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ABSTRACT

Energy efficiency has become more and more critical for the success of manufacturing companies because
of rising energy prices and increasing public perception of environmentally conscious operations. One way
to increase energy efficiency in production is to explicitly consider energy consumption during short-term
production planning. In many cases, final energy sources (FES) are not directly consumed by production
resources and thus have to be transformed by conversion units into applied energy sources (AES), such as
steam or pressure, so the relationship between AES and FES has to be considered. Therefore, we present an
energy-oriented scheduling approach for a parallel machine environment. These parallel machines require
production order and process time specific amounts for AES and the objective is to minimize the demand
of FES. This minimization can be achieved by smoothing the cumulated demand of AES to avoid the
frequent load alternations that are responsible for the inefficient operation of conversion units. Therefore,
resource leveling is used as a surrogate objective for optimization. To solve the resource leveling problem
for large problems, a Genetic Algorithm and two Memetic Algorithms are developed. The evaluation of the
proposed Evolutionary Algorithms is based on small test instances and several real-world instances. These
latter instances are based on an application case from the textile industry, and promising results

concerning energy costs and carbon dioxide emissions are reported.

1. Introduction

An analysis of recent trends in manufacturing industries shows
that energy efficiency is one of the most important challenges that
companies face, which is due to the economic fact of rising energy
costs (e.g., for electricity, natural gas, or fuel oil). Managing these
costs is crucial — especially in energy-intensive industries such as
chemicals, textiles, or food - for corporate success (e.g., [1-3]).
An additional reason for manufacturing companies to address
energy efficiency is the increased public perception of business
operations' ecological impact (cf. [1-3]). With regard to the
manufacturing of goods, environmentally conscious operations
depend, on the one hand, on an efficient use of resources (e.g.,
energy or raw materials) and, on the other hand, on minimizing
the environmental impact (e.g., carbon dioxide or greenhouse gas
emissions in general) during the entire product life cycle. For these
reasons, it is necessary to use energy in a more efficient way to
stay (or become) competitive.
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Energy use during production, and thus energy efficiency, can
be influenced by the following two types of measures [4]:
technological and organizational. Technological measures focus
on efficiency improvements through technical innovations (e.g.,
new machines or the production process [2]). The main drawbacks
of these technological measures are the high costs of development
and/or investment. Here, we focus on the organizational measures
used to improve energy efficiency, particularly on short-term
production planning, i.e., energy-oriented scheduling.

Because (machine) scheduling is the final planning task regard-
ing production processes within a hierarchical supply chain plan-
ning system (cf. [5]), the preceding planning tasks (e.g., master
planning) determine the decision limits and restrictions (e.g., the
available capacity) for energy-oriented scheduling. For that reason,
the presented energy-oriented scheduling approach is subject to
these limits and restrictions, as is the underlying production
system. In terms of the production system, we investigate identical
parallel machines, which for example can be found in the energy-
intensive textile industry (cf. [4]). We further assume a given order
portfolio consisting of production orders that have individual
processing times and energy requirements and that have to be
processed without interruptions (i.e., preemption is not allowed).
Based on this order portfolio and a predetermined (fixed) planning
horizon, the preceding planning task determines the number of



parallel machines and ensures the feasibility of the temporal and
energy conditions. Consequently, the basic scheduling task con-
sidered in this contribution is the allocation and sequencing of
production orders on identical parallel machines within a fixed
planning horizon.

The structure of the paper is as follows. To be able to schedule for
energy efficiency, a detailed knowledge of the energy demand and
supply characteristics in production environments is indispensable
and is therefore analyzed in the following section. Afterward, the
surrogate objective of resource leveling is introduced to achieve
the desired energy efficiency, and a literature review concerning
energy-oriented scheduling and resource leveling is presented.
A binary program of the planning problem at hand is formu-
lated in Section 3. The developed solution methods, a Genetic
Algorithm and two Memetic Algorithms, are described in Section 4.
An evaluation of these solution methods with small academic
test instances and a real-world application case is presented in
Section 5. The last section provides a brief conclusion and describes
future research topics.

2. Energy-oriented scheduling
2.1. Energy demand and supply in production systems

To consider energy efficiency during scheduling in a suitable
manner, an analysis regarding the characteristics of energy supply
and the energy demand of a production system has to be carried
out. This production-oriented analysis reveals two major cases for
the provisioning of energy in production systems [4]. Either there
is a direct use of final energy sources (FESs) in the production
process (cf. case 1 in Fig. 1) or there is the need to convert FESs
before their designated application in a production process
(cf. case 2 in Fig. 1). An example of the former case is a production
system (PS) consisting of machining production units (PUs) that
are solely run by electricity. The latter case is accomplished by so-
called “conversion units” (CUs). Their duty is to provide the
necessary applied energy sources (AESs), such as steam or pres-
sure, to run PUs (PUy, ..., PU,,). A CU centrally provides AESs for
several PUs. This case usually occurs when thermal energy is
needed in any form to run the production process. Therefore, fossil
energy sources are generally burned in CUs centrally to provide
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heat, which, in turn, ensures the right process conditions needed
in industrial chemical processes, for example.

In summary, the initial situation for all considerations in the
article at hand is a production environment in which energy is
provided centrally. In addition, the energy supply system is built in
such a way that AES is produced on demand, i.e., there is no
possibility for recirculation or the like.

The consideration of energy is challenging because - in con-
trast to traditional scheduling approaches - the impact of an
allocation is not direct or obvious, and thus, an in-depth analysis of
the conversion unit operation's behavior is necessary in the first
step. The situation is even more complicated because the energy
supply system (including the CU) is often separated from the
production system in both a spatial and an organizational context.
Because of that separation, there is no adequate information
exchange and no coordination of both systems takes place in most
cases. In consequence, the CU has to fulfill the cumulated and
uncoordinated demand of AES (AESD) of all production units. This
often leads to inefficient operation of the CU because the produc-
tion system only considers the maximum energy supply from the
CU as a restriction during scheduling, if it is considered at all.
Therefore, scheduling for energy efficiency in production has to
consider the cumulated AESD and the economic and ecological
effects of this demand on the operation of the CU. This is an
additional requirement apart from the traditional task of schedul-
ing that leads to “energy-oriented scheduling”.

In general, scheduling seeks an efficient allocation and sequen-
cing of production orders to production units (here, one of the
parallel machines) with regard to a certain performance measure
(e.g., makespan, maximum tardiness, etc.). To be able to generate
an energy-oriented schedule, a new point of view has to be
introduced first; production orders have to be distinguished with
regard to their AESD, and thus, each order is specified by an
individual AESD profile. The demand can either be constant or can
vary over time. In contrast to the former case, which is quite easy
to model, the latter case requires a more sophisticated approach,
which is why production orders are artificially divided up into
operations whereby each operation has a certain constant AESD
(cf. [4]). In return, the non-preemptive execution of a production
order has to be assured by time lags of zero between its operations
(i.e., the operations have to be linked by the no-wait constraint;
cf. [6,7]). This modeling approach offers the possibility of account-
ing for the energy characteristics of any type of order (e.g., start-up
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Fig. 2. Examples of AESD profile discretization.

phases, strongly varying demands, etc.). Obviously, this discretiza-
tion of the energy demand has an inherent loss of accuracy, but it
avoids the modeling of complex functions and thus reduces the
problem’s complexity (a similar approach is used in [8]). Fig. 2
illustrates this discretization based on a predefined time-slice
model that represents a required level of detail (the temporal
resolution) that depends on the specific scheduling problem. Each
time slice (TS) aggregates a certain number of time units (e.g.,
10 min to one TS). The number of operations per job varies
significantly with regard to the level of detail and the original
AESD profile (cf. Fig. 2a: 18 operations, Fig. 2b: 5 operations,
Fig. 2c: 18 operations and Fig. 2d: 3 operations).

