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Abstract 

A heuristic algorithm, called LANCOST, is introduced for vehicle routing and scheduling 

problems to minimize the total travel cost, where the total travel cost includes fuel cost, 

driver cost and congestion charge. The fuel cost required is influenced by the speed. The 

speed for a vehicle to travel along any road in the network varies according to the time of 

travel. The variation in speed is caused by congestion which is greatest during morning and 

evening rush hours. If a vehicle enters the congestion charge zone at any time, a fixed charge 

is applied. A benchmark dataset is designed to test the algorithm. The algorithm is also used 

to schedule a fleet of delivery vehicles operating in the London area.  
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1 Introduction 

The routing and scheduling of a fleet of vehicles to deliver goods to customers plays an 

important part in the distribution business. Vehicle operators are concerned with how to 

minimize the total costs for distributing goods to their customers in order to maximize the 

operational profit. Many available models assume that the travel times are constant 

throughout the day, based on constant average speeds. However, this assumption is a weak 

approximation of the real-world condition where travel time and travel speed are subject to 

significant variation over time. These variations may result from foreseeable events (e.g., 

congestion during peak time which increases the fuel cost) or from unforeseeable events like 

accidents, vehicle breakdowns, transport workers strikes and others. Therefore, the optimal 

solution to a formulation of the problem that assumes constant travel times may be 

suboptimal or even infeasible for the time-dependent problem.  



Congestion charge schemes are applied in various places. For example, London is one of the 

places applying a congestion charge zone scheme to reduce the traffic in its central area. A 

congestion charge is one type of road toll that attempts to reduce road congestion. Time-

dependent minimum cost vehicle routing problems (VRP) have seldom been addressed in the 

literature.  Including the congestion charge as another factor that impacts the total cost makes 

the VRP problem even harder to solve. The paper introduces a heuristic method to solve the 

minimum cost VRP with time-dependent travel times in a road network with a congestion 

charge zone. The heuristic method is an enhanced version of the LANTIME algorithm which 

was introduced by Maden et al. [1]. The new heuristic method is called LANCOST. 

The rest of the paper is organized as follows: in the next section there is a literature review of 

relevant previous work about using heuristic methods to solve time-dependent vehicle routing 

problems. Section 3 describes the LANCOST algorithm to solve a VRP with a time-

dependent road network and congestion charge. A benchmark dataset is designed to test the 

new algorithm. The subsequent section presents computational results obtained through 

LANCOST using data including real-life traffic information in London. The last section 

presents conclusions and directions for further research. 

2 Literature review  

The VRP is an NP-hard problem because it includes the travelling salesman problem (TSP) 

as a special case when only one vehicle with infinite capacity is used to deliver goods. Some 

VRPs can be solved by exact methods providing they are not too large. However, in practice, 

the VRP is considerably more difficult to solve than a TSP of the same size. For example, 

Applegate et al. [2] mention that a TSP involving hundreds and even thousands of vertices 

can be solved by means of advanced Branch and Cut and Price algorithms. However, the 

exact algorithm of Baldacci et al. [3] for the VRP can only solve problems with up to about 

100 customers, and with a variable success rate. Classical heuristics and metaheuristic 

methods are used to search for good solutions.  

The book of Toth and Vigo [4] provides a comprehensive review of the VRP. It discusses 

both exact and heuristic methods for the VRP and describes solution approaches for some of 

the most important variants of the VRP such as the VRP with time windows, backhauls, and 

pickup and delivery. The book also covers issues arising in real-world VRP applications and 

includes both case studies and references to software packages. However the book does not 



include time-dependent models, so the remainder of the literature review will mostly focus on 

models where the time to travel between customers is not constant but depends on the time of 

day. The final section introduces the Vehicle Routing Problem with Multiple Trips which is 

relevant to the experiments reported in this paper. 

Ichoua et al. [5] introduce a time-dependent model for the vehicle routing problem with time 

windows based on time-dependent travel speeds which satisfies the First In First Out (FIFO) 

property. They implement a parallel tabu search approach and test its performance both in 

dynamic and static environments. The scheduling horizon is divided into three time intervals 

by taking into account the rush hours and three types of road are considered. The results show 

that the time-dependent model provides significant improvements compared to the model 

with fixed travel times. Van Woensel et al. [6] modelled VRPs with time-dependent travel 

times by using a queuing approach. Traffic volumes instead of vehicle speeds are required in 

the model. The approach is able to deal with a large number of time slots, which improves 

solution quality. 

