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Abstract — The cutwidth minimization problem consists of finding a linear layout of a graph 

so that the maximum linear cut of edges (i.e., the number of edges that cut a line between 

consecutive vertices) is minimized. This paper starts by reviewing previous exact approaches 

for special classes of graphs as well as a linear integer formulation for the general problem. We 

propose a branch and bound algorithm based on different lower bounds on the cutwidth of 

partial solutions. Empirical results with a collection of previously reported instances indicate 

that the proposed algorithm is able to solve all the small-sized instances (up to 32 vertices) as 

well as some of the large-sized instances tested (up to 158 vertices) in less than 30 minutes of 

CPU time. We compare our method with the best previous linear integer formulation solved 

with the well-known software Cplex. The comparison favors the proposed procedure. 
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1. Introduction 
Let G =(V, E) be a graph with vertex set V (|V| = n) and edge set E (|E| = m). A labeling or linear 
arrangement f of G assigns the integers {1, 2, …, n} to the vertices of G in such a way that each 
vertex v ∈ V has a different label f(v) (i.e. f(v) ≠ f(u) for all u,v ∈ V). The cutwidth of a vertex v, 
with respect to a labeling f, CWf (v), is given by the number of edges (u,w) ∈ E in the graph 
satisfying  f(u) ≤ f(v) < f(w).  
 
In mathematical terms: 

 
{ })()()(: ),()(CW wfvfufwu=vf <≤∈E  

 
Given a labeling f, the cutwidth of G is defined as:  
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The optimum cutwidth of graph G, CW(G), is defined as the minimum CWf (G) value over all 
possible labelings f. In other words, the cutwidth minimization problem consists of finding a 
labeling f that minimizes CWf (G) over set ∏n of all possible labelings. 
 

)(CWmin)(CW GG ff nΠ∈
=  

 
This problem is NP-hard as stated in Gavril (1977) even for graphs with a maximum degree of 
three (Makedon et al., 1985). Some special cases have been solved optimally; for example, 
Harper (1966) solved the cutwidth for hypercubes, Chung et al. (1982) presented a O(logd-2 n) 
time algorithm for the cutwidth of trees with n vertices and with maximum degree d. 
Yannakakis (1985) improved the aforesaid results by giving a O(n log n) time algorithm to 
determine the cutwidth of trees with n vertices. In particular, for k-level, t-ary trees Tt,k, it holds 
that: 
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Exact methods to obtain the optimal cutwidth of grids have been proposed in Rolim et al. 
(1995). Specifically, for width, height ≥ 2 the authors proved that 
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Finally, Thilikos et al. (2001) presented an algorithm to compute the cutwidth of bounded 
degree graphs with small tree-width in polynomial time. 
 
Practical applications of the cutwidth problem can be traced back 35 years. Adolphson and Hu 
(1973) used it as the theoretical model to establish the number of channels in an optimal layout 
of a circuit (see also Adolphson and Hu, 1973; Makedon and Sudborough, 1989). More recent 
applications of this problem include network reliability (Karger 1999), automatic graph drawing 
(Mutzel, 1995) and information retrieval (Botafogo, 1993). 
 
Figure 1.a shows an example of an undirected graph with 6 vertices and 10 edges. Figure 1.b 
shows a labeling, f, of the graph in Figure 1.a, setting the vertices in a line in the order of the 
labeling, as commonly represented in the cutwidth problem. In this way, since f (A) = 1, vertex 
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A comes first, followed by vertex D (f (D) = 2) and so on. We represent f with the ordering (A, 
D, E, F, B, C) meaning that vertex A is located in the first position (label 1), vertex D is located 
in the second position (label 2) and so on. In Figure 1.b, the cutwidth of each vertex is 
represented as a dashed line with its corresponding value at the bottom. For example, the 
cutwidth of vertex A is CWf (A) = 5, because the edges (A,D), (A,E), (A,F), (A,B) and (A,C) have 
an endpoint in A labeled with 1 and the other endpoint in a vertex labeled with a value larger 
than 1.  Similarly, we can compute the cutwidth of vertex B, CWf (B)=4, by counting the 
appropriate number of edges ((A,C), (D,C), (F,C) and (D,C)).  Then, since the cutwidth of graph 
G, CWf (G), is the maximum of the cutwidth of all vertices in V, in this particular example, we 
obtain CWf (G) = CWf (D) = 7, represented in the figure as a bold line with the corresponding 
value at the bottom. 
 

 
Figure 1: (a) Graph example, (b) Cutwidth of G for a labeling f.  

 
Luttamaguzi et al. (2005) proposed the following linear integer formulation to solve the 
cutwidth minimization problem:  
 
  Min b 
  s.t. 
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where xi

k is a decision binary variable whose indices are i, k ∈ {1,2,...,n}. This variable specifies 
whether i is placed in position k in the ordering.  In other words, for all xi

k  (i, k∈{1, 2,...,n})they 
take on value 1 if and only if i occupies the position k in the ordering; otherwise xi

k takes on 
value 0. Constraints (3) and (4) ensure that each vertex is only assigned to one position and one 
position is only assigned to one vertex respectively. Consequently, constraints (1), (2), (3) and 
(4) together imply that a solution of the problem is an ordering. 
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The decision binary variable }1,0{,
, ∈lk
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where i, j, ∈ {1,2,...,n}, (vi, vj) ∈E and k, l, ∈ {1,2,...,n} the labels associated to vertex vi and vj 
respectively.  In the linear formulation above this conjunction is computed with constraints (5), 
(6) and (7). 
 
