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a b s t r a c t

A hot strip mill (HSM) produces hot rolled products from steel slabs, and is one of the most important

production lines in a steel plant. The aim of HSM scheduling is to construct a rolling sequence that

optimizes a set of given criteria under constraints. Due to the complexity in modeling the production

process and optimizing the rolling sequence, the HSM scheduling is a challenging task for hot rolling

production schedulers. This paper first introduces the HSM production process and requirements, and

then reviews previous research on the modeling and optimization of the HSM scheduling problem.

According to the practical requirements of hot rolling production, a mathematical model is formulated

to describe two important scheduling sub-tasks: (1) selecting a subset of manufacturing orders and

(2) generating an optimal rolling sequence from the selected manufacturing orders. Further, hybrid

evolutionary algorithms with integration of genetic algorithm (GA) and extremal optimization (EO) are

proposed to solve the HSM scheduling problem. Computational results on industrial data show that the

proposed HSM scheduling solution can be applied in practice to provide satisfactory performance.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A hot strip mill (HSM) produces hot rolled products from steel
slabs, and is one of the most important production lines in an
integrated mill or mini-mill [1,2]. Besides the process control
strategies such as automatic gauge control and rolling force
prediction, production planning and scheduling also significantly
affects the performance of a hot strip mill in terms of product
quality, throughput and on-time delivery. As a consequence, HSM
scheduling has become a critical task in a steel plant. Generally
speaking, the primary aim of a HSM scheduling solution is to
generate an optimal production sequence consisting of a single
rolling round or multiple consecutive rounds (or so-called cam-
paign). A rolling round must optimize a set of given criteria and
satisfy a series of constraints, such as the ‘‘coffin shape’’ of width
profile, the smooth jumps in dimensions and hardness between
adjacent coils, the minimal and maximal number of coils or
footages, the maximal number of coils with the same width, the
maximal number of short slabs, work-in-process (WIP) inventory
and on-time delivery.
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Due to the large number of manufacturing orders, multiple
conflicting objectives and various production constraints, the
HSM scheduling problem has been proven to be a typical non-
deterministic polynomial (NP)-hard combinatorial optimization
problem [3–5]. It is almost impossible to generate an optimal
scheduling solution by human schedulers or traditional mathe-
matical programming methods. Balas [3] formulated the round
scheduling problem as a generalized traveling salesman problem
(TSP) with multiple conflicting objectives and constraints. Kosiba
et al. [6] stated that the minimization of roller wears is equivalent
to the composite objective of improving product quality, produc-
tion rate and profits, and the roller wears can be measured by a
penalty function which is determined by the jump values in
width, gauge and hardness between adjacent coils. Assaf et al. [7]
incorporated four key sub-models (i.e., rolling mill, reheat fur-
nace, heat loss and cost calculation), and developed an enumera-
tion based branching and pruning algorithm to generate
scheduling solutions for the steel production sequence problem.
Lopez et al. [4] presented an aggressive heuristic to solve the HSM
scheduling problem. The heuristic repeatedly applies the tabu
search method and the CROSS exchange operator in the canniba-
lization stage. Tang and Wang [8] modeled the hot rolling
production scheduling problem as a prize collecting vehicle
routing problem (PCVRP), for which an iterated local search
algorithm (ILS) was proposed on the basis of very large-scale
neighborhood (VLSN) using cyclic transfer. Due to the complexity
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of the scheduling models and the inefficiency of mathematical
programming methods, various intelligent methods, including
local search and greedy algorithm [9–11], genetic algorithm
[12–14], tabu search [15] and particle swarm optimization [29]
have been widely applied in past decades to solve the HSM
scheduling problem. Furthermore, scheduling systems with dif-
ferent features have also been developed. Cowling [16] introduced
a semi-automatic decision support system featured with a multi-
objective scheduling model, and the model was solved by a variety
of bespoke local search and tabu search methods. Knoop and Van
Nerom [17] proposed a scheduling architecture for an integrated
steel plant. In the IBM research reports, the overall scheduling in
steel manufacturing process was decomposed as primary produc-
tion scheduling [1] and finishing line scheduling [18].

By referring to the existing scheduling models, algorithms and
systems in steel industry, this study explores the development of a
practical HSM scheduling solution. A mathematical model is first
formulated to describe two important scheduling sub-tasks:
(1) selecting a subset of manufacturing orders and (2) generating
an optimal rolling sequence from the selected manufacturing
orders. Hybrid evolutionary algorithms with integration of genetic
algorithm (GA) and extremal optimization (EO) are further pro-
posed to solve the HSM scheduling problem in a practical way.

The rest of this paper is organized as follows: Section 2
introduces the HSM production process and its scheduling objec-
tives and constraints; Section 3 presents a mathematical schedul-
ing model; Section 4 focuses on solving the HSM scheduling
problem by proposing hybrid evolutionary algorithms and devel-
oping a practical scheduling system. Computational results on
industrial data are reported in Section 5. Finally, Section 6
concludes this paper.

2. Problem statement

2.1. Production process

Usually, a hot rolling production line consists of reheating
furnaces, a set of roughing mills and finishing mills, a water-
cooler and a coiler as schematically shown in Fig. 1.