Eglese et al. [7] show how the use of time-dependent data can affect results for a hypothetical 

distribution operation and develop a model to use the historical data to construct a Road 

Timetable that shows the shortest time between nodes when the journeys start at different 

times. The shortest times and routes may vary as the speed of travel on individual roads may 

differ significantly by the hour of the day, by the day of the week and by the season of the 

year. The times required to travel from one end of a road to the other are calculated to ensure 

that the FIFO property holds and then Dijkstra’s algorithm is adapted to find the shortest-time 

paths between nodes efficiently. The paper describes a case study using real speed data on a 

road network in the north of England. Maden et al. [1] introduce a vehicle routing and 

scheduling algorithm, called LANTIME, that is able to accept data from a Road Timetable 

and to construct a set of vehicle routes that aims to minimize the total time required to deliver 

goods from a depot to a set of customers subject to a set of constraints. The LANTIME 

algorithm uses the parallel insertion algorithm firstly to generate an initial feasible solution. 

Then a tabu search algorithm is used to find better solutions.  

Figliozzi [8] has proposed an iterative route construction and improvement algorithm to solve 

a time dependent vehicle routing problem. The problem is formulated with both soft and hard 

time windows. The primary objective is to minimize the number of routes and the secondary 

objective is to minimize total cost, which is proportional to the travel time or travel distance. 

The solution method is tested on Solomon [9] benchmark problems, but with time-varying 



speeds applying to all of the arcs. The algorithm efficiently solves time-dependent vehicle 

routing problems with time windows and provides a good solution quality when dealing with 

hard time windows.  To further quantify the impacts of congestion on time-dependent real-

world networks, this method is applied to a real road network in Conrad and Figliozzi [10]. 

The results showed that the congestion influences the number of vehicles and travel distances 

dramatically, especially for depots located outside the customer service area. In order to meet 

the hard time window constraints, extra vehicles as well as increased travel distances are 

required. Figliozzi [11] has introduced an emissions vehicle routing problem (EVRP), where 

departure time and travel speeds are decision variables. The algorithm for solving these 

problems is to minimize the number of vehicles firstly and then to optimize emissions subject 

to a fleet size constraint by using a heuristic method. The algorithm is tested using the 

Solomon [9] benchmark dataset. The results show that significant emissions savings can be 

achieved by the algorithm. Furthermore, the results indicate that congestion effects on 

emission levels are not uniform.  

Bektas and Laporte [12] do not deal with time-dependent travel times. However they address 

VRPs with different objective functions that are relevant to this study. They compare four 

different models with different objectives including distance, energy, weight load and cost 

minimizing objectives. They provide numerical analyses on some small instances and 

conclude that minimizing the energy consumption is not equivalent to minimizing the cost. 

As the labour cost constitutes a major proportion of the total cost, the cost minimizing model 

focuses on the labour cost in order to reduce the total costs. Advances in engine technology 

lower the amount and cost of emissions hence lowering the overall total cost. Minimizing the 

cumulative weight load only does not necessarily imply energy minimization, particularly 

when time window restrictions are applied.  

Estimating greenhouse gas emissions plays an important part in freight transportation 

planning. Demir et al. [13] review and compare several available freight transportation 

vehicle emission models and discuss how emissions depend on speed. 

The Vehicle Routing Problem with Multiple Trips(VRPMT) is an extension of the classical 

Vehicle Routing Problem in which each vehicle may perform several routes in the same 

planning period.The VRPMT was introduced by Fleischmann [14], who used a savings based 

algorithm to construct the routes and a bin packing heuristic to combine them into working 

shifts. Followed by using a bin packing heuristic for the working shift aggregation, Taillard et 

al. [15] introduce a tabu search heuristic to solve the VRPMT which is shown to produce 



high quality solutions on a series of test problems. An adaptive memory approach has been 

proposed by Olivera and Viera [16] where the adaptive memory is a large pool of routes. At 

each iteration, a subset of these routes is chosen and improved through a tabu search 

procedure that also aggregates them. The resulting routes are returned into the adaptive 