Constraint (8) computes for each position c in the ordering, the number of edges whose origin is 
placed in any position k (1 ≤ k < c) and destination in any position l (c < l  ≤ n).  The cutwidth 
problem consists of minimizing the maximum number of cutting edges in any position, 
c∈{1,...,n - 1} of the labeling.  Therefore, the objective function b must be larger than or equal 
to this quantity. 
 
In this paper we propose a branch and bound algorithm for the cutwidth minimization problem.  
It consists of a systematic enumeration of all its solutions (labeling) based on the definition of 
partial solutions, set out in Section 2.  In this section we also propose lower bounds that will 
enable us to discard a large number of solutions in the enumeration process.  In Section 3 we 
introduce a simple heuristic to obtain an upper bound for the cutwidth problem.  Section 4 
describes the search tree for an efficient enumeration of the problem solutions and its associated 
strategies.  Finally, the paper concludes with the computational experiments, in which we 
include our experience with the linear integer formulation above, and the associated 
conclusions. 
 
2. Lower bounds for partial solutions  
Given a subset S of V with k < n vertices and an ordering g ∈ Πk assigning the integers {1, 2, ..., 
k} to the vertices in S, we define a partial solution as the pair (S, g).  A complete solution of the 
cutwidth problem in the graph G=(V, E) can be obtained by adding n-k elements from V \ S to S, 
assigning them the integers {k+1, k+2, ..., n}. Therefore, the elements in S ordered according to 
g can be viewed as an incomplete or partial solution of the cutwidth problem in G.  We define U 
as the set of unlabeled vertices (U = V \ S) and Sg as the set of all complete solutions of the 
problem in G obtained by adding ordered elements to S. Figure 2 shows the partial solution (S, 
g) of the example introduced in Figure 1.a (see Section 1) where the vertices in S={A, D, E} 
have been labeled with g (g(A) = 1, g(D) =2 and g(E) = 3).  Vertices B, C and F remain 
unlabeled and therefore belong to set U. 

 
Figure 2: Partial solution.  

 
Given a partial solution (S, g) with S ⊂ V and g ∈ Πk, we consider the graph GS =(S, ES) where S 
is the set of labeled vertices and ES ⊂ E is the set of edges among them. In the example depicted 
in Figure 2, S={A, D, E}, ES ={(A, E), (D, E)} and Sg ={ (A, D, E, F, C, B), (A, D, E, C, B, F), 
(A, D, E, B, F, C), (A, D, E, F, B, C), (A, D, E, C, F, B), (A, D, E, B, C, F)}.  
 
Particularizing the expression to compute the cutwidth shown in Section 1 to a partial solution 
(S, g), we can calculate the cutwidth of each labeled vertex in GS with respect to the ordering g 
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and the edges in ES, CWg(v) as follows: 
 

{ })()()(:),()(CW wgvgugEwu=v Sg <≤∈  
 
In the example in Figure 2, we have CWg(A)=1, CWg(D)=2 and CWg(E)=0.  It is clear that the 
cutwidth values in the partial solution provide a lower bound of their corresponding values than 
in any complete solution f∈Sg.  In this example, if f is a complete solution (with 4, 5 and 6 
assigned to C, B and F), we have CWf (A) ≥ CWg (A)=1, CWf (D) ≥ CWg (D)=2 and CWf(E) ≥ 
CWg (E)=0.  We can therefore conclude that the cutwidth of the graph CWf (G) is larger than 
max{CWg (A), CWg (D), CWg (E)}=2 and say that this maximum is a lower bound of the 
cutwidth.  In mathematical terms, for any f∈Sg: 
 

)(CWmax),()(CW vgSLB gSvf ∈
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In this section we propose five lower bounds, LB1, LB2, LB3, LB4 and LB5, to the value of 
CWf(G) for f∈Sg thus improving this trivial lower bound, LB(S, g).  LB1 is based on the degree 
of the vertices in G, LB2 computes the edges between the labeled and unlabeled vertices, LB3 is 
a refinement of LB1, LB4 considers the best vertex to be labeled next in the partial solution and 
LB5 is based on the distribution of the edges in G minimizing the cutwidth. 
 
2.1 Lower bound LB1 
Let N(v) be the set of adjacent vertices to vertex v and let E(v) be the edges with an endpoint in 
v.  Consider a solution f and the vertex u in position f(v)–1  (i.e., u precedes v in the ordering f ).  
If an edge in N(v) is adjacent to a vertex w with f(w)<f(v), then it contributes to CWf (u); 
otherwise, it contributes to CWf (v) (the edge is computed in the cutwidth of the vertex). Then 
CWf (u) + CWf (v) ≥ |N(v)|.  Therefore, 
 

max {CWf (u) , CWf (v) }≥ |N(v)| / 2 
 
Considering that the cutwidth of the graph CWf (G) is the maximum of the cutwidths of all its 
vertices, we conclude that |N(v)| / 2 is a lower bound on CWf (G). 
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In the example in Figure 2, we obtain LB1=3. Note that this bound is independent of the labeling 
f, and it actually provides a lower bound on the optimum cutwidth of the graph CW(G). 
 
