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Plum, C. E. M., Pisinger, D., Salazar-González, J-J., & Sigurd, M. M. (2014). Single liner shipping service
design. Computers and Operations Research, 45, 1-6. https://doi.org/10.1016/j.cor.2013.11.018

https://doi.org/10.1016/j.cor.2013.11.018
https://orbit.dtu.dk/en/publications/da2f3967-6e7f-485f-bc8c-336ab8657f0e
https://doi.org/10.1016/j.cor.2013.11.018


The Single Service Design Problem in Liner Shipping

Christian E. M. Pluma,c,∗, David Pisingera, Juan-José Salazar-Gonzálezb,
Mikkel M. Sigurdc

aDTU Management Science, Produktionstorvet, bygning 426, DK-2800 Kgs. Lyngby
bDEIOC, Facultad de Matemáticas, Universidad de La Laguna, 38721 Tenerife, Spain

cMaersk line, Esplanaden 50, DK-1098 København K.

Abstract

The design of container shipping networks is an important logistics problem,
involving assets and operational costs in billions of dollars. To guide the optimal
deployment of the ships, a single vessel round trip is considered by minimizing
operational costs and �owing the best paying demand under commercially driven
constraints. This paper introduces the Single Service Design Problem. Arc-�ow
and path-�ow models are presented using state-of-the-art elements from the
wide literature on pickup and delivery problems. A Branch-and-Cut-and-Price
algorithm is proposed, and implementation details are discussed. The algorithm
can solve instances with up to 25 ports to optimality - a very promising result
as real-world vessel roundtrips seldom involve more than 20 ports.

Keywords: Traveling salesman problem, Liner shipping,
Branch-and-Cut-and-Price, Shortest path, Network design, Green logistics.

1. Introduction

Container shipping carriers operate worldwide networks consisting of hun-
dreds of vessels having huge operating costs. Developing methods that can
improve the network costs and/or the service level are of huge importance for
both the carriers and the customers. Note that most of the market today is
based on manufactured products transported on container vessels from distant
continents.

Container shipping networks provide transport of containers from port to
port at a �xed (usually weekly) schedule with a predetermined trip duration.
The networks consist of a number of services and a set of similarly sized vessels
sailing on a cyclic itinerary of ports. Services meet at certain hub ports where
transhipment of containers can take place. The round trip duration is assumed
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to be a multiple of a week, and a su�cient number of vessels is assigned to the
round trip to ensure a weekly visit to each port. For instance, Figure 1 shows a
6 week round trip with 6 vessels to ensure that each port is visited once a week.

Figure 1: The WestMed Service, transporting containers between U.S. east coast and the
western Mediterranean.

A given demand is loaded at its origin port to some service, which may bring
the demand directly to its destination or unload it at a hub port for transship-
ment to another service, ultimately bringing the demand to its destination. See
Stopford [25] and Notteboom [19] for a more general introduction to the eco-
nomics of liner shipping.

A usual intercontinental service has between 5-10 port calls for the more
direct trades (e.g. Trans-Atlantic or Trans-Paci�c) and 15-20 port calls on the
longer trades (e.g. Europe-Asia trades), indicating the problem sizes that can
be encountered in reality. Stopford [25] has more details on di�erent service
types.

The problem investigated in this paper considers the design of a single capac-
itated service following a simple cyclic rotation where all ports must be visited,
i.e. a Hamiltonian tour. A solution approach for this problem is an important
tool for a network planner designing a single service as �erce competition be-
tween carriers often require low path durations, while the best paying containers
must be prioritized to optimize pro�ts. In practice services are seldom Hamilto-
nian, partly because important ports are called more than once, partly because
waterways as canals must be traversed in both directions. An experienced user
knows the ports where several visits may be necessary and, by duplicating them,
the problem becomes the Hamiltonian variant addressed in this paper. Canals
do not cater to demand and hence should be excluded from the port set, but
included in the distances between ports.

The problem is then to transport a set of demands on a generated round
trip, where the combined sum of these demands must consider the capacity of
all edges. A demand has a maximal path duration which must be respected: a
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demand can be partly ful�lled, but it must still respect the path duration limit.
This problem is called the Single Service Design Problem, or in short SSDP. To
the best of our knowledge this problem has not been addressed before in the
literature.