In a hot rolling mill, the steel slabs from continuous casters or
slab yards are first charged to a working beam or push type
reheating furnace, and then the heated slabs discharged from the
reheating furnace are processed through a set of roughing stands
which make use of horizontal rollers to reduce the slab thickness
(initially 20–30 cm) and vertical rollers to regulate the slab width.
Subsequently, the intermediate slabs are loaded into a finishing
mill, in which 6–7 stands can further reduce the gauge and width
of slabs to desired values. After passing through the water-cooler
and the coiler, the raw slabs are finally converted to the finished
hot-rolled products with desired gauge (1.5–12 mm), width,
mechanical and thermal properties, and surface quality.

2.2. Scheduling objectives and constraints

Production scheduling, in general terms, is the process of
resource distribution and order arrangement for a period of time
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Fig. 1. Hot rolling p
under a set of given criteria and constraints. In hot rolling
production, as discussed above, the primary aim of a scheduling
solution is to construct an optimal production sequence which
can simultaneously finish two sub-tasks: (1) selecting a subset of
manufacturing orders with the ‘‘make-to-inventory’’ or ‘‘make-to-
order’’ principle and (2) generating an optimal rolling sequence.
Effective HSM scheduling is crucial to a steel plant’s competitive-
ness, since the hot rolling mill is one of the most important
production lines in steel industry [4]. In a hot rolling mill, the
finished products are produced by subjecting steel slabs to high
pressures through a series of rollers. As a consequence, the
working and backup rollers need to be replaced periodically due
to abrasions. Usually, the set of slabs rolled between two
consecutive replacements of working rollers is called a round,
and the set of slabs rolled between two consecutive replacements
of backup rollers is called a campaign. Fig. 2 illustrates the
empirical ‘‘coffin-shape’’ width profile of a rolling round and the
multiple rolling rounds of a campaign. As shown in the figure, a
coffin-shape rolling round mainly consists of two parts: the
warm-up section, in which several slabs (5–15) are rolled from
narrow to wide for warming up the rollers, and the body section,
in which a number of slabs are rolled from wide to narrow for
avoiding marks or grooves at the edge of rolled coilers.

In terms of their relative importance, the HSM scheduling
constraints can be classified into hard constraints and soft con-
straints. Hard constraints refer to those that cannot be violated in
the final scheduling solution. In the HSM scheduling problem, the
main hard constraints are as follows:
(1)
R

rodu
A rolling round has a ‘‘coffin shape’’ width profile, which
starts with a warm-up section having the width pattern of
narrow to wide, and follows a body section having the width
pattern of wide to narrow.
(2)
 The number of coils in a rolling round has lower and upper
bounds due to the capacity of the rollers.
(3)
 The changes in dimensions and hardness between adjacent
coils should be smooth in both warm-up and body sections.
This is because the rollers need to be adjusted for controlling
the dimension and hardness jumps on the entry and outlet
of mills.
(4)
 The number of coils with the same width to be processed
consecutively has an upper bound in a rolling round. Other-
wise the edges of slabs mark the rollers easily. In practice, this
is also called groove constraint.
oughing
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The number of short slabs in a rolling round has an upper
bound, because reheating furnaces are generally designed for
normal slabs and short ones are only used to fill in gaps.
Soft constraints, on the contrary, can be compromised and
violated according to their priorities. In this paper the following
soft constraints are considered for generating rolling rounds:
(1)
 To provide satisfactory delivery service and maintain lower
work-in-process (WIP) inventory, the hot-rolled products
should be processed near its due date, and not too early or
too late for decreasing earliness/tardiness (E/T) penalties.
(2)
 The hardness and desired surface quality of the coils pro-
cessed in a warm-up section should not be too high.
(3)
 The coils with high quality requirements should not be
processed in the rear part of a body section, because
the performance of rollers degrades with the increase of
rolling time.
In the HSM scheduling, there are a number of conflicting
objectives to be considered. For example, product quality and
production cost are two of the most common conflicting objec-
tives. To improve the product quality, the rollers need to be
replaced more frequently, which incurs extra production cost and
decreases the rate of throughput. Similarly, on-time delivery is in
conflict with low WIP inventory. Therefore, an effective schedul-
ing system should be capable of making tradeoffs among multiple
conflicting objectives. In the HSM scheduling, the optimization
objective is defined as the weighted combinations of the penalties
for width, gauge, hardness jumps between adjacent coils, the
penalties for the violation of short slab and groove constraints and
the due-date E/T penalties [4,14]. Generally, the HSM scheduling
system is situated in a dynamic environment. The manufacturing
orders are only known for a limited period, and new ones
transformed from customer orders are downloaded from upper-
level enterprise resource planning (ERP) and production planning
system periodically. This leads to the HSM scheduling being a
periodic process [15]. Therefore, we can schedule rolling rounds
one by one, and the HSM scheduling can be simplified to generate
an optimized rolling round by selecting and sequencing a subset
of coils from existing manufacturing orders.
3. Problem formulation

This section presents a mathematical HSM scheduling model.
Two scheduling sub-tasks as discussed above are considered
simultaneously. Traditionally, the HSM scheduling problem is
solved by using a sequential strategy, which first selects a subset
of manufacturing orders and then searches the optimal rolling
round within the selected orders. This strategy, although straight-
forward, can only find a local optimum for the round scheduling.
In this paper, the proposed scheduling model formulates the two
e 1
sition penalty for the changes in width, gauge and hardness.

idth range (cm) Inward jump (cm) Penalty Gauge range (mm

–100 0–3 1 1.2–3.0

–100 3–6 3 1.2–3.0

–100 6–9 10 1.2–3.0

y y y

–100 50– 500 1.2–3.0

y y y

0– 50– 1000 12.0–
coupling sub-tasks in an integrated way, and hence is beneficial to
find the globally optimal scheduling solution. First of all, the
scheduling solution is formulated as a directed graph G(V,A),
where the node set V ¼ ð1,2,. . .,NÞ represents N manufacturing
orders (coils) with desired attributes and due-date, and the arc set
denotes the transition trajectories between coils i and j. For each
arc (i,j), let cij denote the sequence-dependent penalty incurred by
rolling coil j immediately after coil i. As shown in Table 1, the
transition penalty can be measured according to the jump values
in dimensions and hardness between adjacent coils.