The proposed modeling approach therefore leads to a certain
number of operations o; per production order J; that have an
individual constant demand for AES r; per time slice and a
processing time p;; that defines the number of time slices the
operation requires on one of the parallel machines. R;; denotes the
total amount of AESD per operation (R; = p;Ty).

In any production system in which production orders are
executed concurrently on more than one production unit and
demand the same type of AES, such as the parallel machine
environment considered in this contribution, the individual AES
demands accumulate per time slice. The lower part of Fig. 3
illustrates the allocation and sequencing of the two production
orders whose individual AES demands lead to the cumulated AESD
(cum. AESD) shown in the upper part of Fig. 3.

Here, it can be observed that the temporal overlapping of the
individual AES demands result in a strongly varying cumulated
AESD. The consequences of these short-term variations, economic
and ecologic, strongly depend on the type and technical charac-
teristics of the CU. This effect can be shown by the example of a
steam boiler CU that converts FES (e.g., natural gas or fuel oil) and
water into AES in the form of steam (detailed information about
steam boiler technology, characteristics, and operation efficiency
can be found, e.g., in [9-11]). Three general operating situations
involving steam boilers can be distinguished. In the first situation,
the cumulated AESD falls below a base load limit and additional
throttling is no longer possible. The boiler then has to be shut
down, the flue gas has to be aerated, and the steam boiler has to be
restarted. This situation is obviously inefficient and causes addi-
tional emissions and losses of useful energy. In the second
situation, the required amount of AES reaches peak loads. If a
certain upper load limit is exceeded, either shutting down the
boiler for technical security reasons (with the consequences
explained above) or starting up additional peak-load-boilers will
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Fig. 3. Cumulated AES demands.

be unavoidable. Both scenarios would cause high additional losses
of useful energy and emissions, particularly as peak-load boilers
have to be held in warm redundancy. In the third situation, which
is most common and therefore the most important, the cumulated
AESD varies between the base load limit and the upper load limit.
These variations are undesirable for two reasons; on the one hand,
there is an enormous reduction in efficiency if a CU operates
considerably far from its optimal efficiency level. On the other
hand, steam boilers do not operate efficiently during the heating-
up and cooling phases. These inefficient phases, caused by a
strongly varying cumulated AESD, result in significant losses of
useful energy and high emissions. The degree of inefficiency
depends on the volume of the AESD increase (or decrease) and
the technical characteristics of the CU, but the consequences of
varying demands are generally observable. Therefore, the smooth
operation of CUs bears significant optimization potential for
energy efficiency in production processes.

Following this analysis, an adaption or extension of the classical
scheduling problem by constraints and/or objective functions has
to be made to improve energy efficiency in production by energy-
oriented scheduling.



2.2. Energy efficiency — achieved by resource leveling

Based on the previous analysis, we formulate a surrogate
objective function that addresses case 2 of Fig. 1. Because the total
AES demand is defined by the AES demand of all jobs and their
operations, it is not possible to influence this total demand. The
only potential for optimization lies in the improvement of the
provisioning of the AES by CUs. Because of this fact and because
AES is provided by conversion units that convert FES to AES,
energy-oriented optimization can only be achieved by efficient
operation of the CU.

The main challenge here is the suitable modeling of the effects
of strongly varying cumulated AESD. One problem is that it is not
possible to exactly calculate the FESD based on the given AESD
because the conversion process is not deterministic for technical
reasons. Accordingly, it is not possible to formulate a suitable
objective function based on the FESD. In consequence, a surrogate
objective function reflecting the effects on costs and emissions
based on the cumulated AESD is required.

The formulation of the surrogate objective has to account for
the following two issues: the analysis in Section 2.1 has shown
that CUs lose efficiency disproportionately the further away their
operating point is from the optimal efficiency level and, because
CUs do not operate efficiently during adjustment phases, the
objective function also has to take load alternations into account.
These load alternations can be distinguished with regard to the
volume of increase or decrease and the number of times they
occur. The volume of the alternation is mainly responsible for
losses of useful energy (independent of the direction of the
alternation). For these reasons, we identified the minimization of
the deviations of the cumulated AESD from a desired level as an
appropriate surrogate objective (cf. also [4]). Problems with such
an objective are referred to as resource leveling problems in the
literature and have been extensively studied by several authors
(e.g., [12-14]).

The technical benefit of a leveled cumulated AESD is the
smooth and even operation of the CU, without frequent and
voluminous load alternations. From an organizational point of
view, the resource leveling approach is advantageous because
of its applicability to any type of CU. If the optimal efficiency level
of the CU is known, it can be used as the desired level for the
optimization; otherwise, the desired level can be easily derived
from the theoretical optimum. Fig. 4 illustrates the influence of
leveling the cumulated AESD on the estimated FESD.

In the left part of Fig. 4, a potential result of planning under the
objective “minimize makespan” (chosen as a representative example
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of a time-related objective) is shown. The right part shows the
impact of applying the resource leveling objective. In addition to
the obvious improvements regarding the estimated FESD, and thus
the CU's overall mode of operation, another effect of the leveling
procedure is that the improvements can come at the expense of the
objective to minimize the makespan. Nevertheless, the limit given
by the total length of the planning horizon offers the potential to
improve energy efficiency. Of course, this procedure is only advan-
tageous for energy efficiency. As soon as the decision maker is
interested in time-related objectives (e.g., minimize makespan) and
also energy-efficiency, whether they are in conflict has to be
investigated (cf. Fig. 4). If this is the case, the conflict has to be
resolved, for example by changing one objective into a satisficing
objective, in which an aspiration level is formulated as a constraint,
or by using a multi-objective solution approach. For example, the
latter is used in Gahm et al. [15], in which order lead-times and
resource levels are simultaneously optimized, or in Mouzon et al.
[16], in which energy consumption and total completion time are
considered in a multi-objective mixed-integer linear program.
However, in this study, we assume the other case and focus on
single objective resource leveling to exploit the potential for
improving energy efficiency.

2.3. Literature review

This section provides a literature review consisting of two
parts: first, contributions regarding energy aspects within produc-
tion planning are analyzed, and second, approaches addressing
resource leveling are analyzed.

As stated in Section 1, there is an increasing awareness of
sustainable and energy-efficient operations by managers and
researchers. Energy-intensive industries in particular need tools
and methods to optimize production processes regarding energy
efficiency [17]. The need for research to integrate energy orienta-
tion in operations management, especially in short-term produc-
tion planning, has been stated by a broad range of authors (e.g.,
[2,3,18,19]). Energy orientation in short-term planning is not a
new research area, but in most cases, it is dedicated to specific
problems in certain industry sectors or to utility systems, such
as cogeneration systems (cf. [20] or [21] and [18] or [22],
respectively)

To the best of our knowledge, energy aspects in terms of
production scheduling were first addressed by Subai et al. [23].
Instead of exclusively maximizing throughput, as is done in origin
hoist scheduling problems, the authors expand the objective func-
tion by additional cost factors for energy (among others). Another
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Fig. 4. Influence of the resource leveling objective on the estimated FESD.
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report considering a scheduling problem from an energy-oriented
point of view is derived by Mouzon et al. [ 16]. The authors investi-
gate energy-saving potentials by switching machines from idle to
offline mode if they are not bottleneck resources. This work has
been the topic of further research in a subsequent article by Mouzon
and Yildirim [24], which focuses on a single machine scheduling
problem. A newer contribution by Nolde and Morari [25] presents a
production scheduling approach for a steel plant. In this article, a
schedule (and the resulting load curve) is planned a day in advance
and sent to the electricity provider. This provider in turn adjusts the
curve (e.g., to avoid peaks during energy intensive parts of the day),
and the steel plant has to reschedule because any gaps between the
updated and actual load curve results in penalty costs. Therefore,
the objective is to minimize penalty costs by job scheduling. Fang
et al. [2] develop a multi-objective mixed-integer programming
model for a flow shop environment to minimize makespan, peak
power loads, and the carbon footprint. Therefore, a decision has to
be made regarding processing speed (among other considerations),
which influences the competitive objectives (e.g., if the processing
speed is increased, the makespan shortens at the expense of a
higher power demand and vice versa). Because computational effort
tends to be quite high, the authors conclude that there is a need to
improve the developed solution method to make it applicable to
real-world problems.

