
ar
X

iv
:1

30
4.

26
41

v1
 [

cs
.D

M
]

 9
 A

pr
 2

01
3

A memetic algorithm for the minimum sum

coloring problem

Yan Jin, Jin-Kao Hao ∗, Jean-Philippe Hamiez

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

Abstract

Given an undirected graph G, the Minimum Sum Coloring problem (MSCP) is to
find a legal assignment of colors (represented by natural numbers) to each vertex of
G such that the total sum of the colors assigned to the vertices is minimized. This
paper presents a memetic algorithm for MSCP based on a tabu search procedure
with two neighborhoods and a multi-parent crossover operator. Experiments on a set
of 77 well-known DIMACS and COLOR 2002-2004 benchmark instances show that
the proposed algorithm achieves highly competitive results in comparison with five
state-of-the-art algorithms. In particular, the proposed algorithm can improve the
best known results for 17 instances. We also provide upper bounds for 18 additional
instances for the first time.

Keywords: Sum coloring, memetic algorithm, heuristics, combinatorial optimiza-
tion

1 Introduction

Let G = (V,E) be a simple undirected graph (without loops) with vertex set
V = {v1, . . . , vn} and edge set E ⊂ V × V . A proper k-coloring c of G is a
mapping c : V → {1, . . . , k} such that c(vi) 6= c(vj) ∀{vi, vj} ∈ E. A legal or
proper k-coloring can also be defined as a partition of V into k independent
sets or stables V1, . . . , Vk such that ∀u, v ∈ Vi (i = 1, . . . , k), {u, v} /∈ E. The
classical graph coloring problem (GCP) aims at finding a proper k-coloring
with k minimum.

This paper is dedicated to the NP-hard Minimum Sum Coloring Problem
(MSCP) [11,12], which is closely related to GCP. The objective of MSCP is

∗ Corresponding author.
Email address: hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier March 13, 2013

http://arxiv.org/abs/1304.2641v1

to find a proper k-coloring which minimizes the sum of the colors assigned
to the vertices. This minimum is the chromatic sum Σ(G) of G: Σ(G) =
minc∈C f(c), with C the set of all proper k-colorings of G (for all possible k
values) and f(c) =

∑n
i=1 c(vi), or f(c) =

∑k
l=1 l|Vl| equivalently (where |Vl| is

the cardinality of Vl), the “coloring sum” of the proper k-coloring c. MSCP
applications include VLSI design, scheduling, and resource allocation [16].

Considering the theoretical intractability of MSCP, a number of heuristic al-
gorithms have been proposed to find suboptimal solutions, such as a parallel
genetic algorithm [10], two greedy heuristics [13], a tabu search metaheuristic
[2], a hybrid algorithm (HA) [4], an effective heuristic algorithm (EXSCOL)
[21], a local search heuristic (MDS5) [8], and a breakout local search (BLS)
[1]. To our knowledge, EXSCOL, HA, MDS5, and BLS are the state-of-the-
art algorithms in the literature. EXSCOL is based on extracting large disjoint
independent sets and is particular effective for handling large graphs (with
at least 500 vertices). HA is a hybrid algorithm which combines a genetic
algorithm with a surrogate constraint heuristic. MDS5 is based on variable
neighborhood search and iterated local search. BLS combines local search
with adaptive perturbation mechanisms to ensure the quality of solutions.

This paper introduces a Memetic Algorithm for the minimum Sum Color-
ing problem (MASC), which relies on three key components. First, a double-
neighborhood tabu search procedure is especially designed for MSCP (DNTS).
DNTS is based on a token-ring application of two complementary neighbor-
hoods to explore the search space and a perturbation strategy to escape from
local optima. Second, a multi-parent crossover operator is used for solution
recombination. Basically, it tries to transmit large color classes from the par-
ents to the offspring. Finally, a population updating mechanism is devised to
determine how the offspring solution is inserted into the population.

We evaluate the performance of MASC on 77 well-known graphs from DI-
MACS and COLOR 2002-2004 graph coloring competitions (59 of them have
been used previously for evaluating sum coloring algorithms). The computa-
tional results show that MASC can frequently match the best known results
in the literature for most of the 59 cases. In particular, it improves the previ-
ous best solution for 17 graphs for which an upper bound is known. For the
additional 18 new graphs, we report computational results for the first time.

The paper is organized as follows. Next section describes the general frame-
work and the components of our MASC memetic algorithm, including the
population initialization, the crossover operator and the double-neighborhood
tabu search procedure. Detailed computational results and comparisons with
five state-of-the-art algorithms are presented in Section 3. Before concluding,
Section 4 investigates and analyzes two key issues of the proposed memetic
algorithm.

2

2 MASC: A Memetic Algorithm for Minimum Sum Coloring

A memetic algorithm is a population-based approach where the traditional
mutation operator is replaced by a local search procedure [18,19]. Memetic
algorithms are among the most powerful paradigms for solving NP-hard com-
binatorial optimization problems. In particular, they have been successfully
applied to the tightly related GCP [5,14,17,20].

Our MASC algorithm is summarized in Algorithm 1. After population initial-
ization, MASC repeats a series of generations (limited to MaxGeneration) to
explore the search space which is defined by the set of all proper k-colorings
(k is not a fixed value, Section 2.1). At each generation, two or more parents
are selected at random (line 6) and used by the dedicated crossover operator
to generate an offspring solution (line 7, Section 2.3). The offspring solution is
then improved by a double neighborhood tabu search (line 8, Section 2.4). If
the improved offspring has a better sum of colors, it is then used to update the
current best solution found so far (lines 9-10). Finally, the population updat-
ing criterion decides whether the improved offspring will replace one existing
individual of the population or not (line 12, Section 2.5).

Algorithm 1 An overview of the MASC memetic algorithm for MSCP
1: input: A graph G
2: output: The minimum sum coloring c∗ found and its objectif f(c∗)
3: Population Initialization(P, p) /* Population P has p solutions, Sect. 2.2 */
4: f∗ ← minc∈P f(c) /* f∗ records the best objective value found so far */
5: for i← 1 to MaxGeneration do

6: P ′ ← Selection(P) /* Select 2 or more parents at random for crossover */
7: o← Crossover(P ′) /* Crossover to get an offspring solution, Sect. 2.3 */
8: o← DNTS(o) /* Improve o with the DNTS procedure, Sect. 2.4*/
9: if f(o) < f∗ then

10: f∗ ← f(o); c∗ ← o
11: end if

12: Population Updating(P, o) /* Sect. 2.5 */
13: end for

14: return f∗, c∗

2.1 Search Space and Evaluation Function

The search space explored by MASC is the set C of all proper k-colorings of G
(k is not fixed). For a given proper k-coloring c, its quality is directly assessed
by the sum of colors f(c) =

∑

v∈V c(v) =
∑k

l=1 l|Vl|.

