BNl ORCA - Online Research @ Cardiff

PRIFYSGOL

CARDYB

This is an Open Access document downloaded from ORCA, Cardiff University's
institutional repository:https://orca.cardiff.ac.uk/id/eprint/53966/

This is the author’s version of a work that was submitted to / accepted for
publication.

Citation for final published version:

Smith-Miles, Kate, Baatar, Davaatseren, Wreford, Brendan and Lewis, Rhyd 2014.
Towards objective measures of algorithm performance across instance space.
Computers & Operations Research 45 , pp. 12-24. 10.1016/j.cor.2013.11.015

Publishers page: https://doi.org/10.1016/j.cor.2013.11.015

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting
and page numbers may not be reflected in this version. For the definitive version of
this publication, please refer to the published source. You are advised to consult the
publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for
publications made available in ORCA are retained by the copyright holders.

Towards Objective Measures of Algorithm Performance
Across Instance Space

Kate Smith-Miles*, Davaatseren Baatar, Brendan Wreford

School of Mathematical Sciences, Monash University, Victoria 3800, Australia

Rhyd Lewis
School of Mathematics, Cardiff University, Wales

Abstract

This paper tackles the difficult but important task of objective algorithm per-
formance assessment for optimization. Rather than reporting average perform-
ance of algorithms across a set of chosen instances, which may bias conclusions,
we propose a methodology to enable the strengths and weaknesses of different
optimization algorithms to be compared across a broader instance space. The
results reported in a recent Computers and Operations Research paper com-
paring the performance of graph coloring heuristics are revisited with this new
methodology to demonstrate i) how pockets of the instance space can be found
where algorithm performance varies significantly from the average performance
of an algorithm; ii) how the properties of the instances can be used to predict al-
gorithm performance on previously unseen instances with high accuracy; and iii)
how the relative strengths and weaknesses of each algorithm can be visualized
and measured objectively.

Keywords: comparative analysis, heuristics, graph coloring, algorithm
selection, performance prediction

* Corresponding author: kate.smith-miles@monash.edu
Phone: +61 3 99053170
Fax: +61 3 99054403

Preprint submitted to FElsevier 27th November 2013

1. Introduction

Objective assessment of optimization algorithm performance is notoriously
difficult [1, 2], especially when the conclusions depend so heavily on the chosen
test instances of the optimization problem. The popular use of benchmark lib-
raries of instances (e.g. the OR-Library [3]) helps to standardize the testing
of algorithms, but may not be sufficient to reveal the true strengths and weak-
nesses of algorithms. As cautioned by Hooker [1, 2] nearly two decades ago,
there is a need to be careful about the conclusions that can be drawn beyond
the selected instances. It has been documented that there are some optimiza-
tion problems where the benchmark library instances are not very diverse [4]
and there is a danger that algorithms are developed and tuned to perform well
on these instances without understanding the performance that can be expected
on instances with diverse properties. Furthemore, while the peer-review process
usually ensures that standard benchmark instances are used for well-studied
problems, for many real-world or more unusual optimisation problems there is
a lack of benchmark instances, and a tendency for papers to be published that
report algorithm performance based only on a small set of instances presented
by the authors. Such papers typically are able to demonstrate that the new
algorithm proposed by the authors outperforms other previously published ap-
proaches (it is difficult to get published otherwise), and the choice of instances
cannot be challenged due to the lack of alternative instances.

The No-Free-Lunch (NFL) Theorems [5, 6] state that all optimization al-
gorithms have identically distributed performance when objective functions are
drawn uniformly at random, and all algorithms have identical mean perform-
ance across the set of all optimisation problems. Does this idea apply also to
different instances of a particular optimization problem, which give rise to only a
subset of possible objective functions? Probably not [7], but it still seems unwise
to believe that any one optimization algorithm will always be superior for all
possible instances of a given problem. We should expect that any algorithm has
weaknesses, and that some instances could be conceived where the algorithm
would be less effective than its competitors, or at least instances exist where
their competitive advantage disappears. Our current research culture, where
negative results are seen as somehow less of a contribution than positive ones,
means that the true strengths and weaknesses of an optimisation algorithm
are rarely exposed and reported. Yet for advancement of the field, surely we
must find a way to make it easier for researchers to report the strengths and
weaknesses of their algorithms. On which types of instances does an algorithm
outperform its competitors? Where is it less effective? How can we describe
those instances?

Occasionally we find a paper that presents a well-defined class of instances
where an algorithm performs well, and reports its failing outside this class (see
[8] for a recent example). Such studies assist our understanding of an algorithm
and its applicability. Does the class of instances where an algorithm is effective
overlap real-world or other interesting instances? Is an algorithm only effective
on instances where its competitors are also effective, or are there some classes

where it is uniquely powerful? How do the properties of the instances affect
algorithm performance? Until we develop the tools to enable researchers to
quickly and easily determine the instances they need to consider to enable the
boundary of effective algorithm performance to be described and quantified in
terms of the properties of the instances, the objectivity of algorithm performance
assessment will always be compromised with sample bias.

Recently, we have been developing the components of such a methodology
[9]. Instances are represented as points in a high-dimensional feature space,
with features chosen intentionally to tease out the similarities and differences
between instance classes. For many broad classes of optimization problems,
a rich set of features have already been identified that can be used to sum-
marize the properties of instances affecting instance difficulty (see Smith-Miles
and Lopes [10] for a survey of suitable features). Representing all available
instances of an optimization problem in a single space in this manner can of-
ten reveal inadequacies in the diversity of the test instances. We can observe
for some problems that benchmark instances appear to be structurally similar
to randomly generated instances, eliciting similar performance from algorithms,
and are not well designed for testing the strengths and weaknesses of algorithms.
We have previously proposed the use of evolutionary algorithms to intentionally
construct instances that are easy or hard for specific algorithms [11], thereby
guaranteeing diversity of the instance set. Once we have sufficient instances cov-
ering most regions of the high-dimensional feature space, we need to be able to
superimpose algorithm performance in this space and visualize the boundaries
of good performance. Using dimensional reduction techniques such as principal
component analysis, we have previously proposed projecting all instances to a
two-dimensional “instance space” [9] where we can visualize the region where
an algorithm can be expected to perform well based on generalization of its
observable performance on the test instances. We call this region the algorithm
footprint in instance space, and the relative size and uniqueness of an algorithm’s
footprint can be used as an objective measure of algorithm power. Inspection of
the distribution of individual features across the instance space can also be used
to generate new insights into how the properties of instances affect algorithm
performance, and machine learning techniques can be employed in the feature
space (or instance space) to predict algorithm performance on unseen instances
[12]. Over the last few years we have applied components of this broad meth-
odology to a series of optimization problems including the Travelling Salesman
Problem [9, 11, 13|, Job-Shop Scheduling [14], Quadratic Assignment Problem
[15], Graph Coloring [12, 16], and Timetabling Problems [17, 18].

While our previous research has generated an initial methodology, it has
raised a number of questions that need to be addressed for a more comprehens-
ive tool to be developed: How should we select the right features to represent
the instance space most effectively? How can we determine the sufficiency and
diversity of the set of instances? Can we more accurately predict algorithm per-
formance in the high-dimensional feature space or the projected two-dimensional
space? How should we determine the boundary of where we expect an algorithm
to perform well based on limited observations? How can we reveal the strengths

and weaknesses of a portfolio of algorithms, as well as their unique strengths
and weaknesses within the portfolio.

This paper extends the methodology that has been under development for
the last few years by addressing these last remaining questions. We demonstrate
the use of the methodology by applying it to some computational results repor-
ted recently for an extensive comparison of graph coloring heuristics [19]. This
case study reveals insights into the relative powers of the chosen optimization
algorithms that were not apparent by considering performance averaged across
all chosen instances.

The remainder of this paper is as follows: in Section 2 we present the frame-
work upon which our methodology rests — the Algorithm Selection Problem
[20] — which considers the relationships between the instance set, features, al-
gorithms, and performance metrics. The detailed steps of the methodology are
then described in Section 3, after proposing solutions to the questions raised
above. In Section 4, we present a graph coloring case study based on the com-
putational experiments of Lewis et al. [19] and discuss the new insights that the
methodology has generated. Our conclusions are presented in Section 5, along
with suggestions for use of the methodology and future research directions.

2. Framework: The Algorithm Selection Problem

In 1976, Rice [20] proposed a framework for the Algorithm Selection Prob-
lem (ASP), which seeks to predict which algorithm from a portfolio is likely
to perform best based on measurable features of problem instances. While
Rice’s focus was not on optimisation algorithms, instead applying this approach
to predict the performance of partial differential equation solvers [21, 22], the
framework is one that is readily generalizable to other domains (see the survey
paper by Smith-Miles [23] for a review). There are four essential components of
the model:

e the problem space P represents a possibly infinitely-sized set of instances
of a problem;

e the feature space F contains measurable characteristics of the instances
generated by a computational feature extraction process applied to P;

e the algorithm space A is a set (portfolio) of algorithms available to solve
the problem;

e the performance space) represents the mapping of each algorithm to a
set of performance metrics.

