
ar
X

iv
:2

20
7.

12
81

5v
1

 [
m

at
h.

O
C

]
 2

6
Ju

l 2
02

2

Admission and routing of soft real-time jobs to multiclusters: Design

and comparison of index policies

José Niño-Mora
Department of Statistics

Carlos III University of Madrid
28903 Getafe (Madrid), Spain

jnimora@alum.mit.edu, http://orcid.org/0000-0002-2172-3983

Published in Computers & Operations Research, vol. 39, 3431–3444, 2012
DOI: 10.1016/j.cor.2012.05.004

Abstract

Motivated by time-sensitive e-service applications, we consider the design of effective policies in a Marko-
vian model for the dynamic control of both admission and routing of a single class of real-time transactions
to multiple heterogeneous clusters of web servers, each having its own queue and server pool. Transactions
come with response-time deadlines, staying until completion if the latter are missed. Per job rejection and
deadline-miss penalties are incurred. Since computing an optimal policy is intractable, we aim to design near
optimal heuristic policies that are tractable for large-scale systems. Four policies are developed: the static
optimal Bernoulli-splitting (BS) policy, and three index policies, based respectively on individually optimal
(IO) actions, one-step policy improvement (PI), and restless bandit (RB) indexation. A computational study
demonstrates that PI is the best of such policies, being consistently near optimal. In the pure-routing case,
both the PI and RB policies are nearly optimal.

Keywords: e-services; admission control; routing; multiclusters; parallel multiserver queues; soft real-time;
deadlines; index policies

MSC (2010): 90B22; 90C40

1

http://arxiv.org/abs/2207.12815v1
mailto:jnimora@alum.mit.edu
http://orcid.org/0000-0002-2172-3983
https://doi.org/10.1016/j.cor.2012.05.004

1 Introduction

Motivated by time-sensitive online data services (e-services) applications, this paper considers the design of
effective policies for the dynamic control of both admission and routing of a single class of real-time transactions
to multiple clusters of web servers, in the setting of a queueing model of Markov decision process (MDP) type.
Service resources comprise n parallel clusters of servers, where each cluster k ∈ K , {1, . . . , n} has its own
dedicated queue with unlimited buffer space for holding transaction requests waiting or being processed, and
a pool of mk identical servers, each working at a speed of µk (transactions per time unit). The system is
heterogeneous in that both server speeds and server-pool sizes may differ across clusters. Transactions arrive as
a Poisson process with rate λ, with their execution times being independent and exponentially distributed with
unit rate. To ensure stability, it is assumed that the incoming load ρ , λ/

∑
k mkµk is less than unity. Upon

arrival of a transaction request, the system controller immediately and irrevocably decides whether to admit or
reject it. If admitted, the controller further decides at once to which cluster to route it, basing decisions on the
history of previous queue lengths and actions. Once in a cluster queue, pending transactions are scheduled on
a first-come first-served (FCFS) basis.

Transactions are delay-sensitive of soft real-time type, coming with timeliness requirements on their indi-
vidual response or waiting times given in the form of soft deadlines from their times of arrival, i.e., deadlines
that can be missed without totally destroying the value of the transactions. Hence, transactions with missed
deadlines remain in the system until completed.

The prime motivation for the study of such a system model comes from certain time-sensitive e-service
applications, where it is desirable but not mandatory to meet given transaction deadlines, and which increasingly
rely on heterogeneous multicluster web-server architectures. Examples of such soft real-time applications include
e-commerce (see Bertini et al. (2010)), real-time databases, e.g., for online stock trading (see Kao and García-
Molina (1996) and Kang et al. (2007)), and scientific computing (see Zhu (2001) and Plankensteiner et al.
(2010)). See also He et al. (2006), which considers a similar model to the present one, yet focusing on the
pure-routing case, i.e., without admission control.

It should be mentioned that in other important applications, notably in call centers, transactions are subject
to firm deadlines, meaning that customers abandon if they are put on hold for too long. Use of index policies
based on restless bandits for the resulting models with abandonment, or reneging, has been proposed in Niño-
Mora (2007). A thorough study of such models is the subject of another paper by the author, as yet unpublished.

The incorporation of admission control in the present model is motivated by the observation that, at times
when the system is heavily congested, admitting newly arriving transactions will almost guarantee that their
deadlines will be missed. Hence, in such circumstances it may be beneficial to reject new transactions if doing
so is not too costly.

The main performance metrics to evaluate the Quality-of-Service (QoS) provided to users under a given
control policy π in such a system are the rejection ratio pπ, which is the long-run average fraction of transactions
that are rejected upfront, and the deadline miss ratio qπ, which is the long-run average fraction of transactions
that are admitted only to miss their deadlines. While one would like to have both pπ and qπ small, it is
intuitively clear that there is trade-off between them. We can visualize such a trade-off as the lower boundary in
the region of achievable performance of (pπ, qπ) pairs, spanned under all admissible policies π, which is displayed
in Figure 1 for the instance with n = 2 clusters with server-pool sizes m = (4, 8), server speeds µ = (5, 3), and
ρ = 0.95.

A common approach to policy design in such systems is to specify in advance upper bounds p̄ and q̄ on
the metrics pπ and qπ, and then try to construct a policy π that satisfies the resulting constraints pπ 6 p̄ and
qπ 6 q̄. Another common approach is to aim to minimize one of the metrics, say pπ, subject to an upper bound
constraint on the other, e.g., qπ 6 q̄.

In contrast, in this work we aim to jointly optimize the pair (pπ, qπ), by setting economic incentives to the
service provider, considering a performance objective to minimize of the form Rpπ +Cqπ, where R > 0 represents
a cost per rejected transaction, and C > 0 is a cost per missed deadline. Notice that the pure-routing case
considered in He et al. (2006) can be seen as the special case of the present model where the rejection cost is R
is sufficiently large.

Since minimizing the cost Rpπ + Cqπ is equivalent to maximizing the net reward R(1 − pπ) − Cqπ , such an
objective models a Service Level Agreement (SLA) contract, which sets the fee R to be collected by the service

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pπ (rejection ratio)

qπ (
de

ad
lin

e
m

is
s

ra
tio

)

Figure 1: The achievable performance region of (pπ, qπ) pairs.

provider from each admitted user, and incorporates an economic compensation scheme by which a refund C
is issued to a user whose QoS target deadline is missed. While the above performance optimization problem

can be formulated as a countable-state average-cost MDP, computing an optimal policy by solving numerically
the corresponding dynamic programming (DP) equations is computationally intractable, even for a moderate
number of clusters. Hence, the main aim of this paper is to design high-performance heuristic policies that can
be computed with low complexity in large-scale systems.

In the sequel we will focus, with no loss of generality, on the case C = 1, which results by normalizing the
above objective by dividing it by C. Further, we will use interchangeably the terms “queue” and “cluster,” since
each cluster has its own queue, and we will use the term “job” instead of “transaction.”

1.1 Related prior work

Most related prior work on soft-real time systems has focused on pure-routing models, and has only considered
static policies, which do not use system state information. Static policies decompose routing decisions into a
load balancing or workload allocation rule, which determines the proportion of jobs to be assigned to each queue,
and a job dispatching rule, which specifies where to send each job. An admission policy may be incorporated by
fixing the proportion of jobs to be rejected. A simple static policy is a Bernoulli splitting (BS), which splits the
arrival stream according to fixed probabilities. Kallmes and Cassandras (1995) addresses computation of the
optimal BS in the special case of the present model, including admission and routing, where each queue has a
single server and the rejection and deadline miss penalties are equal (R = C = 1). This calls for solving a convex
separable nonlinear program (NLP). He et al. (2006) shows how to compute the optimal workload allocation
for the special pure-routing case of the present model, considering BS as well as round-robin job dispatching.

As for dynamic policies, which use some degree of state information, prior work has addressed the perfor-

mance evaluation of the deadline-miss ratio for some ad hoc routing policies, in homogeneous systems with
parallel single-server queues. Kao and García-Molina (1996) considers routing policies that use deadline infor-
mation, which are shown to outperform symmetric BS routing. Zhu (2001) reports on a comparative simulation
study of four routing policies for the same model, one of which is the shortest queue routing (SQR) rule. It is
shown that SQR is the best policy among those considered.

In different models from the one considered here, index policies have been proposed for routing to parallel
queues based on one-step policy improvement (PI) over the optimal BS (see Krishnan (1990)), and also based on
restless bandit (RB) indexation, introduced in general in Whittle (1988) and first applied in Niño-Mora (2002)
to problems of admission control and routing to parallel queues (see also Niño-Mora (2007)).

Effective heuristic index policies have also been proposed and investigated for dynamic routing in certain
call-center models that incorporate both multiple customer classes and multiple server pools with different skills.

