
This is a repository copy of Tabu search and lower bounds for a combined 
production-transportation problem.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79238/

Version: Accepted Version

Article:

Condotta, A, Knust, S, Meier, D et al. (1 more author) (2012) Tabu search and lower 
bounds for a combined production-transportation problem. Computers and Operations 
Research, 40 (3). 886 - 900. ISSN 0305-0548 

https://doi.org/10.1016/j.cor.2012.08.017

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Tabu Search and Lower Bounds for a Combined

Production-Transportation Problem

Alessandro Condotta1, Sigrid Knust2, Dimitri Meier2, Natalia V. Shakhlevich1

1School of Computing, University of Leeds, Leeds LS2 9JT, U.K.

condotta@comp.leeds.ac.uk; N.Shakhlevich@leeds.ac.uk
2University of Osnabrück, Institute of Computer Science, 49069 Osnabrück, Germany

sigrid.knust@informatik.uni-osnabrueck.de

March 19, 2012

Abstract

In this paper we consider a combined production-transportation problem, where n
jobs have to be processed on a single machine at a production site before they are
delivered to a customer. At the production stage, for each job a release date is given; at
the transportation stage, job delivery should be completed not later than a given due
date. The transportation is done by m identical vehicles with limited capacity. It takes
a constant time to deliver a batch of jobs to the customer. The objective is to find a
feasible schedule minimizing the maximum lateness.

After formulating the considered problem as a mixed integer linear program, we
propose different methods to calculate lower bounds. Then we describe a tabu search
algorithm which enumerates promising partial solutions for the production stage. Each
partial solution is complemented with an optimal transportation schedule (calculated
in polynomial time) achieving a coordinated solution to the combined production-
transportation problem. Finally, we present results of computational experiments on
randomly generated data.

Key words: scheduling, transportation, batching, tabu search, lower bounds

AMS Classification: 90B35 Scheduling

1 Introduction

Traditional scheduling research deals with problems of sequencing jobs on processing ma-
chines without taking into account transportation issues. Recent trends in scheduling involve
extended scheduling models where more practical constraints are included. In particular,
in a typical supply chain system materials and resources are available at some release dates
at the manufacturer’s site; the manufacturer should process them in accordance with tech-
nological constraints; finally, finished goods should be delivered to a customer by given
due dates. In the context of a supply chain, scheduling of production cannot be done in
isolation from scheduling of transportation since a coordinated solution to the integrated
problem may improve the performance of the whole supply chain.

The first stage of our model - production - deals with a single production facility and a set
of n jobs, which should be processed one at a time. The jobs may have different processing
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requirements in terms of the production time and may be available at different release
dates. The second stage - transportation - deals with the delivery of n finished goods to
a customer using m transportation vehicles which have the same delivery characteristics:
equal transportation times from the production site to the customer and equal capacities,
i.e., the maximum number of jobs which can be transported by a vehicle in one batch.
The objective is to define a production and a transportation schedule so that the jobs are
delivered to the customer by their due dates. In a more general setting, it is required to
minimize the maximum lateness among the jobs, see Section 2 for a formal definition.

The results related to the problem under consideration are scattered among a broad range
of publications on (A) production-transportation and (B) generalized flow-shop models with
the second stage involving m identical batching machines.

(A): The literature on production-transportation is vast ranging in multiple parameters.
With several survey papers available, e.g., [5, 8, 13, 26], we refer the reader to the most
recent review by Chen [6]. The results related to our study fall in the category of “batch
delivery by direct shipping” discussed in Section 5.1 of the review. Eliminating the non-
relevant models with cost factors (for which it is usually assumed that the number of vehicles
is sufficiently large, m = n, [11, 12, 13, 25]), the models with resource availability constraints
and those with min-sum criteria, we review here the most closely related papers [16] and [28]
with min-max criteria. Their main outcomes can be summarized as follows. If all jobs are
available simultaneously, then the production-transportation problem with the makespan
objective is solvable in O(n log n) time [16], while the following two generalizations are NP-
hard: the version studied in [16] with two machines at the production site operating as
a flow-shop and the version studied in [28] with an additional transportation stage from
a supplier to the production site which precedes the introduced production-transportation
model. No results are available for the production-transportation model with arbitrary
release dates and due dates.

(B): In the flow-shop model with two machines, each job should be processed on the first
machine and then on the second one. If the second machine operates in a batching mode
(i.e. several jobs can be processed simultaneously) and the batch processing time is a
constant independent of the jobs included in the batch, the corresponding flow-shop model
is equivalent to our production-transportation model with one transportation vehicle. To
the best of our knowledge, the flow-shop problem with a batching machine and unequal
release dates and due dates was not addressed in the literature. The studied models deal
with the following special cases:

• If all jobs have equal release dates and equal due dates, then the corresponding problem
is solvable in O(n log n) time [1]. Notice that, as discussed in part (A), an algorithm
with the same complexity is also known for the more general case with multiple batch-
ing machines (multiple transportation vehicles) [16].

• If the jobs have arbitrary release dates but equal due dates, then the corresponding
problem is NP-hard in the strong sense [27] and, as shown in the same paper, it can
be solved by a 2-approximation algorithm. Notice that the NP-hardness result is also
proved in a later paper [22], which uses the production-transportation terminology
(A); the same paper presents also a 5/3-approximation algorithm. The most recent
approximation algorithm has a worst-case ratio of 3/2 [21].

Summarizing we observe that there is a lack of research addressing the production-transpor-
tation problem in its general setting when the jobs have unequal release dates and unequal
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due dates. Also, as stated in the review paper [6], “the majority of the existing work has
been centered on clarifying complexity of some problems, most of which are, unfortunately,
NP-hard... Therefore it is worthwhile to design fast heuristics or exact branch-and-bound
algorithms for such problems”. In this paper, we pursue this line of research by developing
a tabu search algorithm for the general case of the production-transportation problem. It is
hard to perform a fair comparison of our algorithm with published algorithms since they have
been developed for models which differ too much from the one we consider. For example, the
heuristics for a flow-shop model with batching machines often deal with batches of unequal
size, see, e.g., [17, 18, 20, 23, 24]; the production-transportation papers often consider non-
identical vehicles [29] and take into account the routing issues [9]. Due to this reason, we
also pay special attention to lower bound calculations and estimate the quality of our tabu
search algorithm with respect to the calculated lower bound values.

The remainder of this paper is organized as follows. After defining our problem formally and
discussing known results for it in Section 2, a mixed integer linear programming formulation
is given in Section 3. Section 4 is devoted to different lower bound calculations. In Section 5
a tabu search algorithm is presented. Computational results can be found in Section 6. We
conclude the paper with some remarks in Section 7.

2 Problem formulation

In this paper, we consider a combined production-transportation problem, which can be
described as follows. There are n jobs of a set N = {1, 2, . . . , n} which have to be processed
at a production site before being delivered to a customer by transportation vehicles. The
corresponding stages are called production and transportation, and the two operations of a
job are called production and transportation operations, accordingly.

At the production stage, each job j ∈ N becomes available for processing at its release date
rj and has to be processed for pj ≥ 0 time units. The production site operates as a single
machine, i.e. it processes at most one job at any time. Additionally, due dates dj for the
jobs j ∈ N are given by the customer with the meaning that job j should be delivered not
later than time dj . We assume that all input data are integer.

After job j has finished processing at the production stage, it becomes available for trans-
portation to the customer. The delivery is performed by m identical vehicles with limited
capacity where any vehicle can carry no more than b jobs at any time. It takes a constant
time τ to deliver a batch of jobs to the customer. Additionally, we assume that the time
for returning back to the customer is negligible. The overall performance of a schedule is
measured in terms of the maximum lateness Lmax := max{Lj | j ∈ N}, where Lj := Cj −dj
is the lateness of job j and Cj denotes the time where the delivery of job j to the customer
is completed.

Another objective function equivalent to Lmax is the extended makespan Cq
max = max{Cj +

qj} where the jobs have tails qj instead of due dates dj . A tail qj means that after the
completion time Cj of job j additionally qj time units are needed before the job is finished
(tails of different job can be executed simultaneously). If we set qj := D − dj for all j ∈ N
with a constant D ≥ max

j∈N
dj , it is easy to see that Cq

j = Cj + qj = Cj − dj +D = Lj +D

holds. Since D is a constant, minimizing Lmax is equivalent to minimizing Cq
max.

A feasible production-transportation schedule may be completely specified by
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• a processing sequence of the jobs on the production machine, and

• a sequence of batches for the transportation stage.

From these two sequences a feasible (left-shifted) schedule, in which every operation starts
as early as possible, may be calculated as follows. At the production stage, each job can
start immediately after it is released and the previous job is completed, i.e. the starting
time Sp

j of job j on the production machine is Sp
j = max{rj , S

p
i + pi}, where i is the job

directly processed before j. The completion time Cp
j of j on the production machine is

Cp
j = Sp

j + pj .

For the transportation stage we have a partitioning of all jobs into a sequence (B1, B2, . . . , Bα)
of batches where α ∈ {⌈n

b
⌉, . . . , n} denotes the number of used batches and the sequence of

batches determines their starting order. Since the transportation time τ is constant and the
objective function is regular, it is sufficient to consider schedules in which the assignment of
the batches to the vehicles is done in a cyclic way such that vehicle v ∈ {1, . . . ,m} processes
batches Bv, Bv+m, Bv+2m, etc. In such a schedule the starting time SBk

of batch Bk can be
determined as

SBk
=

{

max {Cp
j | j ∈ Bk}, 1 ≤ k ≤ m

max {max {Cp
j | j ∈ Bk}, SBk−m

+ τ}, m < k ≤ α.
(1)

Furthermore, the completion time Cj of each job j ∈ Bk is given by Cj = SBk
+ τ .