For performance prediction, we need to find a mechanism for generating the
mapping from feature space to algorithm space. The Algorithm Selection Prob-
lem can be formally stated as: for a given problem instance z € P, with feature
vector f(x) € F, find the selection mapping S(f(z)) into algorithm space A,
such that the selected algorithm « € A maximizes the performance mapping

Infer algorithm
performance on

zepP allzeP FOOTPRINTS
PROBLEM |«————— | ININSTANCE
SPACE SPACE
Instance »)
selection or Deﬁm? algorithm
generation footprints pA(ax))
 ccicp) selecta” to —
. maximise ||y|| yeY
SUB-SPACE of PERFORMANC!
INSTANCES SPACE
[y
feature y(ax) apply algorithm
 selection o to instance x
SRR —
fix) € F @ = S() aeA
FEATURE | ———+~ | ALGORITHM
AN SPACE SPACE
Dimension learn selection 4
reduction mapping
and from features
visualization \L
g((fix) € %2 .
2-d INSTANCE | & = S(e0t) >

SPACE

Figure 1: Methodological framework, extending the Algorithm Selection Problem of Rice
(1976), shown in the box

y(a,x) € Y. The collection of data describing {P, F, A, V,} is known as the
meta-data. Analysis of the meta-data, in particular using statistical and ma-
chine learning techniques to learn the mapping S, between features of instances
and the performance of algorithms, has been used effectively in algorithm port-
folio approaches [14, 15, 17, 24, 25, 26] to predict the algorithm likely to perform
best for unseen instances.

In this research, we utilize the framework of Rice, but extend it to con-
sider our broader agenda: we are not simply concerned with identifying the
winning algorithm, but how to use the meta-data to identify the strengths and
weaknesses of algorithms, and to visualize and quantify the relative power of
algorithms. While our focus is on optimisation algorithms, we will retain the
generic nature of the framework, and highlight where domain-specific consider-
ations apply. Figure 1 presents the framework for our proposed methodology.

Generating and analyzing the meta-data {P, F, A,),} is central to the
framework, as shown in the shaded central box describing Rice’s Algorithm
Selection Problem framework, but we extend the framework in each direction
in order to address our broader objectives.

We start by acknowledging that Rice’s problem space P should really be
considered as the set of all possible instances of a problem, and not just the
subset of instances Z C P for which we have computational results. We therefore
must consider how the subset of instances used for the meta-data are selected
or generated. In order to learn the boundaries of algorithm performance, we
must include instances that are easy and hard for each algorithm, and we may
need to take steps through careful instance generation mechanisms to produce

such instances if the diversity of the set of instances Z is insufficient. Measuring
such sufficiency will rely on being able to i) visualize the instances in a common
space, and verify that they are spatially diverse and therefore dissimilar; and ii)
ensuring that the instances are discriminating of algorithm performance, and are
not equally easy or equally hard for all algorithms, which would tell us nothing
about the relative strengths and weaknesses of algorithms.

The diversity of the instances depends on how we are measuring their prop-
erties or features. If we consider only simple properties (such as the number
of cities in a Travelling Salesman Problem instance), then many genuinely di-
verse instances will appear similar. As the sophistication of the feature set
increases we develop greater ability to discriminate between instances in a high
dimensional feature space. While a large number of candidate features can be
found in the literature for many common optimization problems [10], it can
be somewhat of an art to select the subset of features that create the most
useful feature space and resulting meta-data. Rice’s framework provides no
advice about the mapping from problem space P to the feature space F, but
acknowledges “the way problem features affect methods is complex and algo-
rithm selection might depend in an unstable way on the features actually used”
[22]. While the construction of suitable features cannot be incorporated readily
into Rice’s abstract model, largely due to the problem specific nature of the
feature construction process, we acknowledge here the criticality of the task of
constructing and selecting suitable features that adequately measure the rela-
tive difficulty of the instances for different algorithms. The feature selection
process is successful if easy and hard instances are easily separable in the high
dimensional feature space. Our methodology includes a feature subset selection
method that achieves the desired outcomes for a useful transformation of the
problem space P to the instance feature space F.

Much can be learned from the meta-data {P, F, A, Y} (or more correctly,
{Z, F, A, Y}) operating in this high-dimensional feature space. Machine learn-
ing methods can be employed to predict algorithm performance in terms of the
feature vector describing an instance, and out-of-sample testing can be used to
demonstrate predictive power. For effective visualization of the similarities and
differences between instance classes, and the performance of algorithms across
this common space of instances, we propose to employ dimension reduction tech-
niques to produce a two-dimensional projection of the instances in a common
space defined by the features. Many dimension reduction methods are suitable
for this task, including Principal Component Analysis [27], self-organizing fea-
ture maps [28], etc. Whichever method is chosen, an instance z is projected
from its location in the high-dimensional feature space (given by the vector po-
sition f(z) € F) to a point in R? via the (linear or non-linear) mapping g. This
two-dimensional instance space therefore defines the transformation of all points
zePhFLR?.

The observable meta-data {Z, F, A, Y} can be visualized within this two-
dimensional instance space. In particular, the location of the instances z €
T C P can be inspected in R? to confirm that the diversity requirement has

been established by the choice of instances and the feature selection. The per-
formance of algorithms across the instance space can also be visualized to estab-
lish the degree to which the selected instances are discriminating of algorithm
performance. In fact, the separability of instances and discriminatory algorithm
performance in the instance space is a criteria we will use to guide the search
for an optimal subset of candidate features, and the sufficiency of the subset of
instances in the meta-data.

The meta-data contains information about the performance that each al-
gorithm exhibits on each instance in the subset Z. Measuring algorithm per-
formance is a complex task since there are frequently many factors to consider
when defining a superior algorithm: the time required to find a high quality so-
lution; the quality of the solution found after a fixed amount of computational
effort; the relative performance compared to other algorithms; the performance
compared to a theoretical bound. Supposing that a user has defined how they
intend to measure good performance, it is then straightforward to evaluate the
meta-data and determine, for each algorithm, the set of instances where the
good performance has been observed. But what about the parts of the instance
space where there is no observable instance in the meta-data? What can be
said about whether such regions lie within the footprint of an algorithm? This
is a statistical generalization issue. Our methodology proposes an approach to
identify the regions in instance space where we have sufficient evidence that
good performance can be expected from an algorithm, and calculates the area
of this algorithm footprint, along with its mathematical boundary ¢(y, a,).
This algorithm footprint enables us to then infer the performance that we can
expect from all instances z € P, and provides the necessary tool to report the
likely strengths and weaknesses of optimization algorithms across all instances.
Clearly, the confidence we have in the statistical generalization depends im-
mensely on ensuring that our selected instances Z C P are unbiased and that
our feature selection and dimension reduction processes have preserved most of
the important topological relationships between the instances.

It is from within this framework that we propose the following methodology
to develop our computational resource for the operations research community.
It should be noted that the only component of the framework that is specific
to optimisation problems is the choice of candidate features to summarize the
instances. All other components of the framework, and consequential method-
ology, are generic and applicable to a wide variety of problem domains beyond
optimisation.

3. Methodology

The proposed methodology comprises three stages:

1. Generating the instance space - a process whereby instances are selected,
their features calculated, and an optimal subset of features is generated
to create a high-dimensional summary of the instances in feature space
that, when projected to the two-dimensional instance space, achieves good
separation of the easy and hard instances;

2. Algorithm performance prediction - using the location of an instance
within the instance space, machine learning methods are used to clas-
sify the regions where an algorithm is predicted to perform well or poorly,
and to identify which algorithm is recommended for which regions of the
instance space;

3. Analysis of algorithmic power - the size and location of each algorithm’s
footprint can be measured objectively, and conclusions can be drawn about
relative algorithmic power. Insights can be gained from this visualization
to explain algorithm strength or weakness by inspecting the distribution
of features across the instance space.

Details of this methodology are now presented, before a case study is used in
Section 4 to illustrate the methodology.

3.1. Generating the Instance Space

The ideal instance space is one that maps the available instances to a two-
dimensional representation in such a way that the easy instances and hard in-
stances are well separated. With this visualization of the instance space, we can
then inspect the distribution of features across the space to understand how the
features affect algorithm performance. Since we have multiple algorithms, an
ideal instance space for one algorithm might not be ideal for another algorithm,
so we must achieve some compromise to find a mapping of the instances to a
single feature space in a way that achieves the best separability of easy and hard
instances on average. Not only does the choice of features affect the resulting
instance space, but the choice of instances - and their diversity - plays a ma-
jor role in determining the breadth of the instance space and the variability it
accommodates. If we are to learn about the boundaries of algorithm perform-
ance, then we must take steps to ensure that our instance space is as broad as
possible.