1.1. Liner shipping

We refer to Christiansen et al. [7] and Christiansen et al. [8] for an overview
of early research on Liner Shipping problems. Since these reviews, a number of
articles has been published, with various approaches and scopes for Liner Ship-
ping Network Design Problems (LSNDP). The work of Shintani et al. [24] has
a detailed description of the cost structure and includes consideration of reposi-
tioning empty containers. The network design problem considered by Agarwal
and Ergun [1] generates multiple services and handle transshipment. Bender's
and column generation based algorithms are implemented. These algorithms
scale well to large instances, but transshipment costs are excluded. The model
of Alvarez [2] considers transshipment cost and �nds solutions for large instances
in a heuristical column generation approach. The Branch-and-Cut method of
Reinhardt and Pisinger [23] is the �rst model considering transshipment while
allowing for non-simple rotations (with two calls to a single port, a so-called
butter�y route). Small instances are solved optimally. The models of Gelareh
et al. [11] and Gelareh and Pisinger [10] use a hub location based approach, gen-
erating a main service visiting some ports directly, instances of up to 10 ports
are solved to optimality. The work of Brouer et al. [6] describes the domain of
LSNDP, discusses the relevant scoping, proposes a model of the problem, and
presents a number of benchmark instances for the LSNDP based on real world
problems. A novel aggregation of demands was presented in Jepsen et al. [15]
giving a new model formulation and decomposition method, though it did not
perform well in practice. A heuristic algorithm for a short horizon version of
the problem is presented by Wang and Meng [26]. A formulation considering
empty container repositioning is found in Meng and Wang [16] and a further
model dealing with robust schedule design in Wang and Meng [27], but neither
of these consider the order of the port calls and take this as an input. A recent
overview to the area is given by Meng et al. [17]. This multitude of publica-
tions on LSNDP shows that the interest in these problems has increased. Most
of these works considers di�erent models and scopes of the problem and opti-
mal methods can only solve small instances (10�15 ports) and, as real world
instances are larger, the problem is still open for research (see Brouer et al. [6]).

1.2. Pickup and Delivery problems

The SSDP is related to the well-studied pickup and delivery problems. Par-
ragh et al. [20] and Berbeglia et al. [4] give good introductions to these prob-
lems, reviewing existing literature and proposing classi�cation schemes. In the
classi�cation of Parragh et al. [20] the SSDP is a Single Dial-A-Ride Problem
(SDARP) excluding Time Windows, and with the important di�erence that
no depot is required, i.e. demand can be carried through the depot. In the
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classi�cation of Berbeglia et al. [4] the SSDP is a [1-1|PD|1]: 1-1 as each
commodity has one origin and one destination, PD as each vertex must be vis-
ited exactly once for combined pickup and delivery, and 1 as a single service is
generated. An important di�erence from related problems is the lack of a de-
pot. The multi-commodity one-to-one pickup-and-delivery traveling salesman
problem (m-PDTSP) is considered in Hernández-Pérez and Salazar-González
[12]: the problem is formulated, and solution methods based on Bender's de-
composition are implemented. The SSDP can be seen as an extension of the
m-PDTSP with the addition of path duration, and optional demand with asso-
ciated revenue. An often encountered type of subproblems in pickup and deliv-
ery problems are Shortest Path Problems with Resource Constraints (SPPRC)
which also appear by decomposing the SSDP. We refer to Irnich and Desaulniers
[13], Jepsen et al. [14] or Petersen [21] for a review on SPPRC problems and
algorithms.

1.3. Overview

The main contributions of this paper are two novel models of the SSDP and
a Branch-and-Cut-and-Price solution method for solving the problem. The ab-
sence of a depot gives a problem structure not seen in related problems. This
requires both the pricing problem and the separation of valid inequalities to be
designed in a novel manner. The implemented method solves problem sizes met
in real world instances.

In Section 2 an arc-�ow model of the SSDP is presented. This model is
Dantzig-Wolfe decomposed to a path-�ow model to be solved with a column
generation algorithm, which e�ectively handles the multi commodity �ow prob-
lem with path duration constraints. Details of subtour elimination constraints,
pricing problems and branching approaches are given. The proposed algorithm
has been implemented and computational results are presented in Section 3,
where instances of up to 25 nodes can be solved to optimality. Details of the
data instances are provided. Finally Section 4 concludes on the paper and pro-
poses directions for further research. This work is an extension of Plum et al.
[22].

2. Mathematical Formulation

In the following we introduce the notation, present an arc-�ow model, fol-
lowed by a path-�ow model, and a new solution method for the SSDP.