3

See, e.g., Bhulai (2009), which derives a PI-based policy that is shown to perform extremely well, and Gurvich
and Whitt (2010), where the proposed policies can achieved desired QoS levels. Note, however, that, even
in the case of a single customer class the models considered in such papers are fundamentally different from
the one addressed here, not only because they do not incorporate rejections and consider either no deadlines
or firm deadlines (with abandonment) rather than soft deadlines, but more importantly because they assume
that customers (from each class) join a common queue upon arrival, to be later routed to available servers. In
contrast, in the present model customer transactions that are admitted are immediately routed upon arrival to
one of multiple parallel queues, each corresponding to a multiserver cluster.

1.2 Extending prior work

This paper extends the aforementioned research in the following ways: (1) the model incorporates dynamic
control of admission, rather than considering only static or only pure-routing policies; (2) instead of addressing
the performance evaluation of given ad hoc policies, the aim is performance optimization, i.e., to design heuristic
policies that can be computed with low complexity and come close to optimizing the performance objective of
concern; (3) the focus is on systems with parallel heterogeneous multi-server queues, motivated by the prevalence
of heterogeneity in real multicluster systems; (4) the computation of the optimal BS is extended from the special
case R = 1 (recall that C ≡ 1) to the general case where R may differ from 1; (5) new dynamic index policies type
are introduced, based on three different methods (individually optimal decisions, one-step policy improvement,
and restless bandits); and, finally, all the heuristic policies considered are benchmarked against the optimal
performance in a numerical study.

We will focus on the intuitively appealing class of index policies, which determine admission and routing
actions on the basis of n numeric routing indices, where index νk(xk) is attached to queue k ∈ K as a non-
decreasing function of its current state xk, the latter giving the number of jobs waiting or being served in the
cluster’s queue. The resulting routing policy sends an admitted job to a queue with currently lowest index
value, breaking ties arbitrarily.

Such routing policies aim to approximate the optimal routing policy, which is shown below in Section 2.3 to
have the following form: a newly arriving job that finds the system in the joint state x = (xk), if admitted, is
assigned to a queue k attaining the minimum value of a certain quantity ν∗

k(x), which is thus an optimal routing

index which depends on the joint state x, rather than on the state xk of queue k alone. The optimal index
ν∗

k(x) measures the long-run expected increment in total costs accrued that results by routing arrivals in state
x to queue k, given that all other actions are taken optimally.

It is further shown in Section 2.3 that it is optimal to reject an arrival finding the system in the joint state
x = (xk) iff R 6 γ∗(x), where γ∗(x) is the optimal global admission index defined by γ∗(x) , mink ν∗

k(x).
Hence, for consistency with such optimal admission policies, given heuristic routing indices νk(xk) we will

base admission decisions on a corresponding global admission index γ(x) , mink νk(xk). The resulting policy
admits an arrival finding the system in state x if γ(x) < R, and rejects it otherwise.

This raises the issue of how to define such routing indices so that they can be computed quickly and yield
high-performance policies. An insight on which we will draw is that the routing index νk(xk) should be a proxy
measure for the optimal index ν∗

k(x), which, as pointed out above, is the incremental cost of routing an arrival
to queue k in state x.

To design the routing indices νk(xk) we will deploy three alternative general methods that have been pro-
posed in the literature for obtaining priority indices. Two such methods correspond to different assessments of
the incremental cost of assigning an arrival to a queue. At one extreme, the individually optimal (IO) method
underestimates such a cost by disregarding future arrivals. At the opposite extreme, the RB method overes-

timates such a cost by taking into account all future arrivals, as though there were no other queues to share
the load. Such methods yield routing indices νIO

k (xk) and νRB
k (xk) that can be evaluated separately for each

cluster k, as they depend only on its individual parameters. The third method we will consider, which is to
carry out one PI step of the policy iteration algorithm for MDPs, starting from the optimal BS, gives routing
indices νPI

k (xk) that depend on the parameters of all clusters. Such a method has been used in Krishnan (1990)
to obtain a heuristic index policy for job assignment to parallel multiserver queues with a minimum average
response-time objective.

4

To the best of the author’s knowledge, none of the above policy-design methods has been applied in prior
work to the present model. Only the optimal BS method has been applied to special cases: in Kallmes and
Cassandras (1995) for the case of single-server queues mk ≡ 1, and in He et al. (2006) for the pure-routing case.

The main objective of the present work is to deploy the BS, PI, IO, and RB policy design methods in the
present model, addressing the efficient computation of the resulting policies, and to identify the best among
such policies through a numerical study.

The remainder of the paper is organized as follows. Section 2 describes the model and formulates the optimal
control problem. Section 3 addresses the efficient evaluation of the IO routing index in the cases of constant,
uniform, and exponentially distributed job deadlines. Section 4 discusses the PI routing index, as well as the
prerequisite computation of the optimal BS. Section 5 considers the RB routing index. Section 6 reports on
the results of a numerical study benchmarking the above policies, against each other and against the optimal
performance. Section 7 concludes.

2 The model

2.1 Model description and problem formulation

Consider a system with n parallel clusters of servers, with cluster k ∈ K having its own queue with unlimited
buffer space and mk identical exponential servers, each working at rate µk. Jobs arrive as a Poisson stream
with rate λ, with job interarrival and service times being independent. Upon arrival of a job, it is decided (i)
whether to admit or reject it; and, if admitted, (ii) to which queue to route it.

Jobs come with a (relative) deadline τ , giving the time interval from arrival to deadline expiration, which
is independent of arrival and service times, being drawn in i.i.d. fashion from a general cumulative distribution
function (CDF) F (t) with finite mean E[τ] = 1/θ. We will consider the cases of deterministic, uniform and
exponential deadlines, focusing on the case of deadlines to the end of service, where τ represents an individual
response-time deadline, although the ensuing analyses readily extend to the case of deadlines to the beginning
of service. Admitted jobs whose deadlines are missed stay nevertheless in the system until service completion.
A cost of R > 0 is incurred per rejected job, whereas a cost of C = 1 is incurred per missed deadline.

Denote by Xk(t) the state of queue k at time t, giving the number of jobs its queue holds waiting or being
served, and by ak(t) ∈ {0, 1} the binary action that is set to 0 if a job arriving at time t would be routed to

queue k. One may imagine that each queue k has its own entry gate and gatekeeper, who can open (ak(t) = 0)
or shut (ak(t) = 1) the queue’s entry gate. The requirement that a job can be routed to at most one queue is
thus formulated by the constraint that at most one gate can be open at any time:

∑

k∈K

(
1 − ak(t)

)
6 1, t > 0. (1)

The following condition will be assumed to hold.

Assumption 1. At each queue k, the queue discipline is FCFS.

Assumption 1, which excludes use of alternative queue disciplines such as earliest deadline first, is needed to
ensure that the response-time distribution of a job assigned to a queue k is determined only by the queue state
xk found on arrival. Denoting by Tk(xk) a random variable with such a conditional response-time distribution,
and letting τ be the job’s deadline, the expected deadline-miss cost incurred by a job assigned to queue k in
state xk is

P miss
k (xk) , P {Tk(xk) > τ} =

∫ ∞

0

P {Tk(xk) > t} dF (t). (2)

We will find convenient to formulate the lump costs incurred due to job rejections and deadline misses in
terms of continually accruing costs, by considering that the total cost rate incurred per unit time when the joint
action a = (ak)k∈K is taken in the joint state x = (xk)k∈K is given by

λR

[
1 −

∑

k∈K

(1 − ak)

]
+

∑

k∈K

λP miss
k (xk)(1 − ak). (3)

5

We will also find convenient to reformulate (3) to separable form as

− (n − 1)λR +
∑

k∈K

{
λRak + λP miss

k (xk)(1 − ak)
}

. (4)

Consider the problem of finding an average-cost optimal policy, which minimizes the long-run expected
average cost per unit time. Disregarding the constant −(n − 1)λR in (4), we can formulate such a problem as

min
π∈Π

lim sup
T →∞

1

T
E

π

x0

[∫ T

0

∑

k∈K

{
λRak(t) + λP miss

k

(
Xk(t)

)(
1 − ak(t)

)}
dt

]
, (5)

where “lim sup” is the limit superior, E
π

x0 [·] denotes expectation under policy π conditioned on the initial joint
state being equal to x0 = (x0

k)k∈K, and Π is the class of admissible policies, which are allowed to depend only
on the history of system states and actions encountered in the past, and may be randomized.

By standard results, problem (5) has an optimal policy that is stationary deterministic, i.e., in which the
action to take at every state x is a deterministic function of x. Both optimal policies and the optimal cost
rate are independent of the initial state, and they are characterized by the DP average-cost optimality equation

(see (6) below). Yet, finding an optimal policy by numerical solution of such equations is, due to the curse of
dimensionality, computationally intractable for instances with even a moderate number n of queues. Hence,
we aim to design and compare heuristic index policies that can be computed with low complexity and perform
well, as discussed in Section 1.

