
algorithm and with BMEPsolver. In both cases, the time limit was set to
one hour. For each instance, the computation time (in seconds) and the best
solution found are given in detail in the appendix (Table 8). When the algo-
rithm terminates within the time limit, the best solution is indeed the optimal
solution, whilst “N/A” indicates that the algorithm could not find any feasible
solution within the time limit.

For the sake of readability, a compact summary of the results is given in
Tables 4 and 5: in the former table the instance are grouped by family, while
in the latter table the instances are grouped by number of taxa. In both Tables
4 and 5 we report the number of instances for which BMEPsolver performed
better than Pardi’s algorithm, separating the cases in which at least one or
neither of the algorithms could terminate within the time limit. The reason for
this distinction is the following: when at least one of the algorithms terminated
within the time limit, the performance of an algorithm is considered better than
that of the other if it could find the optimal solution faster, while in the other
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case, an algorithm is considered better than the other if it could find a better
feasible solution.

Algorithms within time limit?
Instance family At least one Neither Total

M18 6/6 0/3 6/9
M43 3/8 1/3 4/11
M62 1/8 1/3 2/11
M82 6/6 4/5 10/11
M17 3/8 0/0 5/8
RbcL55 4/6 5/5 9/11
Rana64 0/7 2/2 2/9
Plant25 5/7 3/4 8/11
Primates12 1/3 0/0 1/3

Total 29/59 16/25 45/84

Table 4: Performance of BMEPsolver compared with Pardi’s algorithm, with
the results grouped by instance family. An entry of the form a/b indicates that
BMEPsolver performed better than Pardi’s algorithm on a instances over a
total of b instances.

The results show that 50 of the 84 instances were solved to optimality by
both algorithms. For 25 of these 50 instances, BMEPsolver was faster than
Pardi’s algorithm, while for the other 25 instances Pardi’s routine was faster.
For 9 instances, exactly one of the two algorithms could find the optimal solu-
tion within the time limit: 4 of these 9 instances were solved to optimality by
BMEPsolver and the other 5 by Pardi’s algorithm. Thus, if we consider these
50 + 9 = 59 instances, we can see that neither of the two algorithms dominates
the other. Finally, for the remaining 25 instances neither algorithm terminated
within the time limit. It is worth noting that for 16 of these instances the best
feasible solution found by Algorithm BMEPsolver was better than that found
by Pardi’s routine.

Table 4 highlights that for some specific families of instances, one algo-
rithm seems to be much more effective than the other. It is natural to be-
lieve that the reason for this phenomenon lies in the properties of the dis-
similarity matrices. We have observed that in some cases, e.g., when the
dissimilarity matrix approaches an additive matrix (i.e., a matrix such that
dij + dpq ≤ max{dip + djq, diq + djp} for all i, j, p, q ∈ Γ), the problem is usu-
ally more prone to be solved by Pardi’s algorithm (see [4, 5, 8] for a more
detailed discussion on additive matrices). However, this is not a general trend.
At present, despite our efforts, it seems very hard to formalize the properties
that a distance matrix must satisfy in order to be better tackled with Pardi’s
algorithm rather than with another approach.

We can conclude that there is no clear supremacy of one of the two algo-
rithms, though on the instances tried BMEPsolver performs slightly better
than Pardi’s. Moreover, if we consider all the instances having a given number
of taxa and restrict ourselves to those instances for which both algorithms could

11



Algorithms within time limit?
Taxa At least one Neither Total

10 6/9 0/0 6/9
11 5/9 0/0 5/9
12 6/9 0/0 6/9
13 4/8 0/0 4/8
14 4/8 0/0 4/8
15 3/8 0/0 3/8
16 1/5 2/3 3/8
17 0/3 4/5 4/8
18 0/0 3/7 3/7
19 0/0 5/5 5/5
20 0/0 2/5 2/5

Total 29/59 16/25 45/84

Table 5: Performance of BMEPsolver compared with Pardi’s algorithm, with
the results grouped by number of taxa. The meaning of the entries is as in
Table 4.

terminate within the time limit, we can observe that the average running time
of BMEPsolver was almost always much smaller than the average running
time of Pardi’s algorithm: this is shown in Table 6. There is a single exception,
namely for the case of 16 taxa. However, we remark that the number of in-
stances considered in that case is only 2, thus the average is not really relevant
from a statistical point of view.