Generating a suitable instance space for a particular type of optimization
problem is therefore a complicated interplay between selecting diverse instances,
measuring the right features that correlate with instance difficulty, and selecting
the optimal subset of features that, when mapped to a two-dimensional instance
space, produces the best separation of easy and hard instances averaged across
all algorithms. We propose that a suitable instance space could be generated
once for each class of optimization problem using the methodology presented
here, and this could then be available as a resource for all researchers to explore
how their algorithms perform in this space.

3.1.1. Instance selection or generation

Since our methodology involves statistical inference and machine learning,
it should already be apparent that we require a large collection of instances of
a problem. For many optimization problems, large collections of well-studied
instances exist. If they are sufficiently diverse based on measurable features
that correlate with difficulty, then that is probably sufficient for generating a
useful instance space. If diversity is not achieved, then we must take steps to

generate additional instances that extend the boundaries of the instance space.
Instances that are extremely easy or hard for algorithms in the portfolio can be
evolved using evolutionary algorithms, as we have done in our previous work
[11]. Measuring the diversity of the instances as they appear in the resulting
instance space requires two considerations:

1. instance dissimilarity - the instances should span a reasonable region in the
instance space and not all be co-located in a small region. Suitable meas-
ures of instance dissimilarity include the average distance to the centroid
of the instances, or the ratio of the area of the convex hull to the area of
the rectangle containing the instances;

2. algorithmic discrimination - the instances should elicit different behaviours
from the algorithms in the portfolio, with some being easy and others being
hard, if we are to learn about the strengths and weaknesses of algorithms.
Suitable measures of algorithmic discrimination include simple statistical
metrics such as the relative difference between the best and worse per-
formance metric averaged across all instances.

The diversity of the instances will not be apparent until the instance space
has been created, which requires the features to be selected and instances to
be projected to R2. In the event that the diversity of the selected instances
is deemed insufficient, then additional instances will need to be intentionally
generated, using evolutionary algorithms for example, to achieve the objective.
This process is therefore iterative.

3.1.2. Feature selection

The features create our first transformation of the instances - from a col-
lection of TSP distance matrices for example, each defining a unique TSP -
to each instance being mapped to a point in a high-dimensional space. While
much is known and reported about the features of instances that correlate with
difficulty [10], we must consider that this list of candidate features is potentially
infinite, and not all of them will be useful for our goal of creating a transforma-
tion of the instances that separates easy and hard instances. Generally, feature
selection is a two-step process: firstly we need to define how we will measure
the goodness of a particular subset of features, and once this metric is deter-
mined, we can utilise an optimization search strategy to find the subset F* that
maximizes the goodness metric. In this methodology, we define the goodness of
a subset of features based on the extent to which instances that elicit similar
performance of algorithms are close together in the instance space defined by
the two-dimensional projection of the subset of features. In other words, for a
candidate subset of features, we will measure the goodness by how well a ma-
chine learning method can discriminate between easy and hard instances in the
high-dimensional feature space. We will also consider how the goodness changes
if we measure discrimination in the two-dimensional projection of the instance
space. We use Principal Component Analysis [27] to create the two-dimensional
projection based on the candidate subset of features, and use a Naive Bayes clas-
sifer [29] as the machine learning technique, although other methods could be

employed for both steps. A genetic algorithm [30] is then used to search the
large space of possible subsets of m features, with this goodness measure (the
classification accuracy on an out-of-sample test set) used as the fitness func-
tion to drive the search for the optimal subset of features 7* C F' . Among
the best subsets for each value of m, we select the optimal subset as the one
with the smallest test set classifier error. Other researchers have used similar
intuitive ideas for feature subset selection for machine learning tasks [31, 32],
but have utilized information theory metrics, particularly for the discrete clas-
sification task of identifying which features enable the class label defining best
performing algorithm to be predicted most accurately. Certainly, a wide range
of feature selection methods have been proposed in the literature (see [33] for a
comprehensive review), and any of them would be a suitable alternative to the
method employed in this paper.

It is an interesting question of whether the optimal subset of features is the
same regardless of whether we are measuring the separation of easy and hard
instances in the high-dimensional feature space or the two-dimensional instance
space. We will examine this issue with our case study later, but now finish the
description of the process for generating the instance space by describing the
dimension reduction process for instance space visualization.

3.1.3. Visualization via dimension reduction

If our goal was just performance prediction, then, once we have selected the
best m features as the subset F*, we can simply use machine learning methods
to learn the relationship between the instance features in R™ and the algorithm
performance labels (easy or hard). But in this research we have broader goals
that include being able to visualize the instance space and the algorithm foot-
prints, and so we need to utilize dimension reduction techniques to project the
instances to R?, ensuring that we are not losing too much information. Here,
we use Principal Component Analysis (PCA) [27], which essentially rotates the
data to a new coordinate system in R™, with axes defined by m new features
which are linear combinations of the m selected features in F*. These new axes
are calculated as the eigenvectors of the m x m covariance matrix; we then
project the instances on the two principal eigenvectors corresponding to the two
largest eigenvalues of the covariance matrix. Reducing the description of each
instance from a vector in R™ to a vector in R? certainly costs us a loss of in-
formation, and we measure the loss in terms of how much of the variance found
in the data cannot be explained by the first two eigenvectors. The first two

e
We will consider that the new two-dimensional instance space is an adequate
representation of the original feature space if most of the variation in the data
is explained by these two principal axes.

The iterative process involving these three steps enables a two-dimensional
instance space to be created that retains most of the relationships between the
instance set Z C P and the performance of the algorithms in the set A on those
instances.

eigenvalues explain a percentage of the variation in the data given by

10

3.2. Algorithm performance prediction

The newly created two-dimensional instance space can be used for predicting
algorithm performance, as can the high-dimensional instance space, but has
advantages in terms of visualizing the results. For the task of performance
prediction, we utilize standard machine learning methodologies that use a subset
of the instances (the training set) to learn the relationship between the instance
features (in either R™ or R?) and the label we assign each algorithm for each
instance to indicate how well the algorithm performed. A variety of machine
learning classification methods can be used, such as Naive Bayes classifiers or
support vector machines, if our labels are binary (easy/hard); or we could use
machine learning or statistical prediction methods, such as regression or neural
networks, if our performance metrics are continuous valued, such as run-time to
find an optimal solution, or optimality gap. Our choice of performance metric
Y is user-defined, and machine learning methods are used to build a model to
predict that performance metric, evaluated on unseen test set instances that
have been randomly extracted from the available data Z C P.

3.8. Analysis of algorithmic power

With a user-defined description of good algorithm performance, we can label
each instance. In this paper we use a binary label of good or bad (easy or hard)
for each algorithm in our portfolio, and then visualize the boundary in instance
space between good and bad performance for each algorithm. Instances that
lie within the boundary of good performance are deemed to be easy for the
algorithm, even if those instance are not in the set Z C P. The region in instance
space where an algorithm is expected to perform well is called the footprint, and
there are a number of methods we can consider to measure the relative size of
one algorithm’s footprint compared to another algorithm’s, or compared to the
span of all instances. In our previous work on this topic we used the area of
the convex hull created by the points where good performance was observed to
measure the size of the footprint for an algorithm [9]. We adopt an improved
methodology here that considers the density of the points defining the footprint,
and requires a defined level of purity (percentages of instances in the footprint
that are easy for an algorithm) as summarized by Algorithm 1.

The relative size of each algorithm’s footprint provides some objective mea-
sure of algorithm strength across the instance space, but it is also important
to understand where in the instance space an algorithm is strong. If an algo-
rithm is strong only on instances that will never be encountered in real-world
applications, or is only strong on instances that all algorithms find easy, then
this is important information that helps to draw a conclusion about the power
of an algorithm. Extending the methodology to develop metrics that estab-
lish the degree of overlap between an algorithm’s footprint and other regions
of interest (such as the location of real-world instances, or the footprints of
other algorithms) is easily calculated to provide this indication of the utility of
a footprint.

11

Algorithm 1 Calculating the area of an algorithm’s footprint with a minimum
density and purity requirement.

Require: « (a given algorithm), p (a density threshold), 7 (a purity threshold),
T = [Z,,13) (the instance set labelled as good or bad for the algorithm),
Initialise Stage
Randomly select a good instance ¢ € Z;

Form a closed region (triangle) with the two closest (smallest Euclidean dis-

tance in feature space) instances to i , not already part of a triangle;

Repeat until no more triangles can be formed.