2.2 Charging deadline-miss costs via action-independent holding costs

Application of two of the index design methods considered in this paper, PI and RB (see Sections 4 and 5),
would be considerably simplified if, rather than charging the deadline-miss costs incurred at each queue k in
terms of action-dependent cost rates as in formulation (5), they were charged in terms of action-independent
holding costs, which continually accrued at a certain rate hk(xk) per unit time when the queue holds xk jobs.

Hence, to prepare the ground for the analyses in Sections 4 and 5, we next address the reformulation of
problem (5) to an equivalent problem where deadline-miss costs are accounted for via action-independent holding
cost rates hk(xk). For such a purpose, we start by formulating the DP optimality equations characterizing the
optimal policies for average-cost problem (5), which are stated in terms of variables v and b(x): for every system
state x,

v = min





nλR −
∑

l∈K

µ̄l(xl)∆lb(x)

(n − 1)λR + λP miss
k (xk) + λ∆kb(x + ek) −

∑

l∈K : xl>1

µ̄l(xl)∆lb(x), k ∈ K,
(6)

where we write µ̄k(xk) , min(xk, mk)µk and ∆kb(x) , b(x)−b(x−ek), ek being the kth unit coordinate vector
in R

n. By standard results, the DP equations (6) have a solution v∗ and b∗(x), which is unique up to a constant
additive term for the b∗(x), where v∗ is the optimal average cost per unit time and b∗(x) is an optimal relative
cost function.

Let us now define the holding cost rate hk(·) for each queue k ∈ K by

hk(0) , 0, hk(xk) , µ̄k(xk)P miss
k (xk − 1), xk > 1, (7)

and consider the following modified admission control and routing problem, where two types of costs are incurred:
rejection costs, as before, and holding costs, which accrue at each queue k at rate hk(xk) while it holds xk jobs:

min
π∈Π

lim sup
T →∞

1

T
E

π

x0

[∫ T

0

∑

k∈K

{
Rλak(t) + hk

(
Xk(t)

)}
dt

]
. (8)

6

The optimal policies for the modified problem (8) are characterized by its DP optimality equations: for every
system state x,

ṽ = min





nλR +
∑

l∈K

hl(xl) −
∑

l∈K

µ̄l(xl)∆lb̃(x)

(n − 1)λR +
∑

l∈K

hl(xl) + λ∆k b̃(x + ek) −
∑

l∈K : xl>1

µ̄l(xl)∆lb̃(x), k ∈ K.
(9)

Equations (9) have a solution ṽ∗ and b̃∗(x), which is unique up to a constant additive term for the b̃∗(x), where

ṽ∗ is the optimal average cost per unit time and b̃∗(x) is an optimal relative cost function.
The following result ensures that, charging costs at each queue using the holding cost rates defined in (7),

we obtain an equivalent problem.

Proposition 1. Problems (5) and (8) are equivalent, having the same optimal policies and average cost per

unit time.

Proof. For each queue k, define the function C̃k(·) by the recursion

C̃k(0) , 0, C̃k(xk + 1) , C̃k(xk) + P miss
k (xk), xk > 0. (10)

The result follows by checking that v∗ , ṽ∗ and b∗(x) , b̃∗(x) −
∑

k C̃k(xk) satisfy the DP equations (6) iff ṽ∗

and the b̃∗(x) satisfy (9).

2.3 The structure of optimal admission and routing policies

In light of (9) and Proposition 1, an optimal policy for problem (5) can be formulated in terms of the relative

cost increments ∆b̃∗(x) for problem (8): reject an arrival in state x if R 6 mink ∆k b̃∗(x + ek); otherwise,

admit the arrival and route it to a queue k with minimum ∆k b̃∗(x + ek). Hence, optimal admission actions

are characterized by a global admission index, given by γ∗(x) , mink ∆k b̃∗(x + ek), whereas optimal routing

actions are characterized by indices ν∗
k(x) , ∆k b̃∗(x + ek) that depend on the system state x.

Given the unavailability of such optimal admission and routing indices, this paper compares, in terms of
the performance of the resulting policies, several alternative ways of defining a global admission index γ(x) and
routing indices νk(xk) that can be evaluated with low computational complexity.

3 IO index

The simplest dynamic routing policy we consider is to route an arrival to a queue where the probability of missing
its deadline, conditioned on the number of jobs found on such a queue upon arrival, is minimal. The resulting
IO routing index is given by such a conditional deadline-miss probability, being νIO

k (xk) , P miss
k (xk), where

P miss
k (xk) is defined in (2). Note that νIO

k (0) = · · · = νIO
k (mk − 1), and that νIO

k (xk) converges monotonically
up to unity as xk → ∞:

ν̄IO
k (∞) = lim

xk→∞
νIO

k (xk) = lim
xk→∞

P miss
k (xk) = 1. (11)

Hence, the admission policy based on the IO routing index, having admission index γIO(x) = mink νIO
k (xk), will

not reject any job in the case R > 1.
We next address the efficient evaluation of P miss

k (xk) in the cases of constant, uniform, and exponential
response-time deadlines. Since the focus is on a single queue, the label k is dropped below from the notation,
writing, e.g., P miss(x).

3.1 Constant response-time deadlines

In the case where jobs have a constant response-time deadline τ ≡ t, P miss(x) equals Pm(x; t) , P{T (x) > t},
where m is the number of servers in the queue and T (x) denotes a random variable distributed as the response

7

time (under FCFS) of an arrival who finds x jobs present in the queue. To evaluate Pm(x; t), we will need the
following probabilities, where Am(j) ∼ Erlang(j, mµ):

Qm(j; t) , P{Am(j) > t} = e−mµt

j−1∑

l=0

(mµt)l

l!
, j = 1, 2, . . . (12)

For fixed m and t, the Qm(j; t) are efficiently evaluated by the following second-order linear recursion, where
∆Qm(j; t) , Qm(j; t) − Qm(j − 1; t):

Qm(1; t) = e−mµt, ∆Qm(2; t) = mµtQm(1; t)

∆Qm(j + 1; t) = (mµt/j)∆Qm(j; t), j > 2.
(13)

The following result evaluates Pm(x; t) in terms of Qm(·, t) and Qm−1(·, t). Along with (13), it allows us to
compute P miss(0), . . . , P miss(x) in O(x) time.

Proposition 2. (a) P1(x; t) = Q1(x + 1; t), for x > 0.

(b) If m > 2, then Pm(x; t) = e−µt for 0 6 x < m; and, for x > m,

Pm(x; t) = Qm(x − m + 1; t) + e−µt 1 − Qm−1(x − m + 1; t)

(1 − 1/m)x−m+1
.

Proof. (a) If m = 1, T (x) ∼ Erlang(x + 1, µ), which yields the result.
(b) If m > 2, then Pm(x; t) = e−µt for 0 6 x < m, as in this case the arriving job finds some free server.

Consider now the case x > m. Then, the conditional response time is decomposed as T (x) ∼ A + ξ, where
A ∼ Erlang(x−m+1, mµ) and ξ ∼ Exp(µ) are independent random variables giving the job’s conditional waiting
time and its service time, respectively. Hence, denoting by fA(t) the density of A, and writing j = x − m + 1,

Pm(x; t) = P{A + ξ > t}

= P{A + ξ > t | A > t}P{A > t} +

∫ t

0

P{A + ξ > t | A = s}fA(s) ds

= P{A > t} +

∫ t

0

P{ξ > t − s}fA(s) ds = Qm(j; t) +

∫ t

0

e−µ(t−s)fA(s) ds.

On the other hand, letting A′ ∼ Erlang
(
j, (m − 1)µ

)
, we have

∫ t

0

e−µ(t−s)fA(s) ds =

∫ t

0

e−µ(t−s)(mµ)j sj−1

(j − 1)!
e−mµs ds

=
e−µt

(1 − 1/m)j

∫ t

0

(
(m − 1)µ

)j sj−1

(j − 1)!
e−(m−1)µs ds

=
e−µt

(1 − 1/m)j

∫ t

0

fA′(s) ds = e−µt 1 − Qm−1(j; t)

(1 − 1/m)j
.

3.2 Uniform response-time deadlines

Assuming that jobs have response-time deadlines τ ∼ Unif[t1, t2], P miss(x) = P ∗
m(x)/

(
t2 − t1), where P ∗

m(x) ,∫ t2

t1
Pm(x; t) dt. To evaluate P ∗

m(x), we will use quantities Q∗
m(j) ,

∫ t2

t1
Qm(j; t) dt and R∗

m−1(j) ,
∫ t2

t1
e−µtQm−1(j; t) dt.

Both Q∗
m(j) and R∗

m−1(j) are readily evaluated in terms of the Qm(·; ·) and Qm−1(·; ·) using integration by
parts, which yields

Q∗
m(j) = t2Qm(j; t2) − t1Qm(j; t1) +

j

mµ

[
Qm(j + 1; t1) − Qm(j + 1; t2)

]
, (14)

8

and

R∗
m−1(j) =

1

µ

[
e−µt1Qm−1(j; t1) − e−µt2 Qm−1(j; t2) −

Qm(j; t1) − Qm(j; t2)

(1 + 1/(m − 1))j

]
. (15)

The next result, which follows from Proposition 2, evaluates P ∗
m(x) in terms of Q∗

m(·) and R∗
m−1(·). Along

with (14), (15), and the results in Section 3.1, this allows us to evaluate P miss(x), for i = 0, . . . , j, in O(j) time.