To enhance the accuracy of the penalty structure, the jump
values are scaled for different width or gauge rates. Undoubtedly,
a gauge jump of 0.15 mm for 1.5 mm coils is more difficult to
manipulate than the same jump for 7.5 mm coils.

To formulate a mathematical scheduling model, the para-
meters are defined as follows.

i,j number of coils
N total number of coils to be produced for manufactur-

ing orders
wi, gi, li,hi width, gauge, length and hardness of coil i

ui finished temperature of coil i in the outlet of
finishing mill

si logic symbol of short slabs, i.e., if the raw slab of
producing coil i is shorter than a predefined length,
si¼1, otherwise, si¼0

V width set of all coils to be produced, V ¼ fu1,u2,. . .,ukg

ðkrnÞ

Nu maximal number of coils with the same width to be
processed consecutively in a rolling round

Ns maximal number of short slabs in a rolling round
Ll,Lu minimal and maximal lengths of coils in a rolling round
cij transition cost for rolling coil j immediately after coil i

cii cost for not selecting coil i to the current rolling round
di due-date of coil i

pi processing time of coil i

ti starting time of processing coil i

Ts starting time of the current rolling round

We also define the following decision variables:

xij ¼
1 if coil j immediately follows coil i

0 otherwise

(

Since this paper aims to solve the two sub-tasks of order
selection and sequencing simultaneously, another decision vari-
able xii is defined below by analogy with the prize collecting TSP
model [4].

xii ¼
1 if coil i is not selected in the current rolling round

0 otherwise

(

The sequence-dependent transition cost cij can be defined as
cij ¼ pw

ij þpg
ijþph

ijþpt
ij, where pw

ij , pg
ij, ph

ij and pt
ij represent the width,
) Jump value (mm) Penalty Hardness jump Penalty

0–0.03 3 1 5

0.03–0.06 7 2 15

0.06–0.09 15 3 35

y y 4 50

0.45– 200 5 75

y y y y

0.45– 1000 9 1000
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gauge, hardness, and finished temperature transition cost respec-
tively. As discussed above, the transition cost can be measured by
the jump values of the parameters of every two adjacent coils. For
example, the finished temperature transition cost can be mea-
sured by a function pt

ij ¼ ptðuj�uiÞ. In practice, pw
ij , pg

ij and ph
ij are

usually defined by the penalty structure as shown in Table 1.
In the HSM scheduling, the optimization objective can be

decomposed into two parts according to the information require-
ments of evaluating fitness [19]: (1) local evaluation function
(LEF), which can be calculated by using only local information.
The LEF is defined as LEFðSÞ ¼

Pn
i ¼ 0

Pn
j ¼ 0 cijxij, which consists of

the sequence-dependent transition costs and the non-execution
penalties [20] and (2) global evaluation function (GEF), which
needs to consider the overall configuration information of a
solution. The E/T penalties can be included in this part, and
therefore the GEF is defined as GEFðSÞ ¼

Pn
i ¼ 1ðeiþriÞ, where

ei¼max{ 0, di�ti�pi} and ri¼max{ 0, tiþpi�di}. To generate a
rolling sequence, a virtual coil is added to the set of manufactur-
ing orders, and it has no processing time and any sequence-
dependent transition cost. A constraint is added to select the
virtual coil as the starting node of a rolling round. As a result, a
mathematical HSM scheduling model can be formulated as
follows:

Minimize

l
Xn

i ¼ 0

Xn

j ¼ 0

cijxijþð1�lÞ
Xn

i ¼ 1

ðeiþriÞ ð1Þ

Subject to

Xn

i ¼ 0

xij ¼ 1, j¼ 0,:::,n ð2Þ

Xn

j ¼ 0

xij ¼ 1, i¼ 0,:::,n ð3Þ

Llr
Xn

i ¼ 0

lið1�xiiÞrLu ð4Þ

Xn

i ¼ 0

ð1�xiiÞ�sgnðwi�ukÞrNu, 8ukAV ð5Þ

Xn

i ¼ 0

sið1�xiiÞrNs ð6Þ

x00 ¼ 0 ð7Þ

t0 ¼ Ts ð8Þ

tj ¼
Xn

i ¼ 0

xijðtiþpiÞþxjjðt0þTÞ, j¼ 1,. . .,n ð9Þ

xijAf0,1g, i,j¼ 0,. . .,n ð10Þ

sgnðxÞ ¼
1 if x¼ 0

0 otherwise

(
ð11Þ

Formula (1) is used to calculate the optimization objective F(S)
of any scheduling solution S, and the parameter l(0rlr1) is the
weight of measuring the relative importance of the two optimiza-
tion parts. Constraints (2) and (3) indicate that each coil can be
processed only once or it is not selected in the current rolling
round. Constraints (4) specifies the minimal and maximal capa-
cities of a rolling round. Constraints (5) and (6) represent the
maximal number of same-width coils and that of short slabs,
respectively. Equalities (7) and (8) select the virtual coil as the
starting node of a rolling round. Eq. (9) establishes the relation-
ship between variables tj and xij, where constant T is greater than
the total processing time of a rolling round. It means that if coil j

is not selected in the current rolling round, its processing time is
not earlier than the starting time of the next rolling round.
4. Hybrid optimization method for HSM scheduling