The service must visit each node i ∈ V exactly once. Directed arcs (i, j) ∈ A
exist between all nodes, giving the complete directed graph G = (V,A). Let
S ⊂ V be a subset of nodes. Each arc a = (i, j) ∈ A is associated with a
cost ca representing time charter costs for the vessel, bunker cost for propulsion
and port call costs for visiting the port j. Traversing the arc a takes the time
ta. This time depends on the sailed distance and the speed of the vessel. The
service has a capacity Q, which must be respected at all traversed arcs. The
generated service can transport the commodities k ∈ K. Each commodity k has
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a source sk and a destination dk (sk, dk ∈ V ), a volume of containers F k > 0,
a maximal path duration tk > 0 and unit-revenue for transporting rk > 0. A
node i can be the source of one or more commodities, as well as destination for
some commodities.

2.1. Arc-Flow Formulation

The problem is to �nd a maximal pro�t set of paths in G for a set of com-
modities k, such that the containers can be moved from their origin to their
destination in at most tk time. All the paths should be a subset of a Hamilto-
nian tour, where each arc has a corresponding cost and traversal time.

Let xa be a binary variable indicating whether the service travels on arc
a ∈ A. Let fka be the �ow of commodity k on each arc a. The problem can then
be formulated as:

min
∑
a∈A

caxa −
∑
k∈K

rk
∑

a∈δ−(sk)

fka (1)

subject to

x(δ−(i)) = 1 ∀i ∈ V (2)

x(δ+(i)) = 1 ∀i ∈ V (3)

x(δ+(S)) ≥ 1 ∀S ⊂ V (4)∑
a∈δ+(i)

fka =
∑

a∈δ−(i)

fka ∀k ∈ K and i ∈ V \ {sk, dk} (5)

∑
k∈K

fka ≤ Qxa ∀a ∈ A (6)∑
a∈δ−(sk)

fka ≤ F k ∀k ∈ K (7)

∑
a∈A

taf
k
a ≤ tk

∑
a∈δ−(sk)

fka ∀k ∈ K (8)

fka ≥ 0 ∀a ∈ A and k ∈ K (9)

xa ∈ {0, 1} ∀a ∈ A (10)

The objective minimizes the cost of the traversed arcs subtracted the revenue
of �owed demand. Constraints (2) and (3) ensure that all nodes have one out-
going and ingoing open edge, where δ+(i) and δ−(i) denotes the set of ingoing,
respectively outgoing, arcs to node i. Constraint (4) are subtour elimination
constraints ensuring that the Hamiltonian tour connects all nodes in a single
rotation. The conservation of �ow is ensured by (5), and the capacity is en-
forced by (6). Constraints (7) limit the served demand to the upper value F k.
The path duration is ensured by (8) since fka is

∑
a′∈δ−(sk) f

k
a′ for all a in the

path moving the demand k. Constraints (9) and (10) set bounds on the decision
variables fka and xa.
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2.2. Path-Flow Formulation

Constraints (5)�(9) can be eliminated through a Dantzig-Wolfe decomposi-
tion on the arc-�ow model, thus replacing the variables fka by path variables.
Let P k be the set of all feasible paths from sk to dk, satisfying the constraints
(5)�(9). This set may have an exponential number of elements. Each path
p ∈ P k is represented as a set of arcs, i.e. p ⊂ A. Let tp =

∑
a∈p ta be the

duration of this path. Let λp be a non negative real variable representing the
volume of �ow of commodity k using path p ∈ P k. The SSDP can then be
formulated as:

min
∑
a∈A

caxa −
∑
k∈K

rk
∑
p∈Pk

λp (11)

subject to (2)�(4) and∑
k∈K

∑
p∈Pk:a∈p

λp ≤ Qxa ∀a ∈ A (12)

∑
p∈Pk

λp ≤ F k ∀k ∈ K (13)

xa ∈ {0, 1} ∀a ∈ A (14)

λp ≥ 0 ∀k ∈ K (15)

The objective function minimizes the costs of chosen arcs subtracted the revenue
of �owed demand. The capacity is enforced by constraint (12). Convexity
constraints (13) ensure that at most the available �ow is transported.

The exponential number of subtour elimination constraints (4) can be re-
laxed initially and inserted when violated, as done in Reinhardt and Pisinger
[23]. A lower bound on the optimal value of this model can be attained by
solving the LP-relaxation, where the integrality constraints (14) are replaced
with constraints 0 ≤ xa ≤ 1 ∀ a ∈ A. This LP-relaxation can be solved using
a cut-and-price algorithm. Due to the exponential number of variables λp, a
restricted master problem is obtained by considering a subset P̄ ⊆ P of paths.
Additional columns of negative reduced costs are generated by solving a pricing
subproblem. Let πa ∈ R be the dual variables for the capacity constraints (12)
and let θk ≤ 0 be dual variables for the convexity constraints (13). Then the
pricing problem becomes:

Min:
∑
a∈A

πaxa − θk − rk (16)

subject to constraints (5)�(8).