Proposition 3. (a) P ∗
1 (x) = Q∗

1(x + 1), for x > 0.

(b) If m > 2, then P ∗
m(x) =

(
e−µt1 − e−µt2

)
/µ for 0 6 x < m; for x > m,

P ∗
m(x) = Q∗

m(x − m + 1) +
P ∗

m(0) − R∗
m−1(x − m + 1)

(1 − 1/m)x−m+1
.

3.3 Exponential response-time deadlines

Assuming that jobs have response-time deadlines τ ∼ Exp(θ), P miss(x) = θP ∗
m(x; θ), where P ∗

m(x; s) ,∫ ∞

0
e−stPm(x; t) dt. To evaluate P ∗

m(x; θ) we will use quantities Q∗
m(j; s) ,

∫ ∞

0
e−stQm(j; t) dt, which, by

standard results, are evaluated in closed form as

Q∗
m(j; s) =

1

s

[
1 −

(
mµ

s + mµ

)j
]

, j = 1, 2, . . .

The next result follows from Proposition 2 by taking Laplace transforms.

Proposition 4. (a) P ∗
1 (x; θ) = Q∗

1(x + 1; θ), for x > 0.

(b) If m > 2, then P ∗
m(x; θ) = 1/(µ + θ) for 0 6 x < m; and, for x > m,

P ∗
m(x; θ) = Q∗

m(x − m + 1; θ) +

1

µ + θ
− Q∗

m−1(x − m + 1; µ + θ)

(1 − 1/m)x−m+1
.

4 PI index

We next consider the PI method (see Krishnan (1990)), which has not been applied before to the present model.
This method consists of two stages: (1) computing the optimal BS of the arrival stream; and (2) carrying out
one step of the PI algorithm for MDPs, starting from the optimal BS.

4.1 First stage of the PI method: computing the optimal BS

The first stage is to compute the optimal BS of the arrival stream. In a BS, the actions taken upon job arrivals
are independently drawn according to fixed probabilities: a job is rejected with probability λ0/λ, and is assigned
to queue k with probability λk/λ, for k ∈ K. Hence, the input to each queue k is a Poisson process with rate
λk, with the queues evolving independently. Consider the resulting M/M/mk queue k, which has offered load

rk(λk) , λk/µk and utilization factor ρk(λk) , λk/(mkµk). Assuming that ρk(λk) < 1, let T̃k(λk) be a random

variable with the queue’s steady-state sojourn-time distribution, whose CDF Sk(t; λk) , P{T̃k(λk) 6 t} is given
by (see Gross et al. (2008, p. 72))

Sk(t; λk) = 1 − e−µkt − Gk(λk)
(
e−(mkµk−λk)t − e−µkt

)
, (16)

where, denoting by E2,mk
(r) the Erlang-C formula for the probability that a job has to wait in the M/M/mk

queue with offered load r,

Gk(λk) ,
E2,mk

(
rk(λk)

)

1 − mk + rk(λk)
. (17)

9

Yet, note that (16) is only valid when rk(λk) 6= mk − 1, i.e., when λk 6= (mk − 1)µk. In the case rk(λk) =
mk − 1, we have

Sk(t; λk) = 1 −
(
1 + µkE2,mk

(mk − 1)t
)
e−µkt. (18)

Hence, the deadline-miss probability P̄ miss
k (λk) , P{T̃k(λk) > τ} for a randomly arriving job that is admitted

and assigned to queue k is given by

P̄ miss
k (λk) =

∫ ∞

0

(
1 − Sk(t; λk)

)
dF (t)

=

{
φ(µk) + Gk(λk)

(
φ(mkµk − λk) − φ(µk)

)
, λk 6= (mk − 1)µk

φ(µk) − µkE2,mk
(mk − 1)φ′(µk), λk = (mk − 1)µk,

(19)

where φ(s) , E
[
e−sτ

]
=

∫ ∞

0 e−st dF (t) is the Laplace transform of the deadline τ . We will consider the cases
τ ≡ t, with φ(s) = e−st, τ ∼ Unif[t1, t2], with φ(s) = (e−t1s − e−t2s)/(s(t2 − t1)), and τ ∼ Exp(θ), with
φ(s) = θ/(s + θ).

Thus, we can formulate the problem of finding the optimal BS as the following NLP, where fk(λk) ,
λkP̄ miss

k (λk) is the deadline-miss rate for queue k:

min

{
Rλ0 +

∑

k∈K

fk(λk) :
∑

k∈K

λk = λ, λ0 > 0, 0 6 λk 6 mkµk, k ∈ K

}
. (20)

Notice that, in problem (20), we allow a BS to saturate the queue at queue k by allocating to it an arrival
rate equal to its service capacity (λk = mkµk). In such a case —which as we will see turns out to be relevant
when λ and R are both large enough, and also in the pure-routing version of the problem, where λ0 ≡ 0, when
λ is large enough— the probability that a random job assigned to a saturated queue k misses its deadline is
P̄ miss

k (mkµk) = 1, and hence we define fk(mkµk) , mkµk.
Kallmes and Cassandras (1995) presents a Lagrangian algorithm for solving the version of (20) with strict

inequalities λk < mkµk in the special case R = 1 with single-server queues mk = 1, showing that taking R = 1
ensures that the optimal solution to (20) has λ∗

k < mkµk for each k. As for the multiserver case mk > 2, a
Lagrangian algorithm is outlined in He et al. (2006), albeit only for the pure-routing case where λ0 ≡ 0, and
without discussing the possibility that some queue(s) may be saturated in an optimal solution.

We next discuss how to extend the results in such works to obtain the optimal BS λ∗ = (λ∗
k)n

k=0 solving (20)
for the present model, assuming that each function P̄ miss

k (λk) satisfies the following condition:

(C) P̄ miss
k (λk) is continuous, increasing and strictly convex on [0, mkµk], having a continuous and increas-

ing derivative (d/dλk)P̄ miss
k (λk) on (0, mkµk), with finite one-sided derivatives (d/dλk)P̄ miss

k (0+) and
(d/dλk)P̄ miss

k

(
(mkµk)−

)
. αk , f ′

k(0+) and βk , f ′
k

(
(mkµk)−

)
.

Under (C), which is readily verified in the cases of constant, uniform and exponential deadlines considered
here (e.g., in the case τ ≡ t for a single-server queue, P̄ miss

k (λk) = e−(µk−λk)t), the function fk(λk) inherits the
same properties as P̄ miss

k (λk), since f ′
k(λk) = P̄ miss

k (λk) + λk(d/dλk)P̄ miss
k (λk) on (0, mkµk), having one-sided

derivatives αk , f ′
k(0+) and βk , f ′

k

(
(mkµk)−

)
that satisfy

0 < αk = P̄ miss
k (0) = φ(µk) < 1 < 1 + mkµk(d/dλk)P̄ miss

k

(
(mkµk)−

)
= βk. (21)

Hence, under (C), problem (20) has a unique optimal solution λ∗.
Assume, by reordering if necessary, that α1 6 α2 6 · · · 6 αn. Note that, since αk = φ(µk) and φ(s) is

nonincreasing, such an ordering is equivalent to µ1 > µ2 > · · · > µn. Further, let x1, . . . , xn be an ordering of
the n queues for which βx1

6 βx2
6 · · · 6 βxn

.
It follows from the above (cf. (21)) that, for any queue k and α ∈ [αk, βk], the equation f ′

k(λk) = α has a
unique root Λ∗

k(α) in [0, mkµk], where Λ∗
k(α) is continuous and increasing in α, and satisfies that Λ∗

k(αk) = 0
and Λ∗

k(βk) = mkµk. For convenience of notation, we also define

Λ∗
k(α) , 0, α < αk, and Λ∗

k(α) , mkµk, α > βk. (22)

10

Now, by standard results in convex optimization, the optimal BS solving (20) is characterized by the following
Karush–Kuhn–Tucker (KKT) first-order optimality conditions: a feasible BS λ∗ for (20) is optimal iff there exists
a Lagrange multiplier α∗ for the equality constraint such that

R > α∗, with “=" if λ∗
0 > 0

f ′
k(λ∗

k) = α∗, for any queue k with 0 < λ∗
k < mkµk

αk > α∗, for any queue k with λ∗
k = 0

βk 6 α∗, for any queue k with λ∗
k = mkµk.

