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Abstract

Determining the optimal number and location of intermodal transshipment terminals

is a decision that strongly influences the viability of the intermodal transportation al-

ternative. In this paper, we develop a model and an optimization method that provides

policy makers with a tool to help them take these decisions.5

The objective of the terminal location problem described in this paper is to determine

which of a set of potential terminal locations to use and which not and how to route the

supply and demand of a set of customers (representing zones of supply and demand)

through the network (by both uni- and intermodal transport) so as to minimize the

total cost. We develop two different metaheuristic procedures that both consist of two10

phases: a solution construction phase and a solution improvement phase. The first

metaheuristic constructs solutions using a GRASP procedure, the second one uses the

relatively unknown attribute based hill climber (ABHC) heuristic. Innovative in our

approach is the integration of a fast heuristic procedure to approximate the total cost

given the set of open terminals.15

Both metaheuristics are compared to the results of an MIP solver. A thorough perfor-

mance assessment uncovers that both metaheuristics generate close-to-optimal solutions

in very short computing times. An argument in favor of the ABHC approach is that it

is parameter-free and hence more transparent and likely to be accepted in a business or

policy environment.20
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1. Introduction

After the establishment of the Kyoto protocol in 1997, Europe dedicated itself to a significant

reduction in the emission of greenhouse gases. The aim was to reduce the general amount

of greenhouse gases in the atmosphere by 8% compared to 1990 in the period 2008–2012.25

Although the EU27 had already achieved a general reduction of 7.3% by 2006, the reduction

in CO2-emissions was a lot less promising. This lack of a significant decrease in CO2 can

be attributed almost entirely to the transportation sector which accounts for 30% of all

CO2-emissions. Moreover, road transportation is by far the most polluting transport mode,

responsible for 71% of all transport CO2-emissions (UIRR, 2009). These numbers clearly30

show the need to reduce the environmental impact of transportation activities in general,

and to reduce CO2-emissions stemming from road transportation in particular.

Multimodal transportation is one of the most promising approaches to achieve these goals

(Bühler and Jochem, 2008). It is defined as the transportation of goods by at least two

different modes of transport (UNECE, 2009). In this paper we focus on a particular type35

of multimodal transportation called intermodal transportation. This term is used for the

multimodal transport of goods in one and the same intermodal transport unit by successive

modes of transport, without handling of the goods themselves when changing modes. An

excellent example of an intermodal transportation network is the worldwide transportation

network of containers. Because containers are highly standardized, they can be shipped40

from and to virtually any place in the world through an enormous network of transshipment

terminals (ports, railway stations) and by many different transport modes (ships, barges,

trains, trucks).

Since different transport modes have different environmental profiles, i.e., their burden on

the environment per tonne-kilometer differs significantly, combining transport modes offers45

new opportunities for reducing the carbon footprint of the transportation sector. Never-

theless, intermodal transportation is still a long way from becoming an economically viable

alternative for road transportation (Janic, 2007). In industry, modal choices are mainly

based on economical criteria such as cost, flexibility and service level. For small to medium

distances, no other transport mode (or combination of transport modes) can currently com-50

pete with road transportation on these criteria.

The low level of maturity of intermodal transportation in Europe can be explained to large

extent by the poor intermodal infrastructure and connectivity of transport modes. Since

the initial drayage move and terminal operations contribute in a significant way to transit

time and costs of intermodal transportation services, the location of the intermodal termi-55

nals plays an important role in enhancing the attractiveness of intermodal transportation
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(Pedersen, 2005). An intermodal freight terminal is defined as a location equipped for trans-

shipment of intermodal transport units (ITUs) between modes (UNECE, 2009). The policy

decision where to locate new terminals are complicated ones, often involving many stake-

holders (e.g., terminal operators, freight operators, local communities, investors and policy60

makers) with their own objecives (Sirikijpanichkul and Ferreira, 2005) and supporting these

decisions by adequate quantitative methods requires considerable simplification of reality.

In this paper we use the model of Arnold et al. (2001), in which the intermodal terminal

location problem is formulated as a mixed-integer programming problem. In their model, a

set of potential terminal locations is given, each with a given capacity and a fixed cost that is65

incurred when the terminal is opened. Additionally, a set of customers is given, representing

origins and destinations of demand that is to be transported through the network from its

origin to its destination. For each demand (i.e., each pair of an origin customer and a

destination customer), the unimodal transportation cost is given, as well as the cost of

routing this demand via any pair of terminals. In this model two decisions need to be taken70

simultaneously. The first decision is which of the set of potential terminals to open and which

not. The second is how to route each of the individual demands through the network. This

can be done in a unimodal way, i.e., directly from the origin to the destination customer,

or in an intermodal way, by transporting it from the origin customer to a terminal, then to

a terminal closer to the destination customer and finally to the destination customer itself.75

The objective of the model developed by Arnold et al. (2001) is to minimize the total cost,

which is the sum of fixed costs for opening terminals and the cost of routing all demands

through the network. A more detailed and formal description of this problem is given in

Section 3.

The model used in this paper and the methods we have developed to solve it, can be used to80

support high-level decision making on the layout of an intermodal terminal transportation

network. This decision occurs both in a policy-making context and a business context. For

example, if the Belgian government wants to determine which of a set of potential railway

stations for container transport it should build, our methods could be used to quickly find a

good solution under several different scenarios. Similarly, if a large trading company wants85

to determine which existing ports it should use to ship its containers from its production

plants to its customers, it could similarly employ our methods. However, notwithstanding

the fact that the decision where to locate intermodal transshipment terminals is a long-

term decision for which, in principle, significant calculation time is availabe, the heuristics

developed in this paper are able to compute near-optimal solutions in very short computing90

times. The reason for this design choice is that the model used in this paper—as well as

other mathematical models of similar problems—is only able to capture part of the complex

societal and economical reality of the real decision situation. As a result, such complex
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decisions are usually not taken in a one-shot way, but are the result of careful analysis in

which several scenarios are evaluated. For example, a courier company that is planning to95

use a certain airport as a hub will be interested in the consequences on its operations of

a government restriction on night time flights. A mathematical model and optimization

method can therefore only aid a decision maker by providing him with insight into the

optimal locations of terminals under varying circumstances. The best way to support such

decisions is by integrating the method in an interactive decision tool, where the decision100

maker can manually adjust the parameters of the model and quickly re-optimize. The

underlying method of such a what-if analysis tool should be able to respond quickly to such

parameter adjustment.

Arnold et al. (2001) propose to solve their model using a branch-and-bound procedure.

However, since this terminal location problem is NP-hard (see Appendix A), such exact105

algorithms can only be used for small instances. In order to solve real-life instances of

the intermodal terminal location problem, it is therefore necessary to use faster, heuristic

solution methods. The objective of this paper is to provide decision makers with a new,

fast but effective method to solve the terminal location problem as described by Arnold

et al. (2001). More specifically, we develop two different heuristics, based on respectively110

the attribute based hill climber (ABHC) and the GRASP metaheuristic frameworks. Both

heuristics are compared to each other in terms of solution quality, speed and ease of use.

The remainder of this paper is organized as follows. In Section 2 we survey the literature on

the intermodal terminal location problem and discuss the similarities and differences with

related optimization problems. Section 3 presents the mathematical model of the terminal115

location problem, for which we develop two heuristic solution approaches in Section 4.

These approaches are tested in Section 5. Section 6 concludes and provides pointers for

future research.

2. Literature

Although research on intermodal transportation is still in a rather immature phase (Bon-120

tekoning et al., 2004), the strategic importance of intermodal transshipment terminals within

intermodal networks is demonstrated by the amount of literature that has been accorded

to this subject in recent years. A wide variety of topics related to intermodal terminals has

been discussed, ranging from the main characteristics and the different types of intermodal

terminals (e.g., Sirikijpanichkul and Ferreira, 2005) over measuring terminal performance125

(e.g., Ferreira and Sigut, 1993) to an analysis of the terminal market and a description of

its most important stakeholders (e.g., Wiegmans et al., 1998).

4



Both the complexity and importance of optimally locating intermodal terminals within the

transport network has been acknowledged early on by many authors stemming from different

research fields. Macharis and Bontekoning (2004) provide an overview of the most prominent130

research efforts within the field of operations research. They distinguish three different

approaches to determine the optimal location of transshipment terminals. Although some

authors propose the use of simulation techniques (e.g., Meinert et al., 1998) and multi-

criteria analysis (e.g., Macharis and Verbeke, 1999) to select the most appropriate location

from a pool of potential sites, the dominant approach is the application of network models135

(e.g., Rutten, 1995; Groothedde and Tavasszy, 1999).

Several commonly investigated optimization problems are closely related to the intermodal

terminal location problem. The capacitated (fixed charge) facility location problem (CF-

CLP), for which metaheuristics are frequently used as a solution method, shows some simi-

larities. The CFCLP considers the problem of selecting a subset of facilities from an existing140

set of potential locations that have to supply a set of customers at a minimum cost. Each

customer has an associated demand to be met and each facility has a finite amount of supply

available (Venables and Moscardini, 2008). There are quite a number of differences however,

with the intermodal terminal location problem. Most importantly, since demand in the CF-

CLP does not have a destination, but only an origin, demand cannot be transported between145

facilities. Different metaheuristics have been applied successfully to the CFCLP, such as

simulated annealing (e.g., Bornstein and Azlan, 1998), genetic algorithms (e.g., Jaramillo

et al., 2002), tabu search (e.g., Filho and Galvão, 1998) and ant colony optimization (e.g.,

Venables and Moscardini, 2006).