2.2 Lower bound LB2 
Given a partial solution (S,g) and a complete solution f in Sg, the cutwidth of a vertex v ∈ S with 
respect to f, CWf (v), can be computed as: 
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where NU(u) is the set of unlabeled adjacent vertices to u.  The first term in this expression, 
CWg(v), corresponds to the cutwidth of v in GS =(S, ES). The second term computes the number 
of edges with an endpoint in a vertex u labeled with g(u) ≤ g(v) (i.e., previous to v in the 
ordering g), and the other endpoint in a unlabeled vertex w.  Note that f(w) > g(v) for all w in U 
and any labeling (solution) f in Sg. This is why we include all the edges with an endpoint in the 
unlabeled vertices w in the computation of CWf (v). 
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Given that (9) provides an expression of CWf (v) for all v in S ⊆ V, and that CWf (G) is the 
maximum of CWf (v) for all v in V , we can conclude that: 
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In the partial solution shown in Figure 2, the value of the cutwidth of any solution f in Sg, 
CWf(G), satisfies:  
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2.3 Lower bound LB3 
Given a partial solution (S, g) and an unlabeled vertex u ∈ U, let NS(u) be the set of labeled 
adjacent vertices to u.  Let vk be the vertex in S with the largest label (i.e, g(vk) = k = |S|). It is 
clear that for any f in Sg and any v in S, f(v) ≤ f(vk)< f(u). Then, CWf (vk) ≥ |NS(u)|. On the other 
hand, we can also apply the same argument to the vertices in U as in LB1, obtaining an improved 
lower bound LB3 for the vertices in U: 
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In the example in Figure 2, we can see that the value of LB3 for vertices B, C and F: 
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Therefore, LB3 will be for this graph: 
 

( ) ( ) ( ){ } { } 31,2,3max,,max 3333 === FLBCLBBLBLB  
 
2.4 Lower bound LB4 
As in the previous case, consider a partial solution (S, g), an unlabeled vertex u ∈ U, the vertex 
vk in S with the largest label, and a solution f in Sg.  If the vertex u is labeled in f with k+1 (i.e., u 
follows vk in the ordering f ) its cutwidth can be computed as: 
 

( ))()()(CW)(CW uNuNvu USkgf −−=  
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where NS(u) is the set of labeled adjacent vertices to u, and NU(u) is the set of unlabeled adjacent 
vertices to u.  We can then compute a lower bound of the CWf -value for the vertex in position 
k+1, by computing the maximum of the term )()( uNuN US −  for all u ∈ U.  Thus we obtain: 
 

( ))()(max)(CW)(CW 4 uNuNvLB USUukgf −−=≥
∈

G  

 
Figure 3.a shows a partial solution (S, g) of the example given in Figure 1, where S = {E, F}, 
g(E) = 1, g(F) = 2 and U = {A, B, C, D} with CWg(F) = 4. Figure 3.b shows the value of |NS(u)| 
- |NU(u)| for each vertex u in U. According to the definition given above, we select the vertex A, 
giving a value of LB4 = 4 – (–1) = 5. This means that, independently of the labeling of the 
vertices in U, the value of the final solution is greater than or equal to 5.   

 
Figure 3: (a) Partial solution. (b) |NS(u)| - |NU(u)| values for every u∈U.  

 
2.5 Lower bound LB5 
Given a graph G with n vertices and m edges we compute the lower bound LB5 of its cutwidth 
CW(G), by constructing an auxiliary graph G’ with n vertices and m edges distributed in such a 
way that it has minimum cutwidth.  In other words, we “put” the edges in G’ between the 
appropriate vertices to obtain a minimum cutwidth.  In this way, the cutwidth of G’ is a lower 
bound of the cutwidth of G for any labeling of its vertices (it is in fact a lower bound of the 
cutwidth of any graph with n vertices and m edges). 

Consider the case in which m < n, we construct the auxiliary graph G’ as a path (Figure 4) in 
which some vertices may eventually be disconnected (when m=n-1 it is a connected path).  The 
cutwidth of G’ is equal to 1 and it is clear that regardless how the edges are distributed in G, 
given that it has m edges, for any labeling f, its cutwidth CWf (G) will be equal to or larger than 
CW(G’)=1. Moreover, if we have m=n, we need to add an extra edge to the connected path G’ 
and it necessarily results in a vertex with cutwidth 2; therefore, in this case CW(G’)=2≤CWf (G) 
for any labeling f of the vertices in G. 

 
Figure 4:  Graph G’ with m=n-1 edges (path). 

 
Let us now consider the case in which m > n. The best way to distribute the m edges in a graph 
with n vertices in order to reduce its cutwidth is as follows:  We place the first n-1 edges joining 
“consecutive” vertices, in the graph (we call them edges of length 1) as shown in Figure 4 
(between vi and vi+1 for any i). Then, we can add a few extra edges increasing the cutwidth by 
only one unit.  Specifically, we can add (n-1)/2 edges between “alternated” vertices (vi and 
vi+2) as shown in Figure 5, keeping the cutwidth of G’ with value 2.  We shall denote them edges 
of length 2.  Therefore, the cutwidth of a graph G with n vertices and m edges with n ≤ m ≤ n-
1+(n-1)/2 satisfies CW(G’) = 2 ≤ CWf (G) for any labeling f of the vertices in G.  Any extra 
edge would result in a cutwidth of 3. 
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Figure 5:  Graph G’ with a length 1 and 2 edges. 

 
Figure 6 shows how can we add (n-2)/2 edges to the graph in Figure 5 keeping the cutwidth of 
G’ with value 3.  Then, following the same argument described above, the cutwidth of a graph G 
with n vertices and m edges with (n-1)+(n-1)/2 < m ≤ (n-1) + (n-2) satisfies 3 ≤  CWf (G) for 
any labeling f of its vertices.  (It is easy to see that (n-1)/2 + (n-2)/2 = n-2.)   

 
Figure 6: Graph G’ with cutwidth 3. 