3

2.2 Initial Population

Our algorithm begins with a population P of p feasible colorings. This popula-
tion can be obtained by any graph coloring algorithm that is able to generate
different proper colorings for a graph. In our case, we employ the well-known
TABUCOL [9], more precisely its improved version introduced in [5]. For a
given graph G, TABUCOL tries to find a proper k-coloring with k as small as
possible. Given the stochastic nature of TABUCOL, we run it multiple times
to obtain different k-colorings (k may take different values). Each resulting
k-coloring is inserted into P if it is not already present (discarded otherwise).
This process is repeated until P is filled with p different k-colorings.

2.3 Crossover Operator

The crossover operator is an important component in a population-based algo-
rithm. It is used to generate one or more new offspring individuals to discover
new promising search areas.

MASC uses a multi-parent crossover operator, called MGPX, which is similar
to the one introduced in [7] as a variant of the well-known GPX crossover first
proposed in [5] for GCP (restricted to two parents). MGPX generates only one
offspring solution o from α parents randomly chosen from P , where α varies
from 2 to 4 according to |V | and the best k-coloring found for GCP (see Eq.
1). Motivations for these α values can be found in [20].

α =



























2, if |V |/k < 5

3, if 5 ≤ |V |/k ≤ 15

4, otherwise

(1)

MGPX is summarized in Algorithm 2. It builds the color classes of the o off-
spring one by one, transmitting as many vertices as possible from the parents
at each step (for quality purpose) (lines 7-14). Once a parent has been used
for transmitting an entire color class to o, the parent is not considered for
a few steps with the purpose of varying the origins of the color classes of o
(line 15). This strategy avoids transmitting always from the same parent and
introduces some diversity in o [14]. Note that the offspring solution is always
a proper k coloring while the number of colors used by the offspring can be
higher than those of the considered parents.

4

Algorithm 2 Pseudo-code of the MGPX combination operator

1: input: A set P ′ of α parents randomly chosen from P
2: output: An offspring o
3: ν ← 0 /* Counts the number of colored vertices in o */
4: κ← 0 /* Counts the number of colors used in o */
5: ϕj ← 0 ∀cj ∈ P ′ /* To identify which parents are forbidden for color κ */
6: while ν < |V | do
7: κ← κ+ 1
8: Pκ ← {cj ∈ P ′ : ϕj < κ} /* Set of parents allowed for color κ */

9: Let V j
∗ be a color class of maximum cardinality ∀cj ∈ Pκ

10: ν ← ν + |V j
∗ |

11: for all v ∈ V j
∗ do

12: o(v)← κ
13: Remove v from ci ∀ci ∈ P ′

14: end for

15: ϕj ← κ+ ⌊α/2⌋ /* Forbid using cj ∈ P ′ for a few steps */
16: end while

17: return o

2.4 A Double-Neighborhood Tabu Search for Sum Coloring

Local optimization is another important element within a memetic algorithm.
In our case, its role is to improve as far as possible the quality (i.e., the
sum of colors) of a given solution returned by the MGPX crossover operator.
This is achieved by a Double-Neighborhood Tabu Search (DNTS) procedure
specifically designed for MSCP (see Algorithm 3).

DNTS uses two different and complementary neighborhoods N1 and N2 which
are applied in a token-ring way [3,15] to find good local optima (intensification)
(lines 2-14). More precisely, we start our search with one neighborhood (lines 6-
9) and when the search ends with its best local optimum, we switch to the other
neighborhood to continue the search while using the last local optimum as the
starting point (lines 10-13). When this second search terminates, we switch
again to the first neighborhood and so on. DNTS continues the exploration of
each neighborhood Ni (i = 1, 2) until pi (i = 1, 2) consecutive iterations fail
to update the best solution found.

This neighborhood-based intensification phase terminates if the best local op-
timum is not updated for p3 consecutive iterations (line 14). At this point,
we enter into a diversification phase by triggering a perturbation to escape
from the local optimum (line 15, Section 2.4.4). The DNTS procedure stops
when a maximum number of iterations p4 is met. We explain below the two
neighborhoods, the tabu list management and the perturbation mechanism.

5

Algorithm 3 Pseudo-code of double-neighborhood tabu search for MSCP
1: Input: Graph G, a k-coloring c
2: Output: the best improved k-coloring
3: c∗ ← c
4: while a stop condition is not met do
5: repeat

6: c ← TS(N1, c) /* Tabu search with neighborhood N1, Sect. 2.4.1 */
7: if f(c) < f(c∗) then
8: c∗ ← c
9: end if

10: c ← TS(N2, c) /* Tabu search with neighborhood N2, Sect. 2.4.2 */
11: if f(c) < f(c∗) then
12: c∗ ← c
13: end if

14: until c∗ not improved for p3 consecutive iterations
15: c← Perturbation(c∗) /* Search is stagnating, generate a new starting solution

by perturbing the best k-coloring found so far, Sect. 2.4.4 */
16: end while

2.4.1 N1: A Neighborhood Based on Connected Components

The first neighborhood N1 can be described by the operator Exchange(i, j).
Given a proper k-coloring c = {V1, . . . , Vk}, operator Exchange(i, j), (1 ≤ i 6=
j ≤ k) swaps some vertices of a color class Vi against some connected vertices
of another color class Vj. Formally, let Gi,j(c) be the set of all connected
components of more than one vertex in the subgraph of G induced by color
classes Vi and Vj in a proper k-coloring c. In Figure 1 (left) for instance,
Gi,j(c) is composed of two graphs (say g1 and g2): g1 is the subgraph induced
by {v2, v3, v6, v7, v8} and g2 is induced by {v4, v5, v9}.

v1

v2

v3

v4

v5

v6

v7

v8

v9

Vi Vj

v1

v2

v3

v4

v5

v6

v7

v8

v9

Vi Vj

A proper k-coloring c A possible c′ ∈ N1(c)

Fig. 1. N1: An illustrative example with two partial colorings (c and c′ are restricted
here to two Vi and Vj color classes)

Neighborhood N1(c) is composed of the set G(c) of all possible elements in
all the Gi,j(c) sets: G(c) = ∪1≤i<j≤kGi,j(c). In other words, N1(c) includes all

6

the proper k-colorings that can be obtained from the current k-coloring c by
exchanging the vertices of a connected component induced by color classes Vi

and Vj. Figure 1 shows an example where by exchanging the two sets of vertices
{v2, v3} and {v6, v7, v8} of connected component g1 of the current k-coloring c
(left drawing), we obtain a neighboring k-coloring c′ (right drawing).