memory and the process is iterated. Battarra et al. [17] proposed a adaptive guidance 

mechanism to reduce the overall number of required vehicles within a limited computing 

time. Nguyen et al. [18] introduce a tabu search meta-heuristic for the Time-dependent Multi-

zone Multi-trip Vehicle Routing Problem with Time Windows. A diversification strategy, 

guided by an elite solution set and a frequency-based memory, is used to drive the search to 

potentially unexplored good regions. Azi et al. [19] propose an adaptive large neighborhood 

search, exploiting the ruin-and-recreate principle, to solve the VRPMT. The algorithm is 

tested on the well-known benchmark instances proposed by Solomon [9] and other examples 

to demonstrate the benefits of this multi-level approach.  

3 Model formulation and algorithm design 

3.1 Model formulation 

The problem considered is a conventional single-depot Vehicle Routing Problem with Time 

Windows in a time dependent road network. The route for each vehicle starts and ends at the 

depot. A homogenous fleet of vehicles is used to serve the customers.  

The full detail of the model formulation can be found in the PhD thesis of Maden [20]. The 

main points are summarized below.  

The set of customers is denoted by N, the set of vehicles by K and {0} represents the depot. 

For each customer i N , the service time requirement is s(i), the demand required is w(i) and 

a time window [e(i),l(i)] is specified for beginning of service. The set of vehicles K 

represents a homogeneous fleet of vehicles. Each vehicle has capacity W, a starting time   

and a maximum working time D. 

The travelling times between locations are all known and depend on the time when the 

vehicle starts to travel between the locations. This can be defined as ( , )ht i j , where 

{ , } {0}i j N  , where h indicates the starting time. The cost ( , )hc i j associated with 

traversing an arc includes fuel cost, congestion charge and driver cost and replaces travelling 

time in the original formulation in Maden et al. [1]. The formulation has been extended to 



allow the time to travel between locations ( , )ht i j  and the travel cost between locations  

( , )hc i j  to be varied according to the time that the journey is started (h).  

For each individual vehicle, k, 0[ ,..., ]k

k k

k m
R v v represents the sequence of locations to be 

serviced by the vehicle k where 
k

pv N for p=1,…, 1km  , and, 
0

kv and k

k

m
v are identified with 0, 

because the route starts and ends at the depot. km  represents the number of stops on the 

complete path, including depot stops, for vehicle k. 

The starting time of the service for customer p on the path of vehicle k  is denoted by ( )k

pa v

and is defined in equation (1). In this equation, h represents the time when the vehicle leaves 

the previous stop, which is the start time plus the service time at the previous stop, so 

1 1( ) ( )k k

p ph a v s v   . The service start time for  service at stop p is defined as the maximum 

between (1) the departure time at previous stop, which is 1 1( ) ( )k k

p pa v s v   ,plus the travelling 

time 1( , )k k

h p pt v v to stop p and (2) the start of the time window ( )k

pe v at stop p. The waiting 

time before a service is denoted as ( )k

pb v  and is defined in equation (2). By convention 

(0)a  and (0) 0s  . The waiting time is dependent on both the starting time and the time 

window start time. 
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                                    (1) 
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 
                                                            (2) 

The only constraint applied directly to each individual customer is that the service must start 

within the given time window. This is a time window on beginning of service and not on 

completion of service. 

( ) ( ) ( ),k k k

p p pe v a v l v i N                                                                        (3) 

The working time required on each route must be under the total work time available, D. in 

the VRPTW the working time includes travelling time, service and waiting time. 
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

  

                                       (4) 

Formula (4) ensures that the vehicle returns to the depot on time. Equation 5 defines the 

variable 
~

kR as the sequence of locations to be serviced by vehicle k with the depot stops 

removed. 
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The equality constraint (6) ensures that all customers N are dealt with by the individual 

customer sets 
~

R . 

1

1
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                                                   (7) 

Formula (7) ensures the capacity of the vehicle is not exceeded by the demand requirements 

of the individual customer sets kR . 

The total cost of travelling between locations i and j, starting at time h, is defined as ( , )hc i j  

where { , } {0}i j N  .  