The multicommodity capacitated (fixed charge) network design problem (MCNDP) (Crainic150

et al., 2001; Frangioni and Gendron, 2009), in which a set of demands have to be routed

through a network, shows some similarities to the intermodal terminal location problem,

but differs in that capacities are defined on arcs and not on nodes and that fixed costs have

to be paid if an arc is used (instead of a node). This leads to quite different models and

algorithms.155

The intermodal terminal location problem discussed in this paper can be seen as a hub

location problem. We refer to Alumur and Kara (2008) for a recent survey of hub loca-

tion problems and algorithms to solve them. Many different hub location problems have

been defined, but the multiple-allocation capacitated hub location problem with fixed costs

comes closest to the problem discussed in this paper. The main difference is in the way160

demand is routed through the network: hub location problems do not allow transportation

between customers directly (which we call unimodal transportation in this paper), but do

allow transport via only one hub, which does not make much sense in the case of inter-
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modal transportation. The first LP formulation for the multiple allocation capacitated hub

location problem (without fixed costs) is due to Campbell (1994), but papers on capaci-165

tated hub location problems have been few and far between. An efficient algorithm for a

capacitated hub location problem can be found in Ebery et al. (2000). Boland et al. (2004)

develop preprocessing procedures and tightening constraints. A different formulation and

an algorithm can be found in Maŕın (2005), who also confirm the scarceness of papers on

this topic.170

Intermodal terminal location is a complicated decision with many stakeholders. Some au-

thors attempt to capture the complex reality by presenting extensions of existing opti-

mization models that include, e.g., non-linear cost functions (Racunica and Wynter, 2005).

Others have used agent-based techniques in which different stakeholders are represented by

different agents (see Sirikijpanichkul et al., 2007, for an overview).175

As mentioned, in this paper we take the position that locating intermodal terminals is such

a complicated decision that no model—however complex—is going to capture more than a

fraction of the real problem. Any model that is going to be used in practice should therefore

be simple and understandable and any method to solve it should be able to quickly locate

a reasonable solution, so that the method can be embedded in a decision support system.180

For these reasons, we use the intermodal terminal location model presented by Arnold et al.

(2001). To the best of our knowledge, this paper presents the first metaheuristic for this

problem.

3. Model Formulation

In Arnold et al. (2001), the authors propose a model to determine the optimal rail/road185

network in Belgium by means of integer linear programming. The optimal network is

defined as the network configuration that minimizes the total cost, i.e. the sum of uni- and

intermodal transportation costs and fixed terminal location costs.

The model described in Arnold et al. (2001), which is also used in this paper, can be

described as follows. Let I be the set of all origins/destinations and K the set of all potential190

terminal locations in the network. Each origin/destination-pair (i, j) has associated with

it a positive and fixed amount qij of goods that should be transported (which we call the

demand, with qii = 0), a decision variable wij and a set of decision variables xkmij . The

variable wij represents the fraction of the demand qij transported unimodally whereas the

set of variables xkmij relate to the fraction of the demand qij shipped intermodally using195

terminals k,m ∈ K. ckmij is the unit cost of transporting demand between i and j through

terminals k and m and cij is the unit cost of transporting demand directly from i to j
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without any intermediate intermodal operations. In turn, each potential terminal location

k ∈ K has associated with it a positive and fixed capacity Ck, a fixed cost Fk and a decision

variable yk which is equal to 1 when terminal k is open and equal to 0 otherwise.200

min
�

i,j∈I

�

k,m∈K
ckmij xkmij +

�

i,j∈I
cijwij +

�

k∈K
Fkyk (1)

s.t.

xkmij � qijyk ∀k,m ∈ K, ∀i, j ∈ I (2)

xkmij � qijym ∀k,m ∈ K, ∀i, j ∈ I (3)
�

k,m∈K
xkmij + wij = qij ∀i, j ∈ I (4)

�

i,j∈I

�

m∈K
xkmij +

�

i,j∈I

�

m∈K
xmk
ij � Ck ∀k ∈ K (5)

wij � 0, xkmij � 0, xkkij = 0 ∀i, j ∈ I, ∀k,m ∈ K (6)

yk ∈ {0, 1} ∀k ∈ K (7)

The objective function (1) minimizes the total transportation cost associated with all trans-

portation flows within the network. It is composed of three parts. The first part represents

the cost of all transportation flows that require a change in transportation mode whereas

the second part refers to the unimodal transportation flows. The third part equals the

total fixed cost associated with all opened terminals in the network. Constraints (2) and205

(3) ensure that no goods can be transported using a certain terminal, unless this termi-

nal is open. Constraints (4) stipulate that, for each origin/destination-pair, the sum of all

goods transported unimodally and intermodally should equal the demand associated with

this origin/destination-pair. Constraints (5) bring into account the limited capacity of the

intermodal terminals. Constraints (6) ensure that only positive amounts are transported210

and that no demand is transported using only one terminal. Finally, constraints (7) enforce

that a terminal is either used or not.

The model can be used for policy-making purposes, in which both origins and destinations

should be interpreted as zones of economic activity that ship goods through the network to

each other. Each zone can be both a supply and a demand point at the same time.215

A graphical representation for a simple problem with 3 customers, 3 origin-destination

flows, and 3 terminals is shown in Figure 1. All terminals are assumed to have a capacity

of 100 units (indicated between brackets). The left part of the figure shows the (unimodal)

transport streams if no terminals are open. The right part visualizes how these streams are
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rerouted when terminals t1 and t2 are open and t3 is closed. The flow from c1 to c2 is still220

shipped by unimodal transport, whereas the flow between c1 and c3 is shipped entirely by

intermodal transport. The flow between c2 and c3 is shipped only partially by intermodal

transport, due to the limited capacity of the terminals.

c1

c2 c3

t1 (100) t2 (100)

t3 (100)

20

50

60

c1

c2 c3

t1 (100) t2 (100)

t3 (100)

20

60

40

10

100

100

Figure 1: Example of the intermodal terminal location problem

In Appendix A we provide a mathematical proof that this problem is NP hard.

4. Efficient metaheuristics for the intermodal terminal location225

problem

In this section, we propose two different metaheuristics to solve the intermodal terminal

location problem described in the previous section. Both heuristics consist of two phases:

a construction phase (see Section 4.2) and an improvement phase (see Section 4.3). In the

construction phase, initial solutions are built by a constructive metaheuristic and stored230

in an archive. The improvement phase—as the name suggests—improves the solutions in

the archive. In both phases, the heuristics make use of a heuristic evaluation procedure to

quickly evaluate solutions (see Section 4.1). The two metaheuristics differ in the way initial

solutions are constructed and in the way the archive is maintained. The first metaheuristic

uses a GRASP (greedy randomized adaptive search procedure) construction procedure, the235

second one an ABHC (attribute based hill climber). The local search heuristics used in

the improvement phase are identical for both metaheuristics. Figure 2 shows the high-level

structure of the metaheuristics.

Constructive phase
GRASP or ABHC

Archive
Improvement phase
Local search

Figure 2: Structure of the metaheuristics
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It is important to note that solutions in the archive should not only be of high quality, they

should also be diverse to ensure that they are not all in the same basin of attraction (i.e.,240

the improvement heuristics should not end up in the same local optimum when improving

the solutions in the archive). The mechanisms for ensuring diversity differ depending on

the constructive metaheuristic (GRASP or ABHC) used.

4.1. Problem decomposition and heuristic evaluation procedure

In our approach, the terminal location problem is decomposed in a master and a subprob-245

lem. A solution of the master problem corresponds to a status open or closed for each

potential terminal location, whereas the subproblem determines the way each demand is

routed through the network, given the open terminals. Given a solution to the master

problem, i.e., a set K̄ ⊆ K of open terminals, the subproblem is the following LP.

min
�

i,j∈I

�

k,m∈K̄

ckmij xkmij +
�

i,j∈I
cijwij + FK̄ (8)

s.t.
�

k,m∈K̄

xkmij + wij = qij ∀i, j ∈ I (9)

�

i,j∈I

�

m∈K̄

xkmij +
�

i,j∈I

�

m∈K̄

xmk
ij � Ck ∀k ∈ K̄ (10)

wij , x
km
ij � 0, xkkij = 0 ∀i, j ∈ I, ∀k,m ∈ K̄ (11)

The objective function value of an optimal solution of the subproblem in Eqs. (8–11) is250

equal to the total cost of the corresponding solution to the original problem. Unfortunately,

for large instances, the number of decision variables and constraints in this LP becomes

very large and it quickly becomes impractical or even impossible to solve the problem to

optimality. Given the fact that the heuristics need to evaluate many solutions, both in the

construction and the improvement phase, we develop a fast heuristic evaluation procedure255

to quickly calculate a heuristic objective function value. This value is an approximation of

the exact objective function value of a master problem solution (i.e., the objective function

value of the optimal solution of the subproblem LP).

The heuristic evaluation procedure works as follows. For each pair of customers, one needs

to decide how the corresponding demand will be shipped, i.e., unimodally, intermodally, or260

using a combination of both. In order to minimize the total cost and taking into account
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the terminal capacity constraints, it is important to allocate the capacity of each terminal

to those shipments that benefit the most from using it.

In order to achieve this, the heuristic evaluation procedure creates for each demand qij ,

i.e., for each pair of customers (i, j) a list Pij of routes Mkm
ij (connecting customers i to265

j through terminals k and m) for which the cost ckmij of shipping the associated demand

via this trajectory is smaller than the unimodal cost cij . All lists Pij are sorted in order

of increasing cost, and the unimodal route with cost cij is added in final position. All

lists Pij therefore contain all paths to transport demand qij through the network, in order

of increasing cost. If the cheapest trajectory means moving the demand unimodally (i.e.,270

cij � ckmij ∀k,m), then Pij contains only one path. If this is not the case, we calculate

the difference in cost between the best and the second best trajectory. This value is called

the regret (rij) and is further used to determine the sequence in which demands should

be assigned to terminals. Since demands with a large regret imply a significant increase in

total cost if not assigned to their cheapest trajectory, they should therefore be assigned with275

large priority. A so-called regret list R is created that contains all demands qij , sorted in

decreasing order of regret. Starting with the first demand on the regret list and continuing

down the list, each demand is then assigned in the best possible way (determined by its list

Pij) that is still available. If, for any origin/destination-pair, there is not enough terminal

capacity available to assign all demand to its cheapest trajectory, the surplus demand is280

assigned to the second cheapest trajectory and so on until the unimodal route becomes the

most profitable. A pseudo-code version of the heuristic evaluation procedure can be found

in Algorithm 1.