 
Generalizing this incremental construction of G’, we observe that there is a maximum of n-k 
edges of length k (between vi and vi+k for any i) that can be added to G’ (in which we have 
previously added all the edges with lengths t from t = 1 to k-1).  The first (n-1)/k edges 
increase the cutwidth of G’ by one unit; the second (n-2)/k by another unit, the third (n-3)/k 
in another unit and so on until the n-k edges of length k have been added and the cutwidth of G’ 
increases by k units.  The cutwidth of graph G’ provides a bound of the cutwidth of any graph 
with the same number of vertices and edges. 
 
 
3. Initial Upper Bound 
In this section, we propose a heuristic approach to obtain an upper bound for the cutwidth 
problem based on GRASP methodology (Feo et al. 1994).  Each GRASP iteration involves 
constructing a trial solution and then applying a local search from the constructed solution.  
Figure 7 shows a pseudo-code of our GRASP construction method for the cutwidth problem. 
 

PROCEDURE Constructive 
1. Let S and U be the sets of labeled and unlabeled vertices of the graph respectively 
2. Initially S = Ø and U = V 
3. Select a vertex u from U randomly 
4. Assign the label k = 1 to u. S = {u}, U = U \ {u} 

 WHILE (U ≠ Ø) 
  5. k = k + 1 
  6. Construct CL = {v ∈ U / (w,v) ∈ E  ∀w ∈ S} 

7. Let NS(v) and NU(v) be the set of adjacent labeled and unlabeled vertices to v 
respectively. 

  8. Compute e(v)= |NS(v)| - |NU(v)| ∀ v in CL 
  9. Construct RCL = {v ∈ CL / e(v) ≥ th} 
  10. Select a vertex u randomly in RCL  
  11. Label u with the label k 

  12. U = U \ {u}, S = S ∪ {u} 

Figure 7. Pseudo-code of the constructive method. 
 
The constructive method starts by creating a list of unlabeled vertices U (initially U = V).  The 
first vertex v is randomly selected from all those vertices in U and labeled with 1.  In subsequent 
construction steps, a candidate list CL is formed by all the vertices in U that are adjacent to at 
least one labeled vertex.  For each vertex u in CL we compute its evaluation e(u) as: 
 

)()()( uNuNue US −=  
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where NS(u) is the set of labeled adjacent vertices to u, and NU(u) is the set of unlabeled adjacent 
vertices to u. Note that in this step a greedy selection would label the vertex u* having the 
maximum e-value with the next available label, which would be the minimum CWf (u) value.  
However, by contrast, the GRASP methodology computes a restricted candidate list, RCL, with 
good candidates and selects one at random. Specifically, RCL = {v ∈ CL / e(v) ≥ th} where the 
parameter th is a threshold to establish the “good” elements for selection as shown in Figure 7. 
 
Once a solution has been constructed we apply an improving phase based on a local search 
procedure.  Our local search method for the cutwidth problem is based on insertion moves. 
Given a labeling f, we define the insertion move MOVE(f, j, v) consisting of deleting v from its 
current position f(v) and inserting it in position j. This operation results in the ordering f ′, as 
follows: 
 

• If f(v) = i > j, then the vertex v is inserted just before the vertex vj in position j. In 
mathematical terms, from f =(…, vj-1, vj, vj+1,…, vi-1, v, vi+1,…), we obtain the new 
ordering f ′=(…, vj-1, v, vj, vj+1,…  vi-1, vi+1,…). 

 
• If f(v) = i < j the vertex v is inserted just after the vertex vj in position j. Therefore, from 

the ordering f =(…, vi-1, v, vi+1,…, vj-1, vj, vj+1,…), we obtain f ′=(…, vi-1, vi+1,…, vj-1, vj, v, 
vj+1,…). 

 
We define the set of critical vertices CV as those with a cutwidth value equal or close to the 
cutwidth of the graph. These vertices determine the value of the objective function or are 
considered likely to do so in subsequent iterations.  In each iteration, our local search method 
selects a vertex v in CV and performs the first improving move MOVE(f, j, v), where the 
meaning of improving is not limited to the objective function (which provides little information 
in this problem).  The position j in the move is computed as the median of the positions 
(according to f ) of the adjacent vertices to v (a search mechanism explores only positions close 
to j).  An improving move is the one that either reduces CWf (G) or the number of vertices in 
CV.  When a move is performed, the associated vertex is removed from CV.  When the set 
becomes empty, we recalculate it. The method cuts off when there is no improving move 
associated with the vertices in CV. 
 
 
4. The search tree 
Branch and bound generates and explores the entire set of solutions to the problem by means of 
a search tree.  It first starts by running a heuristic algorithm (in our problem we consider the 
GRASP introduced in Section 3) to obtain an initial solution, whose objective function value 
gives an upper bound UB of the optimal value. Then, at each node of the search tree, it 
computes a lower bound LB (in our problem the maximum among LB1, LB2, LB3, LB4, and LB5 
introduced in Section 2) and compares it with UB.  If LB ≥ UB then we fathom the node 
(because no better solution than the incumbent one can be found in this node); otherwise we 
branch the node and explore its first child node.  When the exploration reaches a leaf node (that 
represents a complete solution of our problem), it computes the objective function value of this 
solution, and updates the upper bound UB if necessary.  Then, it performs a backward step, 
checking its parent node again (backtracking) with the new upper bound and continuing the 
exploration.  The branch and bound algorithm stops when all the nodes have been examined 
(some of which have been branched and others fathomed), and returns as the output, the 
optimum solution to the problem.  An early termination, due to time limitations, provides us 
with a lower bound and an upper bound of the optimum (this latter bound is obtained as the 
minimum of the lower bounds in the unexplored nodes). 
 