(23)

Note that it follows from (23) that, since βk > 1, in the case R = 1 the optimal BS will have λ∗
k < mkµk for

every queue k.
To compute the optimal BS λ∗ for (20), we next present a ranking algorithm that extend to the current

setting the algorithm given in Kallmes and Cassandras (1995, p. 321) for the special case R = 1 and mk ≡ 1.
The following algorithm determines an α∗ such that the optimal BS satisfying (23) is given by λ∗

k , Λ∗
k(α∗) for

k ∈ K —taking into account (22)— and λ∗
0 , λ −

∑
k∈K

λ∗
k. Three cases need to be distinguished (note that

case 3 does not arise when R = 1):

Case 1 (light load): for some 1 6 l < n,
∑l

k=1 Λ∗
k(αl) < λ 6

∑l
k=1 Λ∗

k(αl+1). Letting α̃ be the unique root

in (αl, αl+1] of
∑l

k=1 Λ∗
k(α) = λ, take α∗ , min(α̃, R). Note that λ∗

k > 0 for any 1 6 k 6 l with αk < R,
λ∗

k = 0 for any 1 6 k 6 l with αk > R and for l < k 6 n, and λ∗
0 = 0 iff α̃ 6 R.

Case 2 (medium load):
∑

k∈K
Λ∗

k(αn) < λ <
∑

k∈K
Λ∗

k(βx1
). Letting α̃ be the unique root in (αn, βx1

) of∑
k∈K

Λ∗
k(α) = λ, take α∗ , min(α̃, R). Note that 0 < λ∗

k < mkµk for any k ∈ K with αk < R, λ∗
k = 0 for

any k ∈ K with αk > R, and λ∗
0 = 0 iff α̃ 6 R.

Case 3 (heavy load): for some 1 6 l < n,
∑

k∈K
Λ∗

k(βxl
) 6 λ <

∑
k∈K

Λ∗
k(βxl+1

). Letting α̃ be the unique root

in [βxl
, βxl+1

) of
∑

k∈K
Λ∗

k(α) = λ, take α∗ , min(α̃, R). Note that λ∗
k = mkµk for any k ∈ {x1, . . . , xl}

with βk 6 R, λ∗
k < mkµk for any k ∈ {x1, . . . , xl} with βk > R and for k ∈ {xl+1, . . . , xn}, λ∗

k > 0 for any
k ∈ K with αk < R, and λ∗

0 = 0 iff α̃ 6 R.

Note that, in the light-load case, some queue(s) k will not be used at all under the optimal BS. In contrast,
in the heavy-load case some queue(s) k may be saturated (λ∗

k = mkµk). Note also that, since we assumed
ρ , λ/

∑
k mkµk < 1, no higher arrival rates λ need to be considered than those in Case 3. Another observation

is that, if the rejection cost is R > βxn
then no job is rejected under the optimal BS. At the opposite extreme,

if R 6 α1 then all jobs are rejected.

4.2 Second stage of the PI method: PI step

The second stage of the PI method is to carry out one PI step of the policy iteration algorithm for MDPs,
starting from the optimal BS policy, which yields a better policy. Recall from Section 2.3 that an optimal
policy, given by a solution to the DP optimality equation (9) for problem (8), takes the following form: upon

arrival of a job finding the system in state x, (i) reject it if R 6 mink ∆k b̃∗(x + ek); otherwise, (ii) send it to a

queue with lowest ∆k b̃∗(x + ek).

The PI method replaces the relative cost increments ∆k b̃∗(x) by those under the optimal BS λ∗, which we

denote by ∆k b̃(x; λ
∗). Now, since under a BS policy the n queues evolve independently, separately accruing costs

in the modified problem (8) at rate λRak(t) + hk

(
Xk(t)

)
for queue k, we have b̃(x; λ

∗) ,
∑

k b̃k(xk; λ∗
k), where

b̃∗
k(xk; λ∗

k) is the relative cost function for queue k, considered in isolation. Hence, ∆k b̃(x; λ∗) = ∆bk(xk; λ∗
k) ,

b̃k(xk; λ∗
k) − b̃k(xk − 1; λ∗

k). The resulting PI policy is: upon arrival of a job finding the system in state x, (i)

reject it if R 6 mink ∆b̃k(xk + 1; λ∗
k); otherwise, (ii) route it to a queue k with lowest ∆b̃k(xk + 1; λ∗

k).
Hence, the PI policy is an index policy, having routing index

νPI
k (xk) , ∆b̃k(xk + 1; λ∗

k), (24)

11

for queue k, and global admission index γPI(x) , mink νPI
k (xk).

To evaluate the PI index νPI
k (xk) for queue k, we must solve the corresponding Poisson equations, which are

readily reformulated in terms of the index as

fk(λ∗
k) − λ∗

kνPI
k (0) = hk(0)

fk(λ∗
k) − λ∗

kνPI
k (xk) + µ̄k(xk)νPI

k (xk − 1) = hk(xk), xk > 1,
(25)

where µ̄k(xk) , µk min(xk, mk), and hk(xk) is the holding cost rate defined in (7). Thus, (25) gives a first-order
linear recursion for computing the index values νPI

k (0), . . . , νPI
k (xk) in linear, O(xk) time, given λ∗

k and fk(λ∗
k).

We write below ρ∗
k , ρk(λ∗

k), P̄ miss,∗
k , P̄ miss

k (λ∗
k) and f∗

k , fk(λ∗
k). Note that f∗

k = λ∗
kP̄ miss,∗

k .

Remark 1. The following results are readily obtained.

1. In the case of a queue k that is not used under the optimal BS, i.e., having λ∗
k = 0, (25) and (7) yield that

νPI
k (xk) = P miss

k (xk), and hence the PI index reduces to the IO index νIO
k (xk).

2. In the case 0 < λ∗
k < mkµk, i.e., 0 < ρ∗

k < 1, νPI
k (0) = P̄ miss,∗

k and

νPI
k (xk) =

1

(ρ∗
k)xk

[
νPI

k (mk − 1) +

xk−1∑

jk=mk−1

(ρ∗
k)jk

(
ρ∗

kP̄ miss,∗
k − P miss

k (jk)
)]

, xk > mk. (26)

3. In the case of a saturated queue (ρ∗
k = 1), P̄ miss,∗

k = 1, νPI
k (0) = 1, and

νPI
k (xk) = νPI

k (mk − 1) +

xk−1∑

jk=mk−1

(
1 − P miss

k (jk)
)
, xk > mk. (27)

4. If νPI
k (xk) converges as xk → ∞ to a finite limit νPI

k (∞), then

νPI
k (∞) =





mkµk − f∗
k

mkµk − λ∗
k

=
1 − ρ∗

kP̄ miss,∗
k

1 − ρ∗
k

> 1, if 0 < ρ∗
k < 1

νPI
k (mk − 1) +

∞∑

jk=mk−1

(
1 − P miss

k (jk)
)
, if ρ∗

k = 1.
(28)

Based on extensive numerical experience, we conjecture that the PI index νPI
k (xk) for the present model

is monotone increasing and converges to a finite limit. See, e.g., Figure 2. Further, L’Hôpital’s rule yields
that limλ∗

k
րmkµk

(
mkµk − fk(λ∗

k)
)
/
(
mkµk − λ∗

k

)
= βk , f ′

k

(
(mkµk)−

)
, suggesting that the limiting index

in the case ρ∗
k = 1 should be νPI

k (∞) = βk, which the author has also verified numerically. Yet, such
experiments also reveal that the computed index ν̂PI

k (xk) may occasionally diverge in practice, due to
small inaccuracies in the computed value of f∗

k . We propose to overcome such numerical instability by
setting the computed index value equal to the appropriate limit in (28) as soon as ν̂PI

k (xk) shows any signs
of diverging, e.g., by exceeding the limit νPI

k (∞) in (28).

5 RB index

The RB routing index for a queue is obtained by adapting to the present model the approach and results
introduced in Niño-Mora (2002) for the design of policies for control of admission and routing to parallel queues
via Whittle’s RB indexation (see Whittle (1988)). See also Niño-Mora (2007). To define Whittle’s RB index,
we consider the single-queue case (n = 1) of modified problem (8), concerning the optimal dynamic control of
admission to an M/M/m queue with arrival rate λ and service rate µ at each server. Note that we drop the
queue label k. Jobs come with a response-time deadline with CDF F (t). At the arrival instant of a job, the

12

0 5 10 15 20 25
0

1

2

3

i

νP
I (i)

Figure 2: The PI index for a queue with m = 6, µ = 0.5, τ ∼ Unif[2.5, 3.5], and λ∗ = 2.1.

controller can choose to reject it, incurring a rejection penalty of R, or accept it. In the latter case, a unit
penalty is incurred if the job’s deadline is missed. As discussed in Section 2.2, we will account for deadline-miss
costs via continuously accruing action-independent holding costs, which are incurred at rate h(x) (given by (7))
per unit time when there are x jobs in the queue.