2.4.2 N2: A Neighborhood Based on One-Vertex-Move

The second neighborhood N2 is conventional and is simpler than N1. N2 can
be described by the operator OneMove(v, i, j). Given a proper k-coloring c =
{V1, . . . , Vk}, operator OneMove(v, i, j), (1 ≤ i 6= j ≤ k) displaces one single
vertex v of a color class Vi to another color class Vj such that the resulting
k-coloring remains proper. For instance, from the current coloring c of the
left drawing of Figure 1, moving vertex v1 from Vi to Vj gives a neighboring
solution. NeighborhoodN2(c) is composed of all the possible proper k-colorings
by applying OneMove(v, i, j) to the current k-coloring c. Like neighborhood
N1, the solutions of this second neighborhood are also proper k-colorings.
Moreover, the number of colors of the neighboring solutions remains the same
as that of the current coloring.

2.4.3 Neighborhood Examination and Tabu List

DNTS applies these two neighborhoods N1 and N2 in a token-ring way [3,15].
The alternation between N1 and N2 is triggered when the current neighbor-
hood is exhausted, i.e., when the current best solution cannot be further im-
proved for a fixed number of consecutive iterations.

During the exploration of a neighborhood, DNTS uses a tabu list [6] to avoid
short-term cycles. Precisely, for the neighborhood N1 defined by the operator
Exchange(i, j), when a set of vertices of a color class Vi are exchanged with a
set of vertices of another color class Vj, exchanges between Vi and Vj are for-
bidden for the next TT iterations (called tabu tenure). For the neighborhood
N2 defined by the operator OneMove(v, i, j), when a vertex v of a color class
Vi is displaced to another color class Vj , the vertex v is forbidden to go back
to Vi for the next TT iterations.

In both cases, the tabu tenure TT is determined simply by taking a random
number from {0, . . . k − 1}. Moreover, a forbidden Exchange or OneMove
operation is always accepted if it leads to a neighboring solution better than
the best solution found so far (this is called aspiration according to the tabu
search terminology).

As shown in Algorithm 3, at each iteration of our DNTS, a best neighboring
solution is selected among all the allowed solutions (from N1 or N2) to replace

7

the current solution. The tabu list is updated accordingly after each iteration.

2.4.4 The Perturbation Mechanism

In addition to the basic diversification mechanism of the tabu list, our DNTS
algorithm applies a stronger diversification strategy based on perturbations
to escape deep local optima. The perturbation is triggered when the current
intensification phase cannot update the recorded best solution c∗ for p3 consec-
utive iterations (see line 15, Algorithm 3). In this case, the search is considered
to be trapped in a deep local optimum and a strong diversification is needed to
bring the search to a new search region. To achieve this, we apply the follow-
ing perturbation technique to modify the recorded best solution c∗ and then
use this perturbed solution to initialize DNTS. Suppose c∗ is composed of k
different color classes and let Vl be the largest color class. We introduce an
additional color class Vk+1 and then move randomly one third of the vertices
of Vl into Vk+1. In order to prevent the subsequent search from coming back
to c∗, Vl and Vk+1 are classified tabu and cannot take part of an Exchange or
a OneMove operation for the next TT iterations (see Section 2.4.3).

2.5 Population Updating

The management of the population usually controls and balances two impor-
tant factors in population-based heuristics: Quality and diversity.

Quality can naturally be measured here using the coloring sum function (f).
The proper k-coloring ci is better than cj if f(ci) < f(cj).

We use the following distance H to estimate the diversity. Given two coloring
ci and cj, Hi,j is the number of vertices in ci and cj which have different
colors: Hi,j = |{v ∈ V : ci(v) 6= cj(v)}|. A small Hi,j value indicates a high
similarity between ci and cj.H is also employed to measure how much diversity
Hi,P a particular k-coloring ci contributes to the entire population P : Hi,P =
minj 6=iHi,j. Again, a small (large) Hi,P value indicates that ci adds a low
(high) diversity to P .

In MASC, f andH are combined in a s “score” function which is used to decide
whether an offspring solution o replaces an individual in the population P or
not: s(ci) = f(ci) + e0.08|V |/Hi,P ∀ci ∈ P . Precisely we first add o into P and
compute all s(ci). We then identify the worse configuration cw (i.e., s(cw) is
maximum). The replacement strategy applies the following rules:

Case 1 (cw is not o): Remove cw from P ;

8

Case 2 (cw is o): Remove the second worse individual from P with probability
0.2, and discard o otherwise.

3 Experimental Results

Our MASC approach was tested on a benchmark composed of 77 well-known
graphs commonly used to report computational results for MSCP: 39 are
part of the COLOR 2002–2004 competitions and the 38 others are known
as “DIMACS” instances. Most of these graphs are available on-line from
http://mat.gsia.cmu.edu/COLOR04, except the 6 “flat” instances that can
be retrieved from http://mat.gsia.cmu.edu/COLOR/instances.html. The
main characteristics of each graph appear in Tables 2 and 5, see columns 1–4
(COLOR 2002–2004 instances are at the top of Table 2 and DIMACS instances
at the bottom): Name of the graph, order (|V |), size (|E|), and chromatic sum
Σ (or the best known upper bound when Σ is unknown).

MASC is programmed in C++ and compiled using GNU gcc on a PC with 2.7
GHz CPU and 4 Gb RAM. Like many memetic algorithms, we use a small pop-
ulation of 10 individuals. The values of the other parameters were determined
empirically, see Table 1. Notice that MaxGenerations = 50 is the stop condi-
tion that determines the running time of the algorithm. The best results of our
MASC algorithm will be made available at http://www.info.univ-angers.fr/pub/hao/masumcol.html.