Insights into the impacts of the task-oriented consideration of
energy consumption in a machining environment are provided by
He et al. [26]. The authors develop a method to model energy
characteristics through discrete event graphs. Furthermore, a
method of investigating energetic behavior through simulation
analysis is derived.

Artigues et al. [8] present an energy-scheduling problem,
which is formulated as a generalization of the cumulative schedul-
ing problem (which itself is an extension of the well-known
parallel machine scheduling problem). The main characteristic of
the derived problem formulation is the possibility to adjust an
order's energy demand. Thus (similar to the processing speed
adaptation of [2]), the completion of production orders can be
accelerated at the expense of higher power consumption. The
maximum available power is restricted to a certain level, and
overruns are penalized. The authors propose a two-step constraint
programming/MILP approach to determine a valid schedule with
regard to the power limit. The production environment considered
by Artigues et al. [8] is very similar to the one considered in this
contribution, but the planning decisions and the objective are
different.

The only planning approach that considers energy efficiency in a
suitable manner concerning the planning problem at hand is the
approach of [4]. In his doctoral thesis, the author presents funda-
mental aspects of energy-oriented scheduling that also form the
basis of the article at hand. Here, we present a modified version of
the planning problem and an enhanced solution method to achieve
energy efficiency through resource leveling.

The objective of resource leveling originated in the field of
project planning and scheduling. Comprehensive overviews can be
found in Younis and Saad [27], Neumann and Zimmermann [13,28],
Caramia and Dell’Olmo [29], Anagnostopoulos and Koulinas [30]
and Gather et al. [14]. A small selection of current contributions is
analyzed in the following paragraphs.

Drétos and Kis [31] describe a resource leveling problem in a
general machine environment without precedence relationships
between tasks and solve it by branch-and-bound. Here, up to 20
machines with up to 20 tasks are considered. A branch-and-
bound-based solution method is also presented by Gather et al.
[14]. The authors use a new tree-based enumeration scheme, a
constructive lower bound, and preprocessing techniques and solve
problem instances with up to 20 activities to optimality. Rieck

et al. [32] propose a new mixed-integer linear programming
formulation for the resource leveling problem and solve problems
with 50 activities and tight deadlines to optimality for the first
time. Analyzing these contributions to resource leveling, it must be
concluded that none of the proposed exact solution methods are
able to solve larger problem instances (with up to 1000 opera-
tions) within a reasonable amount of time.

A basic decision concerning resource leveling is the determina-
tion of a criterion for measuring the leveling that is adequate for
the problem (cf. [13,33]). The most common objective criterion for
resource leveling in the literature is the minimization of the sum
of the squared deviations of the resource utilization from an
optimal value over time. This criterion explicitly penalizes large
deviations and therefore is most appropriate for the problem
at hand.

Because none of the above-mentioned exact solution methods
are able to solve problem sizes addressed in this contribution and
due to the complexity of the problem (which can be assessed on
the grounds that the general resource leveling problem with
precedence constraints is NP-hard in the ordinary sense [13]
and that even the single-machine resource leveling problem is
NP-complete in the strong sense [31]), the use of meta-heuristics
as solution method is indispensable ([30,33-35] also come to this
conclusion).

Rager [4] describes the only meta-heuristics that adequately
address the defined energy-oriented scheduling problem by con-
sidering the no-wait constraint: a Genetic Algorithm and a Memetic
Algorithm. Therefore, we present and evaluate these meta-heuristics
and compare their performance to a new variant of a Memetic
Algorithm (MA; e.g., [36,37]).

3. Formulation of a binary program for energy-oriented
scheduling

To substantiate the energy-oriented scheduling problem con-
sidered in this contribution, the following non-linear binary
program is used (cf. [4]). As described above, the basic scheduling
task is the allocation and sequencing of a set of production orders
J={i=1,..,neN} on a set of identical parallel machines M =
{Mylk=1,..,meN}. According to Section 2.1, each production
order J; consists of a sequence of operations O;={o;li=1,..,
n; N}, whereby each operation o; has a processing time of p;
time slices and requires a constant amount r; of AES per time slice.
After the start of production order J;, its operations have to be
processed in the right order 04— 05— ...—0p; without interrup-
tions (a consequence of the non-preemptive and the no-wait
constraints) on the same machine M,. Consequently, the overall
duration (p;) of production order J; can be calculated by Zf”: 1Dij-
Without loss of generality, the planning horizon defined by T > 1
(te{0,...,T}) determines a common release date rel (rel=1) and a
common deadline d (d =T—1) that are used for modeling pur-
poses. Each machine is only capable of processing one production
order at once at any given time point te{0,..,T}, and each
production order may only be processed by one machine at any
given time point t. A machine schedule S can therefore be
expressed as the following function S:j—(M;,S;), in which
M]S ef{l,..,m} degotes the machine to process production order
Jjs and Sf e (1, ...,d} denotes its starting time.

With regard to the selected objective criterion for resource
leveling - the minimization of the sum of the squared deviations
of the resource utilization from a desired level - the resulting
schedule depends on the desired level 7. In certain cases, there can
be a significant influence of this level on the schedule ([33]
differentiates here in the context of the considered time interval
between full range, dynamic range, and effective range values),



but in this contribution, the theoretical optimum, the average
resource utilization, is appropriate (cf. Section 2.2).

nj
2T M
These preliminary definitions lead to the following binary pro-

gram:

Indices

j=1,..,neN index for production orders

i=1,...n;eN index for operations (of production order J;)
k=1,..,meN index for machines

t=1,.,TeN index for time slices (T>1: length of planning

period)

Parameters

Djj processing time of operation o;; (of production order J;)

rij AESD of operation o; (of production order J;) per
time slice

r desired level N

d common deadline (d =T—-1)

Variables

Xijke binary variable indicating if operation o; is processed on
machine k at time slice t

Xije binary variable indicating if operation o; is completed at

the end of time slice t

Objective function

o d n N o om . 2
Min 3 X X X Xl | T )
t=1 j=1li=1k=1

Constraints

a o .

E Xijt =1 Vl,] (3)
t=1
Kijke — Xijke 1) < Xije vijkt=1,..d 4)

n N

> > Xijie < 1 vk, t (5)
j=1i=1

m d .

Y X Xike = Djj vi,j (6)
k=1t=1

t-1 . o .
PiXijie < X Xk Vi<i <njj,kt>0 7
t=1

Xije = Xii—1)jc—py) Vi=2,..,n]j,t>pj (3)
Xijkr =0 Vi jk €]
Xijie» Xije € {0, 1} Vi j. k,t (10)

The resource leveling objective is represented by the non-
linear objective function (2) and minimizes the sum of the
squared deviations of the resource utilization from the optimal
value 7 (1). Constraints (3) and (4) define the completion time
and prevent the preemption of operations. Eq. (5) assures that
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not more than one production order is allocated to a machine
at any time point. Eq. (6) guarantees the complete processing
of each operation, and Eq. (7) guarantees the compliance of the
processing sequence of all operations of a production order on
the same machine. The no-wait constraint is modeled by Eq.
(8). Eq. (9) prevents the allocation of operations at the last time
slice of the planning horizon. Eq. (10) limits the domain of the
decision variables.