Number of Average running time (s)
Taxa instances Pardi’s algorithm BMEPsolver

10 9 0.63 0.16
11 9 3.93 0.88
12 9 23.67 4.36
13 8 94.96 20.46
14 7 198.43 123.93
15 6 755.74 568.24
16 2 543.48 1808.32

Table 6: Average running times on instances with the same number of taxa.
Only instances for which both algorithms could terminate within the time limit
are considered (this never happened with more than 16 taxa).

The fact that the performance of our algorithm is at least as good as that
of Pardi’s is particularly remarkable if we keep in mind that in line 7 of Algo-
rithm BMEPsolver we make use of a general routine for solving an arbitrary
QAP problem, and that our approach can be generalized to other evaluation
criteria.
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4.3 Results for the parallel version of the algorithm

In Tables 9–11 in the appendix, we report on the comparison between the
sequential and the parallel version of Algorithm BMEPsolver, with 8, 16
and 32 processes respectively. For both versions of the algorithm, we give
the computing time (time limit set to one hour) and the number of unlabeled
phylogenies analysed. The total number of unlabeled phylogenies for a given
number of taxa has been provided in Table 1. The last column of Tables 9–11
gives the speed-up of the parallel implementation with respect to the sequential
one. This value is computed as follows. Let ts and tp be the computing time
for the sequential and parallel version of the algorithm respectively; also, let ns
and np be the number of unlabeled phylogenies analysed by the sequential and
parallel version of the algorithm respectively. Then

speed-up =
np/tp
ns/ts

.

This expression is the ratio between the number of unlabeled phylogenies anal-
ysed by the parallel algorithm in one second and the number of unlabeled phy-
logenies analysed by the sequential algorithm in one second. Note that when
both algorithms terminate within the time limit, this ratio is just ts/tp, while
when neither algorithm terminates within the time limit the ratio is simply
np/ns.

In Table 7 we give a summary of the results reported in Tables 9–11 with
the instances grouped by number of taxa.

In a “perfect” parallel implementation, the speed-up should ideally be equal
to the number of processes used, that is 7 (resp., 15, 31) for the parallelization
with 8 (resp., 16, 32) processes. In fact, for the instances of medium size
the speed-up is really close to the ideal value. This is not the case when the
instances are small, as in this case the time required to set up the parallel
environment is not negligible with respect to the time needed for solving the
QAPs. On the other hand, when the instances are large, the number of trees
analysed within the time limit by the sequential algorithm is too small to give
an accurate estimation of the speed-up.

5 Conclusions and future work

In this paper, we present an innovative method for computing exact solutions
for the Balanced Minimum Evolution Problem based on an explicit enumera-
tion approach. The main idea is to exploit an efficient tree coding model and
tree-isomorphism to reduce the solution space. The resulting algorithm can be
seen as an interaction of a first phase in which unlabeled phylogenies are gener-
ated, and a second phase in which the Leaf-Assignment Problem (a particular
instance of Quadratic Assignment Problem) is solved.

We report an extensive computational analysis on instances obtained by
real datasets, providing also a comparison with our implementation of Pardi’s
algorithm, which is the only other exact algorithm for solving the Balanced
Minimum Evolution Problem. Computational results show the effectiveness

13



Average speed-up
Taxa 8 processes 16 processes 32 processes

10 0.36 0.17 0.18
11 1.37 0.76 0.96
12 2.45 3.29 2.17
13 4.99 6.91 6.76
14 5.70 10.06 13.86
15 6.28 11.40 18.03
16 6.66 13.23 23.66
17 6.70 13.54 25.43
18 6.20 13.65 27.56
19 7.97 17.33 34.94
20 8.10 21.73 41.93

Table 7: Performance of the parallel implementation of BMEPsolver, with
the instances grouped by number of taxa. The average speed-up is calculated
as a geometric mean.

of the proposed method. Moreover, exploiting the underlying parallelism, we
present a parallel version of the algorithm showing a linear speed-up.

As a direction for future research, we observe that since we make use of a
routine that solves a general QAP, it would be interesting to refine our algorithm
by developing a procedure that better tackles the Leaf-Assignment Problem (2).
In other words, it is possible that better results can be achieved by exploiting
the particular structure of the QAPs that we have to solve.

Furthermore, as already discussed in Section 4.2, it would be useful to under-
stand which properties of the dissimilarity matrix make an instance particularly
prone to be solved by a specific algorithm.

Finally, an interesting open question concerns the complexity of the BMEP:
to date, it is not known whether this is an NP-hard problem.
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Appendix. Detailed computational results

We conclude the paper with the detailed computational results for the exper-
iments described in Section 4. Tables summarizing the results presented here
have been given in Section 4.
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