Table 1
Settings of parameters

Parameter Sect. Description Value

p1 2.4 Maximum number of non-improving moves for TS using N1 500

p2 2.4 Maximum number of non-improving moves for TS using N2 1 000

p3 2.4 Maximum number of non-improving moves of TS for perturbation 4 000

p4 2.4 Maximum iterations of TS procedure 10 000

MaxGenerations 2.5 Maximum number of generations 50

3.1 Computational Results

Columns 6–10 in Table 2 present detailed computational results of our MASC
algorithm: Best result obtained (Σ∗) with the number of required colors (k∗),
success rate (SR, percentage of runs such that Σ∗ ≤ Σ), average coloring sum
(Avg.), standard deviation (σ), and average running time to reach Σ∗ (t, in
minutes). Column k shows the chromatic number or its best upper bound
(i.e., the smallest number of colors for which a k-coloring is ever reported).
Furthermore, a sign “–” in column 4 (Σ) indicates that the instance was never
tested in literature for the sum coloring problem (there are 18 such cases). The

9

http://mat.gsia.cmu.edu/COLOR04
http://mat.gsia.cmu.edu/COLOR/instances.html
http://www.info.univ-angers.fr/pub/hao/masumcol.html

reported values are based on 30 independent runs (i.e., with different random
seeds).

From Table 2, one observes that for the 25 cases of 39 COLOR 2002–2004 in-
stances with known upper bounds (see top part of the table), MASC improves
the best known upper bound for one instance (miles500) and equals the best
known results for the other 24 graphs. For the remaining 14 cases, we provide
upper bounds for the first time. Furthermore, MASC achieves robust results
here since SR = 1.0 and σ = 0.0 for these graphs except two instances (homer
and queen9.9). The average running time of MASC ranges from less than one
second to about 13 minutes except for the homer instance.

For the set of 24 DIMACS instances (bottom part), the MASC algorithm
improves the best known upper bound for 4 graphs (DSJC250.9, flat300 28 0,
le450 15c, and le450 15d) and equals the best known results for 6 instances.
Unfortunately, MASC was unable to reach the best known results for the
other 10 graphs (see lines where SR = 0.0). For the four graphs which were
not tested previously, we report upper bounds achieved for the first time. The
average running time is less than 76 minutes except for the DSJC500.5 and
flat300 28 0 instances. Finally, we notice that the number of colors needed to
ensure the best sum coloring (k∗) can be larger than the chromatic number or
its best upper bound (k).

3.2 Comparisons With State-of-the-art Algorithms

Table 3 compares MASC with 5 recent effective algorithms that cover the best
known results for the considered benchmark: EXSCOL [21], BLS [1], MDS5
[8], MRLF [13], and HA [4]. No averaged value appears in the table for HA,
MDS5, and MRLF since this information is not given in [4,8,13]. Furthermore,
“–” marks signal that some instances were not tested by some approaches.

Since the reference algorithms give only results for a (small) subset of the
considered benchmark, it is difficult to analyze the performance of these al-
gorithms by statistical tests. Hence, we compare the performance between
MASC and these reference algorithms one by one and summarize the compar-
isons in Table 4. The first column of Table 4 indicates the name of the reference
heuristics, followed by the number #G of graphs tested by each algorithm and
shown in Table 3. The last three columns give the number of times MASC
reports a better, equal, or worse result compared to each reference algorithm.

From Table 4, it can be observed that MASC obtains absolutely no worse
results than MDS5, MRLF, and HA (see the last three lines). Furthermore,
MASC gets better results than these algorithms for 9, 16, and 10 instances
respectively. Our algorithm is also quite competitive with EXSCOL and BLS

10

Table 2
Detailed computational results of MASC on the set of 39 COLOR 2002-2004 in-
stances (upper part) and 24 DIMACS instances (bottom part)

Characteristics of the graphs MASC
Name |V | |E| Σ k Σ∗(k∗) SR Avg. σ t

myciel3 11 20 21 4 21(4) 1.0 21.0 0.0 0.0
myciel4 23 71 45 5 45(5) 1.0 45.0 0.0 0.0
myciel5 47 236 93 6 93(6) 1.0 93.0 0.0 0.0
myciel6 95 755 189 7 189(7) 1.0 189.0 0.0 0.1
myciel7 191 2 360 381 8 381(8) 1.0 381.0 0.0 1.1
anna 138 986 276 11 276(11) 1.0 276.0 0.0 0.1
david 87 812 237 11 237(11) 1.0 237.0 0.0 0.1
huck 74 602 243 11 243(11) 1.0 243.0 0.0 0.0
jean 80 508 217 10 217(10) 1.0 217.0 0.0 0.0
homer 561 1 629 - 10 1 123(12) 1.0 1 136.2 5.8 80.6
queen5.5 25 160 75 5 75(5) 1.0 75.0 0.0 0.0
queen6.6 36 290 138 7 138(8) 1.0 138.0 0.0 1.1
queen7.7 49 476 196 7 196(7) 1.0 196.0 0.0 0.0
queen8.8 64 728 291 9 291(9) 1.0 291.0 0.0 12.8
queen9.9 81 2 112 - 10 409(10) 0.3 410.5 1.2 1.2
queen8.12 96 1 368 - 12 624(12) 1.0 624.0 0.0 0.0
games120 120 638 443 9 443(9) 1.0 443.0 0.0 0.5
miles250 128 387 325 8 325(8) 1.0 325.0 0.0 0.4
miles500 128 1 170 ≤ 709 20 705(20) 1.0 705.0 0.0 1.0
fpsol2.i.1 496 11 654 3 403 65 3 403(65) 1.0 3 403.0 0.0 8.7
fpsol2.i.2 451 8 691 - 30 1 668(30) 1.0 1 668.0 0.0 5.7
fpsol2.i.3 425 8 688 - 30 1 636(30) 1.0 1 636.0 0.0 7.0
mug88 1 88 146 178 4 178(4) 1.0 178.0 0.0 0.1
mug88 25 88 146 178 4 178(4) 1.0 178.0 0.0 0.2
mug100 1 100 166 202 4 202(4) 1.0 202.0 0.0 0.2
mug100 25 100 166 202 4 202(4) 1.0 202.0 0.0 0.3
2-Insertions 3 37 72 62 4 62(4) 1.0 62.0 0.0 0.0
3-Insertions 3 56 110 92 4 92(4) 1.0 92.0 0.0 0.0
inithx.i.1 864 18 707 - 54 3 676(54) 1.0 3 676.0 0.0 7.6
inithx.i.2 645 13 979 - 31 2 050(31) 1.0 2 050.0 0.0 4.4
inithx.i.3 621 13 969 - 31 1 986(31) 1.0 1 986.0 0.0 1.8
mulsol.i.1 197 3 925 - 49 1 957(49) 1.0 1 957.0 0.0 0.1
mulsol.i.2 188 3 885 - 31 1 191(31) 1.0 1 191.0 0.0 0.2
mulsol.i.3 184 3 916 - 31 1 187(31) 1.0 1 187.0 0.0 0.2
mulsol.i.4 185 3 946 - 31 1 189(31) 1.0 1 189.0 0.0 0.2
mulsol.i.5 186 3 973 - 31 1 160(31) 1.0 1 160.0 0.0 0.2
zeroin.i.1 211 4 100 - 49 1 822(49) 1.0 1 822.0 0.0 0.2
zeroin.i.2 211 3 541 1 004 30 1 004(30) 1.0 1 004.0 0.0 0.1
zeroin.i.3 206 3 540 998 30 998(30) 1.0 998.0 0.0 0.1