The calculations of the lists Pij and R are performed before the actual optimization process

in order not to slow down the optimization process later on. To calculate the regrets, since285

at this point we do not yet know which terminals will be open and which will be closed, we

assume a configuration in which all terminals are open.

4.2. Construction phase: GRASP or ABHC

4.2.1. GRASP

GRASP, or greedy randomized adaptive search procedure, is a multi-start metaheuristic290

the objective of which is to build a feasible solution by starting from an empty solution

and adding one element at a time. Typical of the GRASP metaheuristic is that it balances

greedyness (selecting the best element at each iteration) and randomness (selecting a random

element at each iteration) and is able to combine the advantages of both approaches. Our

GRASP heuristic for the terminal location problem starts from a solution in which all295
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Algorithm 1: Heuristic evaluation procedure
Input: y = {yk} (status of each terminal), R (list of origin-destination pairs, sorted in decreasing

order of regret), P = {Pij} (list of all possible paths for all possible terminal pairs, sorted in

increasing order of cost)

Output: Heuristic objective function value f̂(y)
create list C with capacity Ck of each terminal;

f̂(y) ←
�

k(Fk × yk) ;
foreach (i, j) ∈ R do

allocated ← false ;

p ← 0 ;

q�ij ← qij ;
while allocated = false and p < |Pij | do

t1 ← terminal with lowest Ck in route p ;

t2 ← terminal with highest Ck in route p ;

if t1 and t2 are open then

if Ct1 and Ct2 � q�ij then

allocated ← true;

Ct1 ← Ct1 − q�ij ;

Ct2 ← Ct2 − q�ij ;

f̂(y) ← f̂(y) + cpijq
�
ij ;

else

f̂(y) ← f̂(y) + Ct1 × cpij ;

q�ij ← q�ij − Ct1 ;

Ct2 ← Ct2 − Ct1 ;

Ct1 = 0 ;

p ← p+ 1 ;

if allocated = false then

f̂(y) ← f̂(y) + cijq
�
ij ;

11



terminals are closed and opens one terminal at a time. A pseudo-code description of the

GRASP algorithm is given in Algorithm 2.

Algorithm 2: GRASP
Output: Archive of diverse, high-quality solutions

create and sort list L with all terminals k according to rk =
Fk

Ck
in ascending order;

while time available do

sbest ← solution s with all terminals closed;

foreach terminal k ∈ K do

create Restricted Candidate List L̄ of terminals for which

rk ∈ [rmin, rmin
+ α× (rmax − rmin

)] is true;

randomly select terminal t ∈ L̄;
remove t from L ;

open t in s;
if f(s) < f(sbest) then

sbest ← s;

if size of archive < maximum archive size then

add s to archive;

else

if dA(s) > ∆ then

if f(s) < f(sclosest) then
s replaces sclosest in archive;

sbest replaces sclosest;

The order in which the terminals are opened, is determined on the basis of the fixed

cost/capacity-ratio of each terminal. For each terminal k ∈ K, this ratio is calculated

as rk = Fk/Ck. At each iteration, the GRASP algorithm determines a restricted candidate300

list (RCL) that consists of the best terminals, i.e., those terminals that have the lowest

fixed cost/capacity-ratio. In our procedure, the restricted candidate list is composed of

all terminals that satisfy the following constraint: rk ∈ [rmin, rmin + α(rmax − rmin)], with

threshold parameter α ∈ [0, 1]. The terminal to be added is then randomly selected from

the restricted candidate list and the objective value of the newly constructed solution is305

calculated using the heuristic evaluation procedure described earlier in this paper. Then,

the restricted candidate list is updated to make sure that the element under consideration

is no longer available for selection and the above process is repeated.

To preserve the diversity of the archive, a solution is only accepted into the archive if it

fulfils two criteria. First, the constructed solution should differ sufficiently from all solutions

currently in the archive. To determine the degree of difference between two solutions, the

Hamming distance d is used, i.e., the number of terminals that is not in the same state

(open or closed) in both solutions.

d(s1, s2) =
�

k∈K
(ys1k − ys2k )2 (12)
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Our GRASP procedure uses fixed threshold parameter ∆ and only allows a solution into the

archive if its distance to each of the other solutions in the archive (denoted dA(s)) is at least310

equal to ∆. The second criterion for addition is that the new solution should outperform

its closest neighbour in the archive, f(s) < f(sclosest). A solution s that is added to the

archive replaces sclosest, its closest solution in terms of the Hamming distance.

The criteria for addition are overruled in one situation: when the new solution outperforms

the best solution found so far during the construction phase. This solution, denoted as sbest,315

is kept in memory at all times and added to the archive at the end of the GRASP-procedure,

again replacing its closest archive-solution.

Our GRASP algorithm has four parameters that need to be set: the threshold parameter α

that determines the balance between randomness and greediness in the construction phase,

the minimal distance from the other solutions in the archive ∆, the maximum number of320

iterations, and the size of the archive. First of all, we need to set the aforementioned α-value

to determine the length and composition of the RCL.

The setting of this parameter α determines both the robustness and the quality of the con-

structed solutions. In order to determine the best possible α-value, we performed a pilot

study in which we systematically increased the value of this parameter from α = 0 (com-325

pletely greedy construction) to α = 1 (completely random construction) and investigated

each of these cases on solution quality (objective value) and solution diversity (average so-

lution distance). Based on the result of this study, α was fixed to 0.4 as for this value the

best trade-off between both objectives was found. However, solution quality and diversity

do not vary much with changing α-values, indicating that our method is rather robust.330

Secondly, we also need to specify the degree ∆ to which a solution should differ from all

other solutions in the archive in order to be accepted in the archive. This decision is of

great importance since it determines to large extent the diversity of the archive and has

a large impact on the performance of our local search algorithm, especially its ability to

locate different local optima. If we set the minimal distance to a very large value, it becomes335

very likely that our GRASP-procedure will be unable to find enough solutions that perform

better than the unimodal alternative to completely fill the archive. If the value of ∆ is too

low, many solutions in the archive will belong to the same basin of attraction and result in

the same local optima after local search. The value of ∆ should also take into consideration

the number of potential terminal locations.340

We have performed a thorough analysis of a selected set of sample of instances, for which we

incrementally increased the value of ∆ until it became impossible for the GRASP-algorithm

to find sufficiently diverse solutions to fill the archive. The results of these tests are visualized

in Figure 3. Based on the results displayed in this figure, we set ∆ = �|K|/4�.
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Figure 3: Evaluation of the best value of ∆ (minimal distance to the archive) to achieve high-quality,
diverse solutions

The third parameter, the size of the archive, was set to 10. Finally, we also need to decide345

on the number of iterations of the main loop. This value determines to a large extent the

running time of our GRASP heuristic and is discussed in Section 5.

4.2.2. Attribute based hill climber

The attribute based hill climber (ABHC) was recently proposed by Whittley and Smith

(2004) as a variant of the general tabu search algorithm. This metaheuristic is based on350

the aspiration concept and is shown to be competitive with the best-known approaches on

a wide range of problems (Whittley and Smith, 2004; Derigs and Kaiser, 2007). One of the

most important features of ABHC is the fact that it is completely parameter-free.

The ABHC algorithm refines the aspiration criterion commonly found in tabu search algo-

rithms and accepts a solution as the new current solution if it is the best solution found so355

far for at least one of its solution attributes. Our ABHC heuristic (Algorithm 3) uses the

same move type as the GRASP heuristic: in each iteration, the terminal with the lowest

fixed cost-capacity ratio rk and which is not yet open in the current solution, is added. The

solution thus found is accepted as the new current solution if it is the best solution found

so far for one of its solution attributes, defined as the status of a terminal.360

For each terminal location k, the heuristic therefore maintains two solutions: the best

solution found so far in which terminal k is open (Sk) and the best solution found so far

in which k is closed (Sk̄). Each time a new solution is generated by adding a terminal,

14



Algorithm 3: Attribute based hill climber
Output: Archive of diverse, high-quality solutions

create and sort list L with all terminals k according to rk =
Fk

Ck
in ascending order;

while improvement do

improvement ←false;

l ← 0;

while l < size of L do

select terminal l ∈ L;
if terminal l is closed in solution s then

open l in solution s;
foreach terminal k ∈ K do

if terminal k is open in solution s then

if f(s) < f(Sk) then

Sk ← s ;

improvement ← true ;

else

if f(s) < f(Sk̄) then

Sk̄ ← s;
improvement ← true;

l ← l + 1;

insert the 10 best different solutions of si and sī for all terminals i ∈ K into the archive

we make the following evaluation for all solution attributes: if terminal k is open in the

newly generated solution and the objective value of the new candidate solution is better365

than that of Sk (the best solution found so far with terminal k open), Sk is replaced by the

new solution. If terminal k is closed, the comparison should be made with Sk̄, i.e., the best

solution found so far with terminal k closed. If the new solution is worse than both Sk and

Sk̄ for all values of k, the terminal is closed again.

When all terminals have been either added or not, the ten best, non-duplicate solutions370

found during the search process are stored in an archive to be further improved later on

using local search. In contrast to the GRASP-algorithm, the size of the archive is the

only parameter to be set in the ABHC-procedure. Moreover, it is unnecessary to set up a

complex archiving mechanism for the ABHC heuristic since the archive solutions showed to

be already sufficiently diverse in nature (see Table 3).375

4.3. Improvement phase: ADD and REMOVE local search

After the construction phase, each solution in the archive is improved by an interchange

heuristic that performs a local search on this solution. This local search heuristic consists

of 2 steps, called ADD and REMOVE respectively. The first step (ADD) sorts the closed

terminals in increasing order of rk = Fk/Ck and attempts to open each terminal in that380
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order. The terminal is opened if this decreases the cost of the solution and then removed

from the list of possible terminals to be opened. The REMOVE step on the other hand

sorts the open terminals in increasing order of rk = Fk/Ck and attempts to close each

open terminal in this order. The terminal is closed if this decreases the cost of the current

solution. At the end of the REMOVE step, the improved solution is added to the archive.385

At the end of the improvement phase, the best solution in the archive is returned.