Consider the corresponding optimal admission control problem, which is to find an admission control policy
π∗, drawn from the class Π of policies that base decisions on the history of queue states and actions, that
minimizes the average rate of rejection and deadline-miss costs per unit time. Adapting the notation in (8) to
the present setting, we formulate such a problem as

min
π∈Π

lim sup
T →∞

1

T
E

π
i0

[∫ T

0

{
Rλa(t) + h

(
X(t)

)}
dt

]
. (29)

By standard results, problem (29) has an optimal policy that is stationary deterministic and independent of
the initial state. Now, instead of considering a fixed rejection charge R, we will view it as a parameter that is
allowed to take any real value R ∈ R. Rather than solving each individual problem (29) separately for different
values of R, we will characterize optimal policies for the entire parametric family of such R-charge problems, as
R ∈ R, in terms of a numeric index attached to queue states.

Let us say that problem (29) is indexable if there exists a numeric index νRB(x) attached to queue states x,
which does not depend on R, such that, for any rejection charge R ∈ R and state x, it is optimal to reject an
arrival when the queue holds x jobs iff νRB(x) > R.

Note that, in particular, if problem (29) is indexable and the index νRB(x) is nondecreasing in the state
x, then it follows that problem (29) is solved optimally by a threshold policy (reject an arrival iff the queue
length is larger than a certain threshold). While the conventional approach to establish the optimality of
threshold policies for admission control problems such as (29) relies on assuming convexity of the holding cost
rate function h(x) (see Stidham (1985)), we will be able to establish the stronger result of indexability with
a nondecreasing index νRB(x), even though the holding cost rate h(x) defined in (7) is not convex (note that
h(x) = mµP miss(x − 1) for x > m, and hence h(x) grows to mµ as x → ∞).

To establish that problem (29) is indexable with a monotone nondecreasing RB index νRB(x), and to
evaluate the index, we will deploy the general sufficient conditions for indexability and the adaptive-greedy

index algorithm introduced in Niño-Mora (2001, 2002), which do not require such convexity assumptions. Such
conditions are formulated in Niño-Mora (2002) in terms of certain quantities wSy (x), for x > 0, y ≥ 1, which
represent marginal rejection measures, and indices νRB(x), which are produced by the algorithm. Here, we will
write w(x) , wSx+2(x).

In the present model, such an index algorithm reduces to a coupled set of first-order linear recursions (see

13

Niño-Mora (2002, pp. 396–397)). First, compute

z(1) = 1; z(x) = 1 −
λµ̄(x − 1)[

λ + µ̄(x − 1)
][

λ + µ̄(x)
]
z(x − 1)

, x > 2,

w(0) =
λµ

λ + µ
; w(x − 1) = λ

∆µ̄(x) +
w(x − 2)

ρ̄(x − 2)[
λ + µ̄(x)

]
z(x)

, x > 2,

(30)

where ρ̄(x) , λ/µ̄(x + 1), µ̄(x) , min(x, m)µ, and ∆µ̄(x) , µ̄(x) − µ̄(x − 1). Then, recursively compute the
index νRB(x) by

νRB(0) =
h(1)

µ
; νRB(x) = νRB(x − 1) +

∆h(x + 1) − νRB(x − 1)∆µ̄(x + 1)

∆µ̄(x + 1) +
w(x − 1)

ρ̄(x − 1)

.
(31)

We can simplify (30)–(31) by noting that ∆µ̄(x) = µ for 1 6 x 6 m, and ∆µ̄(x) = 0 for x > m + 1. Further,
from (7) and P miss(x) = P miss(0) for 1 6 x < m (see Section 3), we have ∆h(x) , h(x) − h(x − 1) = µP miss(0)
for i = 1, . . . , m, whereas ∆h(x) = mµ∆P miss(x − 1) for x > m + 1. Hence,

νRB(x) =





P miss(0), 0 6 x 6 m − 1

νRB(x − 1) + λ
∆P miss(x)

w(x − 1)
, x > m.

(32)

Such a set of first-order linear recursions, along with those in Section 3 for P miss(x) (which equals νIO(x)),
efficiently computes the index values νRB(0), . . . , νRB(x) in O(x) time.

In the single-server case m = 1 such recursions are readily solved:

z(x) =





ρx+1 − 1

(ρ + 1) (ρx − 1)
if ρ 6= 1

x + 1

2x
if ρ = 1

and w(x) =





λ
ρ − 1

ρx+2 − 1
if ρ 6= 1

λ

x + 2
if ρ = 1.

Further, assuming deterministic deadlines τ ≡ t, we have ∆P miss(x) = e−µt(µt)x/x!. Hence, in such a case the
RB index is given by νRB(0) = e−µt, and, for x > 1,

νRB(x) =





e−µt

ρ − 1

x∑

j=0

ρ(λt)j − (µt)j

j!
if ρ 6= 1

e−µt

x∑

j=0

(j + 1)(µt)j

j!
if ρ = 1.

(33)

The sufficient conditions for indexability referred to above, as they apply to the present model, are:

(i) The marginal rejection measures wSy (x) are positive; and

(ii) the index νRB(x) is monotone nondecreasing in x.

The following result is established in Niño-Mora (2001, Cor. 2) and Niño-Mora (2002, Th. 6.3), at increasing
levels of generality.

Theorem 1. Under conditions (i)–(ii) the model is indexable, with index νRB(x).

We are now ready to establish that the present model is indexable.

Proposition 5. Problem (29) is indexable, and νRB(x) is its RB index.

14

Proof. Regarding condition (i), its satisfaction is ensured by Niño-Mora (2002, Prop. 7.2) when service rates
µ̄(x) are concave nondecreasing in x, as is the case here. As for condition (ii), it follows from (32), noting that
P miss(x) is nondecreasing and w(x − 1) > 0. Invoking Theorem 1 completes the proof.

It must be emphasized that, in the system model of concern in this paper, with n parallel queues, the above
RB index is to be computed separately for each of the queues, using for queue k in the above formulae the overall
arrival rate λ and the parameters mk and µk. Hence, unless the parallel-queue system is lightly loaded, one
will typically have ρk , λ/(mkµk) > 1 for some or even all queues k, even while the system load λ/

∑
k mkµk

remains below unity. In such a typical case, the computation and use of the RB index raises the following issues:

1. It is readily verified that, for a queue with λ > mµ, i.e., ρ > 1, limx→∞ w(x) = 0. Since limx→∞ ∆P miss(x) =
0, computation of the RB index via (32) can be numerically unstable.

2. Numerical experiments reveal that the RB index νRB(x) grows extremely fast with λ, converging to a finit
limit νRB(∞) as x → ∞, which can be very large for a queue with utilization ρ > 1. The cause of this
phenomenon is apparent in the single-server case m = 1 with a deterministic deadline τ ≡ t, in which (33)
yields that the index νRB(x) converges as x → ∞ to the limit

νRB(∞) =





ρe(λ−µ)t − 1

ρ − 1
if ρ 6= 1

1 + µt if ρ = 1.

(34)

Hence, νRB(∞) grows exponentially with λ. Thus, e.g., for a queue with m = 1, µ = 1, τ ≡ 2, and λ = 5,
νRB(x) converges as x → ∞ to νRB(∞) = 3725.95, as shown in Figure 3. As a consequence, when used to
design an admission policy (reject an arrival if the rejection charge R is lower than the current index value
at every queue), the resulting admission policy may grossly overreject jobs relative to what is optimal.

3. The convergence of the index νRB(x) to the finite limit νRB(∞) implies that, in the single-queue admission
control problem (29), it is optimal to admit all arrivals iff the rejection cost per job R is at or above νRB(∞).

0 5 10 15 20 25
0

1000

2000

3000

4000

i

νR
B
(i)

Figure 3: The RB index for a queue with m = 1, µ = 1, τ ≡ 2, and λ = 5.

6 Numerical experiments

This section reports on the results of a numerical study, whose aim is to benchmark the cost performance of the
policies considered above (the static BS policy, and the dynamic IO, PI, and RB index policies), both against
each other and against the optimal cost performance, in a variety of scenarios.

To accurately evaluate the optimal cost performance, attention was restricted to instances with n = 2 queues
(clusters). The optimal average cost per job was evaluated by solving with CPLEX the linear programming

15

formulation of the average-cost DP equations (9), truncating the buffer size of each queue to 60 jobs (it was
verified that increasing buffer sizes gave the same results for the instances considered). As for the performance
of each of the dynamic index policies, it was evaluated by solving with MATLAB the corresponding Poisson
equations.

The study encompasses both the model of optimal joint control of admission and routing, and the pure-
routing model where the admission control capability is disabled.

The experiments were designed to assess the effect, on the performance of each policy, of varying the system
load, the rejection cost, the degree of heterogeneity in either cluster server speeds or server-pool sizes, and the
magnitude and distribution of the response-time deadline. Recall from Section 1 that the deadline-miss cost is
normalized to the value C = 1. Further, in light of the alternative interpretation given in Section 1 of R as the
admission fee per job and C as the deadline-miss refund, we only consider instances where R > C, i.e., where
the refund per missed deadline is a fraction of the admission fee, as this appears more reasonable in practice
than the case R < C. Note that, in such cases, the IO index policy doest not reject any jobs, since its value is
below 1.