Example 1 : Consider an instance with n = 5 jobs, m = 2 vehicles with capacity b = 2,
and delivery time τ = 4. The job characteristics are defined as follows:

j 1 2 3 4 5

rj 0 0 5 3 5
pj 1 2 2 1 3
dj 5 10 24 12 16

Figure 1: A feasible schedule for Example 1

With D = d3 = 24 we get the tails q1 = 19, q2 = 14, q3 = 0, q4 = 12, q5 = 8. Let us assume
that on the production machine the jobs are processed in the sequence (1, 2, 4, 3, 5); in the
transportation stage the batch sequence is ({1}, {2, 4}, {3}, {5}). A corresponding feasible
schedule with Cq

max = 24 and Lmax = 0 (i.e. all due dates are respected) is presented
in Figure 1. Here, the production machine is denoted by Mp, the transportation stage is
denoted by M t, and artificial tail-machines M q are introduced to show the tail operations
qj for the jobs j ∈ N . 2
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The production-transportation model can be seen as a two-machine flow-shop system with
a discrete machine at the first stage and m parallel batching machines at the second stage
(cf. Ahmadi et al. [1]). It can be naturally decomposed into two subproblems. Relaxing the
transportation stage by setting the transportation time to τ = 0, the production subproblem
corresponds to the classical single-machine problem 1|rj |Lmax, which is known to be strongly
NP-hard, see [19]. Relaxing the production stage by setting pj = 0 for all jobs j, the
transportation subproblem for the vehicles corresponds to the parallel batching problem
P |p-batch, b < n, rj , pj = p|Lmax. In this problem m parallel identical machines with
bounded batch capacity b < n are given which can process up to b jobs simultaneously,
all having the same processing time p (corresponding to the transportation time τ).

Due to Condotta et al. [7], problem P |p-batch, b < n, rj , pj = p|Lmax can be solved by the
barrier algorithm. The time complexity of that algorithm is O(n3 log2 n) for multiple
vehicles and O(n2 log n) time for a single vehicle.

The special case where all due dates dj are equal is equivalent to the makespan minimization
problem P |p-batch, b < n, rj , pj = p|Cmax. We claim that it can be solved in O(n log n) time
by the so-called first-only-empty FOE-strategy initially developed by Ikura and Gimple
[15] for the single-machine version of the problem, 1|p-batch, b < n, rj , pj = p|Cmax. It
considers the jobs in non-descreasing order of their release dates grouping them in full
batches of b jobs, except for the first batch which may contain less jobs, namely n mod b
jobs, if n is not divisible by b. A simple generalization of the FOE-strategy for the case of
multiple batching machines P |p-batch, b < n, rj , pj = p|Cmax groups the jobs in the batches
as described above; their allocation to m vehicles (m parallel machines, equivalently) is a
straightforward task since all batches have the same length τ : whenever a vehicle becomes
available, it starts the transportation of the earliest available batch. The correctness of the
generalized FOE-rule can be justified by the following two properties:

• there exists an optimal schedule in which the jobs are sequenced according to non-
decreasing release dates;

• a schedule which does not satisfy the FOE-grouping (i.e., with some non-full batches
Bk, k ≥ 2) can be modified into a FOE schedule without increasing batch completion
times by moving the jobs from earlier batches to non-full batches.

Extending the standard three-field scheduling notation we denote our two-stage problem as
(1|rj) → (P |p-batch, b < n, tj = τ |Lmax) or (1|rj) → (P |p-batch, b < n, tj = τ, qj |C

q
max). In

this notation, the first entry (1|rj) specifies that the production stage consists of a single
machine and that release dates are given for the jobs. The second entry describes the
transportation stage which consists of parallel batching machines with batch capacity b < n.
The delivery times tj are all equal to a constant τ . Finally, the last field denotes the objective
function Lmax for the minimization of the maximum lateness or Cq

max for the minimization
of the extended makespan with tails.

We now review results on the two-stage model, which involves both production and trans-
portation under the assumption that the processing times pj at the first stage are arbitrary,
while the transportation times tj = τ in the second stage are the same for all jobs. Special
cases of the corresponding two-machine flow-shop problem with one batching machine (i.e.,
m = 1) were studied by Ahmadi et al. [1] and Sung and Kim [27]. If all jobs are released
simultaneously and have equal due dates (i.e., rj = 0, dj = d for all j ∈ N), then the
two-stage problem (1|rj = 0) → (1|p-batch, b < n, tj = τ, dj = d|Lmax) is equivalent to the
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makespan minimization problem 1 → (1|p-batch, b < n, tj = τ |Cmax), which can be solved
by the SPT-FOE-rule in O(n log n) time due to Ahmadi et al. [1]. At the production stage
the jobs are sequenced in SPT-order (shortest processing time first); at the transportation
stage the jobs are sequenced in the same order and combined into batches in accordance
with the FOE-rule.

On the other hand, the general case (1|rj) → (1|p-batch, b < n, tj = τ |Cmax) with arbitrary
release dates is NP-hard in the strong sense as shown by Sung and Kim [27] and also by
Lu et al. [22]. This implies that our problem with m ≥ 1 batching machines and objective
function Lmax is also strongly NP-hard. If preemption for the production machine is allowed,
problem (1|rj , pmtn) → (1|p-batch, b < n, tj = τ |Cmax) can be solved by the SRPT-FOE-

rule [22, 27]:

SRPT: At the production stage the jobs are scheduled according to the shortest remaining
processing time (SRPT) rule: at any decision point (given by a release date or the
completion time of a job) schedule an available job with shortest remaining processing
time.

FOE: At the transportation stage the jobs are sequenced according to the FOE-rule.

The described SRPT-FOE-rule can be generalized for multiple vehicles (multiple batching
machines) employing the same SRPT-strategy at the production state and the same FOE-
strategy to combine jobs for transportation. The only difference is in allocating the jobs
to multiple batching machines rather than to one machine: whenever a vehicle becomes
available, it starts the transportation of the earliest available batch.

The optimality of the SRPT-FOE-rule for multiple batching machines follows from the three
properties stated by Sung and Kim [27] for a single machine:

Property 1: there exists an optimal solution with the same order of the jobs at the pro-
duction and the transportation stage;

Property 2: the SRPT-strategy ensures the smallest possible completion time for each
position k = 1, 2, . . . , n, of the schedule;

Property 3: the FOE-strategy ensures the smallest possible makespan for scheduling batches
of equal length τ on multiple machines [15].

Notice that the SRPT production schedule can be constructed in O(n log n) time if, e.g.,
a priority queue is used and the FOE transportation schedule can be constructed in O(n)
time.

Finally we observe that in prior research the case with m batching machines was stud-
ied only under an assumption of equal release dates and equal due dates: (1|rj = 0) →
(P |p-batch, b < n, tj = τ |Cmax). The O(n log n)-time algorithm presented by Lee and Chen
[16] can be considered as a generalization of a similar algorithm of Ahmadi et al. [1] with
the same SPT-strategy at the production stage and the same FOE-strategy to create trans-
portation batches.

The discussed results are summarized in Table 1.
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Problem Complexity Reference

Transportation stage relaxed

1|rj |Lmax – NP-hard [19]

Production stage relaxed

– 1|p-batch, b < n, rj , tj = τ |Cmax O(n log n), FOE [15]

– P |p-batch, b < n, rj , tj = τ |Cmax O(n log n), FOE this paper

– 1|p-batch, b < n, rj , tj = τ |Lmax O(n2 log n), [7]

– P |p-batch, b < n, rj , tj = τ |Lmax O(n3 log2 n), barrier alg. [7]

Two-stage problem

(1|rj = 0) → (1|p-batch, b < n, tj = τ |Cmax) O(n log n), SPT-FOE [1]

(1|rj) → (1|p-batch, b < n, tj = τ |Cmax) NP-hard [22, 27]

(1|rj , pmtn)→ (1|p-batch, b < n, tj = τ |Cmax) O(n log n), SRPT-FOE [22, 27]

(1|rj = 0) → (P |p-batch, b < n, tj = τ |Cmax) O(n log n), SPT-FOE [16]

(1|rj , pmtn)→ (P |p-batch, b < n, tj = τ |Cmax) O(n log n), SRPT-FOE this paper

Table 1: Summary of complexity results

3 A mixed integer linear programming formulation

In this section we describe a mixed integer linear programming formulation (MIP) for prob-
lem (1|rj) → (P |p-batch, b < n, tj = τ, qj |C

q
max).

Let α ≤ n be an upper bound for the number of batches in the transportation stage and let
K := {1, . . . , α}. For each job j ∈ N we introduce a variable Sp

j for the starting time on the
production machine, for each k ∈ K we have a variable SBk

for the starting time of batch
Bk. Additionally, we have binary variables yij ∈ {0, 1} for i, j ∈ N, i 6= j and zjk ∈ {0, 1}
for j ∈ N, k ∈ K where

yij =

{

1, if job i is processed before j on the production machine,
0, otherwise;

zjk =

{

1, if job j is assigned to batch Bk,
0, otherwise.