5. Performance evaluation

5.1. Problem instance generation and exact solutions

Because instances for the intermodal terminal location problem are not available, we have

designed and implemented a simple instance generator. To generate an instance, both the390

number of customers and the number of potential terminal locations in the intermodal net-

work are first determined. For each customer i, coordinates (xi, yi) are randomly generated

in the Euclidean square between (0,0) and (xmax = 10000, ymax = 10000). The amount

of goods (the demand) qij to be shipped between each pair of customers (i, j), (i �= j) is

randomly generated in the interval [0, dmax = 500]. The x and y coordinates of the termi-395

nals are generated in the same manner as those of the customers. The fixed cost Fk and

capacity Ck of each terminal k are randomly drawn from the intervals [0, Cmax = 10000]

and [0, Fmax = 500000] respectively.

The unimodal cost of a route cij (i �= j) is equal to the Euclidean distance between customers

i and j. To determine the cost of multimodal transport, we sum up the direct distances400

between customer i and the departing terminal, the distance between the two terminals and

the distance between the receiving terminal and customer j. To incorporate discounts for

using multimodal transport, this sum is then divided by two.

In order to assess the quality of the methods proposed in this paper, 100 problem instances

were generated in this way. An instance is generated for each possible combination of number405

of customers and terminals, in which both the number of customers and the number of

terminal locations can vary from 10 to 100 in steps of 10. The instances can be downloaded

from http://antor.ua.ac.be/intermodal.

All instances were solved by implementing the MIP formulation in Eqs. (1–7) in version

3.0.1 of Gurobi (http://www.gurobi.org). Gurobi was able to optimally solve 53 out of410

100 instances in computing times ranging from 0.2 to 872 seconds. All experiments were

performed on an Intel(R) Core(TM)2 Quad CPU Q6600 at 2.40GHz with 3.2Gb RAM.
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Detailed results can be found in Table 2 in Appendix B. The first column contains the

name of the instance, where nCmL indicates an instance with n customer and l potential

terminal locations.415

5.2. Performance evaluation of the heuristic evaluation procedure

Assessing the quality of the heuristic evaluation procedure developed for objective value

calculation is done on the basis of the Kendall tau rank correlation coefficient (τ), that

measures the correspondence between two rankings and assesses its significance. This co-

efficient can take on any value between −1 to 1, where τ = 1 corresponds to a situation420

in which the two rankings are identical and τ = −1 to a situation in which one ranking is

exactly the opposite of the other.

We have calculated Kendall’s coefficient for 40 of the 100 problem instances. For each of

these instances, 1000 random solutions of the master problem are generated in the following

way. First, the number of open terminals nr is randomly chosen between 0 and n. Next,425

nr terminals are randomly chosen from the list of possible terminals and opened. The

subproblem for these solutions is then solved exactly (using the formulation in Eqs. (8–11))

and heuristically (using the heuristic evaluation procedure). The exact objective functions

were calculated using Gurobi 3.0.1. The remaining 60 problem instances were too large for

Gurobi to be able to calculate exact objective function values for each number of terminals430

open, rendering them unusable for the purpose of this section. For each instance the 1000

solutions were ranked according to their exact objective function values and according to

their heuristic objective function values and these rankings were compared using Kendall’s

τ .

A correlation coefficient τ close to 1 is a strong indication that the best solutions are also435

listed among the best solutions found by the heuristic evaluation procedure. In turn, this

would imply that our heuristic evaluation procedure performs well at determining whether

a given solution is better than another, an evaluation that has to be made several times

during the optimization process. A sample of the results of these calculations can be found

in Table 1. A scatter plot of the objective function values and ranks of 1000 solutions for a440

selected example is shown in Figure 4.

The test results show that—overall—the heuristic evaluation procedure performs well. In

some cases however, such as instance 50C10L, Table 1 shows a rather low correlation co-

efficient. A more detailed analysis of these cases unmasked that they all share the same

properties: low terminal prices in combination with a very low ratio of the terminal capacity445

and the amount of goods to be shipped through the network. In such situations, it is less
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Table 1: Value of Kendall’s tau for 1000 randomly generated solutions of selected instances

C L τ ∆max
a

10 10 0.89 22.24 %
10 30 0.88 20.87 %
10 50 0.89 20.28 %

20 10 0.84 5.15 %
20 30 0.88 20.75 %
20 50 0.89 26.17 %

30 10 0.77 7.83 %
30 30 0.86 15.52 %
30 50 0.93 23.73 %

40 10 0.13 3.91 %
40 30 0.66 10.64 %
40 50 0.92 18.62 %

50 10 0.13 2.79 %
50 30 0.49 8.60 %
50 50 0.10 7.93 %
a
Difference between the exact

objective function values best

and the worst solution of 1000

random solutions
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Figure 4: Scatter plots of exact versus heuristic objective function value (left) and exact versus heuristic
rank (right) of 1000 solutions, instance 20 customers, 50 potential terminal locations
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important which terminals are opened as (1) opening terminals is cheap and (2) only a

fraction of the demand will be shipped by intermodal transport anyway (because of the low

terminal capacity). Consequently, for these cases, the objective value of any solution will

not deviate much from that of the optimal solution, i.e., in these cases almost all solutions450

are good solutions. Indeed, Table 1 indicates that the absolute difference between the worst

possible solution and the best is very small in these cases. Therefore, despite a low τ , this

evaluation method still allows the overall metaheuristic to make good decisions.

Finally, it should be noted that there can be significant deviations between the exact and

the heuristic objective function value of a solution, even for problem instances where the455

value of τ is close to 1. The high value of τ means that the heuristic will in most cases

correctly judge whether one solution of the master problem is better than another, although

it may be preferable to use a slower heuristic to solve the subproblem (assign demands to

terminals) for the final solution of the master problem.

5.3. Metaheuristics performance evaluation460

In this section, we try to formulate an answer to the question which of the two initial

construction phases (GRASP and ABHC) achieves best performance. The test results are

summarized and interpreted. For more detailed test results, we refer to Tables 3, 4 and 5

in Appendix C.

In a first phase, we allow both solution construction methods the same computing time.465

Since the ABHC has a natural stopping criterion, we allow the GRASP-procedure to run

exactly as long as the ABHC method (GRASPa). We first compare the archive of both

methods in terms of solution quality and diversity before local search. If the solutions in

the archive are already of high quality at this point, it will take the local search algorithm

less time to reach a local optimum. Additionally, the more diverse the solutions in the470

archive, the more local optima can be found by the local search improvement heuristic and

the greater the probability of reaching the global optimum.

The solution quality is evaluated by comparing the objective function value of the best

solution in the archive of both methods. To compare the solution diversity in the archive,

we compare the average of all average distances of each solution to all other solutions in475

the archive. The results of these calculations can be found in Figures 5 and 6. From

these figures, it is clear that—at least before the local search phase—the ABHC-algorithm

strongly outperforms the GRASPa-algorithm on both parameters.

We make a similar comparison after local search but now in terms of solution quality

and computing time. The results of these experiments can be found in Figures 7 and 8480

19



10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

Number of customers

D
is
ta
nc
e
(d̄
)

ABHC
GRASPa

Figure 5: Average distances to all other solutions of solutions in the archive generated during the
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(GRASPa). As can be seen from Figure 7, in which we report the quality of the best

solution found by applying the local search heuristic to each of the solutions in the archive,

the performance of our metaheuristic using GRASPa is on par with that using ABHC.

In this case, the solution quality gap between both methods becomes almost non-existent,

outliers have disappeared and the number of cases in which GRASP performs better than485

ABHC is more or less equal to the number of cases in which ABHC outperforms GRASPa.

The question is now raised whether this conclusion still holds if the running time of the

GRASP algorithm is extended, and hence is no longer limited to the running time of the

ABHC-procedure. When more time is available, the solutions produced by GRASP can be

further improved by adjusting some of the GRASP-parameters. In fact, by increasing the490

number of iterations or setting the α-value closer to 1, i.e., closer to complete randomness,

the GRASP-algorithm can explore larger parts of the solution space and consequently higher

its chances of finding the optimal solution. Keeping the α value unchanged, Figures 7 and 8

(GRASPb) display the results of the GRASP algorithm that was able to run until no further

improvement was found for 10 iterations. This graph shows no sufficient improvement in495

solution quality to compensate for the longer calculation times.
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Figure 7: Relative deviation of the best solution found after local search using GRASP and ABHC during
the construction phase (negative values indicate that the solution found when using ABHC is
better)

It can be concluded from the previous analysis that there is no real difference in performance

between the two metaheuristics developed in this paper. In a very short amount of time,

they both provide the decision maker with high-quality solutions that do not deviate much

in objective value from the exact solutions. The results of comparing the objective value500

of the best solutions generated by the heuristics and the optimal solutions are visualized

in Figure 9. In fact, the largest relative difference in total cost between the exact method
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and the metaheuristics using either ABHC, GRASPa and GRASPb during the construction

phase amounted to no more than 2.75%, 4.1% and 3.61% respectively. One argument in

favor of using ABHC during the construction phase is that it is parameter-free. By avoiding505

the parametric discussion, this method is more transparent and hence more likely to be

easily accepted by its users.
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Figure 9: Relative deviation of the best solution found by the heuristics from the optimal solution
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6. Conclusion and future research

The low level of maturity in intermodal transportation can be explained to a large extent

by the poor intermodal infrastructure. Especially the interconnectivity of the different510

transportation modes proves to be a large drawback in practice, resulting in high transit

times and cost. Intermodal transshipment terminals play an essential role in enhancing

the connectivity between modes and hence in improving the attractiveness of intermodal

transportation in general.

In order to determine the optimal number and location of transshipment terminals in an515

intermodal network, two different metaheuristics have been developed that both consist out

of two phases: a construction heuristic to build solutions, and a local search algorithm to

improve solutions. The proposed methods only differ in terms of the applied construction

heuristic: whereas the first method makes use of the GRASP metaheuristic, the second uses

the relatively unknown ABHC (attribute based hill climber) instead. To allow the method520

to solve arbitrarily large instances in reasonable computing times, we have additionally de-

veloped a heuristic evaluation procedure to calculate a good approximation of the objective

function value in a short computing time.