DSJC125.1 125 736 326 5 326(7) 0.7 326.6 0.9 4.4
DSJC125.5 125 3 891 1 012 17 1 012(18) 0.1 1 020.0 3.9 3.5
DSJC125.9 125 6 961 2 503 44 2 503(44) 0.5 2 508.0 5.6 1.9
DSJC250.1 250 3 218 973 8 974(9) 0.0 990.5 8.3 17.3
DSJC250.5 250 15 668 3 219 28 3 230(31) 0.0 3 253.7 14.3 23.1
DSJC250.9 250 27 897 ≤ 8 286 72 8 280(74) 0.1 8 322.7 22.3 5.6
DSJC500.1 500 12 458 2850 12 2 940(14) 0.0 3 013.4 28.3 50.4
DSJC500.5 500 62 624 10 910 48 11 101(53) 0.0 11 303.5 73.9 202.5
DSJC500.9 500 112 437 29 912 126 29 994(126) 0.0 30059.1 31.6 90.9
flat300 20 0 300 21 375 3 150 20 3 150(20) 1.0 3 150.0 0.0 0.0
flat300 26 0 300 21 633 3 966 26 3 966(26) 1.0 3 966.0 0.0 0.8
flat300 28 0 300 21 695 ≤ 4 282 28 4 238(30) 0.1 4 313.4 22.3 309.7
le450 5a 450 5 714 - 5 1 350(5) 1.0 1 350.0 0.0 0.7
le450 5b 450 5 734 - 5 1 350(5) 1.0 1 350.0 0.0 0.4
le450 5c 450 9 803 - 5 1 350(5) 1.0 1 350.0 0.0 0.2
le450 5d 450 9 757 - 5 1 350(5) 1.0 1 350.0 0.0 0.5
le450 15a 450 8 168 2 632 15 2 706(19) 0.0 2 742.6 13.8 41.3
le450 15b 450 8 169 2 642 15 2 724(19) 0.0 2 756.2 14.8 40.3
le450 15c 450 16 680 ≤ 3 866 15 3 491(16) 1.0 3 491.0 0.0 45.3
le450 15d 450 16 750 ≤ 3 921 15 3 506(17) 1.0 3 511.8 3.6 59.8
le450 25a 450 8 260 3 153 25 3 166(27) 0.0 3 176.8 4.4 39.2
le450 25b 450 8 263 3 366 25 3 366(26) 0.1 3 375.1 3.4 40.3
le450 25c 450 17 343 4 515 25 4 700(31) 0.0 4 773.3 25.2 75.3
le450 25d 450 17 425 4 544 25 4 722(29) 0.0 4 805.7 27.4 63.4

11

Table 3
Comparisons of MASC with five state-of-the-art sum coloring algorithms

Graph EXSCOL [21] BLS [1] MDS5 [8] MRLF [13] HA [4] MASC

Name Σ Σ∗ Avg. Σ∗ Avg. Σ∗ Σ∗ Σ∗ Σ∗ Avg.