Finally, we have a variable c ≥ 0 corresponding to the objective value Cq
max. Using all these

variables and three big values M1,M2,M3 the problem can be formulated as follows.

min c (2)

s.t. c− SBk
+M1(1− zjk) ≥ τ + qj ∀j ∈ N, k ∈ K (3)

Sp
j ≥ rj ∀j ∈ N (4)

yij + yji = 1 ∀i, j ∈ N ; i 6= j (5)

Sp
j − Sp

i +M2(1− yij) ≥ pi ∀i, j ∈ N ; i 6= j (6)

SBk
− Sp

j +M3(1− zjk) ≥ pj ∀j ∈ N, k ∈ K (7)
∑

k∈K

zjk = 1 ∀j ∈ N (8)

∑

j∈N

zjk ≤ b ∀k ∈ K (9)

SBk
− SBk−m

≥ τ m < k ≤ α (10)

yij ∈ {0, 1} ∀i, j ∈ N ; i 6= j (11)
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zjk ∈ {0, 1} ∀j ∈ N, k ∈ K (12)

c ≥ 0 (13)

SP
j ≥ 0 ∀j ∈ N (14)

SBk
≥ 0 ∀k ∈ K (15)

The objective function in (2) is to minimize the value c = max{Cj+qj} which is correctly set
due to (3): if job j is assigned to batch Bk, we have c ≥ SBk

+ τ + qj = Cj + qj . Constraints
(4) ensure that the production of a job cannot start before its release date. Due to (5) two
jobs cannot be processed simultaneously on the production machine. If i is processed before
j on the production machine, we must have Sp

j ≥ Sp
i + pi according to (6). Constraints

(7) guarantee that a job cannot start its delivery in a batch before it is finished on the
production machine. Due to (8) each job is assigned to exactly one batch, (9) guarantees
that each batch contains at most b jobs. Finally, (10) implies that consecutive batches on
the same vehicle do not overlap. Note that in the MIP no explicit assignment of batches to
vehicles is modeled. As described in the previous section, such an assignment can be done
in a cyclic way such that vehicle v processes batches Bv, Bv+m, Bv+2m, etc.

Additionally, we tried a second MIP based on time-indexed binary variables xit where xit = 1
if operation i completes at time t. It was much more time-consuming to solve.

4 Calculation of lower bounds

In this section we describe some methods to calculate lower bounds for problem (1|rj) →
(P |p-batch, b < n, tj = τ, qj |C

q
max).

At first we propose three constructive lower bounds which are based on different relaxations
of the problem.

• LB1: We relax the capacity of the production stage assuming that several jobs may
be processed simultaneously on the production machine. We set the release dates for
the batching machine to r′j := rj + pj and solve the resulting problem P |p-batch, b <
n, r′j , tj = τ, qj |C

q
max for the transportation stage by the barrier algorithm from [7]

with time complexity O(n3 log2 n).

• LB2: We relax the capacity of the transportation stage assuming an unlimited number
of vehicles. Additionally, we allow preemption for the production machine. Setting the
tails for the production machine to q′j := qj+τ , we obtain problem 1|rj , pmtn, q′j |C

q
max

or equivalently 1|rj , pmtn|Lmax solvable in O(n log n) time by the preemptive earliest
due date rule (cf. Horn [14]). For the classical Lmax-version of the problem, it schedules
at each decision point (given by a release date or completion time of a job) an available
job with the smallest due date; for the extended makespan version with Cq

max objective,
the rule schedules at each decision point an available job with the largest tail q′j .

• LB3: We relax the tails qj and allow preemption for the production machine. The
resulting two-stage problem (1|rj , pmtn) → (P |p-batch, b < n, tj = τ |Cmax) can be
solved in O(n log n) time by the generalized version of the SRPT-FOE-rule described
in Section 2.
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Example 2 : Consider an instance with n = 6 jobs, m = 2 vehicles with capacity b = 2,
transportation time τ = 20, and the following data:

j 1 2 3 4 5 6

rj 3 1 2 2 1 4
pj 12 7 2 5 6 2
qj 9 11 0 13 7 10

r′j 15 8 4 7 7 6

q′j 29 31 20 33 27 30

Figure 2: Schedule determining LB1 = 54

Figure 3: Schedule determining LB2 = 60

Figure 4: Schedule determining LB3 = 55

For this data we get LB1 = 54, LB2 = 60, and LB3 = 55. The corresponding schedules are
illustrated in Figures 2, 3, and 4. 2

For the above example we have LB2 = 60 > LB3 = 55 > LB1 = 54, i.e. LB2 provides the
best lower bound. If we only consider a single vehicle and replace the batch capacity by
b = 1, we obtain LB1 = 126 > LB3 = 124 > LB2 = 60, i.e. LB1 provides the best bound.
There are other examples where LB3 performs best.

In the following we consider some destructive lower bounds where a threshold value T for
the makespan value Cq

max is given. A destructive test may result in one of the following three
outcomes. It can provide a formal proof that for a relaxed problem no feasible schedule with
Cq
max ≤ T exists; then T + 1 is a valid lower bound value for the original problem. If the

test fails to prove infeasibility, then in the best case it can provide a proof that T is a valid
lower bound (by demonstrating, e.g., that for some job j its earliest starting time is equal
to its latest starting time defined for the threshold value T ); in the worst case the test may
stop without making a conclusion about a lower bound.
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Test 1: From a given threshold value T we derive deadlines d′j := T − qj − τ for the jobs on
the production machine and study the feasibility problem 1|rj , Cj ≤ d′j |− on the production
machine. We apply the input and output tests originally developed for the job-shop problem
by Carlier and Pinson [3].

In the output test we identify a job j and a set of jobs Ω ⊆ N which does not contain j such
that condition

max
µ∈Ω

d′µ − min
ν∈Ω∪{j}

rν <
∑

ν∈Ω∪{j}

pν

holds. Then activity j must end last in Ω∪ {j}, i.e. we have precedence relations ν → j for
all ν ∈ Ω. This implies that j cannot be started before time r̃j := max

ν∈Ω
{rν +

∑

{h∈Ω|rh≥rν}

ph}

and any job ν ∈ Ω should be completed before d′j−pj . As a consequence, we can update the
release date of job j to max {rj , r̃j} and the deadline d′ν for each job ν ∈ Ω to min {d′ν , d

′
j−pj}.

Symmetrically, in the input test a job j is identified which has to be processed before a
subset Ω, which may lead to a decreased deadline d′j and increased release dates rν for all
ν ∈ Ω.

If a time window of a job becomes too small (i.e. d′j − rj < pj), infeasibility is detected.
Otherwise, the test may have produced increased release dates and decreased deadlines.
The new deadlines may be transformed into increased tails qj := T − d′j − τ . The input and
output tests can be implemented in such a way that all pairs (j,Ω) satisfying the conditions
for the current time windows can be found in O(n log n) time (cf. [4]). However, in our
implementation we used a more simple version which runs in O(n2) time (cf. [2]). After
time windows have been changed, the test may detect further pairs. Usually, the test is
repeated until no more updates for the time windows are possible.

Test 2: For each job j ∈ N denote by S̄j = T − qj − τ its latest possible starting time at
the transportation stage in a feasible schedule with Cq

max ≤ T . Furthermore, let

u :=

{

τ, if m = 1,
0, if m > 1.

For a fixed test job j we calculate its earliest possible starting time r′j := rj + pj at the
transportation stage and partition the set N of all jobs into three subsets:

• N1 := {i ∈ N | S̄i < r′j}. All these jobs must be processed in a batch (or in several
batches) starting before the batch of job j.

• N2 := {i ∈ N \N1 | S̄i < r′j + u} ∪ {j}. All these jobs cannot be processed in a batch
starting later than the batch of job j.

• N3 := N \ (N1 ∪N2).

In the following we relax the batch capacity in the transportation stage and proceed as
follows.

1. Calculate the earliest possible completion time C(N1) for all jobs in N1 on the pro-
duction machine (by solving problem 1|rj |Cmax defined on the set of jobs N1). Since
all these jobs have to be processed in a batch (or batches) before j, job j cannot be
started at the transportation stage before time C(N1) + u, i.e. we may update r′j to
r′j := max{r′j , C(N1) + u}.
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2. Calculate the earliest possible completion time C(N12) for all jobs in N1 ∪N2 on the
production machine (by solving problem 1|rj |Cmax defined on the set of jobs N1∪N2).
Since all these jobs cannot be processed in a batch starting later than j, job j cannot
be started before time C(N12) on the transportation stage, i.e. we may update r′j to
r′j := max{r′j , C(N12)}.

3. Check whether S̄j ≤ r′j holds. If this inequality holds strictly, obviously, no feasible
schedule exists and the whole procedure can be stopped.

If S̄j = r′j , then job j should start exactly at time S̄j , which implies that its completion

time in a feasible schedule is no less than S̄j + τ + qj = T and therefore T is a valid
lower bound.

If S̄j > r′j and the value r′j has been updated, repeat the procedure with new sets N1, N2

based on the new value r′j .

For an efficient implementation of the described procedure we use two lists of jobs, one in
non-decreasing order of ri, i ∈ N , and another one in non-decreasing order of S̄i, i ∈ N .
Given a fixed test job j, there can be up to n iterations of the described procedure. Each time
the value r′j increases and at least one of the sets N1 or N2 gets extra jobs, with exception of
(possibly) the last two iterations when the sets N1 and N2 may remain unchanged resulting
in unchanged r′j .

In each iteration, the splitting N1 ∪N2 ∪N3 is obtained in O(n) time, using the ordered list
of S̄i-values, and each of the two problems 1|rj |Cmax which emerge in Steps 1 and 2 can be
solved in O(n) time, using the ordered list of ri-values. Thus, the overall time complexity
is O(n2).

Example 3 : Consider an instance with n = 5 jobs, a single vehicle with capacity b = 4,
transportation time τ = 20, threshold T = 62 and the following data:

j 1 2 3 4 5

rj 1 3 7 13 16
pj 4 5 5 6 6
qj 32 15 14 12 10

Due to m = 1 we have u = τ = 20. For the latest starting times at the transportation stage
we get S̄1 = 10, S̄2 = 27, S̄3 = 28, S̄4 = 30, and S̄5 = 32. We consider j = 2 as a test job
and start with r′2 = r2 + p2 = 8.