Merge Stage

Randomly select a closed region J;

Find the closest closed region K (minimum Euclidean centroid distance);
density = ;%g‘) where |.J| is the number of instances in J, and Z is the area
of the convex hull formed by a region;
purity = % where |J,| is the number of good instances in J;
if (density > p) and (purity > 7) then

Merge closed regions J and K to form a new closed region
end if
Repeat the Merge Stage until there are no more pairs to consider.
return Area = > Z(j) for all closed regions j that remain after the merge
stage.

The final analysis that should be done to complete the methodology is to
explore the instance space to gain insights into how the features affect the algo-
rithm footprints. The distribution of each feature across the instance space can
be visualized, using color coding to indicate high or low values of a feature for
each instance, and conclusions can be drawn about the particular properties of
the instances that are found in certain regions of the instance space, including
those that define the footprint boundaries.

A case study on graph coloring will now be used to illustrate how this
methodology can be applied to draw conclusions about algorithm performance
in an objective and unbiased manner, and to generate new insights into the
strengths and weaknesses of optimization algorithms.

4. Graph Coloring Case Study

In this section we introduce the graph coloring problem and a set of al-
gorithms studied by Lewis et al. [19]. We start by defining the meta-data for
our study in Section 4.1, including the set of graph coloring instances, the fea-
tures we use to summarize the instances, the set of algorithms, and the perform-
ance metric chosen to measure algorithm performance. We then demonstrate
the methodology introduced in the previous section by generating the instance
space in Section 4.2, and visualizing the algorithm footprints in Section 4.3. Per-
formance prediction using machine learning methods is demonstrated in Section

12

4.4, but fails to completely identify the pockets of unique strength we can see
in the footprints. We then return to the algorithm footprints in Section 4.5 to
objectively measure the power of each algorithm, and to gain insights into the
condition under which each has demonstrable stregnths and weaknesses.

4.1. Graph Coloring Meta-Data

A graph G = (V,E) comprises a set of vertices V and a set of edges F
that connect certain pairs of vertices. The graph coloring problem (GCP) is to
assign colors to the vertices, minimizing the number of colors used, subject to
the constraint that two vertices connected by an edge (called adjacent vertices)
do not share the same color. The optimal (minimal) number of colors needed
to solve this NP-complete problem is called the chromatic number of the graph.
Graph coloring finds important applications in problems such as timetabling,
where events to be scheduled are represented as vertices, with edges representing
conflicts between events, and the color represents the time period assigned to
events [34, 35, 36].

4.1.1. Graph Coloring Problem Instances (P)

The problem instances we have used in this research consist of the graph
instances used by Lewis et al. [19], others that we have sourced from the instance
generators on Joe Culberson’s website [37], the well-studied DIMACS instances
[38], NetworkX generated instances [39] and some additional instances that we
have generated by starting with bipartite graphs and adding edges in a controlled
manner to produce graphs that are less bipartite. All instance sets are described
below:

e B (Bipartivity-controlled): Starting with 50 randomly generated bipartite
graphs, with the number of nodes |V| randomly generated in the range
[100, 1000], random edges are added to produce 20 graphs of each size, with
the number of added edges being {0, 100, 1000, 2000, 3000, 4000, 5000, 7500,
10000, 15000, 20000, 30000, 40000, 50000, 75000, 100000, 250000, 500000,
750000, 1000000}

e C1 (Culberson - cycle driven graphs): This generator creates graphs with
cycles of a specified length. K color partitions are created, the algorithm
then generates a cycle by randomly generating a path with each vertex
belonging to a different color partition than the last.

e (C2 (Culberson - geometric graphs): These graphs are generated by choos-
ing a radius r and uniformly distributing n pairs of numbers (z,y) in the
range of 0 < z,y < 1. Vertices in the graph correspond to the points (z,y)
in the plane, with edges included if the distance between a pair of vertices
is less than the radius r.

e (C3 (Culberson - girth and degree inhibited graphs): Each graph is assigned
a probability p, girth limit g, and a degree limit §. The girth limit indicates
that no cycle will be created with girth less than g. Hence if an edge (v, w)

13

is being considered as a new edge, every pair of vertices (z,y) will have
a distance of less than g after the addition is blocked, and will never be
selected as a possible new edge. p is the probability that a possible edge
will be used. § is a hard limit on the difference between the average node
degree and the maximum degree of any vertex.

C4 (Culberson - uniform or IID graphs): edges are assigned to vertex pairs
with a fixed probability p

C5 (Culberson - weight-biased graphs): These graphs contain cliques lim-
ited to a given size. Each clique is generated by randomly creating K color
partitions, then randomly selecting one of the vertices in each partition
and joining every pair by an edge. Each clique is generated independently.

D (DIMACS and Networkx): DIMACS instances are 125 benchmark in-
stances consisting of different type of graphs such as Leighton, flat, Myciel-
ski, queen, miles, game, register, insertions etc. A description of DIMACS
instances can be obtained from http://mat.gsia.cmu.edu/COLOR03/. The
Networkx generator was used to produce 675 instances: 125 instances of
30, 50 and 70 vertex graphs (totalling 375 instances) were generated us-
ing the random graph generator; and 100 instances of 100, 150 and 200
vertex graphs (totalling 300 instances) were generated using the geometric
graph generator. Further information about the Networkx generators can
be found at http://networkx.lanl.gov/reference/generators.html

E (Social Network graphs): These graphs are based on the social networks
of school-friends, compiled as part of the USA-based National Longitud-
inal Study of Adolescent Health project [40], and were used in the study
of Lewis et al. [19].

F (Sports Scheduling graphs): These graphs represent round-robin tour-
naments used in sports leagues [41, 19]. In such problems, we are given
an even number of teams n, and each team is required to participate in a
match against all other teams m times in m(n — 1) rounds. These graphs
were used in the study of Lewis et al. [19].

G (Exam Timetabling graphs): These graphs represent the conflicts in
real-world exam timetabling problems ranging in size from |[V| = 81 to
2419 [42], and were used in the study of Lewis et al. [19].

H (Flat graphs): These are the flat graphs used by Lewis et al. [19], con-
structed by partitioning the vertices into K almost equi-sized sets. Edges
are then added between pairs of vertices in different sets with probability
p in such a way that the variance in vertex degrees is kept to a minimum.
Flat graphs were generated for K € {10,50,100}. In each case we used
|[V| = 500, implying 50, 10, and 5 vertices per colour, respectively. We
generated 41 instances for the K = 10 and K = 100 graphs, and 21 in-
stances for K = 50 graphs, corresponding to p values in and around the

14

Instance Set Source Number of Instances
(after outlier removal)
B Our generator 1000 (991)
C1 Culberson [37] 1000 (1000)
C2 Culberson [37] 932 (806)
C3 Culberson [37] 1000 (1000)
C4 Culberson [37] 1000 (987)
C5 Culberson [37] 1000 (946)
D DIMACS [38] and Networkx [39] 743 (731)
E Social Network [19] 20 (20)
F Sports Scheduling [19] 80 (64)
G Timetabling [19] 13 (12)
H Flat [19] 103 (103)
I Random [19] 57 (52)

Table 1: Graph Coloring Instances

phase transition regions (ensuring the instances are quite hard to K-color
in general).

e I (Random graphs): These are the random graphs used by Lewis et al.
[19]. Each pair of vertices are made adjacent with probability p ranging
from 0.05 (sparse) to 0.95 (dense), incrementing in steps of 0.05,with |V €
{250, 500, 1000}.

Table 1 summarizes the instances generated for this case study and also shows
how many instances remain in each instance set after outliers are removed using
a procedure described in Section 4.2.

Empirical studies have already shown how the performance of some al-
gorithms depends on the source of the instances [43, 44]. Culberson [37] states
about his resources for graph coloring, “My intention is to provide several graph
generators that will support empirical research into the characteristics of vari-
ous coloring algorithms. Thus, I want generators that will exhibit variations
of various characteristics of graphs, such as degree (expectation and variation),
hidden colorings, girth, edge distributions etc.”. It should be noted that the
study of Lewis et al. [19] considered only a small subset of the instances we
consider here, and it will be interesting to see if the conclusions of that study
are generalizable to a more diverse instance set.

4.1.2. Graph properties or features (F)

Our recent survey of what makes optimization problem instances difficult
[45] shows that there are many features or properties of a graph that can be
calculated in polynomial time and can be used to shed some light on the rela-
tionships between graph instances and algorithm performance. Many of these
features are based on properties of the adjacency matrix A and Laplacian mat-
rix L of the graph G(V, E) defined as follows: A, ;»; = 1 if an edge connects

15

vertices ¢ and j, and 0 otherwise; L;; = degree(V;), L; j»; = —1 if an edge
connects vertices ¢ and j, and 0 otherwise.