Considering the characteristics of the HSM scheduling pro-
blem, which is a typical NP-hard problem with a composite
optimization objective, it is unrealistic to search for the optimal
scheduling solution by using traditional mathematical program-
ming methods. Therefore, this paper develops a hybrid optimiza-
tion method as schematically illustrated in Fig. 3. A heuristic-
based approach is designed to generate the warm-up section, and
hybrid evolutionary algorithms combining GA and EO are devel-
oped to optimize the body section.

4.1. A heuristic-based approach for scheduling the warm-up section

A warm-up section can be scheduled easily, since it only
consists of a few number of slabs (5–15) for warming up the
rollers. The main requirement of this section is that coils must be
rolled from narrow to wide. In this section, a heuristic-based
approach, which selects rolling coils from manufacturing orders
uniformly, is proposed as follows.

Algorithm 1 (Pseudo-code for scheduling the warm-up section)
Step 1: Identify available slabs which can be processed in a
warm-up section within the current scheduling time
horizon.
Step 2: If the number of available slabs is less than the
required number Nwarm-up for a warm-up section, the
scheduling system suggests downloading more
manufacturing orders from upper-level planning systems,
then go to Step 6.
Step 3: Sequence all corresponding coils in ascending width
and due-date.
Step 4: Group the coils with the same width, and calculate
the number of groups Nw.
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Step 5: Select the first coil of each width group into a warm-
up set successively, and delete the selected coils from the
corresponding width group.
If Nwarm-up4Nw, select all coils in the warm-up set into a
provisional warm-up section;
Select one coil from the width group with the maximal
residual coils, and insert it into the warm-up set according to
the width profile from narrow to wide. Repeat this procedure
until Nwarm-up¼Ntemp, then go to Step 6;
Else, generate a warm-up section by sequentially selecting

the coils in the warm-up set with the step size Nw=Nwarm-up

� �
.

Step 6: Stop the selection for the warm-up section, and
return the scheduled output.

The warm-up section generated by the above heuristic-based
approach has a gradually increasing width pattern as described in
Section 2.2.

4.2. Hybrid evolutionary algorithms for scheduling the body section

The body section is the kernel part of a rolling round. The
performance of a HSM scheduling solution mainly depends on the
optimization quality of the rolling sequence of the body section.
Without specific explanation, the scheduling of the body section
is usually regarded as the equivalent of the HSM scheduling as
stated in many papers [4,14]. The mathematical model formu-
lated in Section 3 describes the scheduling of the body section,
and it is a NP-hard combinatorial optimization problem. There-
fore, complete enumeration of all possible solutions is computa-
tionally prohibitive, i.e., no deterministic algorithm is capable of
solving the HSM scheduling problem within reasonable computa-
tion time. As one class of effective optimization techniques,
intelligent algorithms have been widely employed to solve typical
scheduling problems for effectively finding a desirable solution,
although it may not necessarily be the optimal solution [2]. In this
paper, an effective hybrid evolutionary algorithm is developed to
solve the HSM scheduling problem by combining the population-
based search capacity of GA and the fine-grained local search
efficacy of EO.

4.2.1. Global search algorithm: modified genetic algorithm for order

selection and sequencing

Genetic algorithm is inspired by the Darwinian evolution
theory [21]. It is a class of population-based search methods,
and the iterative improvement is realized by a generate-test
procedure [19]. In past decades, the genetic algorithm has been
widely applied to the field of combinatorial optimization. In this
section, a modified GA (MGA) is proposed to solve the HSM
scheduling problem.

4.2.1.1. Representation of solutions. Generally, standard GA appli-
cations use binary strings or ordinal integers to represent a
chromosome of a solution. In the HSM scheduling problem, we
define the chromosome with a chain of genes as a rolling round.
Each gene represents a coil marked with Coil ID. Suppose that
the number of coils in a chromosome is equal to m and the
total number of coils in the order book is n, the scheduling
objective is to select m coils from the n coils and generate an
optimized rolling sequence. An example of a chromosome is
shown in Fig. 4.

The vector [5, 8, y, 3] denotes a possible rolling round, and
each figure in the vector represents a particular coil ID. This
chromosome can represent a possible scheduling solution in
which the rolling round consists of 9 coils, but the total number
of coils can be more than 12.
4.2.1.2. Population initialization. Two issues are usually discussed
for the population initialization: the population size and the
method of initializing the population [5,22]. To maintain the
searching capability, the population size needs to increase expo-
nentially with the dimension of the optimization problem, i.e., the
length of the chromosome. However, although a large population
size can search the solution space effectively, it also incurs
excessive computing time. As a result, an appropriate population
size is crucial for finding the optimal solution efficiently and
effectively.