Iteration 1: We get N1 = ∅, N2 = {1, 2} since S̄1 = 10 < r′2 + u = 28, and N3 = {3, 4, 5}.
We calculate C(N12) = r1 + p1 + p2 = 10 and update r′2 = 10.

Iteration 2: We get N1 = ∅, N2 = {1, 2, 3} since S̄3 = 28 < r′2 + u = 30, and N3 = {4, 5}.
We calculate C(N12) = r1 + p1 + p2 + p3 = 15 and update r′2 = 15.

11



Iteration 3: We get N1 = {1} due to S̄1 = 10 < r′2 = 15, N2 = {2, 3, 4, 5}, and N3 = ∅.
We calculate C(N1) = r1 + p1 = 5 and update r′2 = 5 + u = 25. We calculate C(N12) =
r1 + p1 + p2 + p3 + p4 + p5 = 27 and update r′2 = 27.

Due to S̄2 = r′2 we can conclude that T = 62 is a valid lower bound.

For this example the constructive lower bounds are LB1 = 60, LB2 = 57, and LB3 = 47. 2

Test 3: In this test we calculate for each job j the number of the latest batch in which j
must be delivered in order to satisfy the given threshold T . For this purpose we determine
an interval [Sj , Sj ] in which j has to start its transportation. The upper value Sj can be

calculated as before by Sj = T − qj − τ . The lower value Sj is set to the earliest starting

time of the first batch. Initially, it is given by
n

min
j=1

{rj + pj}, afterwards during the test this

value may be increased. The main part of the test is to determine how many jobs (and if
possible, also which jobs) must be processed in the first batch (which influences the starting
time of the first batch). If the number of jobs which have to be started until a certain time
exceeds the total capacity of the batches which can be started until that time, we may state
infeasibility. Furthermore, infeasibility is detected if Sj > Sj holds.

Let r′B1
be the earliest possible starting time of the first batch B1, initially we have r′B1

=
n

min
j=1

{rj + pj}. For a given time value t, the maximum number of batches which can be

started in the interval [r′B1
, t] is

⌈

t−r′B1
+1

τ

⌉

· m. Hence, each job j must be started at the

latest in the batch with number B(j) :=

⌈

Sj−r′B1
+1

τ

⌉

·m. Let us renumber the jobs according

to non-increasing tails, i.e. q1 ≥ q2 ≥ . . . ≥ qn. Then, for i < j we have B(i) ≤ B(j), which
implies that in any feasible schedule the jobs 1, . . . , j should be contained in the batches
B1, . . . ,BB(j), together with possibly some other jobs. In the following we calculate a lower
bound z1 for the number of jobs which have to be processed in the first batch. Furthermore,
in the case m = 1 we also find a subset of jobs F1 which should belong to the first batch in
any feasible schedule, |F1| ≤ z1.

For each job j we distinguish the following five cases.

1. If B(j) ≤ 0 holds, then Sj < r′B1
≤ Sj , i.e. we may state infeasibility.

2. If B(j) · b < j holds, then the capacity of the batches B1, . . . , BB(j) is too small for
processing the jobs 1, . . . , j, i.e. also infeasibility is detected.
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3. If B(j) · b = j holds, then in each of the batches B1, . . . , BB(j) exactly b jobs have to
be started. In particular, the first batch must contain b jobs, i.e. we may set z1 := b.

4. If B(j) = m holds, then in the batches B1, . . . , Bm at least j jobs must be started.
Since in the batches B2, . . . , Bm at most b(m−1) jobs can be started, in the first batch
at least z1 := j− b(m− 1) jobs must be contained. In the special case m = 1 we know
that j must be contained in B1, i.e. we may add j to the set F1.

5. If (B(j)−1)b < j holds, then the first B(j)−1 batches do not have sufficient capacity
for the jobs 1, . . . , j. Then the smallest number of jobs in batch B1 is j mod b, which
may happen only if each of the subsequent batches B2, . . . , BB(j) is full (i.e. contains

b jobs). Thus, we conclude that z1 ≥ j mod b.

The last three cases are not mutually exclusive. We set z1 to the largest value which may
be derived from these considerations.

It remains to describe how the value z1 (and additionally the set F1 in the case m = 1)
can be used to update the value r′B1

. In the case m > 1 we determine the earliest time
on the production machine when z1 (arbitrary) jobs can be completed. In the case m = 1
we determine the earliest time on the production machine when z1 jobs, among them the
jobs from the set F1, can be completed. Both cases can be solved using the (preemptive)
SRPT-rule.

• If m > 1, we schedule at each decision point (given by a release date or the completion
time of a job) an available job with the shortest remaining processing time. The
scheduling process is stopped as soon as z1 jobs are completed. The validity of this
procedure follows from Property 2 formulated in Section 2: the completion time of
the last scheduled job is a lower bound for the completion time of any non-preemptive
schedule consisting of z1 jobs.

• Ifm = 1, we allocate first all jobs from F1 starting them at their earliest starting times;
after that we proceed with the SRPT-rule adding new jobs to the partial schedule until
exactly z1−|F1| jobs are fully allocated. Time intervals used by the jobs F1 are treated
as infeasible time intervals for z1−|F1| jobs. Clearly, allocating compulsory jobs F1 as
early as possible leaves more flexibility for allocating the remaining jobs in comparison
with later allocation of F1; allocating z1 − |F1| jobs by the SRPT-rule ensures that
the last scheduled job is completed as early as possible, subject to forbidden intervals
used by jobs F1.

The time complexity of test 3 applied for all jobs j = 1, 2, . . . , n is O(n log n): it takes
O(n log n) time to perform pre-processing, O(1) time to check the conditions of the five
cases for each fixed j, and O(n log n) time to apply the SRPT-rule with z1 ≤ n jobs. In our
implementation, whenever an update is done, the test is restarted from the beginning with
j = 1, 2, . . . , n.

Example 4 : Consider an instance with n = 7 jobs, a single vehicle with capacity b = 2,
transportation time τ = 20, threshold T = 95 and the following data:

j 1 2 3 4 5 6 7

rj 8 19 22 10 12 3 20
pj 5 5 1 1 6 7 5
qj 47 28 24 22 15 7 2
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Initially, we have r′B1
= r6 + p6 = 10, which implies B(1) =

⌈

95−47−20−10+1
20

⌉

= 1. Hence,
job 1 must be started in the first batch and we update r′B1

to r1 + p1 = 13. After a restart

we get B(1) =
⌈

16
20

⌉

= 1, B(2) =
⌈

35
20

⌉

= 2, B(3) =
⌈

39
20

⌉

= 2. Thus, at least 3 jobs must be
contained in the first two batches. Due to the capacity b = 2 at least one job must be started
in the first batch (we already know that it is job 1). We continue with B(4) =

⌈

41
20

⌉

= 3,
B(5) =

⌈

48
20

⌉

= 3, B(6) =
⌈

56
20

⌉

= 3. Thus, at least 6 jobs must be contained in the first
three batches, i.e. according to the third case we must have exactly two jobs in each batch.
If we apply the SRPT-rule with the set F1 = {1} and z1 = 2, we get the sequence (1, 4) on
the production machine. Since this sequence cannot complete before time r1+p1+p4 = 14,
we may update r′B1

= 14.

After starting again with job 1, we get B(1) =
⌈

15
20

⌉

= 1, B(2) =
⌈

34
20

⌉

= 2, B(3) =
⌈

38
20

⌉

= 2,
B(4) =

⌈

40
20

⌉

= 2, B(5) =
⌈

47
20

⌉

= 3, B(6) =
⌈

55
20

⌉

= 3, B(7) =
⌈

60
20

⌉

= 3. We have the second
case: 7 jobs must be started in 3 batches, which is impossible due to b = 2. Thus, T = 95
is infeasible and T + 1 = 96 is a valid lower bound value. For comparison, the constructive
lower bounds are LB1 = 94, LB2 = 80, and LB3 = 91. 2

All three tests can be used together in a destructive lower bound calculation. We are given a
threshold value T for the objective function Cq

max and try to prove that no feasible schedule
with Cq

max ≤ T exists. At first test 1 is applied. If it does not detect infeasibility, it may
have produced increased release dates and tails for the jobs. Afterwards, test 2 is applied
with each job j = 1, 2, . . . , n selected as a test job. Finally, test 3 is performed for all
jobs j = 1, 2, . . . , n. By trying different T -values in a binary search procedure, the largest
infeasible T is calculated. Then T + 1 is the destructive lower bound value.

5 A tabu search algorithm

In this section we describe a tabu search algorithm to find heuristic solutions for prob-
lem (1|rj) → (P |p-batch, b < n, tj = τ, qj |C

q
max). We decompose the problem into the

two subproblems of production and transportation. First a solution to the production
subproblem is defined as a sequence of all jobs on the production machine. Then the
resulting subproblem for the transportation stage becomes the parallel batching problem
P |p-batch, b < n, r′j , pj = p|Cq

max where the release dates r′j correspond to the completion
times Cp

j at the production stage and the processing times are equal to the delivery time τ .

An optimal solution to the latter problem can be found in O(n3 log2 n) time by the barrier
algorithm from Condotta et al. [7].

Thus, it is sufficient to represent a solution by a production sequence (j1, . . . , jn). In order
to reduce the search space we take precedence relations into account. If we know that a job
i has to precede another job j, we only consider sequences in which i is placed before j. As
mentioned in Section 4, test 1 may produce precedences i → j for certain pairs of jobs i, j.
In every iteration where a new best solution is found, we start the input and output test
based on the new upper bound T and store all precedences which can be derived by test 1.