6.1 Effect of system load

We consider a base instance having n = 2 queues, with server-pool sizes m = (4, 8) and service rates µ = (5, 3).
The response-time deadline is deterministic, being τ ≡ 1. Figure 4 plots, for each of four values of the rejection
cost R ∈ {1, 5, 20, ∞}, the average cost per job under each policy, and under an optimal policy, against the
system load ρ , λ/

∑
k mkµk, which ranges over ρ ∈ [0.1, 0.95] by changing the arrival rate λ.

0.1 0.3 0.5 0.7 0.95
0

0.05

0.1

0.15

0.2

0.25

ρ

av
er

ag
e

co
st

 p
er

 jo
b

R = 1

0.1 0.3 0.5 0.7 0.95
0

0.1

0.2

0.3

0.4
R = 5

ρ

0.1 0.3 0.5 0.7 0.95
0

0.2

0.4

0.6

R = 20

ρ

av
er

ag
e

co
st

 p
er

 jo
b

BS

IO

RB

PI

OP

0.1 0.3 0.5 0.7 0.95
0

0.1

0.2

0.3

0.4

R = ∞ (pure−routing case)

ρ

Figure 4: Effect of system load with τ ≡ 1.

The results are displayed in Figure 4, which shows that, while all the policies considered are nearly optimal
under light loads, they exhibit significant differences in their cost performances under heavier loads. For the
model with admission control, the first three panes show that the PI policy consistently achieves a near-optimal
performance. The performance of the RB policy steeply deteriorates as the load gets heavier in cases with high
rejection costs, becoming the worst policy for ρ = 0.9 and R = 20. Recall that, as noted above, the RB index
can reach extremely high values under heavy loads, and hence yields admission policies that overreject. As for
the IO policy, its optimality loss worsens under as the load gets heavier in cases with low rejection costs (in

16

contrast to the RB policy). This is to be expected, since in such cases it will be optimal to reject some jobs,
whereas the IO policy does not reject any job. The optimal BS policy steadily worsens as the load gets higher.

0 20 40 60
0

20

40

60

i
1

i 2

Optimal policy

0 20 40 60
0

20

40

60

i
1

i 2

Policy IO

0 20 40 60
0

20

40

60

i
1

i 2

Policy RB

0 20 40 60
0

20

40

60

i
1

i 2

Policy PI

reject

route to cluster 2

Figure 5: Structure of computed policies for the case τ ≡ 1, ρ = 0.9, R = 4.

Figure 5 plots the structure of the index policies and the optimal policy that was computed in one of the
instances. It is apparent that the RB policy rejects too many jobs. Although the shape of the rejection region
differs under the PI policy and under an optimal policy, the former’s performance is near optimal. Note that,
in the plot of the optimal policy, the actions at some joint states (x1, x2) differ from the overall pattern (e.g.,
there are some black dots inside the white region). This is due to numerical effects, as the linear programs from
which such a solution results are rather large. In fact, we have found that in most instances the structure of
the optimal policy is obscured due to such effects.

As for the pure-routing model, the lower right pane in Figure 4 shows that both the PI and the RB policies
are nearly optimal for the range of loads considered. The IO policy deviates more from the optimal performance
in heavy traffic. The performance of the BS policy worsens substantially as traffic gets heavier.

Figures 6 and 7 show the results of carrying out this experiment for two nondeterministic cases of the
response-time deadline distribution: τ ∼ Exp(1) and τ ∼ Uniform[0.3, 1.7]. Note that, in each case, the mean
response-time deadline is 1. The results are qualitatively similar to those for a deterministic response-time
deadline τ ≡ 1. Yet, notice that the level of average costs increase with the variability of the response-time
deadline distribution, being highest in the exponential case, and lowest in the deterministic case.

6.2 Effect of rejection cost

The second experiment aims to benchmark the performance of the policies considered as the rejection cost R
varies. We consider the same base instance as in the first experiment. Figure 8 plots, for each of four values
of the system load ρ ∈ {0.7, 0.8, 0.9, 0.95}, the average cost per job obtained under each policy, and under an
optimal policy, against the rejection cost R ∈ {1, 2, . . . , 20}.

The results show that the performance of all policies considered, except RB, is not substantially affected by
the rejection cost R. Such is also the case for the RB policy when the system load is low, but, as the load gets
higher, its performance severely degrades as R grows. This is due to the fact that, for high loads, the RB index
takes very large values, and hence the resulting admission policy rejects too many jobs.

17

0.1 0.3 0.5 0.7 0.95
0

0.1

0.2

0.3

0.4

ρ

av
er

ag
e

co
st

 p
er

 jo
b

R = 1

0.1 0.3 0.5 0.7 0.95
0

0.1

0.2

0.3

0.4

0.5

R = 5

ρ

0.1 0.3 0.5 0.7 0.95
0

0.2

0.4

0.6

0.8

1
R = 20

ρ

av
er

ag
e

co
st

 p
er

 jo
b

BS

IO

RB

PI

OP

0.1 0.3 0.5 0.7 0.95
0

0.1

0.2

0.3

0.4

0.5

R = ∞ (pure−routing case)

ρ

Figure 6: Effect of system load with τ ∼ Exp(1).

0.1 0.3 0.5 0.7 0.95
0

0.1

0.2

0.3

ρ

av
er

ag
e

co
st

 p
er

 jo
b

R = 1

0.1 0.3 0.5 0.7 0.95
0

0.1

0.2

0.3

0.4

R = 5

ρ

0.1 0.3 0.5 0.7 0.95
0

0.2

0.4

0.6

0.8
R = 20

ρ

av
er

ag
e

co
st

 p
er

 jo
b

0.1 0.3 0.5 0.7 0.95
0

0.1

0.2

0.3

0.4

R = ∞ (pure−routing case)

ρ

BS

IO

RB

PI

OP

Figure 7: Effect of system load with τ ∼ Uniform[0.3, 1.7].

18

1 5 10 15 20
0

0.01

0.02

0.03

0.04

R

av
er

ag
e

co
st

 p
er

 jo
b

ρ = 0.7

1 5 10 15 20
0

0.02

0.04

0.06

ρ = 0.8

R

1 5 10 15 20
0

0.1

0.2

0.3

ρ = 0.9

R

av
er

ag
e

co
st

 p
er

 jo
b

BS

IO

RB

PI

OP

1 5 10 15 20
0

0.2

0.4

0.6

ρ = 0.95

R

Figure 8: Effect of rejection cost.

6.3 Effect of heterogeneity in cluster server speeds

The third experiment aims to compare the policies as server speeds at the two queues range from a highly
heterogeneous system to a homogeneous system. We consider a base instance with homogeneous server-pool
sizes m = (4, 4), system load ρ = 0.9, and response-time deadline τ ≡ 1. Figure 9 plots, for each of four values
of the rejection cost R ∈ {1, 5, 20, ∞}, the average cost per job under each policy, and under an optimal policy,
against five combinations of service rates: µ ∈ {(9, 1), (8, 2), (7, 3), (6, 4), (5, 5)}. Note that the average speed
per server the same in each combination.

For the model with admission control, the first three panes in Figure 9 show that the cost performances of
both the BS and the RB policies deteriorate as cluster server speeds get more homogeneous, with BS (resp.
RB) being the worse of the two for lower (resp. higher) rejection costs. As for the IO policy, its optimality
loss displays the opposite behavior, becoming closer to optimal as cluster server speeds get more homogeneous.
Note that IO is the worst policy for R = 1. The PI policy is, again, consistently near optimal.

As for the pure-routing model, the lower right pane in Figure 9 shows that the optimality loss of the BS
policy deteriorates substantially as the queues become more homogeneous. Policies RB and IO display the
opposite behavior, becoming closer to optimal as the clusters get more homogeneous. The best of the index
policies if PI, followed by RB and then IO.

6.4 Effect of heterogeneity in cluster server-pool sizes

The aim of the fourth experiment is to benchmark the performance of the policies as server-pool sizes at the two
queues range from a highly heterogeneous system to a homogeneous system. We consider a base instance with
homogeneous server speeds µ = (5, 5), system load ρ = 0.9, and response-time deadline τ ≡ 1. Figure 10 plots,
for each of four values of the rejection cost R ∈ {1, 5, 20, ∞}, the average cost per job under each policy, and
under an optimal policy, against five combinations of server-pool sizes: m ∈ {(9, 1), (8, 2), (7, 3), (6, 4), (5, 5)}.