The travel cost includes three parts: the fuel cost, driver cost and congestion charge.  The fuel 

cost ( , )hF i j  denotes the fuel cost on arc (i,j) departing at time h. ( , )hL i j is the driver cost on 

arc (i,j) starting at time h and it is proportional to the time of travel. CC is the congestion 

charge and  is a binary scalar. As the congestion charge is paid once per day, 1   if it is 

the first time that a vehicle enters the congestion charge zone, otherwise 0  .Then the travel 

cost of a vehicle on an ( , )arc i j is calculated as follows:  

( , ) ( , ) ( , )h h hc i j F i j L i j CC                                      (8)                                                

The objective function (9) is to minimise the total travelling cost over all the routes. 

1

1

0

min ( , )
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k k

h p p
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


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                                                 (9) 

Compared with the formulation in Maden et al. [1], the objective of the model has been 

changed from minimizing the total travelling time to minimizing the total cost.  



3.2 Algorithm design 

3.2.1 LANTIME Algorithm 

The LANTIME algorithm (Maden et al. [1]) solves the least time VRP problem with multiple 

trips in a road network with time-dependent speeds. A new algorithm, called LANCOST, is 

based on the LANTIME algorithm and some new enhancements are added to solve the 

minimum cost version of the problem. The LANCOST algorithm works on Cost Based Road 

Timetables which are generated by the heuristic methods introduced in Wen et al. [21].  The 

following section is a description of the LANTIME algorithm, which is the basis for 

LANCOST. 

In LANTIME, an initial solution is created for the VRPTW using the parallel insertion 

algorithm of Potvin and Rousseau [22]. The parallel insertion algorithm must ensure that the 

solution is feasible with respect to all constraints. 

The initial solution is then improved using a tabu search algorithm. Four possible 

neighbourhood operations are used in LANTIME: CROSS Exchange, insertion/removal, one 

exchange and swap. 

According to probabilities assigned in advance, the algorithm randomly selects which 

neighbourhood to explore at each stage. The tabu list is not fixed but varies as proposed by 

Gendreau et al. [23]; a move added to the tabu list at iteration t is forbidden until iteration 

t  where   is randomly selected from [ , ] 



. This device helps to eliminate the probability 

of cycling between solutions. A standard aspiration criterion overrides the restriction implied 

by the tabu list if the move leads to a new best solution. A long-term memory structure is 

used to diversify the search. The tabu search objective has an additional component to 

represent the long-term memory cost ( )trialM x  of the proposed move that leads to solution 

trialx  

cost ( ) ( )trial trial trialM x f x                                               (10) 

The value of ( )trialM x is higher when trialx has been an accepted move in previous iterations. 

Thus multiplying the original VRPTW objective f (x) by the memory cost  

M(x) produces a function with lower values when trialx has never or rarely been accepted 

before and so helps to diversify the search. The value of ( )trialM x is multiplied by the value of 



a parameter,  , which thus controls the strength of the effect of the memory cost. Fuller 

details are provided in Maden et al. [1]. 

The tabu search objective tries to locate a solution x which leads to the minimum search cost. 

The search cost includes the original VRPTW objective f (x), the memory cost M(x) and the 

function P(x) that is a measure of the infeasibility of solution x. 

( ) ( ) ( )trial trial trial trialC M x f x P x                                       (11) 

The parameter   is dynamically adjusted throughout the search. It is initially set at 1, in the 

same way as Gendreau et al. [23]. Then, every   iterations,   = 2 if all previous   

solutions were infeasible, and  = 1/2 if all previous   solutions were feasible. 

3.2.2 Differences between LANTIME and LANCOST 

The LANTIME algorithm works on one set of Road Timetables which are described in 

Eglese et al. [7]. The LANCOST algorithm works on two sets of Cost Based Road Timetables. 

The first of the Timetables finds the least cost route if the congestion charge must be paid for 

any entry into the congestion charge zone through a link. The route corresponding to this cost 

may avoid the congestion charge zone or may travel through the congestion charge zone; it 

will depend on the amount of the congestion charge compared to the additional travel cost 

incurred by avoiding the zone. The second timetable ignores the effect of the congestion 

charge when constructing the timetable. The route corresponding to the cost in the second 

timetable may or may not pass through the congestion charge zone. The reason for two sets of 

Cost Based Road Timetables is that the vehicle only incurs the congestion charge once per 

day. Once the congestion charge has been paid, the effect of the congestion charge does not 

need to be considered. The program uses these two sets of Cost Based Road Timetables to 

select the least cost route for each vehicle and hence determines whether the vehicle will 

enter the congestion charge zone on the day in question and so incurs the charge.  
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Figure 1 – a small example to demonstrate how the two Cost Based Road Timetables are 

applied. 