Graph theory researchers have long collected interesting graphs [46] which
are used to develop new conjectures, and often provide counter-examples to
existing theorems. Recently, several exciting developments have occured where
graphs with specific properties can be generated from an extendable database -
known as the House of Graphs [47]. These graphs have been used successfully
to generate new conjectures by generating linear inequalities that describe the
relationships between specific graph properties known as invariants [48]. In this
study we consider many of the invariant graph properties referred to by House of
Graphs, as well as some additional spectral features based on the eigenvalues of
the adjacency and Laplacian matrices of the graph. For the graph G = (V| E),
we consider the following 18 features relating to a) the nodes and edges (features
1-5); b) the cycles and paths on the graph (features 6-13); and c) the spectral
properties of the graph (features 14-18):

1. The number of vertices in a graph: n = |V|

2. The number of edges in a graph: |E|

3. The density of a graph: the ratio of the number of edges to the number

of possible edges p = n(27|£|1)-

4. Mean vertex degree: the number of edges from a vertex, averaged across
all vertices.

5. Standard deviation of vertex degree: the average vertex degree and its
standard deviation can give us an idea of how connected a graph is.

6. Average path length: the average number of steps along the shortest paths
for all possible pairs of vertices. It is a measure of the efficiency of traveling
between vertices.

7. The diameter of a graph: the greatest distance between any pair of ver-
tices. To find the diameter we find the shortest path between each pair of
vertices and take the greatest length of these paths.

8. The girth of a graph: the length of the shortest cycle.

9. Mean betweenness centrality: average fraction of all shortest paths con-
necting all pairs of vertices that pass through a given vertex.

10. Standard deviation of betweenness centrality: with the mean, the SD gives
a measure of how central the vertices are in a graph.

11. The clustering coefficient: a measure of degree to which vertices in a graph
tend to cluster together. This is a ratio of the closed triplets to the total
number of triplets in a graph. A closed triplet is a triangle, while an open
triplet is a triangle without one side [49].

12. The Szeged index: generalisation of Wiener number to cyclic graphs,
providing a measure that correlates with bipartivity [50].

13. Beta: proportion of even closed walks to all closed walks, providing an
alternative measure of the bipartivity of a graph [51].

14. Energy: the mean of the absolute values of the eigenvalues of the adjacency
matrix [52].

16

15. Standard deviation of the set of eigenvalues of the adjacency matrix:

16. Algebraic connectivity: the second smallest eigenvalue of the Laplacian
matrix [53]. This reflects how well connected a graph is. Cheeger’s con-
stant, another important graph property, is bounded by half the algebraic
connectivity [54].

17. Mean eigenvector centrality: the Perron-Frobenius eigenvector of the ad-
jacency matrix, averaged across all components.

18. Standard deviation of eigenvector centrality: together with the mean, the
standard deviation of eigenvector centrality gives us a measure of the
importance of a vertex inside a graph.

4.1.8. Algorithms (A)

We consider a portfolio of the same six high-performing algorithms described
in the computational comparison of graph coloring algorithms by Lewis et al.
[19], augmented with a random greedy heuristic and the degree saturation heur-
istic DSATUR [55], which are used as components of the six algorithms. Thus
we have eight algorithms representing a wide range of solution strategies:

e DSATUR: Brelaz’s greedy algorithm based on saturation degree of the
vertices [55], which has been shown to be exact for bipartite graphs [56].

e Bktr: a backtracking version of the DSATUR heuristic which also includes
an operator for dynamically re—ordering the vertices when a node in the
search tree is revisited. This algorithm was implemented by Culberson
and is available for download [37].

e HillClimb: A hill-climbing method [57] that operates in the space of feas-
ible solutions with the initial solution being formed using the DSATUR
heuristic.

e HEA: A hybrid evolutionary algorithm of Galinier and Hao [58] that op-
erates by maintaining a (typically small) steady—state population of can-
didate solutions which are evolved via a problem—specific recombination
operator and a local search method.

e TabuCol: Galinier and Hao’s variant of the Tabu search algorithm for
graph colouring [58].

e PartialCol: The algorithm of Blochliger and Zufferey [59] that operates in
a similar fashion to TABUCOL but with a different neighborhood operator
that does not allow improper solutions to be considered.

e AntCol: Ant Colony meta heuristic-based method of Dowsland and Thompson
[60] combining global and local search operators.

e RandGr: This is a simple greedy algorithm that takes a random permuta-
tion of the vertices and then colours them using a first-fit greedy algorithm.
This is the heuristic used to provide the initial number of colours for both
the PartCol and TabuCol algorithms.

17

All algorithms are run in the same environment with the same number of func-
tion evaluations. All algorithms were run in the same environment (Windows
XP using a 3.0 GHz processor with 3.18 GB of RAM) for a fixed computation
limit of 5 x 10'° constraint checks. This led to run times of approximately 5-
15 minutes per instance, depending on the structures of the graph considered.
Further details on the algorithms’ implementations - together with descriptions
on what constitutes a constraint check - can be found in Lewis et al. [19].

4.1.4. Performance metric ())

The performance of an algorithm can be defined in many different ways
depending on the goals. We might say that one algorithm is better than another
if it finds the same quality solution in a faster time, or if it obtains a much better
quality solution for the same run-time. How we define “same quality” may
involve some tolerance, and we can define this more specifically if we introduce
concepts like “two algorithms give the same result in their solution costs are
within €% of each other”. Acknowledging the arbitrariness of this decision,
and without loss of generality, in this paper we measure algorithm performance
as either easy or hard, based on the gap between the best solution (number
of colors) produced by the portfolio and the number of colors needed by an
algorithm to properly color the graph within the stated computation limit of
5 x 10'° constraint checks. We say that an algorithm is “e-good” if the number
of colors needed by the algorithm is no more than ¢% greater than the best
algorithm in the portfolio on that instance. We will consider both € = 0% and
€ =5%.

4.1.5. Summary of experimental meta-data

The meta-data for our experimental case study on graph coloring can now
be summarized using the framework proposed in Rice [20], and adapted for the
study of optimization algorithm performance by Smith-Miles [23]:

e The problem sub-space T is a set of 6948 graph coloring instances, from
benchmark instances and random and geometric graph generators, with
the number of vertices in the range [11,2419], as described in Section 4.1.1.

e The feature space F is defined by the 18 invariant graph properties listed
in section 4.1.2.

e The algorithm space A comprises eight heuristics as described in Section
4.1.3.

e The performance space) is a binary measure labelling algorithm perform-
ance as “e-good” or not, defined after a maximum of 5 x 10'° constraint
checks for a given value of e.

4.2. Generating the Instance Space

From the raw meta-data we first removed any outliers that were more than
three standard-deviations from the mean of any feature, and then applied a log

18

transform to all features to reign in the effect of any remaining outliers in the
instance space in order that our instance space not be unduly distorted by out-
liers. All features were then normalized to [0, 1] using min-max normalization.
For the feature subset selection, the genetic algorithm was implemented using
the MATLAB optimization toolbox. Each selection of subsets (individuals) was
represented using a binary vector to indicate if a feature was a member of the
candidate subset of a given cardinality m. In order to determine the utility of a
subset of features, we recognize that a useful instance space is one that has cre-
ated an easy-hard partitioning of the instance space to support our visualization.
The chosen fitness function was related to the classification error that a Naive
Bayes classifier (chosen as a simple machine learning method, and implemen-
ted with default parameters in MATLAB) could obtain using those candidate
features to project to a 2-dimensional instance space using PCA and correctly
predict if an algorithm could obtain the best result for each instance. The mean
average error (averaged across the eight Naive Bayes classifiers trained for each
algorithm) was used as the reciprocal of the fitness function, with the error based
on out-of-sample testing using a randomly extracted 50% of each instance set
not used for learning the Naive Bayes classifiers. Thus, the feature selection pro-
cess involved performing PCA for each individual subset being evaluated by the
genetic algorithm, and using a Naive Bayes classifier in the PCA space (either
in R2or in R™) in an iterative process that relied on an evolutionary process to
find the optimal subset of features. We also experimented with classification in
the m-dimensional feature space, but found that the resulting errors were mar-
ginally reduced in R2. We additionally experimented with selecting the feature
subset that minimized the maximum error from any of the Naive Bayes classi-
fiers, but found that this was not as effective compared to seeking the subset
that minimized the average error. Optimal subsets were found for cardinalities
2 to 18, with the minimum average error (0.146) attained for a set of m = 3
features: namely the density, algebraic connectivity and energy of the graph.
PCA on these three features creates three new axes - linear combinations of
these features - by which to describe the meta-data. Projection onto only the
two principal axes (with the largest eigenvalues) retains 98.4% of the variation
in the data. These two axes define the instance space and are algebraically
described as:

RE 0.559 0.614 0.557 Z;nesbz;cyzicconnectivit (1)
ve | | —0.702 —0.007 0.712 g y
enerqgy

Rotating all instances into this new coordinate system and plotting (v, vs)
for all instances x € Z C P, we generate the instance space shown in Figure
2. The grey instances show all instances, whereas the black instances show the
location of particular instance sets within this instance space. The centre of
this instance space, (vi,v2) = (0,0), corresponds to an average instance with
average values of density, algebraic connectivity and graph energy. Instances

19

-0.8 0.6 0.4 0.2 0 02 0.4 -0.8 0.6 0.4 0.2 0 02 0.4

Figure 2: Each instance sets shown as black points in the instance space, ordered alphabetically
from set B (shown at top left) to set I (shown at bottom right). The grey points define the
entire instance space.

that are near each other in the instance space have similar values of these three
features (chosen optimally from the set of all possible combinations of features).