2.3. Separation of Subtour Elimination Constraints

Given a solution x∗ of the LP relaxation of the path-�ow formulation, we
must search for any violated subtour elimination constraint (4). A violated
constraint exists if and only if a minimum-capacity cut in the solution graph
G(x∗) has weight less than one. This can be computed in polynomial time.
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2.4. Pricing Problem

The pricing problem is an Elementary Shortest Path Problem with Resource
Constraints (ESPPRC), which is strongly NP-hard as shown in e.g. Irnich and
Desaulniers [13]. The path must have the lowest cost given by arc weights πa,
while respecting path durations. Without the elementarity requirement, the
problem can be solved in pseudo-polynomial time. As the pricing problem (16)
may contain negative coe�cients in the objective, negative cost cycles are likely,
but still we apply the non-elementary variant. Negative cycles are broken by
introducing a new resource for the number of traversed arcs, by imposing an
upper bound of n − 1 on this resource. The problem is solved by a labeling
algorithm, which has the advantage of returning all Pareto optimal paths, in
the resources. All these paths are added to the pricing problem, if they have
negative reduced costs. When no negative reduced costs can be found for the
problem including the resource on number of traversed arcs, then no path with
negative reduced costs for the ESPPRC exists.

2.5. Branching

When all violated cuts and negative reduced costs columns have been added
to the current node, and fractional binary variables xa still exists, branching is
commenced. Binary branching is used, by selecting the most fractional xa and
adding constraints xa ≤ 0, xa ≥ 1 to the two branching children, respectively.
As this branching is done on variables xa existing in both the original and
reformulated problem space, the branching constraints will be directly imposed
in the pricing problem and subtour elimination cuts and no further consideration
of this is needed.

A main contribution of this paper lies in the powerful formulation of the
�ow and path based models for this new problem. These formulations allows
for carrying demand through the depot, while selecting which demand to �ow
and enforcing the path duration limit. The e�ectiveness of these formulations
allows for e�cient algorithmic techniques, as branching in the original space
of the xa variables, separating subtour elimination constraints and solving the
pricing problem with an e�cient labeling algorithm.

3. Computational Results

The algorithm has been implemented using the COIN-OR DIP (Galati and
Ralphs [9]) framework to implement the Branch-and-Cut-and-Price method and
using CPLEX 12.1 as LP solver. Boost's graph library (Boost [5]) has an imple-
mentation of SPPRC, which is used to solve the pricing problem as described
above. Concorde (Applegate et al. [3]) has an e�cient implementation of a min
cut algorithm and boost also �nds connected components, to check if we have
a feasible solution. The implementation has been run on a 4 GB Ram, Intel
E8400 3.00 GHz using a single core.
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3.1. Instances

The algorithm has been tested on a set of instances inspired by the class2

and class3 instances of Hernández-Pérez and Salazar-González [12], which again
are based on the description by Mosheiov [18] for instances of TSP with pickup-
and-delivery. These have n random points in the square [-500, 500] × [-500,
500], one of which is located at point (0,0) (formerly the depot). For each
problem size, we have 5 randomly generated instances. The travel cost ca is
the Euclidean distance between the points and the travel time is ta = ca/100 ·
(0.95+rand(0, 0.1)). Hence the travel time is proportional to the cost, but with
some small deviation, as seen in real-life problems. The vessel has a capacity Q.
The commodities have a path duration limit tk, a volume F k and an associated
revenue rk. To test the scalability and properties of the algorithm a number of
variations of the instances have been created.

Path duration limit. Instances with tk ∈ {0, 5, 10, 200} have been created. tk =
10 is used as the default setting. All tk have the same setting in an instance.

Revenue. Instances with rk ∈ {0, 250, 1000, 10000} have been created, rk =
1000 is used as the default setting. All rk have the same setting in an instance.

Graph. Instances with 10, 15, 20 and 25 nodes have been run, all with a com-
plete set of edges. These graph sizes resembles real service design problems.