In a large number of GA applications, heuristic and random
methods are among the most popular approaches to generate the
initial population. Well-designed heuristic methods can be used
to produce some good individuals, which is beneficial to improve
the convergence speed. However, if all initial individuals have
good fitness values, the algorithm converges to locally optimal
solutions easily and never explores the whole solution space due
to lack of genetic diversity. On the contrary, if all initial indivi-
duals are generated randomly, it may take a large number of
generations to improve the inferior individuals. A random initial
population makes it difficult to obtain a good solution, particu-
larly for a practical application with constraints. Therefore, in the
proposed MGA, three different methods are employed simulta-
neously to generate the initial population.

First of all, a well-designed heuristic is proposed to generate a
feasible solution. The constraints discussed in Section 2.2 are
considered in this heuristic. The initial feasible individual can be
used to improve the feasibility of all iterative-generated indivi-
duals and accelerate the convergence speed.

Algorithm 2 (Pseudo-code for the heuristic to generate a feasible

body section)
Step 1: Identify available slabs for the body section within
this current scheduling time horizon.
Step 2: Sequence the corresponding coils in descending
width and ascending due-date (i.e., the coils are first
sequenced in descending width, and those with the same
width are further sequenced in ascending due-date).
Step 3: Group the coils with the same width, and calculate
the number of groups Nw.
Step 4: Select Nv coils into a body set from each group
sequentially, and calculate the number of selected coils Ntemp

in the body set.
Step 5: If Ntemp is less than the required number Nbody for a
body section, it means no feasible body section can be
generated with existing manufacturing orders, then go to
Step 6;
Else, generate a body section by sequentially selecting the

coils in the body set with the step size Ntemp=Nbody

� �
.

Step 6: Stop the heuristic, and return the scheduling output.

Secondly, the nearest neighbor search method, which first
chooses a starting coil and then selects the next least-cost coil to
the provisional sequence iteratively, is used to generate a propor-
tion of individuals in the initial population.

Finally, the random insertion method is used to generate all
other individuals. Starting from a randomly selected coil, a body
section is generated by selecting the next unscheduled coil
randomly and then inserting it the least-cost position of the
provisional sequence.



Y.-W. Chen et al. / Computers & Operations Research 39 (2012) 339–349344
4.2.1.3. Fitness function. The fitness function calculates how fit an
individual is, and the ‘‘fittest’’ ones have more chances to be
inherited into the next generation. In the HSM scheduling pro-
blem, the fitness is defined as a composite optimization objective
as discussed in Section 3.
4.2.1.4. Genetic operators
(A)
 Selection: The selection operator is used to improve the mean
fitness values of the population by giving the better chromo-
somes higher probabilities to pass their genotypic information
to the next generation. The selection schemes are usually
characterized by a selection pressure, which is defined as the
ratio of the selection probability of the best chromosome to
that of an average chromosome. The rank-based selection
scheme selects individuals based on the rank of their fitness
values, and the selection probability is defined as pi¼

c(1�c)i�1, where c denotes the selection pressure, and i is the
rank number of a chromosome in the whole population [21].
To generate new individuals, one parent is chosen from the
feasible solution pool by the roulette-wheel method, and
another parent is selected from the current population using a
niche technique. The niche technique ensures a minimum
difference between every two parent chromosomes and further
maintains the genetic diversity of the new population. Thus, a
similarity coefficient is defined as cij ¼ sij=n, where n is the
chromosome size, sij is the number of identical genes between
chromosomes i and j. When a parent chromosome i is selected,
only the chromosome j, whose similarity coefficient cij with the
chromosome i is not higher than a predetermined value c0, has
the possibility to be selected as the second parent chromosome.
(B)
 Crossover: The crossover operator transforms parent chromo-
somes for finding better child chromosomes. Partially
Matched Crossover (PMX) and Ordered Crossover (OX) have
been proved as effective crossover schemes for integer
chromosomes [23]. In the HSM scheduling problem, the
integral range is equal to, or greater than the chromosome
length. As a result, the genes in a child chromosome are not
completely homologous to that of its parents, and the cross-
over operator in the MGA is also not completely identical to
that of standard PMX and OX. Here, we present a simple
example to illustrate the PMX operator in the MGA. Given
two parent chromosomes S1 and S2:

S1 : 5�8�9�912�7�119�2�10�3,

S2 : 7�6�11�1�9�10�5�4�8

First, two cut points are chosen at random, and the genes
bounded by the cut points are exchanged. As a result, one
chromosome has some new partial genetic information from
the other. The intermediate structures of the new solutions are

S01 : 5�8�9�91�9�109�2�10�3,

S02 : 7�6�11�912�7�119�5�4�8

However, these two intermediate solutions are not necessarily
feasible because some genes are repeated. The repeated genes
π (i) π (i+1) π (k)π (j) π (j+1)

π (i) π (j+1) π (j)π (k) π (i+1)

Or-opt 

Fig. 5. Example of the Or-opt exchange: moving chain (p(iþ1)
can be replaced by mapping 912�7�119 to 91�9�109. And
then two new solutions are generated as follows:

S01 : 5�8�7�91�9�109�2�11�3,

S02 : 9�6�10�912�7�119�5�4�8

One can see that the gene 1 is not included in the parent
chromosome S1, but it appears in its child chromosome S

0

1 after
the PMX operation.
(C)
 Local search as mutation: The mutation operator generates a
new chromosome from a selected one. In the MGA, the Or-opt

exchange is employed as the mutation operator. It is one of the
chain exchanging methods and attempts to improve the current
solution by moving a chain of one or two consecutive nodes to a
different location until no further improvement can be
obtained. An example of the Or-opt exchange is given in Fig. 5.
(D)
 Repair strategy: Sometimes, the crossover operation inevitably
violates some constraints and generates non-feasible solutions.
Thus a repair strategy is presented to maintain a feasible
solution pool. The repair strategy is described as follows.