This view of the instance sets enables us to form conclusions about the
diversity of each of the instance generators. We see clearly that the five types of
Culberson generators are indeed serving their purpose of generating instances
that are diverse. Collectively, instance sets C1-C5 help to define much of the
shape of the instance space. We can also see that the instances used in the study
of Lewis et al. [19], instance sets E, F, G, H and I, tend to fall in narrow bands
within the broader instance space defined by the Culberson generators. While
Lewis et al.’s chosen instances fall in different regions of the instance space their
diversity is not as extensive, and large regions of the instance space would be left
unexplored if we had not augmented the instance set with additional instances.

4.8. Algorithm Footprints

Now that we have generated an instance space defined by the axes given by
equation (1), we can examine algorithm performance within this space. Suppose
we define an algorithm’s performance on an instance to be good if it attains
the minimum number of colors of all algorithms. That is, it is € — good with
e = 0, since its performance is within 0% of the best solution provided by the
portfolio of algorithms. Figure 3 shows the footprint of each algorithm, with
blue instances showing good performance with ¢ = 0. We can measure the area
of each footprint using the method proposed in Section 3.3 (Algorithm 1), with
parameters p = 50,000 and 7= = 0.95, as shown in the first column of Table 2.
Clearly, the algorithm with the largest footprint is HEA, since there are only

20

| Algorithm [Area (€ = 0%) | Area (e = 5%) |

AntCol 19.35% 34.9%
Bktr 11.63% 14.17%
DSATUR 7.11% 12.84%
HEA 41.17% 57.14%
HillClimb 32.97% 52.08%
PartialCol 30.86% 51.84%
RandGr 0.90% 3.13%
TabuCol 36.05% 48.7%

Table 2: Relative areas of algorithm footprints for ¢ = 0% and € = 5% , expressed as a
percentage of the total area of the instance space, calculated using Algorithm 1.

small regions of the instance space where it is not ¢ — good with ¢ = 0 (i.e.
where its solution is worse that the best in the portfolio). It is interesting to
note these regions though, and to observe that HEA is not best everywhere. We
will return to explore how the features define these regions later in Section 4.5.

Once we relax the definition of good to consider any algorithm that achieves
a performance within 5% of the best algorithm, we obtain larger footprints for
all algorithms, shown in column 2 of Table 2, and we can see that HEA loses its
competitive advantage somewhat. Measuring the area of the footprint of each
algorithm, for various definitions of goodness, provides an objective measure of
the power of each algorithm across the instance space, and the margin of its
competitive advantage.

4.4. Predicting algorithm performance for automated algorithm selection

From these footprints we can also develop automated methods to predict
the performance of algorithms on untested instances. Certainly, we can visually
explore the footprint of an algorithm in the location of an untested instance,
and use simple methods such as a k-nearest neighbor algorithm to determine
the likelihood that an algorithm will perform well on an untested instance. But
more powerful machine learning methods can provide a more objective and
robust approach to algorithm performance prediction.

Our first attempt to use a Naive Bayes classifier resulted in a model that
predicted that HEA would be best across the whole instance space, and failed
to detect the small regions where other algorithms are best. We then employed
a more powerful machine learning method: support vector machines (SVMs),
trained in MATLAB. Using a random extaction of 50% of the instances, with
the remaining 50% reserved for out-of-sample testing, we built eight SVMs to
predict the boundaries of each algorithm’s footprint, achieving better results,
although still not perfect due to the many contradictory instances within a
region. The out-of-sample test set accuracies ranged from 90% for the DSATUR
and Bktr predictions (easier to predict since they tend to be quite consistent in
regions where they don’t perform well) down to 73% accuracy for the AntCol
prediction. The SVM prediction model for HEA was 82% accurate. Combining

21

(44

AntCol

Hillclimb

DSATUR

PartCol RandGr

TabuCol

Figure 3: Algorithm Footprints showing

algorithm footprint.

in blue where an algorithm achieves € — good performance, with e =0 .

Red instances are not within the

03r

0.2+

01

01

-0.2-

-0.3F

-0.4r-

-0.5F

06 N 1 1 1 1 1 1 1 |

1 1 |
None RndGrd Bktr HillClimb HEA PartCol TabuCol AntCol

Figure 4: Machine learning (SVM) recommendations about which algorithm to use in each
region.

these eight SVM predictions, we can identify for each instance the algorithm
that is predicted to be best. In the event that multiple algorithms are predicted
to be best, we recommend adopting the algorithm which has the highest model
accuracy (although shortest run-time could be another criterion). This approach
leads to the algorithm recommendations shown in Figure 4, including a region
near the upper right portion where no SVM model predicted any algorithm to
be best. Since at least one algorithm is best, by definition, this is clearly a failing
of a sophisticated machine learning method in this region. While this depiction
of algorithm strength across the instance space is interesting and somewhat
enlightening, it should be used with caution, since it is only as accurate as the
machine learning models we are relying upon.

4.5. Insights into Algorithm Strengths and Weaknesses

The instance space affords us the opportunity to explore more than al-
gorithm footprints, but also to develop a good understanding of where the
unique strengths and weaknesses of each algorithm lie. If an algorithm is only
good where many other algorithms are good, then this is useful information to
assess the relative power of algorithms. We wish to visualize where each al-
gorithm offers a unique advantage, and where it might struggle where other al-
gorithms succeed. These kinds of insights are critical to inform better algorithm
design, and to help automated algorithm selection where machine learning meth-
ods may not be accurate enough.

For each instance, we now count how many of the eight algorithms in the
portfolio are € — good with € = 0. Figure 5 shows the location of the instances
that are easily solved by all algorithms (shown as red on the color scale, with

23

0.3 8

-0

-0.21

-0.31

-0.51

086 = 1 1 1 1 1 1 1 | 1
Figure 5: The number of algorithms that achieved e — good performance, with € = 0.

8 algorithms finding the best number of colors of the graph), and the instances
that are more challenging since only one algorithm attains the best result (shown
as dark blue in the upper right portion). For these harder instances, we are in-
terested to know which algorithm provides the unique advantage over others,
and this is shown in Figure 6. Only three algorithms show clearly consistent
regions where they are uniquely best: AntCol (red), HEA (blue) and HillClimb
(green). These are all methods that combine local search strategies with global
operators that allow much larger changes to be made to a solution. Understand-
ably, DSATUR and RandGr are never uniquely best, since the other algorithms
can be considered extensions of them. The remaining algorithms are sometimes
uniquely best but the types of instances that they are best suited to are not
well co-located in the instance space. These results are interesting in the con-
text of Lewis et al.’s conclusions that HEA was the best performing algorithm.
Certainly on the instances that were considered in their study, this conclusion is
most likely correct. But the view of the instance space generated from a broader
set of instances shows clearly that there are pockets of instances where HEA
is not the best algorithm, and these instances are co-located in regions of the
instance space that might enable us to infer under what conditions HEA is not
as effective as other algorithms.

Table 3 shows the relative unique strengths of each algorithm, focusing on
how many instances were uniquely solved well by each algorithm, and the area
of the footprints for a definition of e-good with € = 0% and ¢ = 5%. For 82.48%
of the instance space there is no uniquely best algorithm, but for the 1176
instances with a unique winning algorithm, it is HEA in 67.77% of the instances
(shown as light blue in Figure 6). AntCol is uniquely best in 11.22% of the
1176 discriminating instances (shown as red in Figure 6). HillClimb is uniquely

24

0.3r

0.2+

01r

06 . 1 I 1 I | I 1]
-1 -0.8 -0.6 —|0.4 -0.2 0 0.2 0.4 0.6

1 1 |
None Bktr HillClimb HEA PartCol TabuCol AntCol

Figure 6: Instances that have a uniquely € — good (¢ = 0) algorithm, color-coded by the
algorithm. Grey instances are those for which there are multiple algorithms that achieved the
best performance.

best for 6.72% of the discriminating instances. While TabuCol is uniquely good
for 12% of the discriminating instances, its footprint is not very contiguous,
and we cannot easily predict where it will be the best algorithm. The regions of
unique strength of HEA, AntCol and HillClimb are clear however, and the areas
of their unique footprints are 15.38%, 2.82%, and 2.78% respectively. Clearly,
with ¢ = 0 HEA has the largest unique footprint, in addition to the largest
footprint overall. However, there is a small but identifiable part of the instance
space where HEA is not the best.