Commodity Density. Instances with �xed (F) number of commodities 5, 10 and
15 have been generated. To test larger commodity sets, instances with (A)
sparse commodity density n, (B) populated commodity density 3n, (C) dense
commodity density (n2−n)/2 and (D) complete commodity density n2−n have
been tested. Commodity Density (B) is used if nothing else is mentioned.

Capacity. Instances with Q ∈ {0, 10, 30, 200} have been created, Q = 10 is used
as the default setting. These instances are constructed as to resemble problems
that could arise in real service design situations by the relation between capacity,
revenue and path duration limit, as the interplay between revenue, cost and
operational and commercial restrictions come in play.

3.2. Results

Tables 1-4 shows the results of the developed algorithm on the test instances.
Each row in the table corresponds to runs on �ve randomized instances with the
same properties. In the tables column n is the number of nodes,m is the number
of commodities, m = 3n, commodity density (B), if nothing else is stated. The
algorithm has been run with a time limit of 3600 seconds, and Time is the
average computational time of the �ve runs. Timeout is the number of runs
which timed out and hence was not solved to optimality. Gap is the percentual
gap between the upper and lower bound of all computed instances including
both optimally solved and timeouts. The number of added subtour elimination
constraints is given by Cuts. The number of generated path columns are given
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by Columns and the number of search nodes in the Branch-and-Bound tree is
given by B&B Nodes. All values are averages over the 5 randomly generated
instances.

In general it can be seen that the solution time increases with graph size.
Some classes of instances are easily solved as they reduce to a standard TSP
problem, these are the cases where tk = 0, rk = 0 and Q = 0.

Table 1 reports the e�ect of di�erent commodity densities. It shows that the
small 5 -commodity instances are easily solved, but interestingly the completely
dense D-instances are also among the fastest solved for all n. This must be due
to the abundance of commodities, making it easier to �nd the optimal solution,
as commodities that �ts together without exceeding path duration limit exists.

In Table 2, problem complexity can be seen to increase with increasing tk.
The number of B&B Nodes decreases for the larger instances with high tk val-
ues, as each node becomes harder to solve with non binding path duration
constraints.

In Table 3 problem complexity also increases with revenue, but not for the
largest graphs, where the gap stabilizes or decreases for very large revenues,
as the problem shifts from balancing cost against revenues, to maximizing the
revenues.

The dependence on the vessel's capacity can be seen in Table 4, where the
complexity of the instance appears to be proportional with the capacity. The
largest instances that can be solved to optimality have 25 nodes and commodity
density A or D. These problem types represent real world problems well and it
proves the methods applicability in a real world setting as a decision support
tool to generate services in a complex operational and commercial setting.

Generation of subtour elimination constraints (Cuts) increases with the size
of the graph, for the instances solved to optimality. For instances reaching
the time limit the time for each iteration increases with graph size, and thus
decreases the number of subtour elimination constraints generated. The number
of path columns generated (Columns) increases with increasing Path duration

limit as more paths become feasible. There is also some dependence with the
commodity density and capacity. The number of B&B Nodes follows the same
pattern as the number of Cuts, i.e. increasing with larger graph size. As the time
of each iteration increases the number of branches decreases due to timeout.

4. Conclusion and Further work

We have presented the SSDP, a pickup and delivery problem which di�ers
from related pickup and delivery problems by not considering a depot, having
optional demands, and having to respect path durations for the demand. The
inclusion of path durations and optional demand is a new, and probably more
realistic, way of seeing liner shipping network design.

A novel arc-�ow model as well as a path-�ow model have been proposed,
and a Branch-and-Cut-and-Price algorithm has been devised for the path-�ow
model. This algorithm e�ectively deals with the path duration limits in sub-
problems for each demand, while it chooses the vessel round trip, demand paths
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n Commodity Density m Time Timeout Gap Cuts Columns B&B Nodes
10 F 5 1 0 0 % 42 124 20
10 F 10 2 0 0 % 79 467 48
10 F 15 3 0 0 % 99 872 58
10 A 10 160 0 0 % 3936 1141 5510
10 B 30 18 0 0 % 291 3988 203
10 C 45 19 0 0 % 300 3511 191
10 D 90 6 0 0 % 130 4197 48

15 F 5 3 0 0 % 111 506 74
15 F 10 885 0 0 % 4465 6336 5519
15 F 15 292 0 0 % 1881 7518 1961
15 A 15 3 0 0 % 50 1225 12
15 B 45 1034 0 0 % 2278 33037 2035
15 C 105 3602 5 7 % 3327 62769 1448
15 D 210 117 0 0 % 484 29509 201