Algorithm 3 (Pseudo-code for repair strategy)
Step 1: Sequence the selected coils in the current
solution according to descending width and ascending
due-date.
Step 2: If the groove constraint is satisfied, go to Step 3;
Else, delete a coil with a specific width violating the
groove constraint, randomly select a new coil with
different width from manufacturing orders and insert it
to the current rolling round with the least cost, and go to
Step 2.
Step 3: If the short slab constraint is satisfied, go to
Step 4;
Else, delete a short slab from the rolling round, select a
non-short slab from manufacturing orders randomly and
insert it to the current sequence with the least cost
without violating the groove constraint, and then go to
Step 3.
Step 4: Stop this repair strategy, and return the
scheduling solution.
After some criteria are satisfied, the MGA terminates the iterative
process and reports the best schedule solution so far. The termina-

tion criteria can be a certain number of generations (Gen) or a given
computation time. In the study, the algorithms are coded in Cþþ,
and compile with MS Visual Studio 6.0. The initial parameters are set
as follows: the population size Pop¼200, the selection pressure
c¼0.1, the similarity coefficient threshold c0¼0.5, the crossover
probability pc¼0.95, and the mutation probability pm¼0.05. By
simulating a set of production data collected from a hot rolling mill,
the convergence curve of the proposed MGA is shown in Fig. 6.

One can see that the proposed MGA can converge to a
satisfactory solution within a few hundreds of generations.

4.2.2. Local improving algorithm: t-extremal optimization

In the HSM scheduling problem, the local evaluation function
plays an important role in evaluating a scheduling solution. In this
section, a novel local improving algorithm—t-EO is presented to
exploit the quality of a specific scheduling solution.
π (k+1)

π (k+1) 

Deleted edge 
Relocated chain 
Reconnecting edge 

, p(j)) to the position between p(k) and p(kþ1).
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4.2.2.1. Introduction to extremal optimization. Extremal optimiza-
tion (EO) is inspired by the self-organized critical models in
ecosystems [24]. For a sub-optimal solution, the EO algorithm
eliminates the components with extremely undesirable perfor-
mance and then replaces them with randomly selected new
components. Finally, a better solution may be generated by
repeating such kinds of local search process. For a general mini-
mization problem, the basic EO algorithm proceeds as follows:
Algorithm 4 (Pseudo-code for basic t-EO algorithm)
Step 1: Initialize a solution S, and set Sbest¼S

Step 2: For the current solution S

(a) evaluate local fitness li for each variable xi,

(b) find j with ljZli for all i, i.e., xj has the worst local
fitness,

(c) choose at random S
0

AN(S) such that the ‘‘worst’’ xj

change its state,
(d) if the optimization objective F(S

0

)oF(Sbest), then set
Sbest’S

0

,
(e) accept S’S

0

unconditionally, independently of
F(S

0

)�F(Sbest).
Step 3: Repeat Step 2 as long as desired.
Step 4: Return Sbest and F(Sbest).
It is obvious that the basic EO algorithm has no parameters,
which can be adjusted for selecting better solutions. To improve
its optimization performance and avoid the possible dead ends, a
general modification of the EO algorithm called t-EO is proposed
by introducing an adjustable parameter [25]. In the t-EO algo-
rithm, all variables xi are ranked according to their fitness values
li, namely, find a permutation P: lPð1ÞZlPð2ÞZ � � �ZlPðnÞ. Sub-
sequently, each variable xi to be updated is selected according to a
probability distribution Pkpk�t, 1rkrn, where k is the rank of
the variable xi. The power law distribution ensures that no ranks
get excluded for further evolution while maintaining a bias
against variables with bad fitness [25]. In the past decade, the
EO algorithm and its derivatives have been extensively applied to
solve various combinatorial optimization problems. Simulation
results proved that the EO algorithm outperforms other state-of-
the-art algorithms in many applications, such as graph bi-parti-
tioning, satisfiability (MAX-K-SAT), TSP problems and some
industrial applications [24–27].

4.2.2.2. Extremal optimization for improving the body section. Since
the local transition costs between adjacent coils are the main
parts of the scheduling optimization objective, the local search
t-EO algorithm is applied to improve the HSM scheduling
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Fig. 6. Convergence curve of the modified genetic algorithm.
solution. The local fitness is defined as li¼cp(i),iþci,s(i), where p(i)
and s(i) denotes the predecessor and the successor of coil i,
respectively. It means that the local fitness of a scheduled coil i in
a rolling round is the sum of two sequence-dependent penalties
which can be calculated by using only local information.

Algorithm 5 (Pseudo-code for local improving algorithm—t-EO)
Step 1: Initialize parameters and obtain an initial solution S,
which can be inherited from other algorithms, and then
calculate the optimization objective F(S), set Sbest¼S.