If we now permit an algorithm to be considered good if it is within 5% of the
best algorithm’s performance, (¢ = 5%), we find that 98.18% of the instances are
well solved by more than one algorithm. The unique footprint of each algorithm
diminishes dramatically, suggesting that there is not much difference between
the results of many of the algorithms. Only a small group of instances elicit
a stand-out performance from one algorithm with this definition of good, and
none of them are in a region consistent enough to attract a footprint that is
dense or pure enough with the parameters p = 50,000 and # = 0.95 using
Algorithm 1, apart from TabuCol which finds a few small triangles of instances
where it is uniquely good. .

Considering again the unique footprints shown in Figure 6, beyond measur-
ing their area, we are also interested to gain insight into what the location in
the instance space tells us about the conditions under which an algorithm has
a unique strength. To achieve this insight, we inspect the distribution of each
of the three features across the instance space, looking in particular for clues
about why HEA seems to struggle in the upper right portion of the instance
space where AntCol excels, and why HillClimb is so effective on the instances

25

|

e= 0%

|

e=5%

|

Algorithm | Instances (%) | Footprint Area | Instances (%) | Footprint Area
AntCol | 132 (11.22%) 2.82% 5 (4.10%) 0%

Bktr 7 (0.06%) 0% 1(0.82%) 0%
DSATUR 0 (0%) 0% 0 (0%) 0%

HEA 797 (67.77%) 15.38% 54 (44.26%) 0%
HillClimb 79 (6.72%) 2.78% 12 (9.84%) 0%
PartialCol | 20 (1.70%) 0% 6 (4.92%) 0%

RandGr 0 (0%) 0% 0 (0%) 0%
TabuCol | 141 (11.99%) 0.86% 44 (36.07%) 0.14%
TOTAL | 1176 (17.52%) 122 (1.82%)

Table 3: Number (Percentage) of instances, and relative area of footprints where each al-
gorithm is uniquely € — good, for € = 0% and € = 5%

found on the thin right-most edge of the instance space. Figure 7 shows that
these interesting regions of unique strength of some algorithms correspond to
extreme values of the features defining the instances. In particular, AntCol
appears to outperform all algorithms (including HEA) when the energy of the
graph is exceptionally high; HillClimb is the most effective method for graphs
with high algebraic connectivity and high density; and HEA is uniquely best
when the graph has moderate energy and moderate density. In all other cases,
there is no single stand-out algorithm. This kind of visualization enables us
to identify the unique strengths and weaknesses of algorithms in a way that is
not possible if we don’t consider the right features and a diverse enough set of
instances.

5. Conclusions

This paper has proposed a new methodology for objective assessment of
the relative power of algorithms, in general, and has focused on optimization
algorithms in particular. It is a methodology based on representing instances
to optimization problems as points in a two-dimensional plane, which opens up
the opportunity to visualize instance diversity and observe any sample bias; to
identify the regions of instance space where algorithms have unique strengths
and weaknesses; and to generate new insights based on the instance features
defining those instances that lie within an algorithm’s footprint.

It has been nearly two decades since Hooker [1, 2] called for a more empirical
approach to testing algorithm performance. By building upon the framework
of Rice [20], we have proposed a pathway to develop the tools required for
such an empirical approach. This paper has addressed some of the remaining
questions in the methodology we have been developing over recent years, and
has demonstrated the usefulness of the approach by revisiting the case study of
Lewis et al. [19]. While our methodology supports the broad conclusion of their
study - that HEA was the best algorithm in their portfolio on average - we have

26

yXé

Algebraic Connectivity

*

R

Densit:
0.2 & . ! 0.2
0.1 s 0.1
0 A 0
0.1 4 ok 0.6 0.1
02 S0 :‘%‘1 E 2. -0.2
3, 04
03F % : 0.3
4 b
04r f . -0.4
05 :'1 -0.5
08, 05 0 05 08,

Figure 7: Distribution of the three selected features (density, algebraic connectivity and energy) across the instance space

-05

0.5

9200
800
700
600
500
400
300
200
100

0.2
0.1

-0.1
-0.2
-0.3
-04
-05
-0.6

.

Energy

&,
e,
P X

..

-05 0 05

also been able to provide additional insights that were not observable from their
study, which considered only a subset of the instances used in our meta-data
and did not have access to the tools that we have developed in this research.
In particular, we have been able to identify the regions in instance space where
HEA is not the best algorithm, and to define classes of instances where other
algorithms, such as AntCol and HillClimb, consistently outperform HEA. Most
significantly, we are able to relate the instance features to these classes, and
show that HEA (or at least the implementation of HEA that we used) has a
relative weakness on instances with extreme values of the instance features. Of
course, an algorithm is really just a particular implementation of an algorithmic
strategy, with parameter values that are tunable and can affect the performance
of the algorithm. We are not attempting to draw any conclusions about any
particular algorithm’s potential with this analysis. Indeed, the same algorithm
with a different parameter combination can be considered as a new algorithm,
with its own footprint, within this methodology. We are simply demonstrating
that, using exactly the same algorithmic implementations as used in the study
of Lewis et al. [19] we can obtain additional insights that were not otherwise
apparent using a standard analysis of computational results.

Of course, our analysis also included a much broader set of instances than
those used by Lewis et al., and the shape of the instance space we create is cer-
tainly dependent upon these instances and their distributions. A very different
shape for the instance space would have been generated had we only used in-
stances (from classes E, F, G, H, and I) used by Lewis et al., since it is primarily
the Culberson instances (C1-C5) that define the shape of our instance space,
with other types of instances lying within the boundaries of this space. The
shape and density of the instance space is also dependent on the distribution of
the instances. Adding additional instances from one class, for example, would
potentially change the mean value of certain features, creating a rescaling of
the space, and while the density of the instance space would change if new in-
stances from one class were added, the locations of the instances relative to the
new mean would not change significantly, and the relative area of the footprint
should be largely unaffected. We believe that the instance space we have gener-
ated is a good representation of the set of all graphs that are typically studied
for graph coloring. Nevertheless, it is an interesting question for our future
research to see if we can evolve instances that lie outside the boundary of the
presented instance space, and if we can’t then to conjecture why such graphs
might not exist in terms of their features [48].

The next steps for this research include developing the instance spaces for a
variety of optimization problems, and making them available to the operations
research community via a web tool. Researchers will then be able to generate
footprints for their chosen algorithm in this instance space, and can compare
the area and location of algorithm footprints to draw conclusions about the
power of new algorithms they are proposing, without concern about sample
bias. Understanding if an algorithm’s footprint overlaps regions of interest,
such as real-world instances or challenging benchmark instances, is a key step
in designing algorithms that are applicable and can avoid deployment disasters

28

[18]. With new insights into the true strengths and weaknesses of optimization
algorithms possible through this methodology, enabling us to match algorithm
choice to the characteristics of the problem instances, we hope to take a step
closer to a free lunch for optimization, at least within a given problem domain.

Acknowledgements

This research is funded by the Australian Research Council under grant
DP120103678. The authors are grateful to Gordon Royle for provided useful
discussions about the energy of a graph. They are also grateful to the two
reviewers who made useful suggestions to improve the clarity of the paper, and
to Simon Bowly for his assistance with some of the figures.

References

[1] J. Hooker, Needed: An empirical science of algorithms, Operations Re-
search (1994) 201-212.

[2] J. Hooker, Testing heuristics: We have it all wrong, Journal of Heuristics
1 (1) (1995) 33-42.

[3] J. Beasley, OR-Library: Distributing test problems by electronic mail,
Journal of the Operational Research Society (1990) 1069-1072.

[4] R. Hill, C. Reilly, The effects of coefficient correlation structure in two-
dimensional knapsack problems on solution procedure performance, Man-
agement Science (2000) 302-317.

[5] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization,
IEEE transactions on evolutionary computation 1 (1) (1997) 67-82.

[6] J. Culberson, On the futility of blind search: An algorithmic view of 'no
free lunch’, Evolutionary Computation 6 (2) (1998) 109-127.

[7] C. Igel, M. Toussaint, A no-free-lunch theorem for non-uniform distri-
butions of target functions, Journal of Mathematical Modelling and Al-
gorithms 3 (4) (2005) 313-322.