In our search tree, the initial node branches into n nodes labeling each vertex A, B, C, … with 
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label 1. Then, the node containing the vertex i represents the partial solution (S, g) where S={i} 
and g(i) = 1).  Each of these n nodes at the first level branches into n – 1 nodes (which will be 
referred to as nodes at level 2).  Then, a node at level 2 contains two labeled vertices i and j and 
represents the partial solution S={i, j} with g(i) = 1 and g(j) = 2.  Therefore, at each level in the 
search tree, the algorithm extends the current partial solution by labeling one vertex.  Figure 8 
represents this search tree for the example given in Figure 1.a. 
 

 
Figure 8: Search tree.  

 
We propose three different ways to explore the search tree, called BB1, BB2 and BB3.  In BB1, 
the search tree is first explored in depth.  Figure 9 shows a pseudo-code of the BB1 in which we 
initially call BB1(Nodek) with Nodek = {S = ∅; g(u) = 0 ∀u∈V} and set k = 0. 
 

PROCEDURE BB1(Nodek) 
 1. Let (S, g) be the partial solution associated with Nodek, being k the last assigned label 
 IF (Nodek is a leaf node)  /* Complete solution*/ 
  2. Compute CWf (G) as the cutwidth of its associated solution 
  IF (CWf (G) < UB) 
   3. UB = CWf (G) 
 ELSE 
  4. Compute LB = max {LB1, LB2, LB3, LB4, LB5} 
  IF (LB < UB) 
   5. Let U be the set of unlabeled vertices 
   6. k = k+1 
   WHILE (U ≠ Ø) 
    7. Select u from U in lexicographical order 
    8. U = U \ {u} 
    9. Set Nodek = {S  = S ∪ {u};  g(u) = k}  
    10. BB1(Nodek) 

Figure 9: Pseudo-code of BB1 
 
BB2 also performs a depth first search but, instead of exploring the first child node (in 
lexicographical order) of the latest explored node as BB1, it explores the most promising node 
at each level (i.e., the one with the lowest LB value).  We have implemented effective data 
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structures to store the non-branched nodes at each level for a fast back-tracking.  Finally, BB3 is 
based on a breadth first search over the search tree. In order to enhance the performance of the 
algorithm, we use a priority queue to drive the search where the priority criterion is the same as 
the above mentioned.  Figure 10 provides a pseudo-code of this procedure. 
 

PROCEDURE BB3() 
1. Compute UB with the GRASP algorithm 
2. k = 0 
3. Set Nodek = {S = ∅; g(u) = 0 ∀u∈V}  
4. PQ = ∅ /* empty priority queue */ 
5. Enqueue(Nodek, PQ) /* add an element to the queue with an associated priority */ 
WHILE (PQ ≠ Ø) 

4. Nodek  = De-queue(PQ) /* return, removing from PQ, the highest priority element */ 
  IF (Nodek is a leaf node)  /* Complete solution*/ 
   5. Compute CWf (G) as the cutwidth of its associated solution 
   IF (CWf (G) < UB) 
    6. UB = CWf (G) 
  ELSE 
   IF (LB < UB) 

    7. Let U be the set of unlabeled vertices 
    8. Let k be the latest label assigned in the current node Nodek 
    WHILE (U ≠ Ø) 

     9. Select u from U in lexicographical order 
     10. U = U \ {u} 
     11. Set Nodek+1 = {S  = S ∪ {u};  g(u) = k+1}  
     12. Compute LB = max {LB1, LB2, LB3, LB4, LB5} 
     IF (LB < UB) 
      13. In-queue (Nodek+1, PQ) 

Figure 10. Pseudo-code of BB3. 
 
 
5. Computational Experiments 
This section describes the computational experiments performed to test the efficiency of our 
branch and bound procedure, as well as to compare it with the linear integer formulation 
proposed previously.  We have implemented the branch and bound algorithm in Java SE 6 and 
solved the linear integer formulation with Cplex 11.1.  All the experiments were conducted on 
an Intel Core 2 Quad CPU and 6 GB RAM.  We limit the running time on each instance to 30 
minutes of CPU. 
 
We have employed three sets of instances in our experimentation.  The first one, Small, was 
reported in Martí et al. (2008), the second one, Grids, was described in Rolim et al. (1995) and 
the third one, Harwell-Boeing, is a subset of the public-domain Matrix Market library (available 
at http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/).  All these instances are available at 
http://heur.uv.es/optsicom/cutwidth. 
 

Small: This data set consists of 42 graphs established in the context of the 
bandwidth reduction problem. We have selected 42 representative 
graphs (out of 84) from the original set.  The number of vertices 
ranges from 16 to 24, and the number of edges ranges from 18 to 49.   

 
Grids: This data set consists of 36 matrices constructed as the Cartesian 

product of two paths (Raspaud et al., 2008). They are also called two 
dimensional meshes and, as documented in Raspaud et al. (2008), the 
optimal solution of the cutwidth problem for these types of instances 
is known by construction. For this set of instances, the vertices are 
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arranged on a grid with a dimension width × height where width, 
height ∈ {3, 4, …, 10} and width ≥ height.  

 
HB: We derived 37 instances from the Harwell-Boeing Sparse Matrix 

Collection. This collection consists of a set of standard test matrices 
arising from problems in linear systems, least squares, and eigenvalue 
calculations from a wide variety of scientific and engineering 
disciplines. The problems range from small matrices, used as counter-
examples to hypotheses in sparse matrix research, to large matrices 
arising in applications. Graphs are derived from these matrices as 
follows. Let Mij denote the element of the i-th row and j-th column of 
the n × n sparse matrix M. The corresponding graph has n vertices. 
Edge (i, j) exists in the graph if and only if Mij ≠ 0. From the original 
set we have considered all the graphs with n ≤ 200. Specifically the 
number of vertices ranges from 30 to 199 and the number of edges 
from 46 to 2145. 