The main purpose of this paper was to investigate which of the two methods performs

best at solving real-life sized instances of the intermodal terminal location problem. Our525

numerical results show however that both methods generate equally good solutions that

approximate the optimal solution very closely. From a user perspective, one could argue

that the ABHC heuristic should be preferred because it is parameter-free. Either way, our

tests clearly prove the usefulness and value of metaheuristics for solving real-life problems

that are too complex to be solved to optimality.530

We conclude this paper with a couple of recommendations for further refinement of our

approach and future research. Although increasing the number of iterations of the GRASP-

algorithm had no significant impact on the solution quality, it remains interesting to inves-

tigate what the effect of further optimization of the GRASP parameter setting would be,

for example by using techniques such as experimental design. The surplus time and effort535

that an in-depth parametric analysis demands, might not be justifiable for the time being,

i.e., the tool serves as a trigger for discussion, but this attitude might change in the future

when intermodalism would have achieved a higher level of maturity and the tool would in-

deed be used for determining the actual location of new intermodal terminals. Additionally,

given the number of stakeholders involved in this problem and the impact on society of540

transportation in general, it is likely that our objective function, i.e., minimizing the total

cost, is too simple to reflect reality and that the problem at hand should be transformed
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in a multi-objective one. In this way, the fixed cost for locating terminals could be split off

from the variable transportation cost. An even more interesting alternative is to extend the

objective function to incorporate other decision criteria such as environmental impact.545

A. Complexity of the intermodal terminal location problem

Theorem 1. The intermodal terminal location problem in Eqs. (1–7) is NP-hard.

Proof. This result follows from the fact that the intermodal terminal location problem is an

extension of the capacitated facility location problem, a known NP-hard problem. We show

this by demonstrating that each instance of the CFLP can be converted to a corresponding550

instance of the intermodal terminal location problem in polynomial time.

Assume an instance of the CFLP with a set of customers Io and a set of potential facilities

Ko. Each facility k ∈ Ko has a fixed cost F̂k and a capacity Ĉk. Each customer i ∈ Io

has a demand q̂i that has to be delivered from one or more of the facilities. The cost

of transporting one unit of demand from facility k to customer i is equal to ĉki . If we555

define variables xki to be the demand transported from facility k to customer i and yk the

binary variable that is equal to 1 if facility k is used and zero otherwise, the mathematical

formulation of this problem is the following.

min
�

i∈Io

�

k∈Ko

ĉki x
k
i +

�

k∈Ko

F̂kyk (13)

s.t.

xki � q̂iyk ∀i ∈ Io, ∀k ∈ Ko (14)
�

k∈Ko

xki = q̂i ∀i ∈ Io (15)

�

i∈Io

xki � Ĉk ∀k ∈ Ko (16)

xki � 0 ∀i ∈ Io, ∀k ∈ Ko (17)

yk ∈ {0, 1} ∀k ∈ Ko (18)

We show that this instance of the CFLP can be transformed into an instance of the in-

termodal terminal location problem. For each customer i in the CFLP, we create two560

customers in the intermodal terminal location instance, an origin customer i and a desti-

nation customer δ(i) (δ(.) is a function that returns the index of the destination customer
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corresponding to the origin customer in its argument). The demand to be transported from

customer i to customer δ(i) is set to equal the demand of customer i in the CFLP instance,

i.e., qiδ(i) ≡ q̂i. The demand from customer δ(i) to customer i is also set to zero (qδ(i)i ≡ 0),565

as well as all other demands between customers not descendent from the same customer in

the CFLP, i.e., qiδj ≡ 0, ∀j �= i.

For each facility k in the CFLP, we create an origin and a destination terminal k and ∆(k)

in the intermodal terminal location instance (∆(.) is a function that returns the destination

terminal corresponding to the origin terminal in its argument) and set the capacity of these570

terminals both equal to the capacity of facility k in the CFLP, i.e., Ck ≡ C∆(k) ≡ Ĉk.

The fixed cost of locating terminals k and ∆(k) is set to half the fixed cost of locating

facility k in the CFLP, i.e., Fk ≡ F∆(k) ≡ F̂k/2. The cost of transporting a unit of demand

from customer i to customer δ(i) through terminals k and ∆(k) is set equal to the cost of

delivering a unit of demand from facility k to customer i in the CFLP, i.e., ck∆(k)
iδ(i) ≡ ĉki .575

All other transportation costs, i.e., the cost of delivering demand between customers not

descendent from the same customer in the CFLP, as well as the unimodal costs between

any pair of customers cij , are set to infinity.

From the above it follows that any optimal solution of the intermodal terminal location in-

stance created in this way will have the following properties. First, transportation variables580

xkmij will be zero if transportation is not from an origin to a destination customer corre-

sponding to the same customer in the CFLP, using an origin and a destination terminal

corresponding to the same facility. Also, all unimodal demand variables wij will be zero

in the optimal solution. In other words, the only variables xkmij that will be non-zero in

the optimal solution are of the form xk∆(k)
iδ(i) . Since demand can only be shipped through585

terminals k and ∆(k) if both are open, it follows that—in the optimal solution—terminals

will only be opened in pairs. Opening an origin terminal without opening the corresponding

destination terminal will only incur a cost without allowing any transportation. Therefore,

in the optimal solution , yk = y∆(k).

The mathematical formulation of the intermodal terminal location problem in Eqs. (1–7)590

for the instance generated using this special structure can thus be written as follows.
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min
�

i∈Io

�

k∈Ko

ck∆(k)
iδ(i) xk∆(k)

iδ(i) +
�

k∈Ko

Fk(yk + y∆(k)) (19)

s.t.

xk∆(k)
iδ(i) � qiδ(i)yk ∀k ∈ Ko (20)

xk∆(k)
iδ(i) � qiδ(i)yk∆(k) ∀k ∈ Ko (21)
�

k∈Ko

xk∆(k)
iδ(i) = qiδ(i) ∀i ∈ Io (22)

�

i∈Io

�

k∈Ko

xk∆(k)
iδ(i) � Ck ∀k ∈ Ko (23)

xk∆(k)
iδ(i) � 0 ∀i ∈ Io, ∀k ∈ Ko (24)

yk, yδ(k) ∈ {0, 1} ∀k ∈ Ko (25)

Since y∆(k) ≡ yk in the optimal solution, Eq. (21) is redundant. If we now make the following

substitutions: xk∆(k)
iδ(i) → xki , y∆(k) → yk, c

k∆(k)
iδ(i) → c̄ki , qiδ(i) → q̄i, Ck → C̄k, Fk → F̄k/2, we

obtain the formulation of the CFLP instance that was converted to an intermodal location

problem instance.595

We have shown that the CFLP is a special case of the intermodal terminal location problem.

Therefore, since the CFLP is NP hard, so is the intermodal terminal location problem.

B. Exact solutions

Table 2: Exact solutions found by Gurobi 3.0.1

Instance Cost (×107) Time (s) Instance Cost (×107) Time (s)

10C10L 9.5403 0.2 30C80L 75.126 440.9
10C20L 9.0838 0.8 40C10L 206.73 8.8
10C30L 9.1671 1.9 40C20L 203.40 56.3
10C40L 8.8075 4.7 40C30L 205.42 116.7
10C50L 8.3906 6.1 40C40L 171.06 7.9
10C60L 7.4758 9.2 40C50L 181.93 359.1
10C70L 7.6379 15.0 40C60L 170.94 629.1
10C80L 7.9555 24.7 50C10L 334.25 8.8
10C90L 8.6786 30.2 50C20L 300.56 45.0
10C100L 8.3989 43.3 50C30L 285.78 134.1
20C10L 50.916 1.0 50C40L 286.97 318.7
20C20L 45.968 6.9 50C50L 262.46 481.3
20C30L 46.358 14.0 60C10L 437.13 13.4
20C40L 40.123 33.6 60C20L 440.60 88.1
20C50L 34.403 56.8 60C30L 421.14 677.0
20C60L 41.174 69.3 60C40L 426.65 677.8
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20C70L 33.559 83.5 70C10L 633.54 19.1
20C80L 36.024 248.0 70C20L 613.96 152.0
20C90L 32.626 299.3 70C30L 581.41 460.0
20C100L 38.512 389.9 80C10L 778.89 23.1
30C10L 111.66 2.8 80C20L 821.40 232.0
30C20L 104.16 11.6 80C30L 782.35 872.0
30C30L 103.31 45.7 90C10L 1054.3 54.9
30C40L 80.470 0.7 90C20L 1036.5 220.2
30C50L 89.726 146.9 100C10 1319.9 75.4
30C60L 88.521 209.3 100C20 1276.2 675.7
30C70L 90.509 535.7

C. Comparison of metaheuristics

Table 3: Results of the metaheuristic with ABHC construction phase

ABHC ABHC + Local Search Evaluation

exact1 approx.2 d̄ 3 CPU exact4 approx.5 CPU speedup6 dev.7

Instance (×107) (×107) (s) (×107) (×107) (s) (%)