4. Solution method

Following the results of the literature review presented in
Section 2.3, the energy-oriented scheduling problem consid-
ered in this study has to be solved by meta-heuristics because
of its complexity and the praxis-relevant problem instances
that have to be solved with regard to solution quality and
computing time. The solution method has to make two deci-
sions to calculate a schedule, namely, the allocation of produc-
tion orders to machines and the determination of starting
times for each production order. The sequence of orders can
be seen as a by-product of the determination of the start time.
The suggested solution approach decomposes the problem into
two sequentially performed steps, one for each of these
decisions (as proposed e.g. in [38]). In the first step, production
orders are allocated to machines, and the objective is to
distribute the workload as evenly as possible among machines to
facilitate the following leveling of the cumulated AESD. In the second
step, the allocation of the production orders remains unchanged, but
the production orders' starting times are determined. This step
focuses the objective of resource leveling. It has to be noted here
that the heuristic solution method determines the starting times for
the production orders itself and uses the operations only to calculate
the corresponding cumulated AESD per time slice, which implicates
the use of the time slice model here.

4.1. Opening procedure - allocation of production orders to
machines

The general purpose of the first step, which can also be seen as
an opening procedure (and is therefore called INIT), is to distribute
the workload (defined by the processing times p; of the production
orders) as equally as possible among the parallel machines (cf. [4]).
This is done to increase the flexibility for the determination of the
starting time of the succeeding second step (which can be seen as
an improvement procedure).

Because the objective of equal workload distribution in an
identical parallel machine environment is similar to the objective
of makespan minimization, the former can be replaced. This
replacement leads to a well-known dual scheduling problem,
the “bin packing problem” (cf. [39,40]), and established solution
methods can be applied (overviews can be found in [41,40]).
Because several authors (e.g., [42-44]) have shown that the
“largest processing time first” rule performs well in solving this
problem and because the resulting schedule will only be used as
an initial solution, this priority rule is used to allocate production
orders to machines and to distribute the workload equally. Here,
production orders are first sorted in descending order according to
their processing time p; and then allocated to the machine with
the lowest workload. The result (S™7T) of this planning step is the
allocation (indicated by aj) of production orders J; to machines
k=1,..,m (ay =1if J; is allocated to machine k, a; = 0 otherwise)
and the corresponding schedule that contains the workload wi, of
each machine: wh.=31_ | 3 | p;dj.
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4.2. Improvement procedure — determination of starting times

Based on the discussion of solution methods for resource leveling
problems presented in Section 2.3, we apply different Evolutionary
Algorithms (EAs; e.g., [37,45]) to solve the described energy-oriented
scheduling problem: the standard Genetic Algorithm (abbreviated
GA in the following) and the MA with a peak-oriented local search
mechanism (abbreviated MA-PLS) as proposed by Rager [4] and a
new MA with a more sophisticated local search mechanism based on
deviations (abbreviated MA-DLS). These EAs are used as there is no
general advantageousness of any other meta-heuristics such as Tabu
Search, Simulated Annealing, or Variable Neighborhood Search
(cf. [46] for an overview of these heuristics) and as such meta-
heuristics would require very sophisticated transformation rules (e.g.,
for swapping or shifting several production orders simultaneously).
Another aspect is, that, if adequately designed, EAs provide the
possibility of maintaining certain (promising) parts of a solution and
changing only other (less promising) parts and, consequently, are
able to generate and store information about promising solutions or
solution parts. Moreover, the application of EAs and particular GAs is
seen to be suitable if the search space is large and/or not well
understood (cf. [47]).

To solve a particular problem using EAs, several components
must be specified (cf. [37,48]; general and detailed information on
EAs and their subclasses, procedures, etc. can be found in
[46,47,49-52] and the references presented there):

(i) the representation of a solution by an individual - here of a
schedule S;

(ii) the evaluation or fitness function - here the objective
function (2);

(iii) a procedure for selecting parents and individuals for the next
generation and the number of chromosomes in a generation
(population size p);

(iv) a procedure for recombination and its probability (&,);

(v) a procedure for mutation and its probability (@, );

(vi) a procedure to generate an initial population; and

(vii) one or more termination criteria.

The first decision to be made is the representation of the
schedule. In this context, a solution is called a “phenotype”, and
the encoded representation is called the “genotype” or “chromo-
some”. The elements of the string that represents a genotype are
called “genes”, and the values those genes can take are called
“alleles”. The encoding and decoding of a solution, also designated
as “genotype-phenotype mapping”, is required, on the one hand,
to be able to use evolutionary procedures (e.g., parent selection,
recombination, and mutation) and, on the other hand, to evaluate
the solution using the corresponding fitness function. The type of
genotype representation used for the EAs presented in this paper
is called permutation representation (cf. [37]) and the sequence of
orders also determines the starting time. The applied string
representation of the genotype is founded on the time-slice model
used to discretize the energy demand (cf. Section 2.1) and the
schedule definition function S: ji(M;,S}) that is based on the
machine allocation (MjS €{1,..,m}) and the starting times of the
production orders (SjS e{1,...,d}). In doing so, the remaining idle
time id, of a machine k, which is the difference in the length of the
planning horizon and the workload wl, (determined by the first
optimization step), is divided into a set of dummy orders D=
{Dgkld=1,...,x,eN, k=1,.,meN}. The amount of dummy
orders x;, per machine k depends on id, and on the underlying
time-slice model, where each dummy order has a duration of one
time slice. These dummy orders enable the representation of a
schedule by a string of genes in which the alleles are either
production orders J;; or dummy orders Dy, where both have

dedicated machines k. An exemplary genotype-phenotype map-
ping is illustrated in Fig. 5.

With this permutation representation, the shifting of a gene
would either change the sequence of orders on a machine (e.g.,
swapping gene 1 and gene 3) or not (e.g., swapping genes 1 and
2 or genes 2 and 4). Based on this information, it is possible to
maintain certain parts of solutions and to change others. More-
over, this representation provides the advantage that from any
permutation, along with the fixed machine allocation, an unam-
biguous and feasible schedule can be determined, and it is possible
to use objective function (2) for evaluating a solution (cf. (ii)).

The use of a permutation representation for the problem at
hand permits the selection of procedures and parameters (cf. (iii)-
(vii)) described and used in the literature (see above). In this
context, interactions between the procedures and their para-
meters that can hardly be estimated often exist. In addition, there
is a lack of theoretical investigation of these interactions in the
literature. A survey of contributions with regard to the theoretical
behavior of EAs can be found in Kallel et al. [53]. These contribu-
tions often refer to single procedures and parameters for specific
problems (e.g., mutation rates for problems with special objective
functions) and thus cannot be generalized. For this reason, we
investigated several well-known procedures that are adequate for
the problem at hand (i.e., maintaining certain parts of a solution)
for the recombination (e.g., partially mapped crossover and order
crossover; cf. [54,37]) and mutation (e.g., swap mutation, insert
mutation, scramble mutation, and inversion mutation; cf. [55,37])
of individuals. The choice of procedures and parameters should be
made with regard to the balance of exploration (or search
diversification) and exploitation (or search intensification).

Before describing the selected procedures and parameters, the
main course of action of the applied EAs is outlined in the
following pseudo code (following [56]):

GA/MA-PLS/MA-DLS (S™M7T, u, @,, O,);

c:= 0; t:= now();
P, := initializePopulation(S™", u); 11 (vi)
F. := evaluatePopulation(P.); [/ (ii)
do

c:=c+1:

// iii. (two parents for two offspring)

Par. := selectParents(P._1, y)

Rec. := recombineParents(Par., @;,"PMX"); /] (iv)

Mut, : = mutatelndividuals(Rec., @p,, “INV”); ] (v)

/| MA enhancement

LS. := performLocalSearch(Mut,);

F. := evaluatePopulation(LS, or Mut.);

P, := selectSurvivors(P._1, Fe, jt);
loop while t < = tV%;

/1 (ii)
/1 (iii)
/1 (vii)

The function to initialize the start population (Pp) randomly
generates production and dummy order sequences (initializePopu-
lation). This is done based on the allocation of production orders to
machines from the opening procedure (S™7, cf. Section 4.1) and
the population size (y). After the evaluation of this population
(evaluatePopulation(Py)) with the objective function (2), the selec-
tion of parents (selectParents; also called mating selection) is
executed by a fitness-proportional selection rule (cf. [57]) — scaled
by the maximum objective value of all individuals of the corre-
sponding generation (cf. [49]) - based on stochastic universal
sampling (SUS; cf. [58]). This procedure keeps high-quality solu-
tions and deepens the search in promising search regions and is
also used for the selection of u individuals (also called survivor
selection or replacement; cf. [37]) for the next generation
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Fig. 5. Genotype-phenotype mapping of the permutation representation [4].