In order to find a good production sequence, we first construct a starting solution by a
priority-based heuristic, afterwards we try to improve this solution by tabu search. To
calculate an initial production sequence we use one of the following four rules:

Rule 1: Sort the jobs according to non-decreasing release dates rj .
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Rule 2: Sort the jobs according to non-increasing tails qj .

Rule 3: At any decision point (given by a release date or the completion time of a job)
schedule an available job with the largest tail.

Rule 4: Calculate a preemptive schedule by using the SRPT-rule. Remove the preemptions
by scheduling the jobs without preemption according to increasing starting times in
the preemptive schedule.

The production schedules generated by the four rules are then complemented by optimal
transportation schedules obtained by the barrier algorithm [7]. The resulting four schedules
are used as initial solutions for the tabu search algorithm described below.

We consider the following two neighborhoods for a production sequence: in the swap-
neighborhood Nswap we interchange two jobs in the sequence, in the shift-neighborhood
Nshift we move one job to another position. We tested different attributes for characteriz-
ing solutions to be tabu. It turned out that the following two criteria performed best:

• If in the swap-neighborhoodNswap we interchange two jobs jλ, jµ at the positions λ < µ
in the sequence (j1, . . . , jλ, . . . , jµ, . . . , jn), we store the pair (jλ, λ). The corresponding
swap-operation is denoted by swapλ,µ. As long as the pair (jλ, λ) is contained in the
tabu list, we forbid all solutions in which job jλ is swapped to a position ν ≤ λ.

• If in the shift-neighborhood Nshift we move the job jλ from position λ to another
position µ, we simply store the job jλ. The corresponding shift-operation is denoted
by shiftλ,µ. As long job j is contained in the tabu list, it is forbidden to shift job jλ
again.

We use a first-fit strategy where at first the swap-neighborhood and then the shift-neighbor-
hood is searched for an improving solution. In our implementation, in order to reduce the
size of the neighborhood, we restrict both operators swapλ,µ and shiftλ,µ to positions λ, µ
with |µ − λ| ≤ d for a fixed integer d > 0. Additionally, to speed up neighbor generation,
for both operators we only consider jobs jλ which are processed before a so-called “critical”
job at the production stage. Notice that the idea of re-structuring a “critical” part of a
schedule is often employed in neighbor generation for many scheduling models (e.g. the
job-shop problem).

Here, we call a job j critical if it defines the overall makespan of the schedule, i.e. if

Cq
max = Cj + qj = St

j + τ + qj ,

where St
j is the starting time of j at the transportation stage. If there are several jobs with

this property, we select the earliest one. It is easy to see that if B is the batch in which job
j is delivered, in a solution with a smaller Cq

max-value batch B must be started earlier. We
try to achieve this by restricting the operators swapλ,µ and shiftλ,µ to move only jobs jλ
satisfying Cp

jλ
≤ St

j . However, as discussed in appendix A, a decrease in the objective value
may also be achieved by other moves.

Example 5 : Consider an instance with n = 7 jobs, m = 1 vehicle with capacity b = 2 and
delivery time τ = 6. The job characteristics are defined as follows:
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Figure 5: Neighbor generation of a schedule

j 1 2 3 4 5 6 7

rj 0 1 9 12 3 6 20
pj 1 5 5 1 3 2 1
qj 30 23 6 4 22 18 7

A schedule corresponding to the production sequence (1, 2, 6, 5, 4, 3, 7) is shown in the upper
part of Figure 5. The only critical job is job 6 since there is no other job defining the
makespan. Job 6 is delivered in batch B3 starting at time St

6 = 17. The jobs jλ satisfying
Cp
jλ

≤ St
j = 17 (i.e., completing on the production machine before the start of B3) are the

jobs 1, 2, 6, 5, 4. In accordance with the formulated rules for neighbor generation, one of
this jobs is selected as jλ and moved elsewhere. If we swap jobs 6 and 5 in the production
sequence, we get the schedule shown in the lower part of the figure. It has the improved
objective value Cq

max = 39. 2

In preliminary computational experiments we tested different variants and parameters for
the tabu search algorithm. It turned out that the following settings performed quite well
on average. We run the tabu search procedure four times with different initial solutions
generated by Rules 1-4 and stop each run after 3 non-improving iterations, when a time
limit is reached or when a solution is found which is verified to be optimal by our common
lower bound. We use a tabu list of fixed length 5. The parameter d restricting the range of
the operators is set to d ∈ {⌈n/2⌉, ⌈n/3⌉, ⌈n/4⌉} depending on n ∈ {50, 100, 200}.
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6 Computational results

In this section we describe some computational results for the proposed methods dealing
with the production-transportation problem. We implemented all algorithms in Java and
tested them on a computer with a 2.8 GHz-processor and 2 GB main storage.

As test data, we generated random instances similarly to the experiments of Sung and Kim
[27]. We consider various combinations of the following parameters: the number of jobs
n ∈ {50, 100, 200}, the number of vehicles m ∈ {1, 2, 5}, the delivery time τ ∈ {40, 100, 500},
and the vehicle capacity b ∈ {5, 10, 15}. Furthermore, the release dates rj are uniformly
distributed from an interval [1, 10 · θ · n] with θ ∈ {0.1, 0.5, 1}, the processing times pj are
uniformly distributed from [1, 10] or [1, 100], and the due dates dj are uniformly distributed
from [rj+pj+τ, (rj+pj+τ)δ] with δ ∈ {1.2, 1.5, 1.8}. For each combination of n, τ, b, θ, δ and
a processing time interval we generated 10 instances, i.e., in total we have 3 ·3 ·3 ·3 ·3 ·2 ·10 =
4860 instances. Each of these instances can be tested with m = 1, 2, 5 vehicles.

At first we calculated the six individual lower bounds LB1, LB2, LB3, LBT1, LBT2,
LBT3 and the common bound LB = max{LB1, LB2, LB3, LBT1, LBT2, LBT3}. In order
to estimate their quality, we determine for each lower bound LBv the relative deviation
∆v = LB−LBv

LB
from the best lower bound and count how often LBv = LB holds. In Tables

5 to 10 in appendix B individual results for all lower bounds and all instances are reported.

In Table 2 aggregated results are shown where each row averages over 4860 instances and the
best results are written in bold. The first section corresponds to instances with small pro-
cessing times pj ∈ [1, 10] with a summary in the fourth row; the second section corresponds
to large processing times pj ∈ [1, 100], also with a summary in the fourth row. The last row
summarizes the results for all instances. For each lower bound LBv the relative deviation
∆v (in percent) and the number of occurrences LBv = LB are reported. In the last column
the average and maximum computation times (in seconds) to calculate the common lower
bound can be found.

m LB1 LB2 LB3 LBT1 LBT2 LBT3 time
1 3.0 902 35.1 184 14.8 86 35.1 184 38.1 466 2.9 1163 1.7 4.5
2 7.1 1147 18.9 859 19.5 205 18.9 884 30.2 181 7.8 624 2.0 15.8
5 12.5 1062 5.0 1586 24.4 273 5.0 1675 17.7 636 13.6 328 2.4 26.7

7.5 3111 19.7 2629 19.6 564 19.7 2743 28.7 1283 8.1 2115 2.0

1 53.6 7 5.1 2105 0.5 1537 5.1 2105 67.8 0 53.1 325 8.0 116.8
2 65.1 2 0.1 2372 0.4 1719 0.1 2373 70.0 0 65.1 56 8.5 108.9
5 75.3 0 0.0 2429 0.3 1747 0.0 2430 69.9 0 75.6 0 10.3 106.8

64.7 9 1.7 6906 0.4 5003 1.7 6908 69.2 0 64.4 381 8.9

36.1 3120 10.7 9535 10.0 5567 10.7 9651 49.0 1283 36.4 2496 5.5

Table 2: Comparison of lower bounds

As it can be seen there is no clear dominance of one lower bound on all instances. Depending
on the characteristics of the instances the following conclusions can be drawn:

• LB1 is mainly based on the transportation stage and provides better results when this
stage is dominant (i.e. for smaller processing times on the production machine and
larger τ). For instances with m = 2 and pj ∈ [1, 10] this bound is on average the best
bound. On the other hand, for instances with pj ∈ [1, 100] and m = 2, 5 the bound
LB1 has very large deviations.
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• LB2 and LBT1 are mainly based on the production stage and provide very similar (of-
ten even identical) results. While for LB2 the preemptive problem 1|pmtn, rj , qj |C

q
max

is solved, for LBT1 the non-preemptive feasibility problem 1|rj , Cj ≤ dj |− is consid-
ered, sometimes leading to slightly better results. Both bounds are very suitable for
instances with a dominating production stage (i.e. large processing times pj). For
instances with pj ∈ [1, 100] they are the best bounds, also for pj ∈ [1, 10] and m = 5
they perform best.

• LB3 is based on the two-stage problem (1|rj , pmtn) → (P |p-batch, b < n, tj = τ |Cmax)
and provides good results for instances where both stages have a similar impact. For
pj ∈ [1, 100] it provides better results than for pj ∈ [1, 10]. For m = 1 and pj ∈ [1, 100]
it achieves the smallest average deviation from the best known lower bound. Although
almost for every instance LB3 is dominated by another bound, on average it provides
quite good results.

• LBT2 and LBT3 are mainly based on the transportation stage which is also confirmed
by the results. These two bounds provide better results for smaller processing times
and m = 1.

Due to the fact that the bounds behave very differently for different instances and the
computation times are small for most instances, it can be concluded that all bounds should
be calculated to get the best result.