10C10L 9.7166 10.105 5.6 0.01 9.6586 10.049 0.01 24.0 1.24%
10C20L 9.2236 9.2283 13.7 0.01 9.1684 9.1752 0.01 88.0 0.93%
10C30L 9.3541 9.6471 24.2 0.01 9.2081 9.5157 0.02 99.5 0.45%
10C40L 8.9840 9.0989 30.7 0.01 8.9382 9.0661 0.04 118.3 1.48%
10C50L 8.6010 8.9194 30.3 0.01 8.6209 8.9134 0.05 123.6 2.75%
10C60L 7.7108 7.8456 50.3 0.01 7.5190 7.8316 0.06 154.5 0.58%
10C70L 7.8425 7.8622 55.1 0.03 7.6385 7.6928 0.07 215.1 0.01%
10C80L 8.1432 8.2461 72.4 0.06 7.9713 8.0759 0.13 190.6 0.20%
10C90L 8.9229 8.9484 61.6 0.05 8.8999 8.8990 0.13 232.9 2.55%
10C100L 8.6226 8.7324 87.0 0.09 8.4088 8.5228 0.19 228.4 0.12%
20C10L 51.236 51.664 6.0 0.01 50.991 51.420 0.01 109.0 0.15%
20C20L 46.118 51.781 12.1 0.01 46.419 51.559 0.12 58.3 0.98%
20C30L 46.643 51.725 25.0 0.03 46.472 51.573 0.23 65.1 0.25%
20C40L 40.365 44.363 34.2 0.06 40.238 44.127 0.50 67.3 0.29%
20C50L 34.956 36.893 43.7 0.08 34.605 36.601 0.30 189.6 0.59%
20C60L 41.798 44.191 52.8 0.12 41.745 44.147 0.42 165.2 1.39%
20C70L 34.238 36.496 59.3 0.17 33.992 36.388 0.67 124.8 1.29%
20C80L 36.674 38.392 73.3 0.30 36.114 37.859 0.73 340.3 0.25%
20C90L 33.359 35.330 81.0 0.34 32.756 34.737 0.84 356.4 0.40%
20C100L 39.157 40.735 86.8 0.49 38.685 40.192 1.10 354.5 0.45%
30C10L 111.66 117.71 5.5 0.01 113.37 117.67 0.02 138.0 1.54%
30C20L 104.46 113.35 14.8 0.03 106.78 112.90 0.26 44.7 2.51%
30C30L 103.53 116.91 24.8 0.11 103.66 116.76 1.13 40.4 0.34%
30C40L 81.260 90.544 30.5 0.14 80.829 90.188 1.09 63.9 0.45%
30C50L 90.461 104.42 45.1 0.30 90.055 104.07 2.50 58.8 0.37%
30C60L 89.637 101.40 53.5 0.37 89.268 101.02 2.77 75.6 0.84%
30C70L 91.368 105.53 62.2 0.93 91.095 105.42 6.85 78.2 0.65%

1
Exact objective function value of the best solution in the archive (NA: problem too large to solve exactly).

2
Heuristic objective function value of the best solution in the archive.

3
Average of all average distances of each solution in the archive to all other archive-solutions.

4
Exact objective function value of the best solution after local search (NA: problem too large to solve

exactly).
5
Heuristic objective function value of the best solution after local search.

6
Number of times the metaheuristic is faster than the exact method (ratio of exact method CPU time to

metaheuristic CPU time).
7
Deviation from the optimal solution (value of the exact objective function value of the best solution after

local search (column 6) minus objective function value of the optimal solution (see Table 2) divided by

the latter).
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30C80L 76.087 85.868 67.5 0.68 75.509 85.372 4.07 108.3 0.51%
30C90L 86.931 98.448 82.0 1.18 86.228 97.822 7.26 NA NA
30C100L NA 98.864 95.5 1.97 88.075 98.382 6.83 NA NA
40C10L 208.81 211.72 4.7 0.01 208.81 211.72 0.07 125.9 1.01%
40C20L 207.61 219.44 13.0 0.06 207.32 219.21 0.69 81.6 1.93%
40C30L 209.14 224.13 17.4 0.21 209.32 224.00 2.98 39.2 1.90%
40C40L 171.27 193.26 34.4 0.32 173.24 193.06 2.91 64.6 1.28%
40C50L 182.75 211.85 40.6 0.81 182.76 211.82 12.13 29.6 0.46%
40C60L 171.96 196.05 51.6 1.06 171.58 195.92 10.08 62.4 0.38%
40C70L 178.10 210.51 61.1 2.26 177.52 210.01 24.33 NA NA
40C80L NA 197.64 75.5 3.23 NA 197.48 32.49 NA NA
40C90L NA 176.15 84.5 3.32 NA 175.85 30.63 NA NA
40C100L NA 176.37 87.8 3.57 NA 175.78 31.98 NA NA
50C10L 334.61 339.52 5.1 0.02 335.03 339.50 0.17 52.2 0.23%
50C20L 307.93 314.67 8.7 0.10 307.00 314.53 0.86 53.4 2.14%
50C30L 288.59 308.70 21.6 0.24 289.93 308.03 2.38 56.4 1.45%
50C40L 290.10 319.91 31.4 0.57 289.44 319.57 5.49 58.1 0.86%
50C50L 267.41 285.37 24.4 0.70 265.45 283.69 6.68 72.1 1.14%
50C60L 254.38 290.99 46.5 1.52 254.04 290.55 16.52 NA NA
50C70L NA 306.05 59.1 3.24 NA 305.96 39.03 NA NA
50C80L NA 300.34 63.5 4.22 NA 300.34 71.30 NA NA
50C90L NA 295.87 82.3 4.94 NA 295.87 98.75 NA NA
50C100L NA 271.24 89.2 5.55 NA 270.39 56.91 NA NA
60C10L 439.80 439.80 5.5 0.02 439.63 439.62 0.14 96.4 0.57%
60C20L 450.98 452.06 9.5 0.12 449.43 451.56 1.00 88.2 2.01%
60C30L 435.20 443.31 9.3 0.36 431.42 442.76 3.08 220.1 2.44%
60C40L 434.51 462.27 19.4 0.90 436.96 462.01 8.77 77.3 2.42%
60C50L 394.18 429.77 32.6 1.37 393.95 429.76 21.34 NA NA
60C60L NA 496.88 42.0 3.39 NA 496.88 52.63 NA NA
60C70L NA 431.65 47.0 3.38 NA 431.33 35.11 NA NA
60C80L NA 497.53 61.4 7.83 NA 497.49 154.24 NA NA
60C90L NA 463.64 79.4 8.33 NA 463.58 167.61 NA NA
60C100L NA 478.34 78.0 13.34 NA 477.56 166.49 NA NA
70C10L 634.87 634.87 5.5 0.03 634.78 634.78 0.21 91.2 0.20%
70C20L 620.27 623.60 5.5 0.18 619.08 623.31 1.36 112.4 0.83%
70C30L 596.00 597.56 6.3 0.54 593.01 597.35 4.85 95.1 2.00%
70C40L 576.72 617.43 24.8 1.44 579.99 617.03 15.56 NA NA
70C50L 588.76 632.62 34.6 2.12 592.28 631.93 21.99 NA NA
70C60L 598.74 631.71 30.1 3.74 599.89 631.33 38.47 NA NA
70C70L NA 627.74 46.3 7.46 NA 627.02 85.88 NA NA
70C80L NA 610.59 50.4 9.49 NA 609.30 114.72 NA NA
70C90L NA 672.02 65.7 12.43 NA 670.83 149.19 NA NA
70C100L NA 629.46 87.2 17.29 NA 628.62 218.69 NA NA
80C10L 779.46 779.46 5.5 0.04 778.89 778.89 0.22 105.2 0.00%
80C20L 831.00 832.98 5.8 0.26 831.00 832.98 1.90 122.2 1.17%
80C30L 800.84 800.84 6.4 0.81 800.81 800.80 6.37 136.9 2.36%
80C40L 814.05 820.14 8.1 1.69 808.22 819.27 14.80 NA NA
80C50L 800.11 825.42 12.3 2.57 812.88 824.48 29.58 NA NA
80C60L NA 808.67 44.8 5.74 NA 808.23 63.36 NA NA
80C70L NA 864.83 43.6 9.26 NA 863.97 106.39 NA NA
80C80L NA 871.79 52.1 13.45 NA 871.22 152.16 NA NA
80C90L NA 809.75 68.5 16.34 NA 808.93 194.09 NA NA
80C100L NA 793.55 69.6 20.08 NA 792.90 227.53 NA NA
90C10L 1055.9 1056.0 5.5 0.06 1055.9 1055.9 0.36 152.6 0.16%
90C20L 1042.8 1048.7 6.3 0.26 1042.8 1048.7 1.71 128.8 0.62%
90C30L 1138.3 1141.3 5.5 1.23 1138.3 1141.3 10.76 NA NA
90C40L 1042.2 1054.7 11.6 2.32 1041.7 1054.3 22.14 NA NA
90C50L 1107.6 1117.7 8.7 4.10 1107.6 1117.7 37.02 NA NA
90C60L 1014.9 1046.8 14.4 6.80 1020.9 1046.0 66.91 NA NA
90C70L 963.09 1001.9 25.6 8.61 953.40 1000.3 96.99 NA NA
90C80L NA 1060.9 42.9 14.72 NA 1059.5 179.51 NA NA
90C90L NA 1018.2 48.2 20.51 NA 1017.0 236.83 NA NA
90C100L NA 1057.3 62.1 31.01 NA 1056.6 422.02 NA NA
100C10L 1320.7 1320.7 5.5 0.08 1320.7 1319.8 0.64 117.9 NA
100C20L 1285.1 1287.1 5.5 0.47 1286.2 1287.1 3.92 172.4 0.78%
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100C30L 1227.2 1233.1 6.3 1.06 1227.2 1233.1 7.84 NA NA
100C40L 1249.8 1252.3 5.9 2.24 1249.2 1252.2 18.55 NA NA
100C50L 1263.7 1278.3 10.0 4.94 1265.6 1278.1 45.02 NA NA
100C60L 1263.8 1271.8 10.4 8.40 1257.2 1271.0 84.26 NA NA
100C70L NA 1315.2 27.4 11.86 1277.5 1314.6 117.34 NA NA
100C80L NA 1231.3 27.7 16.46 NA 1231.3 196.48 NA NA
100C90L NA 1296.9 45.6 23.66 NA 1295.1 278.57 NA NA
100C100L NA 1297.6 48.0 39.80 NA 1297.2 445.80 NA NA

Table 4: Results of the metaheuristic with GRASPa construction phase

GRASPa GRASPa + Local Search Evaluation

exact approx. d̄ CPU exact approx. CPU speedup dev.
Instance (×107) (×107) (s) (×107) (×107) (s) %