(selectSurvivors). Here, the individuals of the previous population
(P._1) and the new individuals (F;) are considered. The best-
known solution from previous generations is always transferred to
the next generation. For the recombination of selected parents
(recombineParents), the partially mapped crossover (PMX) proce-
dure is used because it has shown better performance (concerning
the trade-off between computing time and objective value) than
the order crossover procedure, although both procedures transfer
sequences of genes to their offspring (cf. [37]). Regarding both
procedures, @, determines the crossover rate, which is the prob-
ability that two offspring are generated by recombination or
asexually (copying the parents). The inversion mutation procedure
for the mutation of individuals (mutateindividuals), combined with
a very low mutation rate ®,,, has shown the best effects concern-
ing the diversification of the populations. Regarding the EA
termination, computing time is used as a criterion (%) because
the time for scheduling is generally limited in practice, and
therefore, this time limit can be set in advance. Furthermore, the
performance of the three solution methods, particularly the
performance of the MAs, is directly comparable by the objective
function value.

The first applied solution method, the GA uses these proce-
dures and parameters. The two MAs enhance this GA through
different local search mechanisms (performLocalSearch). This
hybridization has been proposed by several authors (e.g.,
[36,37,51]). The basic idea behind the local search procedures
developed for the resource leveling problem at hand is to support
the GA by the elimination of single peaks (MA-PLS) or the
elimination of deviations from the desired resource level in
general (MA-DLS). Both local search mechanisms are executed
before the evaluation of new individuals takes place (evaluatePo-
pulation(LS. or Mut.)).

The local search mechanism of the first MA only considers
peaks of the cumulated AESD and is therefore called MA-PLS (the
PLS represents “peak local search”). This mechanism was intro-
duced by Rager [4]. The first step of MA-PLS is the identification of
the maximum peak that will be eliminated or at least softened
(getPeak in the following pseudo code). This peak is defined by the
point in time t"#K with the highest cumulated AESD. If there is
more than one time point with the same maximum peak, the first
one in the planning horizon is used (getFirstPeakTimePoint). After-
ward, the set of all “active” production orders 4% that are
processed on any machine at time point tPFAK is identified
(getActiveOrders) as follows:

]
A S S

]PE K — {.]J e.]lsj < tPEAK Ssj 4 E]plj}

1=
Because the local search mechanism does not change the sequence
of orders on a machine but rather changes starting times, the
earliest starting time est; and the latest starting time Ist; of a
production order J; e ] are used as borders for starting time

changes (calculateTimeWindows):

n
estj= Sjs + ZJ: Py where j' is the preceding production order
i=1

on the corresponding machine

.
Ist; = SjS: — .ijl i where j' is the succeeding production order
1=

on the corresponding machine

Based on this time window, the PLS first tries to completely shift the
currently considered production order to est; (= Sf =estj) or
Istj(= Sf =Ist;) if the peak cannot be reduced. This decision is
repeated with all J; e J”4€ that have an AESD (r; > 0) at time point
tPEAK until the peak is reduced to the optimal value or all possible
shifts are evaluated. The following pseudo code illustrates the main
course of action of MA-PLS:

MA-PLS (S)

/| determine the highest cumulated AESD
peak := getPeak(S);
/| first occurrence
tPEAK . — getFirstPeakTimePoint(peak);
/| determine all active production orders
JPEAK: — getActiveOrders(tPEAK);
calculateTimeWindows(JP4X);
for [ :=1 to "™ do
/| index of (first) active order
x := getNext(J"FAK)
rix(tPEA) 1= getAESD(J,, tPFAK);
if 13, (t"FA<) > 0 then
if esty+ Y™ pi < tPEAK then
SS: =esty;
peak := peak - ry(t"FAK);
JPEAK . PEAK g .
elseif Ist, > tPFAK then

/| left shift

/| right shift

Sﬁ : = Isty;
peak : = peak - i (t"FAK);
JPEAK . _ [PEAK | | .
= o
endif;

endif;
/| termination if peak is eliminated
if peak < = 7 then exit for;

next;

The newly developed second variant MA-DLS also does not change
the sequence of orders but, in contrast to MA-PLS, considers not
only peaks but all deviations from the optimal resource level and
is therefore called MA-DLS (the DLS represents “deviation local
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search”). Thereby, the number of deviations that are iteratively
investigated are defined by the parameter noRfV, which can be
varied during the execution of MA-DLS. This is done to reduce the
changes within a solution and to thus support the search intensi-
fication in the optimization process.

A second difference between the MAs is the procedure used to
eliminate undesired cumulated AESD levels. DLS uses the same
time borders as described above, but it iteratively swaps one
production order with one dummy order. This is done in both
directions as long as dummy orders are available or until the start
or the end of the planning horizon is reached. As soon as a swap
leads to a reduction of the deviation from the optimal value, the
swapping of this production order stops. This is repeated until the
deviation is eliminated or all possible swaps are evaluated.
Because this detailed swapping procedure is very time consuming,
we evaluate swaps only in one direction; the direction is deter-
mined with a certain probability based on the position of the
deviation in the planning horizon (getDirectionProbability). There-
fore, this second local search procedure can also be seen as a swap
mutation procedure that uses problem-specific information to
improve a current solution S. The main course of action of MA-
DLS is presented in the following pseudo code:

MA-DLS (S, t, noBt")

/| determine the noBfV highest deviations (absolute values) in
solution S
dev[] := getAbsoluteDeviations(S, no2t")
for f =1 to no2’ do
/| flag that indicates the swapping direction
leftOrRight : = “right”;
/| determine the highest deviation
dev := getHighestDeviation(dev[]);
tPEY . = getDeviationTimePoint(dev);
/| determine all active production orders
ao[] := getActiveOrders(tPEV);
calculateTimeWindows(ao[]);
for [ :=1 to lao[]l do
/| index of (first) active order
x := getNext(ao[]);
/| machine of the active order
k := getMachine(J,);
leftP=getDirectionProbability(J,,t°EV, “left”);
if (getRandomNumber() < = leftP)
then leftOrRight="left”;
/| get set of preceding/succeeding dummy orders on
machine k
do[] := getDummyOrders(J,, k, leftOrRight)
for g := 1 to Ido[] do
/| returns the resulting deviation
newDev := swapOrders(J,, do[g], leftOrRight)
if (newDev < dev) then
acceptSwap(J,, do[g]); dev := newDev; exit for;
endif;
next;
/| termination if deviation is smoothed
if dev < = 0 then exit for;
next;
devS[] := devS[]\ dev;
next;

noPEY : = updateCT(no2t", t);

The function updateCT actualizes the number of considered
deviations that are dependent on the actual optimization time t.

After tUpdate — fmax /noDEV time periods (calculated before the opti-
mization starts), no2E" is reduced by one.

5. Evaluation

All three developed solution methods are evaluated by a set of
small test instances and a set of problem instances that are derived
from a real-world application case. To assess the solution quality of
the proposed EAs, we compare their objective values with a
corresponding reference value (best known objective value, BKOV)
calculated by Gurobi 5.5 within the General Algebraic Modeling
System (GAMS).