myciel3 21 21 21.0 21 21.0 21 21 21 21 21.0

myciel4 45 45 45.0 45 45.0 45 45 45 45 45.0

myciel5 93 93 93.0 93 93.0 93 93 93 93 93.0

myciel6 189 189 189.0 189 196.6 189 189 189 189 189.0

myciel7 381 381 381.0 381 393.8 381 381 381 381 381.0

anna 276 283 283.2 276 276.0 276 277 – 276 276.0

david 237 237 238.1 237 237.0 237 241 – 237 237.0

huck 243 243 243.8 243 243.0 243 244 243 243 243.0

jean 217 217 217.3 217 217.0 217 217 – 217 217.0

queen5.5 75 75 75.0 75 75.0 75 75 – 75 75.0

queen6.6 138 150 150.0 138 138.0 138 138 138 138 138.0

queen7.7 196 196 196.0 196 196.0 196 196 – 196 196.0

queen8.8 291 291 291.0 291 291.0 291 303 – 291 291.0

games120 443 443 447.9 443 443.0 443 446 446 443 443.0

miles250 325 328 333.0 327 328.8 325 334 343 325 325.0

miles500 ≤ 709 709 714.5 710 713.3 712 715 755 705 705.0

fpsol2.i.1 3 403 – – – – 3 403 – 3 405 3 403 3 403.0

mug88 1 178 – – – – 178 – 190 178 178.0

mug88 25 178 – – – – 178 – 187 178 178.0

mug100 1 202 – – – – 202 – 211 202 202.0

mug100 25 202 – – – – 202 – 214 202 202.0

2-Insertions 3 62 – – – – 62 – 62 62 62.0

3-Insertions 3 92 – – – – 92 – 92 92 92.0

zeroin.i.2 1 004 – – – – 1 004 – 1 013 1 004 1 004.0

zeroin.i.3 998 – – – – 998 – 1 007 998 998.0

DSJC125.1 326 326 326.7 326 326.9 326 352 – 326 326.6

DSJC125.5 1 012 1 017 1 019.7 1 012 1 012.9 1 015 1 141 – 1 012 1 020.0

DSJC125.9 2 503 2 512 2 512.0 2 503 2 503.0 2 511 2 653 – 2 503 2 508.0

DSJC250.1 973 985 985.0 973 982.5 977 1 068 – 974 990.5

DSJC250.5 3 219 3 246 3 253.9 3 219 3 248.5 3 281 3 658 – 3 230 3 253.7

DSJC250.9 ≤ 8 286 8 286 8 288.8 8 290 8 316.0 8 412 8 942 – 8 280 8 322.7

DSJC500.1 2 850 2 850 2 857.4 2 882 2 942.9 2 951 3 229 – 2 940 3 013.4

DSJC500.5 10 910 10 910 10 918.2 11 187 11 326.3 11 717 12 717 – 11 101 11 303.5

DSJC500.9 29 912 29 912 29 936.2 30 097 30 259.2 30 872 32 703 – 29 994 30 059.1

flat300 20 0 3 150 3 150 3 150.0 – – – – – 3 150 3 150.0

flat300 26 0 3 966 3 966 3 966.0 – – – – – 3 966 3 966.0

flat300 28 0 ≤ 4 282 4 282 4 286.1 – – – – – 4 238 4 313.4

le450 15a 2 632 2 632 2 641.9 – – – – – 2 706 2 742.6

le450 15b 2 642 2 642 2 643.4 – – – – – 2 724 2 756.2

le450 15c ≤ 3 866 3 866 3 868.9 – – – – – 3 491 3 491.0

le450 15d ≤ 3 921 3 921 3 928.5 – – – – – 3 506 3 511.8

le450 25a 3 153 3 153 3 159.4 – – – – – 3 166 3 176.8

le450 25b 3 366 3 366 3 371.9 – – – – – 3 366 3 375.1

le450 25c 4 515 4 515 4 525.4 – – – – – 4 700 4 773.3

le450 25d 4 544 4 544 4 550.0 – – – – – 4 722 4 805.7

12

Table 4
MASC vs. five state-of-the-art sum coloring algorithms

Competitor #G
Results of MASC (Σ∗)

Better Equal Worse

EXSCOL [21] 36 12 16 8

BLS [1] 25 5 17 3

MDS5 [8] 34 9 25 0

MRLF [13] 25 16 9 0

HA [4] 19 10 9 0

which are the most recent and effective methods since it obtains better or
equivalent results for 28 and 22 graphs respectively. MASC reaches worse
results than EXSCOL and BLS only for 8 and 3 graphs respectively.

3.3 Experiment on Large Graphs

We turn now our attention to the performance of our MASC algorithm to
color large graphs with at least 500 vertices. These large graphs are known to
be quite difficult for almost all the existing sum coloring approaches except
EXSCOL which dominates the other heuristics particularly on large graphs.
We show a new experiment with MACS applied to color 17 large graphs. In
this experiment, we run MASC 10 times on each graph under exactly the
same condition as in Section 3.1. The only difference is that we use the so-
lution of EXSCOL 1 as one of MASC’s 10 initial solutions while the 9 other
initial solutions are generated according to the procedure described in Section
2.2. With this experiment, we aimed to investigate two interesting questions.
Is it possible for MASC to improve the results of the powerful EXSCOL algo-
rithm? Does the initial population influence the performance of MASC? The
computational outcomes of this experiment are provided in Table 5.

In Table 5, column 4 presents the best known result (Σ) in the literature,
columns 5–6 present the best result (Σ∗) and the average coloring sum (Avg.)
of EXSCOL and columns 7–11 present detailed computational results of our
MASC algorithm: Best result obtained (Σ∗) with the number of required colors
(k∗), average coloring sum (Avg.), standard deviation (σ), and average running
time to reach Σ∗ (t, in minutes). One notices that the values of columns 4 and 5
are identical. This is because EXSCOL is the single approach in the literature
able to attain these results.

Table 5 shows that with the help of its search mechanism, our MASC algorithm
is able to further improve the best known results of 12 instances (entries in
bold). This is remarkable given that no previous approach can even equal these

1 Available at http://www.info.univ-angers.fr/pub/hao/exscol.html

13

http://www.info.univ-angers.fr/pub/hao/exscol.html

Table 5
Results of MASC on 17 large graphs with at least 500 vertices

Characteristics of the graphs EXSCOL MASC

Name |V | |E| Σ Σ∗ Avg. k Σ∗(k∗) Avg. σ t

DSJC500.1 500 12 458 2 850 2 850 2 857.4 12 2 841(14) 2 844.1 3.2 28.9

DSJC500.5 500 62 624 10 910 10 910 10 918.2 48 10 897(51) 10 905.8 4.6 73.3

DSJC500.9 500 112 437 29 912 29 912 29 936.2 126 28 896(131) 29 907.8 5.8 59.0

DSJC1000.1 1 000 49 629 9 003 9 003 9 017.9 20 8 995(22) 9 000.5 3.0 70.7

DSJC1000.5 1 000 249 826 37 598 37 598 37 673.8 83 37 594(87) 37 597.6 1.2 200.4

DSJC1000.9 1 000 449 449 103 464 103 464 103 531.0 223 103 464(231) 103 464.0 0.0 125.9

flat1000 50 0 1 000 245 000 25 500 25 500 25 500.0 50 25 500(50) 25 500.0 0.0 0.1

flat1000 60 0 1 000 245 830 30 100 30 100 30 100.0 60 30 100(60) 30 100.0 0.0 114.6

flat1000 76 0 1 000 246 708 37 167 37 167 37 213.2 82 37 167 (85) 37 167.0 0.0 1.1

latin sqr 10 900 307 350 42 223 42 223 42 392.7 98 41 444(100) 41 481.5 19.1 101.2

wap05 905 43 081 13 680 13 680 13 718.4 50 13 669(51) 13 677.8 3.7 3.3

wap06 947 43 571 13 778 13 778 13 830.9 46 13 776(48) 13 777.8 0.6 4.1

wap07 1 809 103 368 28 629 28 629 28 663.8 46 28 617(50) 28 624.7 3.8 12.4

wap08 1 870 104 176 28 896 28 896 28 946.0 45 28 885(50) 28 890.9 3.2 15.1

qg.order30 900 26 100 13 950 13 950 13 950.0 30 12 581(31) 12 641.3 45.7 4.2

qg.order40 1 600 62 400 32 800 32 800 32 800.0 40 32 800(40) 32 800.0 0.0 11.8

qg.order60 3 600 212 400 110 925 110 925 110 993.0 60 109 800(60) 109 800.0 0.0 290.6

results. Moreover, if we contrast the results of the three DSJC500.x graphs
(x = 1, 5, 9) reported in Tables 2 and 5, it is clear that the initial population
impacts directly MASC’s outcomes. This indicates that the performance of
MASC could be further improved by using a more powerful coloring algorithm
to generate the initial solutions of its population.