Step 2: For the current solution S, evaluate the local fitness li

for all scheduled coils and rank them according to their
fitness values.
Step 3: Select a coil c(s) according to the power law
distribution pk(t0), where t0 is a given parameter value.
Step 4: Choose the best solution S

0

from a neighboring
subspace N(S) of the current solution S.
Step 5: If F(S

0

)oF(Sbest), then set Sbest’S
0

.
Step 6: Accept S’S

0

unconditionally.
Step 7: If termination criteria are not satisfied, go to Step 2;
else go next.
Step 8: Return Sbest and F(Sbest).

Note that in Step 4 the subspace N(S) can be generated through
various strategies. In this paper, the ‘‘route-improvement’’ algo-
rithm which is similar to the perturbation moves [16] is pre-
sented to generate the neighboring subspace. We take a
scheduling solution S and improve it by slight perturbations.
The perturbation is iterated until no further improvement is
possible, and then the local optimum S

0

is obtained. The perturba-
tion processes can be described as follows:

Delete a selected coil c(s) from the current rolling sequence S;
Select an unscheduled coil c(u), and insert it into the least-cost
position;
Accept the solution S

0

as an element of N(S) if the new rolling
sequence is feasible and the local fitness lc(u)olc(s);
Repeat the above steps until all unscheduled orders have been
processed.

The above perturbation moves are usually employed by
human schedulers. Therefore, the local optimum in the neighbor-
ing subspace is intuitively reasonable in real scheduling systems.

Because the t-EO algorithm has only one parameter t, its
optimal choice is critical for improving the optimization perfor-
mance. A number of experimental and theoretical research efforts
have been devoted to analyzing the optimal parameter selection
for different combinatorial optimization problems [27,28]. In the
HSM scheduling problem, a set of simulations indicate that the
algorithm reaches the best solution with high probability at a
prediction value toptE2.0, and the objective function value seems
to rise gradually around this topt value for different scheduling
instances [5]. Using the solution generated by the previous MGA
as the initial solution, the t-EO algorithm has the convergence
curve as shown in Fig. 7.

It is obvious that the algorithm can improve the initial solution
significantly and converges to a solution within 2000 generations.
Note that the optimization process takes less than 45 s.

4.2.2.3. Hybrid evolutionary algorithms. The hybrid evolutionary
algorithms combine the MGA and the t-EO algorithms in different
ways. First of all, the best scheduling solution generated by the
MGA is further optimized by the t-EO algorithm. This scheme is
quite straightforward but shows a weak integration. Secondly,
multiple solutions of the MGA are improved by the t-EO algo-
rithm for increasing the diversity of initial solutions. Thirdly, an
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integrated method is presented, in which the t-EO algorithm acts
as the mutation operator of the MGA. Simulation results show
that the third combination scheme provides better results than
other schemes. Below we summarize and compare the simulation
results of the above three hybrid evolutionary methods: GEO-1,
GEO-2 and GEO-3.
(i)
 GEO-1 (the best solution of the MGA is optimized by the t-EO):
Fig. 8 compares the local fitness (i.e., local sequence-depen-
dent transition costs) of the best solution of the MGA with
that of the final solution of the GEO-1.
It is obvious that the GEO-1 can generate a scheduling
solution with much lower sequence-dependent transition
costs by iteratively replacing the undesirable or underper-
formed coils in a rolling sequence.
(ii)
 GEO-2 (top 20 solutions of the MGA are further optimized by the

t-EO): In the GEO-2, the top 20 solutions in the final
population of the MGA are improved by the t-EO algorithm.
One can see from Fig. 9 that the GEO-2 can considerably
improve both local fitness (i.e., the LEF of evaluating the
sequence-dependent transition costs and the non-execution
penalties) and global fitness (i.e., the GEF of evaluating the
earliness/tardiness penalties). It is worth noting that in the
above figure the multiple solutions of the MGA are ordered
according to the value of the optimization objective F(S).
Obviously, an initial solution with a ‘‘worse’’ fitness value
may be improved to a ‘‘better’’ scheduling solution by the
GEO-2, such as the no. 6 solution of the top 20 solutions in
Fig. 9.
(iii)
 GEO-3 (using t-EO as mutation operations in MGA): In the
GEO-3, the t-EO algorithm is used as the mutation operator
of the MGA. So, a number of Pop�pm solutions are optimized
through the t-EO algorithm in each generation of the
MGA. Using the same initial solution, the evolutionary
processes of the GEO-1, the GEO-2 and the GEO-3 are
illustrated in Fig. 10.
In the simulation of a wide range of industrial data, the GEO-3
almost always provides the best scheduling solution. Therefore,
the GEO-3 is selected as the optimization engine of our HSM
scheduling system.

4.3. Design of a HSM scheduling system

This scheduling system is defined as a configurable tool that
solves the HSM scheduling problem to maximize production
throughput, improve product quality and customer service (i.e.,
on-time delivery) levels. The schematic structure of the schedul-
ing prototype system is presented in Fig. 11.