Furthermore, to show the suitability of energy-oriented sche-
duling for improving energy efficiency in production, not only the
results concerning the objective function are presented in the
subsequent sections, but the resulting costs and carbon dioxide
emission reductions are also estimated.

5.1. Application case

The underlying planning problem of this study originates from a
company in the textile industry whose core competency is the
refinement of yarns (cf. [4]). The relevant aspects (from an energy-
oriented point of view) of the company are its dyeing house (PUs)
and its boiler house (CU). All refinement steps are executed with 32
identical dyeing machines, which are heated with process steam
centrally provided by the boiler house (consisting of a single three-
pass boiler with an economizer). For the purpose of refinement,
yarns are put into dyeing machines and brought into contact with
different chemicals (i.e., dyes, acids, alkaline or leveling agents).
Dyes are extracted by the application of thermal energy provided by
the process steam and are then absorbed by the yarn. The filling
quantity (fleet size) of a dyeing machine is almost independent of
the production order and accounts for 2950 L.

For the presented problem, the AESD of a production order can
be identified by the dyeing recipes, which predefine the entire
refinement process. Each recipe determines the quantities of input
materials (e.g., grey cloth, chemicals, or dyes) and the temporal
course of the dyeing process through a time-temperature profile
(cf. Fig. 6).

This profile determines the residence times and temperatures
for the combination of chemicals and yarns. Thus, all recipes
contain heating phases, which require that heating always has to
be done at a constant factor of 1 K/min before the dyeing phases
begin. Because of this, there is a process-time dependent demand
for thermal energy provided by the AES steam. Overall, the
individual AES demand profile of a production order is specified
by the sequence of phases with varying durations (modeled by
operation o; with a corresponding processing time py, cf. Fig. 6), in
which there either is a need for process steam during heating
phases (marked gray in Fig. 6) or not (during all remaining process
steps; note that the temperature during the flat periods in Fig. 6 is
kept constant by a heat recovery system). In the application case, a
time-slice model with a temporal resolution of five minutes is
suitable, and therefore r; can be calculated as follows:

rj=ATemp/TSMc=5K/TSMc [J/TS]

In this formula, M represents the mass of the fleet size, and ¢
represents the specific heat capacity of water.

5.2. Data and parameter settings

To evaluate the solution quality of the proposed solution
methods, a set of small test instances (TI) that are solvable within
a reasonable computing time by the commercial solver Gurobi is



used. These instances vary in the number of production orders n,
the number of operations per production order n;, the planning
horizon T, and the number of available machines m (cf. Table 1;
processing times can be found in Table A1). Purpose of these
instances is to show the suitability of the proposed solution
methods in different resource availability settings with compar-
able relative workloads. Here, the relative workload is calculated
by 7 ]Z?j:]pij/mT. Accordingly, the number of available
machines and the length of the planning horizon are chosen to
provide small but sufficient capacity for the investigated quantity
of production orders.

For these small test instances, three different types of AESD
profiles are specified. The first type contains alternating AESDs and
rij is one for operations with an even index i and zero in all other
cases (we indicate this type by an additional O and thus, the first
instance is fully specified by TI1a0). For the next two types, the
AESDs are derived from the processing times of the operations.
Here, r;; is either defined by a monotonously increasing (11) or by a
monotonously decreasing (12) functional relation and calculated
as follows:

r} = Min(0.8+p; 0.15, 1.6) 11

ri =Max(1.6—p; 0.15, 0.8) (12)

Consequently, there are 33 small test instances in total (TI1a0,
TI1al, TI1a2, TI1bO, ..., TI3e2).

In addition to these small test instances, the developed solution
methods are evaluated by different production order scenarios
(SC) derived from the aforementioned application case (cf. Section

Table 1
Parameters of the small test instances.
n n; m T Relative workloads
TI1 a/b/c 4 4 2 20/24/28 85%71%[61%
TI2 a/b/c 4 6 2 27/33/39 85%/70%/59%
TI3 a/b/c 6 4 3 20/24/28 85%[71%[61%
TI3 d/e 6 4 4 18/21 71%/61%

Temperature [°C]
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5.1). Each of these scenarios is defined by the number of produc-
tion orders (minimum 48 to maximum 128) and the type of these
orders. The type specifies the time-temperature profile and thus
the AES demand profile. The number of production orders of a
certain type is random within a scenario. With respect to these
order scenarios, the length of the planning horizon is equal for
each of them (one production day with 288 time slices), and the
number of available machines is again defined to provide small but
sufficient capacity for the investigated quantity of production
orders. The number of available machines varies between 12 and
32, and the relative workload for all scenarios is between 92% and
94%. For the application case, the decision on the number of
available machines is made by a superior planning step.

For both types of instances, the following parameter settings
(cf. Table 2) are used for evaluation and were derived from
numerous experiments.

All of the following results concerning the EAs are mean values
based on seven experiments per test instance or application case
scenario, in which the optimization runtime is limited to 30 s or
30 min, respectively. All experiments are executed on a PC with an
Intel Core i7-2600 and 8 GB RAM.

5.3. Performance analysis

The numerical results of the solution methods GA, MA-PLS, and
MA-DLS concerning the small test instances are summarized in
Table 3. The first two columns contain the (best known) objective
values (OV®) and the computing time (CT; in seconds) from Gurobi.
Here, an asterisk marks the termination of Gurobi after the specified
time limit (10 h) as it was not possible to solve the instance to
optimality (in contrast to all other instances not marked by an
asterisk). The column INIT presents the objective value (OV')
achieved with the opening procedure. The following columns
contain the mean objective value (OV’), the coefficient of variation
(CV7), the relative improvement compared with the solution calcu-
lated with Gurobi (Imp.©), and the relative improvement compared
with the results from the opening procedure (Imp.") for each of the
three EAs (values obtained by EAs are mean values of the seven
experiments). The last row in Table 3 (Mean) summarizes the results
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Fig. 6. Example of a time-temperature profile and modeling by operations (following [4]).
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by reporting the corresponding mean values (based on all 33 small
test instances).

Analyzing these results, it can be stated that all three EAs
achieve quite good results concerning their deviation from the
BKOV (6.38%, 6.02%, and 5.84% on average) and that all three EAs
reach the BKOV for 13 instances. Furthermore, the EAs are able to
calculate better objective values for the instances TI3c1, TI3d1, and
TI3el. The relative large deviations of the EAs from the BKOV with
regard to certain instances (e.g., TI1a0, TI1c0, or TI3d0) can be
traced back to the fixation of orders to machines after step one of
the proposed solution methods (cf. Section 4). The results also

Table 2
Parameter settings of the solution methods.

Solver/solution Procedure/parameter Value
method
Gurobi optcr 0.01
reslim 10h
GA Parent selection and survivor Fitness proportional
selection selection by SUS
Recombination PMX with probability
©,=08
Mutation Inversion with probability
Om=0.1
Population size u=300
Max 60 s or 30 min
MA-PLS - -
MA-DLS nobEv 4 (initial value)
Table 3

Solution quality of the small test instances.

show, that the MA with the more sophisticated local search
mechanism DLS slightly outperforms the others.

To analyze the solution quality of the developed solution
methods with regard to the order scenarios derived from the
application case, Table 4 presents the achieved mean objective
value (0V7), the coefficient of variation (CV?), and the mean
relative improvement (Imp.") compared with the results obtained
by the opening procedure INIT (all values obtained by EAs are the
mean values of the seven experiments). The best objective values
per scenario are in bold.

The results show that each of the three EAs achieves significant
improvements (compared to the initial solution) concerning the
objective of resource leveling by 67.29%, 70.17%, and 71.14% on
average. Additionally, the MAs outperform the standard GA in all
scenarios except for scenario SC-108. Comparing MA-PLS and MA-
DLS, no clear dominating position can be detected. On the one hand,
MA-DLS outperforms MA-PLS in terms of the confidence interval that
is given by mean objective value and its coefficient of variation. On
the other hand, the robustness, measured by the coefficient of
variation CV7, of MA-PLS is better than that of MA-DLS.