[8] S. Margulies, J. Ma, I. Hicks, The Cunningham-Geelen method in prac-
tice: Branch-decompositions and integer programming, INFORMS Journal
on Computing, Published online before print November 27, 2012, doi:
10.1287/ijoc.1120.0524.

[9] K. Smith-Miles, T. Tan, Measuring algorithm footprints in instance space,
in: TEEE Congress on Evolutionary Computation (CEC), IEEE, 2012, pp.
1-8.

29

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22|

K. Smith-Miles, L. Lopes, Measuring instance difficulty for combinatorial
optimization problems, Computers & Operations Research 39 (5) (2012)
875-889.

K. Smith-Miles, J. van Hemert, Discovering the suitability of optimisation
algorithms by learning from evolved instances, Annals of Mathematics and
Artificial Intelligence 61 (2) (2011) 87-104.

K. Smith-Miles, B. Wreford, L. Lopes, N. Insani, Predicting metaheuristic
performance on graph coloring problems using data mining, in: E. G. Talbi
(Ed.), Hybrid Metaheuristics, Springer, 2013, pp. 417-432.

K. Smith-Miles, J. van Hemert, X. Lim, Understanding TSP Difficulty by
Learning from Evolved Instances, Learning and Intelligent Optimization,
LNCS 6073 (2010) 266-280.

K. Smith-Miles, R. James, J. Giffin, Y. Tu, A knowledge discovery approach
to understanding relationships between scheduling problem structure and
heuristic performance, Learning and Intelligent Optimization (2009) 89—
103.

K. Smith-Miles, Towards insightful algorithm selection for optimisation us-
ing meta-learning concepts, in: IEEE International Joint Conference on
Neural Networks, 2008, pp. 4118-4124.

K. Smith-Miles, v. n. p. y. p. Baatar, Davaatseren journal=Discrete Applied
Mathematics, in press, Exploring the role of graph spectra in graph coloring
algorithm performance.

K. Smith-Miles, L. Lopes, Generalising Algorithm Performance in Instance
Space: A timetabling case study, Lecture notes in computer science 6683
(2011) 524-5309.

L. Lopes, K. A. Smith-Miles, Generating applicable synthetic instances for
branch problems, Operations Research, in press, 2013.

R. Lewis, J. Thompson, C. Mumford, J. Gillard, A wide-ranging computa-
tional comparison of high-performance graph colouring algorithms, Com-
puters & Operations Research 39 (9) (2012) 1933-1950.

J. Rice, The Algorithm Selection Problem, Advances in computers 15
(1976) 65-117.

S. Weerawarana, E. N. Houstis, J. R. Rice, A. Joshi, C. E. Houstis, Py-
thia: a knowledge-based system to select scientific algorithms, ACM Trans.
Math. Softw. 22 (4) (1996) 447-468.

N. Ramakrishnan, J. Rice, E. Houstis, GAUSS: An online algorithm selec-
tion system for numerical quadrature, Advances in Engineering Software
33 (1) (2002) 27-36.

30

23| K. Smith-Miles, Cross-disciplinary perspectives on meta-learning for al-
g
gorithm selection, ACM Computing Surveys 41 (1).

[24] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, SATzilla-07: The design
and analysis of an algorithm portfolio for SAT, Lecture Notes in Computer
Science 4741 (2007) 712.

[25] M. Gagliolo, J. Schmidhuber, Learning dynamic algorithm portfolios, An-
nals of Mathematics and Artificial Intelligence 47 (3) (2006) 295-328.

[26] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, B. O’Sullivan, Using
case-based reasoning in an algorithm portfolio for constraint solving, in:
Irish Conference on Artificial Intelligence and Cognitive Science, 2008.

[27] I Jolliffe, Principal Component Analysis, Springer, 2002.

[28] T. Kohonen, Self-organized formation of topologically correct feature maps,
Biological Cybernetics 43 (1) (1982) 59-69.

[29] T. M. Mitchell, Machine Learning (Mcgraw-Hill Series in Computer Sci-
ence), McGraw-Hill Higher Education, New York, NY, USA, 1997.

[30] D. Goldberg, Genetic Algorithms in Search and Optimization (1989).

[31] A. Tsymbal, M. Pechenizkiy, P. Cunningham, Diversity in ensemble feature
selection, The University of Dublin: Technical Report TCD-CS-2003-44.

[32] Y. Bengio, N. Chapados, Extensions to metric based model selection, The
Journal of Machine Learning Research 3 (2003) 1209-1227.

[33] I. Guyon, A. Elisseeff, An introduction to variable and feature selection,
The Journal of Machine Learning Research 3 (2003) 1157-1182.

[34] E. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based
hyper-heuristic for educational timetabling problems, European Journal of
Operational Research 176 (1) (2007) 177-192.

[35] D. de Werra, An introduction to timetabling, European Journal of Opera-
tional Research 19 (2) (1985) 151-162.

[36] R. Lewis, A survey of metaheuristic-based techniques for university time-
tabling problems, OR Spectrum 30 (1) (2008) 167-190.

[37] J. Culberson, Graph coloring page, URL: http://www. cs. ualberta. ca/~
joe/Coloring.

[38] D. S. Johnson, M. A. Trick, Cliques, coloring, and satisfiability: second
DIMACS implementation challenge, October 11-13, 1993, Vol. 26, Amer-
ican Mathematical Society, 1996.

31

[39] A. Hagberg, D. Schult, P. Swart, Networkx library developed at the los
alamos national laboratory labs library (doe) by the university of california,
Code available at https://networkx. lanl. gov.

[40] J. Moody, D. R. White, Structural cohesion and embeddedness: A hierarch-
ical concept of social groups, American Sociological Review (2003) 103-127.

[41] D. De Werra, Some models of graphs for scheduling sports competitions,
Discrete Applied Mathematics 21 (1) (1988) 47-65.

[42] M. W. Carter, G. Laporte, S. Y. Lee, Examination timetabling: Al-
gorithmic strategies and applications, Journal of the Operational Research
Society (1996) 373-383.

[43] D. Johnson, C. Aragon, L. McGeoch, C. Schevon, Optimization by sim-
ulated annealing: an experimental evaluation; part ii, graph coloring and
number partitioning, Operations research (1991) 378-406.

[44] B. A. Culberson, J., D. Papp, Hiding our colors, in: In CP95 Workshop on
Studying and Solving Really Hard Problems, 1995.

[45] K. A. Smith-Miles, L. B. Lopes, Measuring instance difficulty for combin-
atorial optimization problems, Computers and Operations Research 39 (5)
(2012) 875-889.

[46] R. Read, R. Wilson, An atlas of graphs, Oxford University Press, USA,
1998.

[47] G. Brinkmann, K. Coolsaet, J. Goedgebeur, H. Melot, House of graphs: a
database of interesting graphs, Discrete Applied Mathematics 161 (2013)
311-314.

[48] H. Mélot, Facet defining inequalities among graph invariants: The system
graphedron, Discrete Applied Mathematics 156 (10) (2008) 1875-1891.

[49] S. Soffer, A. Vazquez, Network clustering coefficient without degree-
correlation biases, Physical Review E 71 (5) (2005) 057101.

[50] T. Pisanski, M. Randi¢, Use of the szeged index and the revised szeged
index for measuring network bipartivity, Discrete Applied Mathematics
158 (17) (2010) 1936-1944.

[51] E. Estrada, J. A. Rodriguez-Velazquez, Spectral measures of bipartivity in
complex networks, Physical Review E 72 (4) (2005) 046105.

[52] R. Balakrishnan, The energy of a graph, Linear Algebra and its applications
387 (2004) 287-295.

[53] B. Mohar, The laplacian spectrum of graphs, Graph theory, combinatorics,
and applications 2 (1991) 871-898.

32

[54] N. Biggs, Algebraic graph theory, Vol. 67, Cambridge Univ Pr, 1993.

[55] D. Brélaz, New methods to color the vertices of a graph, Communications
of the ACM 22 (4) (1979) 251-256.

[56] D. Wood, An algorithm for finding a maximum clique in a graph, Opera-
tions Research Letters 21 (5) (1997) 211-217.

[57] R. Lewis, A general-purpose hill-climbing method for order independent
minimum grouping problems: A case study in graph colouring and bin
packing, Computers & Operations Research 36 (7) (2009) 2295-2310.

[58] P. Galinier, J. Hao, Hybrid evolutionary algorithms for graph coloring,
Journal of Combinatorial Optimization 3 (4) (1999) 379-397.

[59] I. Blochliger, N. Zufferey, A graph coloring heuristic using partial solutions
and a reactive tabu scheme, Computers & Operations Research 35 (3)
(2008) 960-975.

[60] K. A. Dowsland, J. M. Thompson, An improved ant colony optimisation
heuristic for graph colouring, Discrete Applied Mathematics 156 (3) (2008)
313-324.

33