19

(9, 1) (8, 2) (7, 3) (6, 4) (5, 5)
0

0.1

0.2

0.3

(µ
1
, µ

2
)

av
er

ag
e

co
st

 p
er

 jo
b

R = 1

(9, 1) (8, 2) (7, 3) (6, 4) (5, 5)
0

0.1

0.2

0.3

R = 5

(µ
1
, µ

2
)

(9, 1) (8, 2) (7, 3) (6, 4) (5, 5)
0

0.1

0.2

0.3

0.4

0.5

0.6

R = 20

(µ
1
, µ

2
)

av
er

ag
e

co
st

 p
er

 jo
b

(9, 1) (8, 2) (7, 3) (6, 4) (5, 5)
0

0.1

0.2

0.3

0.4

R = ∞ (pure−routing case)

(µ
1
, µ

2
)

Figure 9: Effect of heterogeneity in cluster server speeds.

Note that the total number of servers is the same in each combination. The results of this experiment are
qualitatively similar to those of the previous experiment in terms of ranking of the policies. Again, PI is the
only policy that is consistently near optimal.

6.5 Effect of magnitude of response-time

The fifth experiment benchmarks the performance of the policies as the response-time deadline, which is taken
to be deterministic with τ ≡ t, ranges from a low to a high value. We consider a base instance with server-pool
sizes m = (4, 8), service rates µ = (5, 3), and system load ρ = 0.9. Figure 11 plots, for each of four values of
the rejection cost R ∈ {1, 5, 20, ∞}, the average cost per job incurred under each policy, and under an optimal
policy, against the response-time deadline t = 1/θ, with θ ∈ {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5}.

For the model with admission control, the The first three panes in Figure 11 show that, for the model
with admission control, the PI policy is consistently near optimal, with the other policies showing substantial
optimality losses in some cases. Thus, the worst policy is IO for low R, BS for medium R, and RB for large R.
For the pure-routing case, the fourth pane in the figure shows that PI and RB are both nearly optimal.

7 Discussion and conclusions

This paper has investigated the use of four policy design methods to obtain policies for control of admission
and routing in a distributed soft real-time system with a parallel multicluster architecture: the static BS policy,
and the dynamic IO, PI, and RB index policies. The above analyses and numerical results reveal the following
facts and insights:

1. All the heuristic index policies considered can be computed efficiently in linear time via first-order linear
recursions.

20

(9, 1) (8, 2) (7, 3) (6, 4) (5, 5)
0

0.05

0.1

0.15

(m
1
, m

2
)

av
er

ag
e

co
st

 p
er

 jo
b

R = 1

(9, 1) (8, 2) (7, 3) (6, 4) (5, 5)
0

0.1

0.2

0.3

R = 5

(m
1
, m

2
)

(9, 1) (8, 2) (7, 3) (6, 4) (5, 5)
0

0.2

0.4

R = 20

(m
1
, m

2
)

av
er

ag
e

co
st

 p
er

 jo
b

(9, 1) (8, 2) (7, 3) (6, 4) (5, 5)
0

0.1

0.2

0.3

R = ∞ (pure−routing case)

(m
1
, m

2
)

Figure 10: Effect of heterogeneity in cluster server-pool sizes.

2. The admission policy based on the IO index does not reject any job when R > C, even though doing so
can substantially improve performance.

3. The admission policy based on the RB index tends to grossly overreject jobs when both the system load
and the rejection cost are high, since under heavy loads the RB index can take extremely high values.
This causes a severe performance degradation of the RB policy in such cases. Yet, in the pure-routing
case, the RB routing index yields nearly optimal policies.

4. The optimal BS policy can be efficiently computed in the present model. Extending the range of rejection
cost values R beyond the case R = 1 considered in prior work to R > 1 leads to policies that may saturate
one or more queues when the load is high.

5. The optimal BS policy can be substantially outperformed by good dynamic policies.

6. Overall, the best policy among those considered for admission control and routing is the PI policy, which
consistently yields nearly optimal policies. As for the pure-routing model, both the PI and RB index
policies are consistently near optimal.

An interesting issue for future research would be to analyze the performance of the proposed PI index policy,
or of another heuristic policy that performed as well, elucidating its asymptotic performance in instances with
many servers, as the analysis of many-server models has received substantial attention in related literature (see
Gurvich and Whitt (2010) and references therein).

Acknowledgments

The author acknowledges partial support for this work by the Spanish Ministry of Science and Innovation’s
projects MTM2007-63140 and MTM2010-20808. He presented a preliminary outline of this work at the Twelfth

21

0.2 0.5 1 2
0

0.2

0.4

0.6

0.8

t

av
er

ag
e

co
st

 p
er

 jo
b

R = 1

0.2 0.5 1 2
0

0.2

0.4

0.6

0.8

R = 5

t

0.2 0.5 1 2
0

0.5

1

1.5

R = 20

t

av
er

ag
e

co
st

 p
er

 jo
b

0.2 0.5 1 2
0

0.2

0.4

0.6

0.8

R = ∞ (pure−routing case)

t

 BS

IO

RB

PI

OP

Figure 11: Effect of magnitude of response-time deadline (deterministic case with τ ≡ t).

Workshop on MAthematical performance Modeling and Analysis (MAMA 2010), in New York, which appeared
in the corresponding proceedings (Niño Mora (2010)).

References

Bertini, L., Leite, J. C. B., Mossé, D., 2010. Power and performance control of soft real-time web server clusters.
Information Processing Letters 110, 767–773.

Bhulai, S., 2009. Dynamic routing policies for multiskill call centers. Probability in the Engineering and Infor-
mational Sciences 23, 101–119.

Gross, D., Shortle, J. F., Thompson, J. M., Harris, C. M., 2008. Fundamentals of Queueing Theory, 4th Edition.
Wiley, Hoboken, NJ.

Gurvich, I., Whitt, W., 2010. Service-level differentiation in many-server service systems via queue-ratio routing.
Operations Research 58, 316–328.

He, L., Jarvis, S. A., Spooner, D. P., Jiang, H., Dillenberger, D. N., Nudd, G. R., 2006. Allocating non-real-time
and soft real-time jobs in multiclusters. IEEE Transactions on Parallel and Distributed Systems 17, 99–112.

Kallmes, M. H., Cassandras, C. G., 1995. Two approaches to optimal routing and admission control in systems
with real-time traffic. Journal of Optimization Theory and Applications 84, 311–338.

Kang, K. D., Sin, P. H., Oh, J., H., S., Son, S. H., 2007. A real-time database testbed and performance evaluation.
In: Proceedings of the 13th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pp. 319–326.

22

Kao, B., García-Molina, H., 1996. Scheduling soft real-time jobs over dual non-real-time servers. IEEE Trans-
actions on Parallel and Distributed Systems 7, 56–68.

Krishnan, K. R., 1990. Joining the right queue: A state-dependent decision rule. IEEE Transactions on Auto-
matic Control 35, 104–108.

Niño-Mora, J., 2001. Restless bandits, partial conservation laws and indexability. Advances in Applied Proba-
bility 33, 76–98.

Niño-Mora, J., 2002. Dynamic allocation indices for restless projects and queueing admission control: A poly-
hedral approach. Mathematical Programming 93, 361–413.

Niño-Mora, J., 2007. Marginal productivity index policies for admission control and routing to parallel multi-
server loss queues with reneging. In: Proceedings of the first EuroFGI International Conference on Network
Control and Optimization (NETCOOP ’07). Lecture Notes in Computer Science, vol. 4465. Springer, Berlin,
pp. 138–149.

Niño Mora, J., 2010. Index policies for admission and routing of soft real-time traffic to parallel queues. ACM
SIGMETRICS Performance Evaluation Review 38, 21–23.

Plankensteiner, K., Prodan, R., Fahringer, T., 2010. Scheduling scientific workflows to meet soft deadlines in
the absence of failure models. In: D’Ambra, P., Guarracino, M., Talia, D., editors. Euro-Par 2010, Part I.
Lecture Notes in Computer Science, vol. 6271. Springer, Berlin, pp. 367–378.

Stidham, Jr., S., 1985. Optimal control of admission to a queueing system. IEEE Transactions on Automatic
Control 30, 705–713.

Whittle, P., 1988. Restless bandits: Activity allocation in a changing world. Journal of Applied Probability 25A,
287–298.

Zhu, W., 2001. Allocating soft real-time tasks on cluster. Simulation 77, 219–229.

23

	1 Introduction
	1.1 Related prior work
	1.2 Extending prior work

	2 The model
	2.1 Model description and problem formulation
	2.2 Charging deadline-miss costs via action-independent holding costs
	2.3 The structure of optimal admission and routing policies

	3 IO index
	3.1 Constant response-time deadlines
	3.2 Uniform response-time deadlines
	3.3 Exponential response-time deadlines

	4 PI index
	4.1 First stage of the PI method: computing the optimal BS
	4.2 Second stage of the PI method: PI step

	5 RB index
	6 Numerical experiments
	6.1 Effect of system load
	6.2 Effect of rejection cost
	6.3 Effect of heterogeneity in cluster server speeds
	6.4 Effect of heterogeneity in cluster server-pool sizes
	6.5 Effect of magnitude of response-time

	7 Discussion and conclusions