In order to estimate the quality of the tabu search algorithm we compared it with the MIP
formulation (solved by CPLEX 12) described in Section 3. Both algorithms were run on
1800 instances with the same time limit (10 or 15 minutes). More specifically, we used the
following three classes of test instances:

(I) m = 1, n = 50, pj ∈ [1, 10], 810 instances, 467 of them could be solved to optimality
by the MIP formulation within a time limit of 10 minutes

(II) m = 1, n = 50, pj ∈ [1, 100], 810 instances, 49 could be solved to optimality by the
MIP formulation within a time limit of 10 minutes

(III) m = 1, n = 100, pj ∈ [1, 100], 90 instances, none of them could be solved to optimality
by the MIP formulation within a time limit of 15 minutes

In Table 3 aggregated results are shown for these instances. In the first three columns we
show the number of instances for which the tabu search produces better, equal or worse
results compared with the MIP. In the next four columns the heuristic results of tabu search
and the MIP are compared with respect to the best known lower bounds. We report the
number of instances for which the heuristic upper bounds could be verified to be optimal
by the lower bound values and show the average relative deviations of tabu search solutions
and MIP solutions from the lower bound values: ∆TS

LB = UBTS−LB
LB

and ∆MIP
LB = UBMIP−LB

LB

(in percent). Finally, in the last two columns the average computation times (in seconds)
can be found.

It can clearly be seen that the MIP is outperformed by the tabu search (especially for larger
instances). For all 90 instances in (III) the tabu search obtained better results than the
MIP formulation and the average relative deviation ∆TS

LB is much smaller than ∆MIP
LB . For

the instances in (I) and (II) on average tabu search produces better solutions in a smaller
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TS < TS = TS > UBTS = LB UBMIP = LB ∆TS
LB ∆MIP

LB time TS time MIP
(I) 268 519 23 456 334 0.4 1.2 269 300
(II) 751 53 6 374 49 1.1 5.7 387 575
(III) 90 0 0 0 0 2.2 53.2 900 900

Table 3: Comparison of tabu search and MIP

amount of time. Notice that for half of these instances optimal solutions with UBTS = LB
were found and the computation time was smaller than the time limit.

Afterwards we tried to solve the MIP formulation for instances with m > 1. For all instances
tested (90 instances with m = 2, n = 200, pj ∈ [1, 100]) even a feasible solution could not
be found within a time limit of 20 minutes. Thus, MIP cannot be used for these instances,
and therefore we compare the tabu search results only with lower bound values.

In Table 4 aggregated results are shown for all instances with m = 2 and m = 5. For
m = 2 each row summarizes the results of 810 instances, for m = 5 each row corresponds
to 3 · 810 = 2430 instances. The tabu search procedure was executed with a time limit
of 15 minutes. We report the number of instances for which the heuristic upper bounds
(best initial upper bound value UB0 and tabu search value UBTS) could be verified to be
optimal by the lower bound values and present the average relative deviations from the
lower bounds: ∆UB0

LB = UB0−LB
LB

and ∆TS
LB = UBTS−LB

LB
(in percent). In the next column

we show how often the tabu search improves UB0. Finally, in the last column the average
computation times (in seconds) can be found. Notice that the latter values are less than the
time limit of 15 minutes since in 25%-97% of cases provable optimal solutions were obtained
before that time.

UB0 = LB UBTS = LB ∆UB0

LB ∆TS
LB UBTS < UB0 time

m = 2, [1, 10], n = 50 198 294 1.29 0.91 293 564
m = 2, [1, 10], n = 100 177 248 0.79 0.59 289 618
m = 2, [1, 10], n = 200 156 205 0.47 0.40 261 675
m = 2, [1, 100], n = 50 565 573 0.59 0.46 64 264
m = 2, [1, 100], n = 100 570 580 0.42 0.29 68 261
m = 2, [1, 100], n = 200 547 550 0.25 0.20 54 313
m = 5, [1, 10] 1214 1430 0.66 0.55 639 374
m = 5, [1, 100] 2357 2359 0.01 0.01 3 41

Table 4: Comparison of tabu search results with lower bounds

The computational results show that the average relative deviations between lower and upper
bounds are quite small, i.e. both, the lower bound algorithm and the tabu search procedure
provide good results in a relatively small amount of time. It turns out that the instances
with m = 5 become easier to solve. This observation is in agreement with a statement by
Gupta and Tunc [10] who studied a related flow-shop problem with parallel machines at
the second stage and noticed that “the availability of a large number of machines at second
stage increases the chances of obtaining a minimum makespan schedule”.

7 Concluding remarks

In this paper we studied a combined production-transportation problem where the pro-
duction stage consists of a single machine and the transportation stage consists of vehicles
with limited capacity. This NP-hard problem appears to be computationally challenging, as
shown in our experiments with the MIP formulation presented in Section 3. Therefore, in
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our study we focus mainly on heuristic algorithms and on special techniques for improving
their performance.

In our algorithms we essentially make use of our earlier result [7] which allows us to construct
efficiently an optimal solution to the transportation subproblem based on a given solution
to the production subproblem. The implications of this result are twofold:

• our approach ensures that production and transportation schedules are coordinated
in the best possible way;

• based on [7], we introduce a compact representation of solutions enumerated by tabu
search limiting the search space to production sequences only.

The neighbor generation strategy for the production-transportation is not a trivial task. As
we show in the appendix, a decrease in the objective function may be achieved not only
by removing the jobs from the part of the production sequence preceding the critical job,
but also by re-allocated jobs from the later part of the production sequence moving them
in front of the critical job. To the best of our knowledge, this phenomenon has not been
observed in the past for traditional scheduling problems.

In addition to tabu search, we develop several algorithms for lower bound calculation. While
the primary goal is to perform a more accurate evaluation of tabu search, a systematic
study of lower bounds leads to further advancements in the tabu search design. Some of
our procedures for lower bound calculation provide additional information for tabu search
making it possible to fix precedence relations in an optimal way and to speed up the search.
We strongly believe that the computational effort spent on lower bound calculation should
bring a pay off for other solution methods as well. In particular, our study of lower bounds
will be most useful in the design of branch-and-bound algorithms.

Our computational results show that the average relative deviations between lower and
upper bounds are quite small, i.e. both, the lower bound algorithm and the tabu search
procedure provide good results in a relatively small amount of time. For the tested instances
with m = 1 the gap is 1.2% on average, for all instances with m = 2 it is 0.48 % and for
instances with m = 5 (which appear to be easier to solve) it is only 0.28%.

The outcomes of our study may be useful for addressing more general models. For example,
the production stage may have parallel machines rather than a single machine, as assumed in
our study. A more complicated supply chain model may include an additional transportation
stage before production (transportation from a supplier) followed by another transportation
stage (transportation to customers).

Appendix A

Example 6 : Consider an instance with n = 6 jobs and one vehicle with capacity b = 2 and
delivery time τ = 6. The job characteristics are defined as follows:

j 1 2 3 4 5 6

rj 0 1 2 8 10 1
pj 1 4 2 2 1 1
qj 13 7 2 8 1 1

For the production sequence (1, 2, 3, 4, 5, 6) the optimal transportation sequence found by
the barrier algorithm is ({1, 2}, {3, 4}, {5, 6}) resulting in Cq

max = 25. In this solution (cf. the

20



Figure 6: Moving a job processed in the production sequence after a critical job

upper schedule in Figure 6), job 4 determines the objective value and is the only critical job
according to our definition from Section 5. A critical path (in the common sense) consists
of the sequence (1, 2) on Mp, the batches {1, 2}, {3, 4} on M t and the tail of job 4.

Typically, restructuring the schedule after a critical job or moving new jobs in front of
a critical job cannot reduce the completion time of the critical job. Contrary to other
scheduling problems, this property does not hold for our problem. If we move job 6
scheduled after the critical job 4 to the second position, we get the production sequence
(1, 6, 2, 3, 4, 5). The corresponding optimal transportation sequence found by the barrier
algorithm is ({1, 6}, {2, 4}, {3, 5}) resulting in a smaller objective value of Cq

max = 24 (cf.
the lower schedule in Figure 6).

This example shows that unlike the classical job-shop problem, moving new jobs in front of
a critical job can reduce the completion time of the critical job. There are other examples
which show that changing the order of jobs not belonging to a critical path may also decrease
the makespan value. 2

Appendix B

In Tables 5 to 10 the individual results for all lower bounds are summarized. In each row we
have fixed values n, τ , and b, we varied θ and δ, i.e. always the average over 90 = 10 · 3 · 3
instances is taken. For each lower bound LBv the relative deviation ∆v = LB−LBv

LB
(in

percent) and the number of occurences LBv = LB (from 90) are reported. Additionally, we

state the deviation ∆UB0

LB = UB0−LB
LB

(in percent) from the best upper bound UB0 of the
four initial heuristic solutions.
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n τ b ∆UB0

LB LB1 LB2 LB3 LBT1 LBT2 LBT3

50 40 5 0.81 0.6 40 15.2 0 19.4 0 15.2 0 22.1 17 0.7 50
50 40 10 1.90 8.9 18 2.4 30 27.2 17 2.4 30 11.7 54 7.5 13
50 40 15 1.61 14.5 14 2.3 30 28.3 19 2.3 30 12.2 53 13.6 4
50 100 5 0.42 0.3 38 49.4 0 6.8 0 49.3 0 47.1 0 0.6 54
50 100 10 1.66 1.1 36 22.2 0 19.1 0 22.1 0 18.7 11 0.7 54
50 100 15 1.22 1.4 29 12.6 0 27.7 0 12.6 0 9.1 33 0.8 54
50 500 5 0.11 0.1 35 78.6 0 1.9 0 78.6 0 73.4 0 0.1 58
50 500 10 0.39 0.2 43 60.0 0 6.3 0 60.0 0 50.3 0 0.5 49
50 500 15 0.56 0.4 41 49.7 0 6.7 0 49.7 0 37.7 0 0.8 53