10C10L 9.6586 10.050 3.2 0.01 9.6586 10.050 0.01 24.0 1.24%
10C20L 9.2352 9.2400 7.3 0.01 9.0947 9.1014 0.02 44.0 0.12%
10C30L 9.3541 9.6471 11.3 0.01 9.2081 9.5157 0.05 39.8 0.45%
10C40L 8.9615 9.1142 15.6 0.01 8.8257 8.9812 0.12 39.4 0.21%
10C50L 8.5793 8.8977 18.3 0.01 8.4107 8.7085 0.12 51.5 0.24%
10C60L 8.8902 8.9369 6.6 0.02 7.4931 7.6301 0.36 25.8 0.23%
10C70L 8.2162 8.4402 13.7 0.03 7.6405 7.6964 0.35 43.0 0.03%
10C80L 9.1842 9.5825 6.9 0.06 7.9713 8.0759 1.51 16.4 0.20%
10C90L 9.4706 9.4838 10.5 0.06 8.6919 8.7251 1.49 20.3 0.15%
10C100L 10.012 10.120 9.8 0.09 8.4058 8.5219 2.92 14.9 0.08%
20C10L 51.134 51.563 3.2 0.01 50.992 51.420 0.02 54.5 0.15%
20C20L 46.457 51.754 9.4 0.02 46.419 51.560 0.13 53.8 0.98%
20C30L 52.105 55.661 6.3 0.03 46.473 51.573 0.34 44.0 0.25%
20C40L 43.203 47.764 9.3 0.06 40.208 44.141 0.73 46.1 0.21%
20C50L 39.266 42.877 5.6 0.09 34.632 36.616 1.30 43.8 0.67%
20C60L 44.770 48.570 7.3 0.12 41.325 43.751 1.86 37.3 0.37%
20C70L 36.415 39.313 15.5 0.18 33.707 35.992 2.16 38.7 0.44%
20C80L 39.612 43.583 10.2 0.30 36.143 37.831 5.71 43.5 0.33%
20C90L 34.935 38.740 20.2 0.35 32.757 34.727 5.49 54.5 0.40%
20C100L 44.278 48.547 9.8 0.49 38.685 40.193 12.14 32.1 0.45%
30C10L 111.66 117.72 4.6 0.01 113.38 117.68 0.04 69.0 1.54%
30C20L 104.40 113.51 8.1 0.03 105.95 113.23 0.22 52.9 1.72%
30C30L 103.68 117.03 10.9 0.12 104.43 116.83 1.01 45.2 1.08%
30C40L 81.843 91.313 15.1 0.14 80.941 90.238 1.12 62.2 0.59%
30C50L 91.019 105.48 18.4 0.30 90.055 104.08 2.88 51.0 0.37%
30C60L 91.431 103.24 21.5 0.37 89.115 101.11 3.75 55.8 0.67%
30C70L 95.706 113.53 24.4 0.94 91.298 105.42 10.79 49.6 0.87%
30C80L 77.608 88.557 28.6 0.69 75.539 85.396 7.19 61.3 0.55%
30C90L 88.128 102.09 31.0 1.18 86.134 97.830 13.87 NA NA
30C100L 92.065 105.81 24.7 1.97 88.110 98.423 26.65 NA NA
40C10L 212.93 212.93 2.9 0.01 208.81 211.73 0.08 110.1 1.01%
40C20L 204.94 219.75 5.0 0.06 205.42 219.49 0.55 102.3 0.99%
40C30L 206.96 226.95 11.2 0.21 208.17 224.33 1.86 62.8 1.34%
40C40L 171.45 193.34 15.1 0.32 172.81 193.11 2.65 70.9 1.03%
40C50L 182.68 212.39 19.4 0.82 183.35 211.20 7.83 45.9 0.78%
40C60L 171.78 196.18 22.5 1.06 171.46 195.97 9.59 65.6 0.30%
40C70L NA 210.61 26.6 2.27 177.34 210.23 22.24 NA NA
40C80L NA 197.65 30.8 3.24 NA 197.48 28.98 NA NA
40C90L NA 177.49 33.2 3.32 NA 175.80 37.20 NA NA
40C100L NA 177.13 37.4 3.57 NA 175.82 42.00 NA NA
50C10L 340.46 340.46 2.9 0.02 335.03 339.50 0.15 59.2 0.23%
50C20L 314.81 316.05 5.9 0.10 308.25 315.04 0.82 56.0 2.56%
50C30L 288.47 309.20 9.9 0.24 290.58 308.15 1.79 74.9 1.68%
50C40L 286.97 320.22 15.1 0.57 290.70 319.25 4.89 65.2 1.30%
50C50L 267.80 287.06 16.6 0.71 264.34 283.66 6.13 78.5 0.71%
50C60L NA 292.21 22.6 1.54 253.88 290.65 14.26 NA NA
50C70L NA 306.54 26.6 3.25 NA 306.10 35.45 NA NA
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50C80L NA 301.09 31.0 4.25 NA 300.16 46.64 NA NA
50C90L NA 296.18 34.8 4.95 NA 295.43 51.45 NA NA
50C100L NA 271.46 38.9 5.55 NA 270.42 56.17 NA NA
60C10L 439.63 439.80 0.0 0.02 439.63 439.63 0.22 61.3 0.57%
60C20L 452.69 452.69 5.9 0.12 450.99 452.06 0.93 94.8 2.36%
60C30L 444.62 444.62 8.0 0.36 432.88 442.70 3.33 203.6 2.79%
60C40L 457.66 464.79 11.4 0.90 444.35 461.97 8.37 81.0 4.15%
60C50L NA 431.83 18.5 1.38 NA 431.83 11.75 NA NA
60C60L NA 499.61 23.4 3.41 450.71 496.28 30.74 NA NA
60C70L NA 434.60 26.5 3.39 NA 431.56 31.38 NA NA
60C80L NA 499.27 31.0 7.83 NA 497.45 74.99 NA NA
60C90L NA 464.19 34.7 8.38 NA 462.91 80.61 NA NA
60C100L NA 479.86 39.1 13.37 NA 477.79 135.67 NA NA
70C10L 637.06 637.06 0.3 0.03 634.78 634.78 0.22 87.0 0.20%
70C20L 624.15 624.15 5.9 0.18 619.08 623.31 1.19 128.4 0.83%
70C30L 598.32 598.32 7.8 0.55 593.02 597.35 4.20 109.8 2.00%
70C40L 575.22 619.63 15.1 1.44 588.52 617.19 12.35 NA NA
70C50L NA 636.00 18.4 2.14 593.26 632.14 18.23 NA NA
70C60L NA 636.22 22.5 3.78 597.07 631.65 32.86 NA NA
70C70L NA 631.72 26.6 7.46 NA 626.94 70.60 NA NA
70C80L NA 613.46 30.7 9.55 NA 609.46 91.49 NA NA
70C90L NA 674.67 33.9 12.43 NA 670.88 140.78 NA NA
70C100L NA 631.03 39.1 17.32 NA 628.55 206.99 NA NA
80C10L 780.90 780.90 2.9 0.04 778.89 778.89 0.29 79.8 0.00%
80C20L 833.22 833.22 5.9 0.27 830.62 833.03 1.84 126.2 1.12%
80C30L 801.48 801.48 8.0 0.82 800.81 800.81 6.66 131.0 2.36%
80C40L 821.55 821.55 10.9 1.70 812.02 820.00 14.56 NA NA
80C50L 826.13 826.13 12.8 2.59 813.63 824.57 23.00 NA NA
80C60L NA 813.53 23.5 5.78 NA 808.19 58.85 NA NA
80C70L 834.98 869.28 20.6 9.33 NA 864.33 91.60 NA NA
80C80L NA 878.16 31.0 13.50 NA 871.08 145.33 NA NA
80C90L NA 813.41 34.6 16.46 NA 809.41 164.89 NA NA
80C100L NA 800.85 38.9 20.21 NA 793.22 193.30 NA NA
90C10L 1056.8 1056.8 2.9 0.06 1056.0 1056.0 0.49 112.1 0.16%
90C20L 1049.6 1049.5 5.9 0.27 1046.2 1048.8 1.64 134.3 0.94%
90C30L 1142.4 1142.4 8.0 1.23 1139.4 1141.5 9.78 NA NA
90C40L 1056.6 1056.6 10.9 2.34 1041.7 1054.4 21.33 NA NA
90C50L 1119.3 1119.3 12.8 4.13 1119.0 1119.0 46.49 NA NA
90C60L 1048.9 1048.9 15.8 6.82 1048.9 1048.9 79.17 NA NA
90C70L 1006.6 1006.6 18.1 8.64 955.61 1000.3 96.17 NA NA
90C80L NA 1069.5 27.6 14.81 NA 1060.5 138.21 NA NA
90C90L NA 1025.3 29.7 20.54 NA 1017.1 200.46 NA NA
90C100L NA 1063.2 37.9 31.21 NA 1056.5 311.32 NA NA
100C10L 1322.8 1322.8 2.9 0.08 1319.9 1319.9 0.69 109.3 0.00%
100C20L 1287.3 1287.3 5.9 0.47 1286.2 1287.2 3.24 208.5 0.78%
100C30L 1234.5 1234.5 7.8 1.07 1230.9 1233.2 7.89 NA NA
100C40L 1253.5 1253.5 10.9 2.25 1250.8 1252.3 17.16 NA NA
100C50L 1280.4 1280.4 12.8 4.95 1270.8 1278.3 47.81 NA NA
100C60L 1273.2 1273.2 15.8 8.49 1255.4 1271.5 88.46 NA NA
100C70L 1318.0 1319.8 18.1 11.94 1282.3 1315.4 110.78 NA NA
100C80L 1233.5 1236.7 21.3 16.59 NA 1231.4 153.78 NA NA
100C90L NA 1306.7 31.6 23.80 NA 1295.9 231.56 NA NA
100C100L 1298.4 1308.0 26.9 40.04 NA 1296.6 436.56 NA NA