Because the effect of the resource leveling is difficult to trace
solely based on numerical values, an exemplary comparison (based
on SC-124, Experiment 1) between the results of INIT (OV=3645)
and MA-DLS (OV=1034.71) is made. Fig. 7 shows the resulting
course of the cumulated AESD for both solution methods to
exemplify the effects of resource leveling.

The two AESD courses clearly show that the defined objective
function is able to eliminate large variations in the cumulated

Gurobi INIT  GA MA-PLS MA-DLS

ove CT[s] oV ov’ cv’ Imp.© [%] Imp.[%] OV’ v’ Imp.© [%] Imp.[%] OV’ cv’ Imp.© [%] Imp.' [%]

TI a 0 295 30 14.95 495 000 —6780 66.89 495 000 —67.80  66.89 495 000 —67.80 66.89
1 399 76 14.72 399  0.00 000 7287 399  0.00 0.00 7287 399  0.00 000 7287

2 540 85 16.16 540  0.00 000 6656 540  0.00 0.00  66.56 540  0.00 0.00 6656

b 0 463 40 18.63 463  0.00 0.00 7517 463  0.00 0.00 7517 463 0.00 0.00 7517

1 525 366 27.92 604 000 -1515 78.35 604 000 —1515 78.35 604 000 -—1515 78.35

2 688 255 30.72 6.88  0.00 000 7761 6.88  0.00 0.00  77.61 6.88  0.00 0.00 7761

c 0 525 20 21.25 725 000 —3810 6588 725 0.00 —3810 65.88 725 0.00 —3810 65.88

1 467 830 37.35 475 002 -184 8727 475 002 —1.84 8727 475 002 —1.84 8727

2 566 606 41.12 566  0.00 000 8623 566  0.00 0.00 8623 566  0.00 0.00 8623

TI2 a 0 867 392 22.67 867  0.00 0.00  61.76 867  0.00 000  61.76 867  0.00 0.00  61.76
1 529 96 19.14 529  0.00 000 7237 529  0.00 0.00 7237 529  0.00 0.00 7237

2 769 140 22.69 790 000 -273 6520 790 000 —273 6520 790 000 —273 6520

b 0 873 825 28.73 873  0.00 000  69.62 873  0.00 0.00  69.62 873  0.00 0.00  69.62

1 740 25155 37.84 7.40  0.00 000  80.44 740  0.00 0.00  80.44 740 0.00 0.00  80.44

2 957 6778 4511 978 000 -219 78.32 978 000 —219 78.32 978 000 —219 78.32

c 0 892 542 32.92 892  0.00 0.00  72.90 892  0.00 0.00 7290 892  0.00 0.00  72.90

1 596 21675 50.79 627 001 —510 8766 627 001 —5.10 87.66 627  0.01 —5.10 87.66

2 624 14900 60.63 659 006 —563 8913 659 006 —563 8913 659 006 —563 8913

TI3 a 0 695 8365 3495 6.95  0.00 0.00  80.11 695  0.00 0.00 8011 6.95  0.00 0.00  80.11
1 407 4385  33.64 475 000 —1658 8589 475 000 —1658  85.89 475 000 —1658  85.89

2 522 19826 3655 600 002 —1507 8357 595 000 —1409  83.72 595 0.00 —1409  83.72

b 0 696 34136 4296 696  0.00 0.00  83.80 696  0.00 0.00  83.80 696  0.00 0.00  83.80

1 250 = 63.49 292 007 —1699 9540 299 008 —1966 9529 299 008 —1966  95.29

2 322 =% 69.16 358 004 —11.36  94.82 358 006 —1123 9483 358 006 —11.23  94.83

c 0 468 4868 668 000 —4275 8628 582 017 —2443  88.04 554 018 —1832 8863

1 502 = 84.81 464  0.00 742 9453 464  0.00 742 9453 464  0.00 7.42 9453

2 480 % 92.45 536 006 —11.64 9420 544 007 —1329 9412 544 007 —1329 9412

d 0 561 6540 3561 761 000 —3564 7863 761 000 -3564 7863 761 000 —3564 7863

1 415 % 49.92 274  0.05 34.01 94.51 274  0.05 34.01 94.51 274  0.05 34.01 94,51

2 229 % 4596 237 000 -315 94.85 237 000 —315 94.85 237 000 —315 94.85

e 0 724 35265 4324 724 0.00 0.00 8326 724 0.00 0.00 8326 724 0.00 0.00 8326

1 764 % 7835 374 027 5105 9523 374 027 51.05  95.23 374 027 51.05 9523

2 513 % 77.01 571 007 —1125 9259 588 010 —1464 9236 588 010 —1464 9236

Mean 002 -6.38 8157 0.03 —6.02 8162 0.03 —5.84 8164




Table 4
Solution quality of the order scenarios from the application case.
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INIT GA MA-PLS MA-DLS
oV! ov’ v’ Imp.' [%] ov’ cv? Imp.' [%] ov’ cv? Imp.' [%]
SC-48 810 27314 0.04 66.28 245.57 0.07 69.68 212.57 011 73.76
SC-52 625 238.14 0.04 61.90 24414 0.12 60.94 229.14 0.10 63.34
SC-56 879 287 01 67.35 304.71 0.12 65.33 269.86 0.08 69.30
SC-60 952 320 0.06 66.39 317.29 0.05 66.67 289.14 012 69.63
SC-64 989 354.57 0.04 64.15 341.86 0.12 65.43 332.71 013 66.36
SC-68 1313 396.57 0.09 69.80 388.71 0.04 7039 323.57 0.08 75.36
SC-72 1314 481 0.07 63.39 395.71 0.06 69.88 387.14 0.10 70.54
SC-76 1228 499.57 0.08 59.32 413.57 0.11 66.32 40214 0.10 67.25
SC-80 1622 516.57 0.02 68.15 414.57 0.05 74.44 438.14 0.07 72.99
SC-84 1871 555.43 0.06 70.31 486.71 0.05 73.99 497.86 0.05 73.39
SC-88 1840 506.29 0.07 72.48 615.71 0.10 66.54 504.57 0.07 72.58
SC-92 1979 735.29 0.12 62.85 533.43 0.07 73.05 554.43 0.14 71.98
SC-96 2247 748.43 o1 66.69 654.43 0.05 70.88 655.57 0.09 70.82
SC-100 2243 720 0.04 67.90 659.43 0.09 70.60 728.57 0.08 67.52
SC-104 2672 807.29 0.07 69.79 729.57 0.06 72.70 727.14 0.11 72.79
SC-108 2922 770.86 0.07 73.62 772 0.08 73.58 779.71 0.14 7332
SC-112 3309 948.86 0.10 71.32 820.57 0.12 75.20 813 0.10 75.43
SC-116 3736 988 0.07 73.55 810 0.09 7832 948.43 0.09 74.61
SC-120 3492 1116.14 0.06 68.04 880.14 0.10 74.80 1019.71 0.06 70.80
SC-124 3645 1236.86 0.08 66.07 1152.29 0.04 68.39 1034.71 0.07 71.61
SC-128 3653 1321.71 0.04 63.82 1264 0.05 65.40 1073.57 0.06 70.61
Mean 0.07 67.29 0.08 7012 0.09 71.14
AESD, and therefore, costs for FES and carbon dioxide emissions cum. AESD
should be reduced significantly. 32
Because MA-DLS shows the highest potential for cost and emission 28
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reduction, it is used for their estimation in the next section.