20 F 5 28 0 0 % 246 1454 175
20 F 10 1237 1 4 % 5000 7557 5585
20 F 15 3017 4 5 % 5213 22944 3735
20 A 20 3610 5 inf 601 41362 216
20 B 60 3605 5 12 % 1093 72048 415
20 C 190 3612 5 8 % 893 54188 220
20 D 380 620 0 0 % 702 54569 269

25 F 5 562 0 0 % 2275 7489 2324
25 F 10 3185 4 10 % 2394 35609 1904
25 F 15 3607 5 14 % 1109 46511 497
25 A 25 1713 1 1 % 848 150721 510
25 B 75 3619 5 39 % 457 52158 120
25 C 300 3613 5 12 % 644 79878 112
25 D 600 849 0 0 % 441 45677 189

Table 1: Computational results with varying commodity density. Average values of 5 instances.

n tk Time Timeout Gap Cuts Columns B&B Nodes
10 0 0 0 0 % 7 30 3
10 5 1 0 0 % 16 101 6
10 10 18 0 0 % 291 3988 203
10 200 3072 3 1 % 6331 162744 4969

15 0 1 0 0 % 11 45 8
15 5 7 0 0 % 124 298 109
15 10 1034 0 0 % 2278 33037 2035
15 200 3604 5 13 % 1445 163834 546

20 0 2 0 0 % 5 60 1
20 5 55 0 0 % 372 856 349
20 10 3605 5 12 % 1093 72048 415
20 200 3614 5 29 % 548 63474 114

25 0 2 0 0 % 1 75 1
25 5 496 0 0 % 2215 3541 2100
25 10 3619 5 39 % 457 52158 120
25 200 3614 5 25 % 529 104782 105

Table 2: Computational results with varying path duration limits. Average values of 5 in-
stances.

and quantity of each demand to respect the vessel capacity in the master prob-
lem. The solution method has been implemented and extensive testing shows
that it is able to solve problem instances with n = 25 nodes and commodity
density (A) or (D) to optimality in less than 3600 seconds. The model and
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n rk Time Timeout Gap Cuts Columns B&B Nodes
10 0 0 0 0 % 7 30 3
10 250 20 0 0 % 300 4414 210
10 1000 18 0 0 % 291 3988 203
10 10000 22 0 0 % 324 4401 234

15 0 1 0 0 % 11 45 8
15 250 1046 0 0 % 2687 36270 2597
15 1000 1034 0 0 % 2278 33037 2035
15 10000 976 0 0 % 2120 31345 1927

20 0 2 0 0 % 5 60 1
20 250 3606 5 18 % 1051 83624 391
20 1000 3605 5 12 % 1093 72048 415
20 10000 3603 5 11 % 1035 65633 395

25 0 2 0 0 % 1 75 1
25 250 3616 5 58 % 465 61431 123
25 1000 3619 5 39 % 457 52158 120
25 10000 3613 5 21 % 486 53531 127

Table 3: Computational results with varying revenue. Average values of 5 instances.

n Q Time Timeout Gap Cuts Columns B&B Nodes
10 0 1 0 0 % 6 110 4
10 10 18 0 0 % 291 3988 203
10 30 90 0 0 % 665 8757 520
10 200 109 0 0 % 789 8934 628

15 0 1 0 0 % 8 231 4
15 10 1034 0 0 % 2278 33037 2035
15 30 3110 3 11 % 3600 101576 2781
15 200 3146 4 15 % 2957 90291 1926

20 0 2 0 0 % 4 412 2
20 10 3605 5 12 % 1093 72048 415
20 30 3608 5 inf 404 99737 108
20 200 3619 5 76 % 398 107869 102

25 0 5 0 0 % 15 632 10
25 10 3619 5 39 % 457 52158 120
25 30 3607 5 124 % 368 173356 76
25 200 3609 5 153 % 346 168005 67

Table 4: Computational results with varying capacity. Average values of 5 instances.

developed solution method is generally applicable to a wide range of problems,
as well as for liner shipping speci�c problems. If one wished to capture more of
the rich problems faced in liner shipping network design, the model and solu-
tion method could be extended to: include time windows, as a carrier will often
have a limited number of berth hours available at some port. Another extension
would be to allow multiple port calls to some ports, as port calls both in- and
outbound on a service can improve path duration for both imports and exports,
this would require a model allowing non-simple cycles. The developed solution
method can solve problem instances with up to said 25 nodes, which makes it
applicable to the design of real world inter continental services, typically calling
10 to 20 ports.
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