Table 5: Results of the metaheuristic with GRASPb construction phase

GRASPb GRASPb+ Local Search Evaluation

exact approx. d̄ CPU exact approx. CPU speedup dev.
Instance (×107) (×107) (s) (×107) (×107) (s) %

10C10L 9.659 10.050 3.2 0.01 9.659 10.050 0.01 24.0 1.24%
10C20L 9.233 9.238 7.3 0.06 9.095 9.101 0.07 12.6 0.12%
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10C30L 9.354 9.647 11.3 0.08 9.208 9.516 0.12 16.6 0.45%
10C40L 8.921 9.074 14.4 0.20 8.821 8.977 0.31 15.3 0.15%
10C50L 8.531 8.850 17.4 0.40 8.411 8.708 0.51 12.1 0.24%
10C60L 7.627 7.809 22.4 0.76 7.493 7.630 1.00 9.3 0.23%
10C70L 7.744 7.793 32.8 1.41 7.641 7.692 1.58 9.5 0.04%
10C80L 8.165 8.268 30.7 1.44 7.971 8.076 2.56 9.7 0.20%
10C90L 8.904 8.928 33.2 1.15 8.889 8.922 2.24 13.5 2.42%
10C100L 8.612 8.725 35.7 1.72 8.409 8.523 3.86 11.2 0.12%
20C10L 51.134 51.563 3.2 0.01 50.992 51.420 0.02 54.5 0.15%
20C20L 46.457 51.754 9.4 0.15 46.419 51.560 0.26 26.9 0.98%
20C30L 46.645 51.733 11.2 0.58 46.473 51.573 0.88 17.0 0.25%
20C40L 40.447 44.397 15.5 0.99 40.208 44.141 1.59 21.2 0.21%
20C50L 34.964 36.916 18.7 1.21 34.632 36.616 2.25 25.3 0.67%
20C60L 41.728 44.121 22.5 2.62 41.335 43.757 4.09 17.0 0.39%
20C70L 34.133 36.407 25.5 5.64 33.707 35.992 7.40 11.3 0.44%
20C80L 36.691 38.406 29.2 3.60 36.300 38.328 8.06 30.8 0.77%
20C90L 33.382 35.324 33.6 6.34 32.757 34.727 10.95 27.3 0.40%
20C100L 39.150 40.805 36.8 12.29 38.685 40.193 21.48 18.2 0.45%
30C10L 113.38 117.68 2.7 0.04 113.38 117.68 0.07 39.4 1.54%
30C20L 104.21 113.31 7.4 0.28 105.95 113.23 0.48 24.2 1.72%
30C30L 103.36 117.00 11.2 2.04 103.66 116.76 2.94 15.5 0.34%
30C40L 81.612 90.993 15.2 1.93 80.733 90.109 2.92 23.9 0.33%
30C50L 90.350 104.33 18.7 3.77 90.227 104.03 6.45 22.8 0.56%
30C60L 89.684 101.47 22.7 6.28 89.268 101.02 9.54 22.0 0.84%
30C70L 91.632 105.71 26.7 15.72 91.205 105.40 25.51 21.0 0.77%
30C80L 76.525 86.310 31.0 16.39 75.539 85.396 22.84 19.3 0.55%
30C90L NA 98.572 34.8 19.90 86.134 97.830 32.65 NA NA
30C100L NA 98.901 37.9 50.94 88.075 98.383 74.12 NA NA
40C10L 207.83 212.24 3.8 0.15 208.81 211.73 0.22 40.1 1.01%
40C20L 205.08 219.49 7.1 0.90 204.85 219.47 1.36 41.4 0.71%
40C30L 210.73 225.72 12.7 3.36 209.90 224.18 5.14 22.7 2.18%
40C40L 171.86 193.29 15.0 3.34 173.22 192.98 6.04 31.1 1.27%
40C50L 183.22 212.14 19.2 11.20 183.41 211.20 18.34 19.6 0.81%
40C60L 171.78 196.18 22.5 10.68 171.46 195.97 19.49 32.3 0.30%
40C70L NA 210.55 26.5 38.34 177.34 210.23 58.43 NA NA
40C80L NA 197.63 30.2 56.79 NA 197.51 83.58 NA NA
40C90L NA 176.11 33.8 74.47 NA 175.79 107.53 NA NA
40C100L NA 176.57 37.7 39.89 NA 175.84 76.83 NA NA
50C10L 335.03 339.50 3.5 0.39 335.03 339.50 0.51 17.4 0.23%
50C20L 310.49 315.57 6.8 0.92 307.00 314.54 1.70 27.0 2.14%
50C30L 287.41 308.97 10.8 2.15 290.58 308.15 3.68 36.4 1.68%
50C40L 288.08 320.03 15.3 6.82 289.05 319.52 10.96 29.1 0.73%
50C50L 268.60 285.89 22.3 9.78 268.21 283.42 15.16 31.8 2.19%
50C60L NA 291.74 22.4 31.05 253.84 290.68 43.05 NA NA
50C70L NA 306.54 26.6 34.01 NA 306.10 67.52 NA NA
50C80L NA 300.90 30.9 115.59 NA 300.07 153.42 NA NA
50C90L NA 295.96 34.9 73.84 NA 295.43 121.34 NA NA
50C100L NA 271.46 38.9 59.32 NA 270.42 111.42 NA NA
60C10L 439.80 439.80 2.9 0.22 439.63 439.63 0.33 40.9 0.57%
60C20L 452.43 452.43 5.9 1.14 450.99 452.06 1.89 46.7 2.36%
60C30L 440.83 443.68 7.8 4.88 434.62 443.38 7.46 90.9 3.20%
60C40L 441.97 464.68 16.6 13.39 442.05 462.39 20.61 32.9 3.61%
60C50L 392.51 431.21 18.0 15.03 395.99 429.33 25.95 NA NA
60C60L NA 499.11 22.9 46.35 450.06 496.60 76.83 NA NA
60C70L NA 434.60 26.5 33.46 NA 431.56 61.95 NA NA
60C80L NA 499.14 30.9 82.56 NA 497.36 154.30 NA NA
60C90L NA 464.07 34.1 212.92 NA 462.89 292.82 NA NA
60C100L NA 479.79 38.9 199.49 NA 477.76 323.37 NA NA
70C10L 634.88 634.88 2.9 0.34 634.78 634.78 0.49 39.1 0.20%
70C20L 623.83 623.83 5.9 1.52 619.08 623.31 2.52 60.6 0.83%
70C30L 595.34 597.43 8.0 9.57 593.02 597.35 13.22 34.9 2.00%
70C40L 579.83 618.45 14.3 16.48 581.75 617.10 28.01 NA NA
70C50L NA 634.66 19.4 31.00 594.83 632.23 48.66 NA NA
70C60L NA 634.98 26.8 98.87 598.63 631.44 134.74 NA NA
70C70L NA 630.24 25.6 144.88 NA 626.86 210.60 NA NA
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70C80L NA 613.12 30.5 162.22 NA 609.55 241.58 NA NA
70C90L NA 674.29 33.7 158.78 NA 670.91 269.16 NA NA
70C100L NA 630.81 38.9 503.42 NA 628.51 661.66 NA NA
80C10L 779.46 779.46 2.9 0.33 778.89 778.89 0.57 40.6 0.00%
80C20L 833.07 833.07 5.9 4.08 831.00 832.98 5.66 41.0 1.17%
80C30L 800.85 800.85 7.8 10.84 800.81 800.81 15.78 55.3 2.36%
80C40L 817.40 820.80 11.1 21.51 813.52 819.92 33.65 NA NA
80C50L 821.12 825.37 13.5 27.66 819.75 825.06 46.73 NA NA
80C60L NA 812.86 22.7 84.74 NA 808.37 139.69 NA NA
80C70L 834.98 869.28 20.6 92.93 NA 864.33 177.57 NA NA
80C80L NA 877.29 29.7 171.16 NA 871.46 282.15 NA NA
80C90L NA 813.05 34.1 274.50 NA 809.36 426.58 NA NA
80C100L NA 799.76 38.9 429.57 NA 793.42 606.42 NA NA
90C10L 1056.0 1056.0 2.9 0.53 1056.0 1056.0 0.93 59.1 0.16%
90C20L 1049.6 1049.5 5.9 1.85 1046.2 1048.8 3.22 68.4 0.94%
90C30L 1140.0 1141.4 7.9 17.10 1139.0 1141.4 25.65 NA NA
90C40L 1052.6 1056.2 11.1 54.30 1041.7 1054.4 74.60 NA NA
90C50L 1116.1 1118.9 12.7 79.66 1105.6 1117.6 117.13 NA NA
90C60L 1048.9 1048.9 15.8 66.41 1048.9 1048.9 140.84 NA NA
90C70L 987.14 1005.6 20.1 143.66 NA 1000.4 220.10 NA NA
90C80L NA 1067.4 36.1 259.89 NA 1060.0 394.19 NA NA
90C90L 1021.9 1025.0 23.2 384.88 NA 1017.1 603.45 NA NA
90C100L NA 1061.6 37.6 343.05 NA 1056.7 628.07 NA NA
100C10L 1320.7 1320.7 2.9 0.82 1319.9 1319.9 1.42 53.1 0.00%
100C20L 1287.3 1287.3 5.9 3.56 1286.2 1287.2 6.36 106.2 0.78%
100C30L 1233.7 1233.7 7.9 19.98 1230.9 1233.2 26.77 NA NA
100C40L 1252.9 1252.9 10.9 28.55 1249.2 1252.3 43.74 NA NA
100C50L 1274.7 1279.2 12.7 96.21 1265.7 1278.2 136.24 NA NA
100C60L 1272.9 1272.9 15.8 147.70 1268.6 1271.9 218.19 NA NA
100C70L 1315.4 1319.7 18.5 153.73 1294.6 1315.5 246.88 NA NA
100C80L 1230.7 1236.6 21.5 209.44 1196.5 1231.5 356.20 NA NA
100C90L NA 1304.5 40.0 294.54 NA 1295.9 510.34 NA NA
100C100L NA 1306.6 47.8 721.55 NA 1296.9 1114.17 NA NA
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