 
We have performed a preliminary experimentation over a set of 15 representative instances (five 
small, five grids and five HB instances referenced in Table 1) in order to test the main 
characteristics of our procedure.  We shall call the set with 15 instances Set1. In all the 
experiments the CPU time is limited to 30 minutes.  When the branch and bound algorithm is 
not able to explore the entire search tree within this time limit, we report the absolute gap (gap) 
and relative gap (%gap) between the best lower and upper bounds obtained in the search, LB 
and UB respectively.  Both gaps provide an evaluation of the branch and bound performance on 
an early termination. 

100% ×
−

=−=
LB

LBUBgapLBUBgap  

 
The first experiment compares the performance of the three proposed search algorithms BB1, 
BB2 and BB3.  For each of them we report the number of explored nodes, Expl, and the number 
of fathomed nodes (not explored because of their bound), Fath, in the search tree.  To 
complement this information, we also report the number of unexplored and unfathomed nodes 
(UnExpl). Note that if the whole search tree is explored, UnExpl equals zero (and Expl+Fath 
equals the total number of nodes in the search tree).  Table 1 shows these values over the 15 
instances in Set1. 
 

  BB1 BB2  BB3 
  Expl Fath UnExpl  Expl Fath UnExpl  Expl Fath UnExpl 

Sm
al

l (
5)

 p51_20_28 1.4E04 6.6E18 0.0E0  1.4E04 6.6E18 0.0E0  1.4E04 6.6E18 0.0E0 
p63_21_42 1.2E06 1.4E20 0.0E0  1.2E06 1.4E20 0.0E0  1.2E06 1.4E20 0.0E0 
p72_22_49 1.3E06 3.1E21 0.0E0  1.3E06 3.1E21 0.0E0  1.3E06 3.1E21 0.0E0 
p81_23_46 7.7E06 7.0E22 0.0E0  7.7E06 7.0E22 0.0E0  7.7E06 7.0E22 0.0E0 
p100_24_34 1.5E06 1.7E24 0.0E0  1.5E06 1.7E24 0.0E0  1.5E06 1.7E24 0.0E0 

G
rid

s (
5)

 Grid5x5 6.5E02 4.2E25 0.0E0  6.5E02 4.2E25 0.0E0  6.5E02 4.2E25 0.0E0 
Grid6x8 1.3E04 3.4E61 0.0E0  1.3E04 3.4E61 0.0E0  1.3E04 3.4E61 0.0E0 
Grid7x9 5.9E05 54E.87 0.0E0  5.9E05 5.4E87 0.0E0  5.9E05 5.4E87 0.0E0 
Grid8x9 3.6E07 3.7E103 1.3E104  3.5E07 2.1E103 1.4E104  3.2E07 1.4E104 3.1E103 
Grid10x10 2.0E07 1.8E148 2.5E158  2.0E07 5.4E142 2.5E158  8.0E05 3.7E157 2.2E158 

H
B

 (5
) 

ibm32 1.6E08 2.9E34 6.9E35  1.5E08 7.1E34 6.4E35  2.5E06 1.3E35 5.9E35 
ash85 4.4E07 4.8E125 7.7E128  4.1E07 1.3E123 7.7E128  4.2E05 2.5E127 7.4E128 
arc130 1.1E07 3.1E197 1.8E220  1.2E07 5.7E148 1.8E220  1.8E05 0.0E0 1.8E220 
west0167 6.0E06 2.6E285 4.1E300  6.6E06 4.7E256 4.1E300  1.1E05 0.0E0 4.1E300 
will199 4.6E06 3.2E318 1.1E373  5.0E06 4.7E256 1.1E373  8.0E04 0.0E0 1.0E373 

Table 1: Explored, fathomed and unexplored nodes in the search tree. 
 
Results in Table 1 show that BB1, BB2 and BB3 are able to solve the 5 small instances 
optimally.  Consequently, as shown in the five rows corresponding to these instances, the 
number of explored and fathomed nodes is exactly the same in all three methods.  This always 
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occurs if the search tree is fully explored since the only difference among BB1, BB2 and BB3 is 
the branching order.  In the three grids, Grid5x5, Grid6x8 and Grid7x9, the three variants of the 
branch and bound are able to finish. However, in the other two, Grid8x9 and Grid10x10, none 
of the variants is able to finish.  In the former cases, we can see that BB3 is able to fathom a 
larger number of nodes than BB1 and BB2.  On the other hand, instances in the HB set exhibit a 
different pattern since BB3 is unable to fathom any nodes (while BB1 and BB2 fathom a 
relatively large number of nodes).  This can partially be explained considering the way in which 
BB3 explores the search tree (i.e., branching the most promising node).  In large instances, there 
are a lot of promising nodes in the priority queue that are “waiting” to be branched.  This could 
lead to a low value of the total number of fathomed nodes in an early termination of the method.  
However, although these nodes are not fathomed, they have been explored and contribute to 
improving the final lower bound, thus providing the best overall strategy.  Table 2 shows the 
lower bound, LB, the absolute gap, gap, and the relative gap, %gap, obtained with the three 
methods on the 15 instances of Set1.  Results in Table 2 clearly confirm that the best strategy to 
explore the search tree is BB3, in which nodes are ordered according to their bound.  We will 
therefore consider this variant in the following experiments. 
 