4 Analysis of MASC

In this section, we investigate the influence of two important ingredients of
the proposed memetic algorithm, i.e., the multi-parent crossover operator and
the combined neighborhood. Experiments were based on 16 selected graphs of
different types, for which some reference algorithms cannot achieve the best
known results. Hence, these selected instances can be considered to be difficult
and representative.

4.1 Influence of the Multi-parent Crossover Operator

For our memetic algorithm, it is relevant to evaluate the effectiveness of its
crossover operator. To verify this, we carry out experiments on the 16 selected
graphs and run both MASC (using the MGPX crossover) and DNTS (without

14

Table 6
Comparative results of MASC and DNTS

Graph MASC DNTS
tt

Name Σ Σ∗ Avg. Σ∗ Avg.

anna 276 276 276.0 276 276.0 N

queen6.6 138 138 138.0 138 138.0 N

miles250 325 325 325.0 325 325.0 N

miles500 ≤ 709 705 705.0 705 705.6 Y

DSJC125.1 326 326 326.6 326 328.6 Y

DSJC125.5 1 012 1 012 1 020.0 1 016 1 029.8 Y

DSJC125.9 2 503 2 503 2 508.0 2 506 2 530.1 Y

DSJC250.1 973 974 990.5 981 997.7 Y

DSJC250.5 3 219 3 230 3 253.7 3 234 3 301.7 Y

DSJC250.9 ≤ 8 286 8 280 8 322.7 8 321 8 381.9 Y

flat300 26 0 3 966 3 966 3 966.0 3 966 3 966.0 N

flat300 28 0 ≤ 4 282 4 238 4 313.4 4 303 4 406.3 Y

le450 15c ≤ 3 866 3 491 3 491.0 3 491 3 492.1 Y

le450 15d ≤ 3 921 3 506 3 511.8 3 506 3 515.0 Y

le450 25c 4 515 4 700 4 773.3 4 749 4 803.9 Y

le450 25d 4 544 4 722 4 805.7 4 784 4 835.3 Y

MGPX) for 30 times (with the same parameter p1, p2 and p3 settings as defined
in Table 1). The DNTS (without MGPX) starts with a single solution which
is generated for MASC. DNTS stops when a maximum number of 5 × 105

iterations in order to make sure that MASC and DNTS are given the same
search effort. The results are given in Table 6.

From Table 6, one notices that DNTS equals and improves respectively 5 and
3 best known results while MASC equals and improves respectively 5 and 11
best known results. Furthermore, the last column tt (t-test) indicates whether
the observed difference between MASC and DNTS is statistically significant
when a 95% confidence t-test is performed in terms of the best result obtained
(Σ∗). The t-test indicates that MASC is statistically better than DNTS for
12 out of 16 cases except for the instances where DNTS can achieve the best
known results (Σ). These comparative results provide clear evidences that the
MGPX crossover operator plays an important role in the MASC algorithm.

4.2 Influence of the Neighborhood Combination

The neighborhood is an important element that influences the local search
procedure. Our proposed algorithm relies on two different neighborhoods: N1

(neighborhood based on connected components) and N2 (neighborhood based
on one-vertex-move) which are explored in a token-ring way (see Section 2.4).
In this section, we investigate the interest of this combined use of the two

15

neighborhoods. For this purpose, we carried out experiments on the 16 selected
graphs to compare the original Double-Neighborhood Tabu Search (DNTS)
with two variants which uses only one neighborhood N1 or N2. We use below
TSN1 and TSN2 to denote these two variants. These three TS procedures
(DNTS, TSN1 and TSN2) are run under the same stop condition, i.e. limited
to 5× 105 iterations.

We run 30 times these TS procedures to solve each of the 16 selected graphs
and report the computational outcomes (the best and average results) in Table
7. One easily observes that DNTS obtains better or equal results compared to
TSN1 and TSN2 for all the instances in terms of the best known result (Σ∗)
and the average result (Avg.). The t-test tti (i = 1, 2) in the last two columns
confirms that with a 95% confidence level DNTS is slightly or significantly
better than TSN1 and TSN2. This experiment demonstrates thus the advantage
of the token-ring combination of the two neighborhoods compared to each
individual neighborhood.

Table 7
Comparative results of the LS improvement method according to the neighborhood
employed

Graph
DNTS TSN2 TSN1

tt2 tt1
Σ∗ Avg. Σ∗ Avg. Σ∗ Avg.

anna 276 276.0 282 285.8 276 276.0 Y N

queen6.6 138 138.0 138 138.4 138 138.0 Y N

miles250 325 325.0 346 361.6 335 340.7 Y Y

miles500 705 705.6 722 736.0 719 730.9 Y Y

DSJC125.1 326 328.6 334 340.8 329 334.0 Y Y

DSJC125.5 1016 1029.8 1 031 1 045.1 1 020 1 031.8 Y N

DSJC125.9 2 506 2 530.1 2 514 2 557.6 2 512 2 538.3 Y N

DSJC250.1 981 997.7 1 004 1 021.3 1 022 1 039.9 Y Y

DSJC250.5 3 234 3 301.7 3 271 3 323.9 3 260 3 306.5 Y N

DSJC250.9 8 321 8 381.9 8 347 8 405.6 8 318 8 387.5 Y N

flat300 26 0 3 966 3 966.0 3 966 3 966.0 3 966 3 966.0 N N

flat300 28 0 4 303 4 406.3 4 347 4 427.8 4 332 4 435.5 N Y

le450 15c 3 491 3 492.5 3 503 3 517.2 3 508 3 551.8 Y Y

le450 15d 3 506 3 515.0 3 528 3 538.5 3 526 3 568.2 Y Y

le450 25c 4 749 4 803.9 4 828 4 893.9 5 005 5 067.4 Y Y

le450 25d 4 784 4 835.3 4 848 4 907.0 5 035 5 119.1 Y Y

5 Conclusion

In this paper, we presented a memetic algorithm (MASC) to deal with the
minimum sum coloring problem (MSCP). The proposed algorithm employs
an effective tabu search procedure with a combination of two neighborhoods,

16

a multi-parent crossover operator and a population updating mechanism to
balance intensification and diversification.