100 40 5 0.40 0.3 39 15.3 0 18.4 0 15.3 0 25.7 9 0.3 50
100 40 10 1.04 9.2 23 1.3 30 28.9 14 1.3 30 15.8 52 8.9 2
100 40 15 1.03 15.9 19 1.2 31 27.7 16 1.2 31 15.7 53 15.2 11
100 100 5 0.19 0.1 36 52.9 0 4.8 0 52.9 0 54.4 0 0.3 55
100 100 10 0.89 0.6 39 23.9 0 16.1 0 23.9 0 27.3 10 0.5 55
100 100 15 1.23 0.9 42 10.2 0 26.0 0 10.2 0 15.4 18 0.5 48
100 500 5 0.05 0.0 35 84.8 0 1.2 0 84.8 0 81.4 0 0.1 55
100 500 10 0.21 0.1 36 70.8 0 3.8 0 70.8 0 64.0 0 0.3 56
100 500 15 0.34 0.2 38 59.5 0 6.0 0 59.5 0 50.2 0 0.5 54

200 40 5 0.18 0.2 32 16.1 2 18.6 0 16.1 2 28.1 15 0.1 55
200 40 10 0.70 8.9 25 0.6 31 28.3 10 0.6 31 17.6 55 8.6 7
200 40 15 0.66 16.2 18 0.6 30 28.5 10 0.6 30 17.7 58 16.0 7
200 100 5 0.10 0.1 35 54.3 0 3.9 0 54.3 0 57.9 0 0.2 57
200 100 10 0.46 0.3 36 24.8 0 14.3 0 24.8 0 31.8 9 0.2 53
200 100 15 0.57 0.5 36 9.4 0 24.5 0 9.4 0 19.7 19 0.3 54
200 500 5 0.03 0.0 36 87.8 0 0.8 0 87.8 0 86.5 0 0.0 56
200 500 10 0.11 0.1 41 76.2 0 2.4 0 76.2 0 73.8 0 0.1 51
200 500 15 0.19 0.1 42 66.2 0 2.9 0 66.2 0 62.8 0 0.3 48

0.63 3.0 902 35.1 184 14.8 86 35.1 184 38.1 466 2.9 1163

Table 5: Lower bounds for m = 1, pj ∈ [1, 10]

n τ b ∆UB0

LB LB1 LB2 LB3 LBT1 LBT2 LBT3

50 40 5 1.04 9.4 38 0.2 67 25.9 20 0.2 69 17.3 15 10.3 1
50 40 10 1.03 17.2 38 0.2 69 25.7 17 0.2 70 16.8 18 18.4 0
50 40 15 0.92 19.3 37 0.1 66 26.8 19 0.1 69 17.3 16 21.2 2
50 100 5 1.63 0.4 47 18.9 4 16.6 2 18.8 4 27.8 4 1.2 43
50 100 10 2.58 2.7 59 2.1 28 26.5 12 2.1 28 14.4 2 4.8 7
50 100 15 2.27 8.9 55 1.7 38 26.7 14 1.6 38 14.0 3 11.6 0
50 500 5 0.30 0.1 38 59.3 0 5.1 0 59.3 0 60.0 0 0.2 54
50 500 10 0.62 0.3 44 36.9 0 9.5 0 36.8 0 37.8 0 0.6 46
50 500 15 1.30 0.6 49 20.2 0 18.1 0 20.2 0 21.4 0 2.0 41

100 40 5 0.61 9.7 38 0.1 73 27.3 12 0.1 74 18.6 20 10.1 0
100 40 10 0.55 19.4 37 0.1 64 28.1 14 0.1 67 18.6 13 19.7 2
100 40 15 0.56 21.8 36 0.1 66 26.9 16 0.1 71 18.4 15 22.6 0
100 100 5 0.72 0.2 43 22.3 3 14.5 1 22.3 3 32.1 3 0.7 49
100 100 10 1.80 4.1 56 0.9 37 27.0 13 0.9 37 16.8 3 5.0 4
100 100 15 1.55 10.1 53 0.9 39 27.3 12 0.9 39 16.6 2 11.7 0
100 500 5 0.14 0.1 36 70.8 0 3.4 0 70.8 0 72.0 0 0.2 54
100 500 10 0.66 0.2 38 46.7 0 8.7 0 46.7 0 49.1 0 0.5 54
100 500 15 0.58 0.3 40 33.6 0 10.1 0 33.6 0 36.5 0 0.7 52

200 40 5 0.33 9.3 31 0.0 72 28.0 13 0.0 78 19.4 17 9.6 2
200 40 10 0.36 19.8 36 0.0 74 27.9 10 0.0 77 19.0 22 20.0 1
200 40 15 0.35 22.9 38 0.0 74 28.2 10 0.0 75 19.1 22 23.4 1
200 100 5 0.33 0.1 41 23.6 2 13.6 0 23.6 2 34.2 2 0.3 51
200 100 10 1.08 3.4 51 0.4 40 28.0 11 0.4 40 18.3 1 3.8 3
200 100 15 0.89 11.6 50 0.4 43 28.3 9 0.4 43 18.1 3 12.3 0
200 500 5 0.07 0.0 37 76.1 0 2.2 0 76.1 0 77.9 0 0.1 55
200 500 10 0.31 0.1 40 55.4 0 6.0 0 55.4 0 58.9 0 0.3 52
200 500 15 0.51 0.2 41 39.2 0 8.9 0 39.2 0 44.3 0 0.5 50

0.85 7.1 1147 18.9 859 19.5 205 18.9 884 30.2 181 7.8 624

Table 6: Lower bounds for m = 2, pj ∈ [1, 10]
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n τ b ∆UB0

LB LB1 LB2 LB3 LBT1 LBT2 LBT3

50 40 5 0.09 19.8 26 0.0 84 25.8 20 0.0 90 17.1 28 21.2 3
50 40 10 0.07 20.2 29 0.0 85 25.6 17 0.0 90 16.7 32 21.8 0
50 40 15 0.06 20.8 25 0.0 83 26.8 19 0.0 90 17.2 27 22.5 2
50 100 5 0.46 10.2 42 0.0 82 25.6 15 0.0 86 12.8 38 11.5 2
50 100 10 0.37 14.0 38 0.0 79 25.4 13 0.0 86 12.5 34 15.5 3
50 100 15 0.39 14.2 41 0.0 84 25.7 14 0.0 87 12.3 37 16.9 4
50 500 5 1.28 0.3 51 19.0 0 15.3 6 19.0 0 20.5 0 1.3 36
50 500 10 1.59 2.1 53 1.4 30 25.7 5 1.4 32 3.3 15 3.8 22
50 500 15 1.02 1.8 69 1.0 44 25.8 6 1.0 45 2.7 25 5.4 1

100 40 5 0.04 21.8 30 0.0 88 27.3 12 0.0 90 18.6 33 22.3 2
100 40 10 0.05 22.7 29 0.0 83 28.1 14 0.0 90 18.5 29 23.6 2
100 40 15 0.06 22.9 29 0.0 81 26.9 16 0.0 90 18.4 29 23.9 1
100 100 5 0.29 9.2 44 0.0 80 26.8 10 0.0 83 15.8 37 10.0 1
100 100 10 0.24 17.5 39 0.0 84 26.6 13 0.0 85 15.9 36 18.5 2
100 100 15 0.30 18.3 41 0.0 81 26.8 12 0.0 85 15.8 36 19.9 0
100 500 5 0.81 0.1 40 36.5 0 10.3 1 36.5 0 39.5 0 0.4 50
100 500 10 3.23 0.5 51 7.6 1 21.3 10 7.6 1 12.9 1 1.7 30
100 500 15 1.96 0.4 54 4.0 4 25.4 1 4.0 4 9.3 3 2.0 35

200 40 5 0.03 22.4 26 0.0 83 28.0 13 0.0 90 19.3 27 22.7 1
200 40 10 0.03 23.6 27 0.0 84 27.9 10 0.0 90 19.0 29 24.1 2
200 40 15 0.04 23.8 31 0.0 87 28.2 10 0.0 90 19.1 33 24.3 3
200 100 5 0.19 9.4 34 0.0 84 27.5 9 0.0 89 17.9 33 9.8 2
200 100 10 0.15 19.0 33 0.0 81 27.8 11 0.0 87 17.8 31 19.3 0
200 100 15 0.17 21.2 41 0.0 84 28.1 9 0.0 85 17.7 36 22.1 1
200 500 5 0.38 0.1 38 45.9 0 7.6 0 45.9 0 50.3 0 0.1 52
200 500 10 1.85 0.3 45 15.7 3 17.9 4 15.7 3 23.7 3 0.7 43
200 500 15 2.74 0.3 56 3.2 7 25.0 3 3.2 7 14.0 4 1.4 28

0.66 12.5 1062 5.0 1586 24.4 273 5.0 1675 17.7 636 13.6 328

Table 7: Lower bounds for m = 5, pj ∈ [1, 10]

n τ b ∆UB0

LB LB1 LB2 LB3 LBT1 LBT2 LBT3

50 40 5 0.01 75.7 0 0.0 90 0.2 77 0.0 90 69.7 0 75.9 0
50 40 10 0.04 78.3 0 0.0 90 0.3 71 0.0 90 69.4 0 78.5 0
50 40 15 0.02 79.5 0 0.0 90 0.2 76 0.0 90 70.3 0 79.8 0
50 100 5 0.45 55.7 0 0.0 90 0.3 71 0.0 90 65.3 0 55.0 0
50 100 10 0.52 71.0 0 0.0 90 0.2 77 0.0 90 65.6 0 70.3 0
50 100 15 0.55 73.2 0 0.0 90 0.2 78 0.0 90 65.2 0 72.9 0
50 500 5 1.50 0.6 4 41.2 0 2.1 0 41.2 0 64.8 0 0.0 90
50 500 10 5.56 8.9 0 0.4 79 0.9 63 0.4 79 40.1 0 6.1 11
50 500 15 4.94 26.5 0 0.0 90 0.4 68 0.0 90 39.4 0 23.7 0