The HSM scheduling system first downloads manufacturing
orders from the upper-level ERP systems, and then generate
computer-aided scheduling scenarios for single rolling round or
multiple rounds (i.e., a campaign) by the hybrid evolutionary
algorithm as discussed in Section 4.2. The system assumes that
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Fig. 12. Main Graphical User Interface of the developed HSM scheduling system.
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human planners are allowed to guide the scheduling process and
tune the optimization parameters for imposing human decision-
making. The semi-automatic scheduling process is described as
follows:

Step 1: The human planner sets the scheduling time horizon to
select available slabs according to the corresponding coils in
manufacturing orders. The scheduling system allows planners to
adjust the selection rules based on the attributes of manufactur-
ing orders (e.g., due-date, priority);

Step 2: Select the type of rolling rounds (i.e., coffin type
selection). In order to help the planner make a reasonable
choice, the system provides detailed information of different
round types;

Step 3: Based on the site-specific production requirements, the
planner can configure the constraints settings;

Step 4: Under the pre-configured conditions, the planner starts
the optimization engine to generate scheduling solutions;

Step 5: Evaluate the generated scheduling solution. The plan-
ner can check the scheduling solutions by viewing the graphical
width (or gauge, hardness, etc.) patterns and the statistical
analysis results. The planner can also edit a specific rolling round
by using graphical user interfaces, such as, inserting, replacing,
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Improvement obtained by the proposed GEO-3 without updating manufacturing
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moving or deleting slabs from a rolling round, or rescheduling
some rolling rounds in the existing scheduling scenario.

Since the object-oriented software technology has gained wide
recognition as a preferred approach for building and maintaining
complex application programs, the scheduling system is devel-
oped under the object-oriented platform of MS Visual Studio 6.0

and MS SQL Server. The main graphical user interface of the
developed scheduling system is shown in Fig. 12.

In the developed HSM scheduling system, the human planner
can view the detailed profiles of the scheduled rolling rounds in
width, gauge, and hardness transitions and jumps through gra-
phical user interfaces. He/she also can adjust the existing rolling
rounds by inserting, replacing, moving or deleting scheduled
slabs. In addition, the scheduling solutions can be uploaded to
the upper-level management systems and downloaded to the
shop-floor manufacturing execution system.

5. Computational results

In this section, we first consider a set of production data,
which consists of 1050 manufacturing orders with 336 short slabs
and 75 warm-up slabs. The specifications of the corresponding
coils mainly includes width (range: 88.90–164.59 cm), gauge
(range: 0.883–1.404 cm), hardness (range: 1–10), length and
finished temperature (range: 950–1450 1C). The scheduling objec-
tive can be calculated on the basis of the penalty table and the
mathematical model in Section 3. Fig. 13 shows the width, gauge
and hardness transition patterns of a rolling round.
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Fig. 13. Width, gauge and hardness transition patterns of a rolling round example.

Fig. 14. Width transition patte
One can see in Fig. 13 that the width profile of the rolling
round follows a standard ‘‘coffin-shape’’ pattern, and the gauge
and hardness transitions are smooth. It is worth noting that the
scheduling of the rolling round only takes about 320 s on a
Pentium 2.4 GHz CPU. The campaign can also be constructed by
generating rounds one by one. Fig. 14 shows the width transition
pattern of a rolling campaign. The optimization objective values
of the five consecutive rolling rounds are 1112, 1733, 2639, 4107
and 3505, respectively.

During generating the rolling campaign, the optimization
objectives for the MGA and the GEO-3 are reported in Table 2.

Note that the rolling rounds usually become worse, without
updating the manufacturing order pool. To simulate a dynamic
environment, we import 200 new coils into the set of manufac-
turing orders after the scheduling of each rolling round. The
optimization objectives for the heuristic algorithm 2 in Section
4.2.1, the MGA and the GEO-3 are reported in Table 3.

It is obvious in Tables 2 and 3 that the proposed hybrid
evolutionary algorithm can considerably improve the optimization
objective. The HSM scheduling system equipped with the optimiza-
tion engine can obtain an optimized rolling round within 600 s.
Furthermore, extensive computational results on industrial data
rn of a rolling campaign.

Table 3
Improvement obtained by the proposed GEO-3 with updating manufacturing

orders.

Instance

no.

Heuristic algorithm 2 MGA GEO-3

Objective Objective Objective Improvement

(% over MGA)

1 4129 2404 1523 36.65

2 3824 1715 1341 21.81

3 3958 2253 1641 27.16

4 4007 1971 1374 30.29

5 4203 2685 2030 24.39

no. (%)

LEF

value

GEF

value

Objective LEF

value

GEF

value

Objective

1 1916 90 2006 1032 80 1112 44.57

2 2443 230 2673 1583 150 1733 35.17

3 3973 260 4233 2539 100 2639 37.66

4 4947 370 5317 4007 100 4107 22.76

5 8162 220 8382 3385 120 3505 58.18
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demonstrate that the developed HSM scheduling system has super-
ior performances in scheduling quality and computing efficiency.
6. Conclusions

In this paper, we study the HSM scheduling problem in the
steel industry. A mathematical model is formulated to describe
two important scheduling sub-tasks: (1) selecting a subset of
manufacturing orders; (2) generating an optimal rolling sequence.
In view of the complexity of the scheduling problem, hybrid
evolutionary algorithms are proposed through the combination of
genetic algorithm (GA) and extremal optimization (EO). With the
help of the developed HSM scheduling system, simulations are
conducted to demonstrate that the hybrid evolutionary algo-
rithms can generate optimized rolling rounds or campaign effi-
ciently. Although the hybrid evolutionary algorithm in this paper
is developed to solve the HSM scheduling problem, we believe
that it has great potentials in the areas of scheduling and
optimization. Our future work will emphasize the generalization
of this hybrid evolutionary optimization method.
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