 

In order to have a better idea of the use of these two types of Cost Based Road Timetables, 

one small example is illustrated in Figure 1. Three nodes and the costs for travelling between 

each pair of nodes are shown in Figure 1. Node 0 is the depot; the other two nodes (C1 and 

C2) are customers’ nodes. The value of the CC is equal to γ, which is assumed to be greater 

than 2.  The dotted lines are the routes for the Cost Based Road Timetable considering the CC 

and the minimum costs are described in Table 1. For the purposes of this small illustrative 

example, costs are the same for travelling between a pair of nodes in each direction. The solid 

lines are the routes for the Cost Based Road Timetable without considering the CC and the 

minimum costs are described in Table 2. The vehicle will start from the depot at node 0, and 

then deliver goods to C1 and C2 and finish at the depot.  From Figure 1, the solid lines are 

going across the CC Zone while the dotted line will drive longer distances to avoid the CC 

Zone and paying the CC charge. There are two minimum cost routes for both Cost Based 

Road Timetables. One is 0->C1->C2->0; the other is 0->C2->C1->0. From Table 1 and Table 

2, the minimum costs for these routes are a+b+c+6 and a+b+c respectively. But the cost 

recorded in Table 2 does not include the CC charge. As the corresponding route enters the CC 

Zone, the CC cost is incurred. So, the total cost is a+b+c+γ. Comparing the results from these 

two tables, the result from Table 2 will be selected if γ < 6 and the result from Table 1 will be 



selected if γ > 6.  If γ = 6, then the two routes have equal cost and either route may be 

selected. 

 0 C1 C2 

0 - a+2 b+2 

C1 a+2 - c+2 

C2 b+2 c+2 - 

Table 1. Cost matrix considering CC    Table 2. Cost matrix without considering CC 

 

The following three additional enhancements are added to the original LANTIME algorithm.  

 A method is developed to minimize the number of vehicles going into the congestion 

charge zone that is described in the next section.  

 A complete exploration of the neighbourhood is implemented when the algorithm cannot 

improve the solution further.  

 A 2-opt move algorithm is applied to improve the single routes at the end of the program.   

3.3 Method for reducing the number of vehicles going into the 

congestion charge zone  

When the congestion charge is considered, the vehicle operators may benefit from fewer 

vehicles running into the congestion charge zone. However, when developing the solution 

algorithm, a particular problem encountered was that the heuristic search would not move 

towards such solutions unless the objective was modified to guide the search in an 

appropriate direction. So an additional component was added to the objective used by the 

tabu search. Different methods were tested, but the following version was the one finally used 

to produce the results.  

Let c be the total number of customers from within the congestion charge zone that need to 

receive a delivery. Let kn be the number of customers within the congestion charge zone 

delivered by vehicle k. A negative cost (

2

* k

k K

n

c




 
  

 
 ) is added to the search function. The 

search function is defined as follows: 

          

2

( ) ( ) ( ) k
trial trial trial trial

k K

n
C M x f x P x

c
 



 
    

 


                            (12) 

 0 C1 C2 

0 - a b 

C1 a - c 

C2 b c - 



2

k

k K

n

c

 
 
 

 is less than or equal to 1 and when c is fixed, it will tend to be smaller when there 

are more non-zero values of 
in . Formula (12) is a modification of Formula (11), where the 

last term  (

2

k

k K

n

c




 
  

 
 ), is added to guide the search so that that less vehicles run into the 

CC zone. The value of     needs to be chosen to relate to the values chosen for the other 

weighting parameters,  and  .  

3.4 Benchmark Datasets 

A family of benchmark datasets is constructed where the optimal solution is known from the 

structure of the datasets. These are used to test whether the LANCOST algorithm can find 

optimal solutions. 