100 40 5 0.02 77.7 0 0.0 90 0.3 66 0.0 90 73.3 0 77.7 0
100 40 10 0.01 80.8 0 0.0 90 0.1 72 0.0 90 73.1 0 80.9 0
100 40 15 0.02 81.5 0 0.0 90 0.3 64 0.0 90 73.1 0 81.6 0
100 100 5 0.28 57.5 0 0.0 90 0.4 60 0.0 90 70.8 0 75.2 0
100 100 10 0.23 73.7 0 0.0 90 0.1 72 0.0 90 70.9 0 73.5 0
100 100 15 0.30 77.0 0 0.0 90 0.3 69 0.0 90 70.8 0 76.8 0
100 500 5 0.78 0.3 1 45.8 0 1.2 0 45.8 0 76.2 0 0.0 90
100 500 10 3.29 5.7 0 0.8 67 1.0 47 0.8 67 57.2 0 4.3 23
100 500 15 2.80 31.4 0 0.0 90 0.4 62 0.0 90 57.0 0 29.6 0

200 40 5 0.01 78.5 0 0.0 90 0.4 60 0.0 90 74.9 0 78.5 0
200 40 10 0.01 82.0 0 0.0 90 0.3 61 0.0 90 74.9 0 82.0 0
200 40 15 0.02 82.7 0 0.0 90 0.5 57 0.0 90 74.7 0 82.7 0
200 100 5 0.16 58.5 0 0.0 90 0.3 53 0.0 90 73.6 0 58.4 0
200 100 10 0.15 75.0 0 0.0 90 0.3 53 0.0 90 73.4 0 74.8 0
200 100 15 0.14 78.8 0 0.0 90 0.3 61 0.0 90 73.5 0 78.8 0
200 500 5 0.42 0.1 2 47.6 0 0.7 0 47.6 0 82.2 0 0.0 90
200 500 10 1.92 3.8 0 0.5 69 0.7 42 0.5 69 66.5 0 3.1 21
200 500 15 1.66 31.4 0 0.0 90 0.4 57 0.0 90 66.2 0 30.6 0

0.96 53.6 7 5.1 2105 0.5 1537 5.1 2105 67.8 0 53.1 325

Table 8: Lower bounds for m = 1, pj ∈ [1, 100]
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n τ b ∆UB0

LB LB1 LB2 LB3 LBT1 LBT2 LBT3

50 40 5 0.00 79.0 0 0.0 90 0.2 77 0.0 90 71.2 0 79.5 0
50 40 10 0.00 79.3 0 0.0 90 0.3 71 0.0 90 70.9 0 79.9 0
50 40 15 0.00 80.1 0 0.0 90 0.2 76 0.0 90 71.9 0 80.7 0
50 100 5 0.01 71.6 0 0.0 90 0.3 71 0.0 90 69.1 0 71.8 0
50 100 10 0.04 75.9 0 0.0 90 0.2 77 0.0 90 69.4 0 76.9 0
50 100 15 0.02 76.1 0 0.0 90 0.2 78 0.0 90 69.1 0 77.1 0
50 500 5 3.02 10.2 1 0.5 79 0.8 62 0.5 80 56.4 0 9.2 9
50 500 10 1.18 41.6 0 0.0 90 0.5 67 0.0 90 56.2 0 40.8 0
50 500 15 1.18 52.7 0 0.0 90 0.4 68 0.0 90 56.0 0 51.9 0

100 40 5 0.00 81.2 0 0.0 90 0.3 66 0.0 90 74.1 0 81.4 0
100 40 10 0.00 82.1 0 0.0 90 0.1 72 0.0 90 73.8 0 82.4 0
100 40 15 0.00 82.1 0 0.0 90 0.3 64 0.0 90 73.9 0 82.5 0
100 100 5 0.01 74.1 0 0.0 90 0.4 60 0.0 90 72.8 0 74.3 0
100 100 10 0.01 79.1 0 0.0 90 0.1 72 0.0 90 72.8 0 79.4 0
100 100 15 0.01 79.7 0 0.0 90 0.3 69 0.0 90 72.7 0 80.2 0
100 500 5 2.27 5.6 0 0.8 70 0.9 49 0.8 70 65.4 0 5.0 21
100 500 10 0.80 47.7 0 0.0 90 0.4 60 0.0 90 65.7 0 46.4 0
100 500 15 0.73 58.1 0 0.0 90 0.4 62 0.0 90 65.9 0 57.5 0

200 40 5 0.00 82.1 0 0.0 90 0.4 60 0.0 90 75.2 0 82.2 0
200 40 10 0.00 83.3 0 0.0 90 0.3 61 0.0 90 75.3 0 83.4 0
200 40 15 0.00 83.4 0 0.0 90 0.5 57 0.0 90 75.1 0 83.6 0
200 100 5 0.01 75.5 0 0.0 90 0.3 53 0.0 90 74.6 0 75.6 0
200 100 10 0.01 80.5 0 0.0 90 0.3 53 0.0 90 74.3 0 80.7 0
200 100 15 0.01 81.6 0 0.0 90 0.3 61 0.0 90 74.5 0 81.8 0
200 500 5 1.33 3.3 1 0.8 63 0.7 45 0.8 63 70.9 0 3.1 26
200 500 10 0.45 48.8 0 0.0 90 0.4 51 0.0 90 71.0 0 48.2 0
200 500 15 0.44 62.2 0 0.0 90 0.4 57 0.0 90 70.9 0 61.7 0

0.43 65.1 2 0.1 2372 0.4 1719 0.1 2373 70.0 0 65.1 56

Table 9: Lower bounds for m = 2, pj ∈ [1, 100]

n τ b ∆UB0

LB LB1 LB2 LB3 LBT1 LBT2 LBT3

50 40 5 0.00 79.7 0 0.0 90 0.2 77 0.0 90 71.2 0.0 80.2 0
50 40 10 0.00 79.4 0 0.0 90 0.3 71 0.0 90 70.9 0.0 79.9 0
50 40 15 0.00 80.3 0 0.0 90 0.2 76 0.0 90 71.9 0.0 80.7 0
50 100 5 0.00 76.7 0 0.0 90 0.3 71 0.0 90 69.1 0.0 77.4 0
50 100 10 0.00 77.3 0 0.0 90 0.2 77 0.0 90 69.4 0.0 78.2 0
50 100 15 0.00 76.9 0 0.0 90 0.2 78 0.0 90 69.1 0.0 77.6 0
50 500 5 0.02 53.6 0 0.0 89 0.4 68 0.0 90 56.1 0.0 53.2 0
50 500 10 0.02 60.8 0 0.0 90 0.5 67 0.0 90 56.2 0.0 60.9 0
50 500 15 0.02 60.6 0 0.0 90 0.4 68 0.0 90 56.0 0.0 62.5 0

100 40 5 0.00 82.4 0 0.0 90 0.3 66 0.0 90 74.1 0.0 82.7 0
100 40 10 0.00 82.3 0 0.0 90 0.1 72 0.0 90 73.8 0.0 82.5 0
100 40 15 0.00 82.2 0 0.0 90 0.3 64 0.0 90 73.9 0.0 82.5 0
100 100 5 0.00 79.9 0 0.0 90 0.4 60 0.0 90 72.8 0.0 80.2 0
100 100 10 0.00 80.9 0 0.0 90 0.1 72 0.0 90 72.8 0.0 81.3 0
100 100 15 0.00 80.7 0 0.0 90 0.3 69 0.0 90 72.7 0.0 81.1 0
100 500 5 0.03 56.0 0 0.0 90 0.4 57 0.0 90 65.0 0.0 55.7 0
100 500 10 0.02 69.2 0 0.0 90 0.4 60 0.0 90 65.7 0.0 69.3 0
100 500 15 0.02 70.3 0 0.0 90 0.4 62 0.0 90 65.9 0.0 71.2 0

200 40 5 0.00 83.4 0 0.0 90 0.4 60 0.0 90 75.2 0.0 83.6 0
200 40 10 0.00 83.6 0 0.0 90 0.3 61 0.0 90 75.3 0.0 83.7 0
200 40 15 0.00 83.5 0 0.0 90 0.5 57 0.0 90 75.1 0.0 83.6 0
200 100 5 0.00 81.5 0 0.0 90 0.3 53 0.0 90 74.6 0.0 81.7 0
200 100 10 0.00 82.4 0 0.0 90 0.3 53 0.0 90 74.3 0.0 82.6 0
200 100 15 0.00 82.7 0 0.0 90 0.3 61 0.0 90 74.5 0.0 82.9 0
200 500 5 0.01 57.4 0 0.0 90 0.4 59 0.0 90 70.6 0.0 57.3 0
200 500 10 0.02 72.9 0 0.0 90 0.4 51 0.0 90 71.0 0.0 72.9 0
200 500 15 0.01 75.7 0 0.0 90 0.4 57 0.0 90 70.9 0.0 76.1 0

0.01 75.3 0 0.0 2429 0.3 1747 0.0 2430 69.9 0 75.6 0

Table 10: Lower bounds for m = 5, pj ∈ [1, 100]
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