  BB1 BB2 BB3 
  LB gap %gap  LB gap %gap  LB gap %gap 

Sm
al

l (
5)

 p51_20_28 6 0 0.0  6 0 0.0  6 0 0.0 
p63_21_42 12 0 0.0  12 0 0.0  12 0 0.0 
p72_22_49 14 0 0.0  14 0 0.0  14 0 0.0 
p81_23_46 13 0 0.0  13 0 0.0  13 0 0.0 
p100_24_34 7 0 0.0  7 0 0.0  7 0 0.0 

G
rid

s (
5)

 Grid5x5 6 0 0.0  6 0 0.0  6 0 0.0 
Grid6x8 7 0 0.0  7 0 0.0  7 0 0.0 
Grid7x9 8 0 0.0  8 0 0.0  8 0 0.0 
Grid8x9 3 6 200.0  3 6 200.0  8 1 12.5 
Grid10x10 3 8 266.7  3 8 266.7  8 3 37.5 

H
B

 (5
) 

ibm32 6 17 283.3  6 17 283.3  18 6 33.3 
ash85 5 11 220.0  5 11 220.0  9 7 77.8 
arc130 62 140 225.8  62 140 225.8  62 140 225.8 
west0167 10 47 470.0  10 47 470.0  12 45 375.0 
will199 8 134 1675.0  8 134 1675.0  15 123 820.0 

Average 11.3 24.2 222.7  11.3 24.2 222.7  13.7 21.7 105.5 

Table 2: Lower bound, absolute and relative gaps. 
 
The next experiment undertakes to test the efficiency of each lower bound separately.  
Specifically, we compute the percentage of nodes that each lower bound is able to fathom.  This 
measure can be interpreted as a success rate for each lower bound.  Note that, in some cases, a 
search tree node can be fathomed by two (or more) different lower bounds; then we compute 
“this success” in the rates of all the corresponding lower bounds (therefore this measure is 
independent on the order in which the fathoming tests are applied).  Table 3 reports the 
percentage of fathomed nodes for each lower bound, LB1 to LB5, in the 15 instances of Set1 
(reporting the average on Small, Grids, and HB instances). 
 

 
LB1 LB2 LB3 LB4 LB5 

Small 0 93.85 0 96.30 0 
Grids 0 99.49 0 98.82 0 
HB 0 92.41 0 98.42 0 
Total 0 95.12 0 98.53 0 

Table 3. Average fathoms of each lower bound. 
 
Results presented in Table 3 clearly show that LB1, LB3 and LB5 are not fathoming a significant 
number of nodes (the associated percentages are very close to 0, and represented by 0 in the 
table for the sake of simplicity).  On the other hand, the behavior of LB2 and LB4 is very similar, 
fathoming on average about 95% and 98% of the fathomed nodes respectively.  Therefore we 
shall not compute LB1, LB3 and LB5 when exploring the nodes in the search tree.  However, 
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when the pre-established time limit is reached and the method terminates, to report the final gap, 
the computation of these three bounds in the current nodes could contribute to increasing the 
final lower bound, thus reducing the gap.  To test this point we perform a new experiment 
reporting the gap values when only LB2 and LB4 are computed in the search tree.  We shall call 
this method BB.  Then, we incorporate the computation of LB3 and LB5 at the end of the process, 
which results in the entire method tested above (note that LB3 contains LB1 in its definition).  We 
shall call this method BB+LB.  Table 4 reports the average gaps, absolute and relative, obtained 
with each of these two methods on the instances in Set1. 
 

 BB  BB+LB 

 gap %gap  gap %gap 
Small 0.0 0.0  0.0 0.0 
Grids 0.8 10.0  0.8 10.0 
HB 73.2 447.4  64.8 310.6 

Total 24.7 152.5  21.9 106.9 

Table 4. Average gaps of two branch and bound variants. 
 
The results in Table 4 clearly show that the addition of LB3 and LB5 helps to reduce the final gap 
of the method.  Examining the two previous experiments together, we can conclude that the 
lower bounds complement each other. On one hand, LB2 and LB4 fathom a large number of 
nodes in the search tree. On the other hand, LB3 and LB5 reduce the final gap.  We shall 
therefore include the four lower bounds in our final branch and bound algorithm. 
 
The fifth experiment focuses on the combination of the GRASP heuristic (described in Section 
3) with the branch and bound procedure.  We compare the performance of the branch and bound 
procedure with the initial upper bound computed with GRASP, BB from GRASP, with the 
branch and bound procedure with an initial upper bound set as the value of a random solution, 
BB from Random.  Table 5 shows the average, absolute and relative gaps of both variants. 
 

 BB from GRASP  BB from Random 

 gap %gap  gap %gap 
Small 0.0 0.0  1.4 11.7 
Grids 0.8 10.0  33.0 471.4 
HB 64.8 310.6  179.4 1055.2 
Total 21.9 106.9  71.3 512.8 

Table 5. Comparison of heuristic with random initial solution.  
 
As shown in Table 5, the results obtained with the branch and bound coupled with the heuristic 
initial upper bound are better, as expected, than those obtained with the random variant.  
Specifically, the former obtains an average absolute gap value of 21.9 and an average relative 
gap value of 106.9%; both values compare favorably with the respective gap values of 71.3 and 
512.8% obtained for the branch and bound with the initial upper bound from a random solution. 
 
We have also computed the number of instances in which the solution obtained with the GRASP 
algorithm matches the optimum value.  This is difficult to compute since we do not know the 
optimum in all the cases (with the exception of the Grid instances in which, by design, the 
optimum is known, as documented in Rolim et al., 1995).  In this experiment we observed that 
GRASP is able to obtain the optimum in the 5 Small and the 5 Grid instances tested in Set1.  On 
the other hand, we cannot assess how far the GRASP solutions are from the optimum in the HB 
instances. 
 