5.4. Estimated cost and emission reductions

Although it is possible to determine the total quantity of
requested AES (process heat in the application case) and the
temporal course of AES from the machine schedule, there is no
possibility for an exact quantification of the FESD because there is
no deterministic functional correlation between AESD and FESD
(cf. Section 2.2). Consequently, we estimate the FESD and, based on
this value, costs and carbon dioxide emissions (CO,). The following
functions and parameters strongly depend on the specific (tech-
nical) characteristics of the production system in question, the
production units, and the energy supply system. Therefore, in
contrast to the universal applicable objective function, it is
application-case specific.

For estimation purposes, we calculate the FESD for a given
schedule S (FESDFSTS) by the following function (13). This function
incorporates the AESD per time slice (AESDrs; cf. (14)), technical
parameters representing radiation (rad) and leakage (leak) losses, a
function for the actual boiler efficiency level (f,;er), and a function
accounting for load alternations (fy.qaiernation):

FESDEST’S :f(AESDTS’ rad, leak’fBoiler’fLoudAl[ernation) (13)

The calculation of FESD®SS is based on the amount of AESDrs
resulting from the (optimized) schedule (calculated per time slice)
as follows:

AESDys— 3% ry(TS) 14)
j 1

j=1i=

As an intermediate step, the AESDrs has to be adjusted by the two
technical parameters representing radiation and leakage losses
during transport of AES from source (CU) to consumer (PU). In
terms of the given steam boiler, the difference between AESD and
FESD is mainly influenced by the following two factors: the

0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

time [TS]
AESD course with makespan objective

—— AESD course with resource leveling objective

Fig. 7. Comparison of cumulated AES demands (SC124, experiment 1).

efficiency of the steam-boiler operation mode and efficiency losses
due to rapid changes in steam-boiler operations. Both are calcu-
lated by specific functions derived from the application case. The
first function depends on the boiler utilization resulting from the
cumulated AESD; the latter depends on the height of the load
alternations.

Based on this estimation of the total FESD, costs and emission
reduction can be calculated with the following factors (that are
also application-case specific): 0.04€ per unit FES and 0.18 kg CO,
per unit FES. The presented results in Table 5 are again mean
values based on seven experiments per scenario.

The results show that the energy-oriented scheduling
approach is able to increase energy efficiency in an impressive
manner. By calculating a schedule with MA-DLS, costs for FES can
be reduced by 20.51% or 1.050€ (per day) on average. Because this
savings can be realized every production day, a total savings of
231.000€ per year can be achieved (assuming 220 working days
per year). Consequently, carbon dioxide emissions can be
reduced by 20.51% or 4774.39 kg (per day) and 1.050.365.8 kg
per year on average.

These savings could be further improved if the conversion unit
were to be replaced by one that is dimensioned for the leveled AES
demands. However, it must be noted that this technological measure
is only possible if an energy-oriented scheduling approach is used.
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Table 5

Estimated cost and carbon dioxide emission reductions.

INIT MA-DLS INIT MA-DLS
Cost [€] Cost [€] Imp. [%] v’ CO, [kg] CO, [kg] Imp. [%] cv’
SC-48 3480.0 3185.8 8.45 0.002 15,823.7 14,486.2 8.45 0.002
SC-52 3559.0 3187.5 10.44 0.002 16,183.3 14,4939 10.44 0.002
SC-56 3682.1 3182.0 13.58 0.001 16,742.8 14,469.0 13.58 0.001
SC-60 3779.9 3189.7 15.61 0.002 17,187.6 14,504.1 15.61 0.002
SC-64 3939.8 31934 18.94 0.002 17,914.6 14,520.8 18.94 0.002
SC-68 40479 3222.0 20.40 0.003 18,406.2 14,650.7 20.40 0.003
SC-72 4191.0 32904 2149 0.005 19,056.7 14,961.6 21.49 0.005
SC-76 4396.1 33614 23.54 0.004 19,989.4 15,284.8 23.54 0.004
SC-80 4534.6 3461.8 23.66 0.004 20,619.3 15,7413 23.66 0.004
SC-84 4742.6 3582.2 24.47 0.002 21,565.2 16,288.8 24.47 0.002
SC-88 4904.6 3735.0 23.85 0.003 22,301.9 16,983.5 23.85 0.003
SC-92 5078.9 3876.4 23.68 0.005 23,094.4 17,626.2 23.68 0.005
SC-96 5254.4 4030.6 23.29 0.004 23,892.2 18,327.4 23.29 0.004
SC-100 5423.5 4196.7 22.62 0.003 24,661.4 19,082.7 22.62 0.003
SC-104 5654.9 4370.3 22.72 0.003 25,7133 19,8721 22.72 0.003
SC-108 5792.4 4495.7 22.39 0.002 26,338.8 20,442.5 22.39 0.002
SC-112 6034.5 4645.7 23.01 0.003 27,439.5 21,124.5 23.01 0.003
SC-116 6202.2 4828.1 22.16 0.005 28,202.2 21,953.8 22.16 0.005
SC-120 6401.5 4978.0 22.24 0.003 29,108.2 22,6354 22.24 0.003
SC-124 6602.2 5125.5 22.37 0.004 30,021.0 23,306.4 22.37 0.004
SC-128 6788.9 5303.1 21.89 0.003 30,870.0 24,113.5 21.89 0.003
Mean 4975.7 3925.7 20.51 0.003 22,6253 17,850.91 20.51 0.003

6. Conclusion

Economic (e.g., increasing costs for energy) and ecological (e.g.,
greenhouse gas emissions) reasons require consideration of
energy efficiency in production. Consequently, the purpose of the
energy-oriented scheduling approach presented in this contribu-
tion is to increase energy efficiency in production to achieve
environmentally conscious operations.

To increase energy efficiency in production, classical scheduling
problems have to be extended to address aspects concerning
energy supply and energy demand. In terms of energy supply,
the necessary conversion of FES into AES by conversion units (e.g.,
steam boilers) plays a central role given that inefficiencies in this
process are mainly responsible for losses of useful energy and
unnecessary emissions. Because these inefficiencies primarily
result from a strongly varying AES demand, the energy-oriented
scheduling approach developed here minimizes these inefficien-
cies by leveling the cumulated AES demand. To be able to level this
cumulated demand, detailed information about the AES demand
of single production orders is required. Therefore, we propose
splitting production orders into operations that have individual
and constant AES demands so that their sequence reflects the AES
demand profile of a production order. The resulting energy-
oriented scheduling problem is defined by the underlying identical
parallel machine environment and the resource leveling objective.
To solve this complex scheduling problem, a two-step solution
method based on problem decomposition is applied. The first step
allocates production orders to machines, and the second step
determines starting dates for each production order. For the
second step, a GA and two MAs are developed. The evaluation of
the proposed energy-oriented scheduling approach by problem
instances based on an application case from the textile industry
has shown its suitability for minimizing costs for FES and carbon
dioxide emissions. Both can be reduced by approximately 20% on
average.

With regard to the area of energy-oriented scheduling,
further research should investigate other objective functions

to represent energy-oriented objectives (e.g., by explicitly con-
sidering efficiency functions of CUs or the undesired FES/AES
demand variations) and other (meta-) heuristics should also be
taken into consideration. Regarding other solution methods, the
effects of a flexible order to machine allocation should also be
examined.

Furthermore, the transferability of the proposed generic
energy-oriented scheduling approach (e.g., the modeling of differ-
ent energy resource requirements according to operations) to
other production systems seems to be worth investigating. The
incorporation of technical subtleties such as cyclic energy
demands, heat recovery systems, or different types of energy
streams could also be a topic for further research.

Appendix A

See Table Al.

Table A1
Processing times of small test instances.

n nj Dyj Daj D3j D4 Dsj Dej
TI-1 4 4 3 1 2 1
3 2 1 2
2 2 4 1
3 2 3 2
TI-2 4 6 3 1 2 2 2 1
4 1 1 1 2 2
2 1 3 1 3 2
2 1 3 1 3 2
TI-3 6 4 3 1 2 1
3 2 1 2
2 2 4 1
3 2 3 2
3 2 1 2
2 2 4 1
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