We assessed the performance of MASC on 77 well-known graphs from the
DIMACS and COLOR 2002-2004competitions. MASC can improve 17 best
known upper bounds including 11 large and very hard graphs with at least
500 vertices while equaling 30 previous best results. We also report upper
bounds for the 18 remaining graphs for the first time. Compared with five
recent and effective algorithms which cover the best known results for the
tested instances, our MASC algorithm remains quite competitive.

Furthermore, we investigated two important components of the proposed algo-
rithm. The experiments demonstrate the relevance of the multi-parent crossover
operator and the combined neighborhood for the overall performance of MASC.

Acknowledgment

The work is partially supported by the RaDaPop (2009-2013) and LigeRo
projects (2009-2013) from the Region of Pays de la Loire (France). Support
for Yan Jin from the China Scholarship Council is also acknowledged.

References

[1] U. Benlic, J.-K. Hao, A study of breakout local search for the minimum sum
coloring problem, in: L. Bui, Y. Ong, N. Hoai, H. Ishibuchi, P. Suganthan (eds.),
Simulated Evolution and Learning, vol. 7673 of Lecture Notes in Computer
Science, Springer, Berlin / Heidelberg, Germany, 2012, pp. 128–137.

[2] H. Bouziri, M. Jouini, A tabu search approach for the sum coloring problem,
Electronic Notes in Discrete Mathematics 36 (2010) 915–922.

[3] L, Di Gaspero, A. Schaerf, Neighborhood portfolio approach for local search
applied to timetabling problems. Journal of Mathematical Modeling and
Algorithms 5(1) (2006) 65-89.

[4] S. Douiri, S. Elbernoussi, New algorithm for the sum coloring problem,
International Journal of Contemporary Mathematical Sciences 6 (2011) 453–
463.

[5] P. Galinier, J.-K. Hao, Hybrid evolutionary algorithms for graph coloring,
Journal of Combinatorial Optimization 3 (4) (1999) 379–397.

[6] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, Dordrecht,
The Nederlands, 1997.

17

[7] J.-P. Hamiez, J.-K. Hao, Scatter search for graph coloring, in: P. Collet,
E. Lutton, M. Schoenauer, C. Fonlupt, J.-K. Hao (eds.), Artificial Evolution,
vol. 2310 of Lecture Notes in Computer Science, Springer, Berlin / Heidelberg,
Germany, 2002, pp. 168–179.

[8] A. Helmar, M. Chiarandini, A local search heuristic for chromatic sum, in: L. Di
Gaspero, A. Schaerf, T. Stützle (eds.), Proceedings of the 9th Metaheuristics
International Conference, 2011, pp. 161–170.

[9] A. Hertz, D. de Werra, Using tabu search techniques for graph coloring,
Computing 39 (4) (1987) 345–351.

[10] Z. Kokosiński, K. Kwarciany, On sum coloring of graphs with parallel genetic
algorithms, in: B. Beliczynski, A. Dzielinski, M. Iwanowski, B. Ribeiro (eds.),
Adaptive and Natural Computing Algorithms, vol. 4431 of Lecture Notes in
Computer Science, Springer, Berlin / Heidelberg, Germany, 2007, pp. 211–219.

[11] E. Kubicka, The chromatic sum of graphs, Ph.D. thesis, Western Michigan
University, USA (1989).

[12] E. Kubicka, A. Schwenk, An introduction to chromatic sums, in: Proceedings
of the 17th ACM Annual Computer Science Conference, ACM Press, New York
(NY) USA, 1989, pp. 39–45.

[13] Y. Li, C. Lucet, A. Moukrim, K. Sghiouer, Greedy algorithms for the minimum
sum coloring problem, in: Logistique et Transports Conference, 2009.

[14] Z. Lü, J.-K. Hao, A memetic algorithm for graph coloring, European Journal
of Operational Research 203 (1) (2010) 241–250.

[15] Z. Lü, J.-K. Hao, F. Glover. Neighborhood analysis: a case study on curriculum-
based course timetabling. Journal of Heuristics 17(2) (2011) 97–118.

[16] M. Malafiejski, Sum coloring of graphs, in: M. Kubale (ed.), Graph Colorings,
vol. 352 of Contemporary mathematics, American Mathematical Society, New
Providence (Rhode Island) USA, 2004, pp. 55–65.

[17] E. Malaguti, M. Monaci, P. Toth, A metaheuristic approach for the vertex
coloring problem, INFORMS Journal on Computing 20 (2) (2008) 302–316.

[18] P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in:
F. Glover, G. Kochenberger (eds.), Handbook of Metaheuristics, vol. 57 of
International Series in Operations Research and Management Science, chap. 5,
Kluwer Academic Publishers, Dordrecht, The Nederlands, 2003, pp. 105–144.

[19] F. Neri, C. Cotta, P. Moscato (eds.), Handbook of Memetic Algorithms, vol.
379 of Studies in Computational Intelligence, Springer, Berlin / Heidelberg,
Germany, 2012.

[20] D. Porumbel, J.-K. Hao, P. Kuntz, An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring,
Computers & Operations Research 37 (10) (2010) 1822–1832.

18

[21] Q. Wu, J.-K. Hao, An effective heuristic algorithm for sum coloring of graphs,
Computers & Operations Research 39 (7) (2012) 1593–1600.

19

	1 Introduction
	2 MASC: A Memetic Algorithm for Minimum Sum Coloring
	2.1 Search Space and Evaluation Function
	2.2 Initial Population
	2.3 Crossover Operator
	2.4 A Double-Neighborhood Tabu Search for Sum Coloring
	2.5 Population Updating

	3 Experimental Results
	3.1 Computational Results
	3.2 Comparisons With State-of-the-art Algorithms
	3.3 Experiment on Large Graphs

	4 Analysis of MASC
	4.1 Influence of the Multi-parent Crossover Operator
	4.2 Influence of the Neighborhood Combination

	5 Conclusion
	References