In our final experiment, we compare our branch and bound algorithm with the linear integer 
formulation (Luttamaguzi et al. 2005) solved with Cplex 11.1.  Specifically, we consider our 
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three variants to explore the search tree, BB1, BB2 and BB3.  In the three variants we compute 
the five lower bounds, LB1 to LB5, and the initial GRASP upper bound.  Table 6 reports the 
number of optimal solutions found, #opt, the average absolute gap between the final lower and 
upper bounds, gap, the average relative gap (in percentage), %gap, and the CPU time in seconds 
for each method on our entire benchmark set of 115 instances (42 Small, 36 Grids and 34 HB). 
As in the previous experiments we limit the CPU time to 1800 seconds. 
 

  BB1 BB2 BB3 Cplex 

Sm
al

l (
42

) # opt 42 42 42 9 
gap 0.0 0.0 0.0 1.9 
%gap 0.0 0.0 0.0 54.7 
CPU Time 2.1 2.2 4.9 1573.9 

G
rid

s (
36

) # opt 30 30 30 2 
gap 1.1 1.0 0.28 4.2 
%gap 37.1 29.5 3.5 211.1 
CPU Time 301.5 301.5 302.4 1707.9 

H
B

 (3
7)

  
 

# opt 5 5 4 0 
gap 51.8 51.8 49.7 97.0 
%gap 314.4 314.4 210.3 634.8 
CPU Time 1574.7 1573.9 1594.4 1800.0 

Table 6. Branch and bound versus Cplex. 
 
Table 6 shows that the Cplex solver with the linear integer formulation is only able to solve 9 
small instances (n ≤ 20) within 30 minutes of CPU time. On the other hand, the three variants 
tested of our branch and bound algorithms clearly outperform Cplex with this formulation since 
they are able to optimally solve all the small and medium-sized instances, and the average 
relative gap values in the HB instances are below 350% (while the average relative gap value of 
Cplex is 634.8% in these instances).  On the other hand, the three branch and bound variants 
present a similar performance with a marginal improvement of BB3 over BB1 and BB2.  
Specifically, on the 34 HB instances BB3 presents an average relative gap of 210.3% while BB1 
and BB2 present a value of 314.4%. 
 
In our last experiment we represent the search profile of the three branch and bound variants, 
BB1, BB2 and BB3 when running for 3 hours.  Specifically, Figure 11 depicts the progression 
of the average relative gap of the three methods over the 15 instances in Set1.  We report the 
average relative gap values of BB1, BB2 and BB3 every 10 minutes in the branch and bound 
execution (and join the points with a line to observe the trend). 
 

 
Figure 11. Relative gap profile 
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The progression of the average gap represented in Figure 11 confirms that BB3 performs 
slightly better than BB1 and BB2.  On the other hand, it also shows that the most significant 
reduction in the gap value is obtained in the first 30 minutes; then, only a marginal extra 
improvement can be obtained if we run the method longer. 
 
Table 7 in the Appendix contains the best upper and lower bounds obtained for the set of 34 HB 
instances (identified as the hardest to solve in our study). We ran the GRASP for 10 minutes to 
obtain the upper bound and the branch and bound for 4 hours to obtain the lower bound on each 
instance (thereby setting a benchmark for future comparisons). 
 

6.  Conclusions 

We have developed an exact procedure based on the branch and bound methodology to provide 
solutions for the cutwidth minimization problem.  We have introduced the partial solution as the 
set of solutions that share some vertices, and we have proposed several approaches to 
computing lower bounds on partial solutions.  These bounds allow us to explore a relatively 
small portion of the nodes in the search tree when implementing our branch and bound 
procedure.  Additionally, we have presented three different strategies to explore the search tree, 
which we have called BB1, BB2 and BB3. 
 
We have conducted an extensive preliminary experimentation to analyze the performance of the 
proposed lower and upper bounds, as well as the search strategies.  The final experiment shows 
that our branch and bound procedures clearly outperform the previous linear integer formulation 
solved with the well-known Cplex (version 11.1) and it is able to solve all the small-sized 
problems and some of the larger ones optimally.  We finally provide detailed results for the 
hardest instances for future comparisons. 
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Appendix 
 

 n m  LB UB 
pores_1 30 103  17 17 
ibm32 32 90  20 23 

bcspwr01 39 46  5 5 
bcsstk01 48 176  22 32 
bcspwr02 49 59  5 5 
curtis54 54 124  10 13 
will57 57 127  7 11 

impcol_b 59 281  18 55 
bcsstk02 66 2145  1089 1089 
steam3 80 424  20 20 
ash85 85 219  10 16 
nos4 100 247  12 12 

gent113 104 549  19 87 
bcsstk22 110 254  6 13 
gre__115 115 267  10 36 
dwt__234 117 162  6 12 
bcspwr03 118 179  5 10 
lns__131 123 275  6 30 
arc130 130 715  62 202 

bcsstk04 132 1758  107 310 
west0132 132 404  14 71 
impcol_c 137 352  11 46 
can__144 144 576  25 25 

lund_a 147 1151  37 113 
lund_b 147 1147  37 111 

bcsstk05 153 1135  34 115 
west0156 156 371  12 56 

nos1 158 312  4 4 
can__161 161 608  21 52 
west0167 167 489  12 55 

mcca 168 1662  58 390 
fs_183_1 183 701  52 190 
gre__185 185 650  19 48 
will199 199 660  16 132 

Table 7. Lower and upper bounds for the HB instances. 
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