3.4.1 4*6 Benchmark Dataset 

An initial 4*6 grid based network is constructed and is illustrated in Figure 2. Node 0 is the 

depot node and each of the other 23 nodes is the location for a customer with demand of one 

unit. The 38 edges linking the nodes form a rectangular grid and can be traversed in either 

direction. A congestion charge fee of 5 is imposed for any vehicle entering the central area of 

the network indicated by dashed lines in Figure 2 and includes edges with one end at nodes 7, 

8, 9, 10, 13, 14, 15 and 16. Vehicles must start and finish their routes at the depot (node 0). 

The cost for a vehicle to travel along any edge is 1. The capacity for each vehicle is 12 units. 

The minimum cost for a solution to this bench mark data set is found from the following 

argument. The total demand is 23 units and the capacity of each vehicle is 12 units, so at least 

2 vehicles are required. In order to service a new customer, a vehicle must travel at least one 

additional unit from the previous customer or depot, so the total distance travelled ≥ 23. In 

addition, each of the two vehicles required must return to the depot from the last customer 

visited, so the total distance travelled ≥ 25. The structure of the grid means that only 2 

customers are within 1 unit of the depot node. So if 2 vehicles must start and finish at the the 

depot, then 2 of the 4 links from the depot to the first customer or from the last customer to 

the depot must be at least 2 units, so the total distance travelled ≥ 27. Also from the structure 

of the rectangular grid, the length of any vehicle route starting and ending at the depot must 



be even. Hence the total distance travelled ≥ 28. At least one vehicle must enter the CC zone 

to serve the central customers, incurring the CC fee of 5. Hence the total cost ≥28 + 5 = 33. 

A feasible solution with total cost of 33 is as follows: 
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Figure 2 - 4*6 Grid Based Network 

Vehicle1 route is  0->1->7->8->9->10->16->15->14->13->12->6->0.  

Vehicle2 route is 0->18->19->20->21->22->23->17->11->5->4->3->2->0.  

Figure 3 illustrates the solution. The total distance travelled is 12 + 16 = 28 units. Only 

Vehicle 1 enters the CC zone, so the CC charge is 5 and the total cost of the solution is 28 + 5 

= 33. As it has been shown that any feasible solution has a cost of ≥ 33, then this represents 

an optimal solution. 
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Figure 3 - Solution of 4*6 Benchmark Dataset 



The LANCOST algorithm is able to solve the problem and find an optimal solution.  

3.4.2 Generalised Benchmark Datasets  

The initial small example was generalised to test the LANCOST algorithm on larger 

problems. The row number in the benchmark dataset is fixed to 4. The number of columns 

can be expanded to N. The total number of nodes is 4N including the depot. So, the total 

number of customers is 4N -1. Total number of edges is 7N-4. The maximum capacity of a 

vehicle is 
4 1

2

N  
 
 

. CC is the value of the congestion charge. One vehicle will serve all 

customers within the congestion charge zone, its cost equal to 2N+CC, while the other 

vehicle serve the rest of the customers at a cost of 2N+4 each, so the total cost is 4(N+1)+CC. 

This benchmark dataset is designed so that the optimal solution requires one vehicle to 

deliver goods to all customers within the congestion charge zone.  

We can make T copies of the 4*N dataset and each copy is assumed to have a common depot 

node at 0. The total number of nodes is (4N-1)T+1 including the depot. So, the total number 

of customers is (4N-1)T. The total number of edges is (7N-4)T.  The maximum capacity of 

each vehicle is 
4 1

2

N  
 
 

. There are T*2 vehicles to deliver goods to the customers. T 

vehicles will serve all customers within the congestion charge zones at a cost of 2N+CC, 

while another T vehicles serve the rest of the customers costing 2N+4 each, so the total cost 

is (4(N+1)+CC)T.  This benchmark dataset is designed so that the optimal solution requires T 

vehicles to deliver goods to all customers located in the congestion charge zones.  

The method described in Section 3.3 was tested using the dataset with N=20 and T=2. This 

version of LANCOST was able to minimize the number of vehicles going into the congestion 

charge zones and solved the benchmark dataset problem with an optimal solution.  

4 Case Study with Real Traffic Data 

4.1 Background 

The case study is based on the distribution system of a supermarket chain. Customer 

locations are based on the locations of supermarkets and a distribution centre is located on the 

outskirts of London. 



The type of vehicle used for the case study is a HGV Diesel rigid >32 t EURO 5.  The type of 

vehicle chosen affects the relationship between fuel consumption per kilometre and the speed of 

the vehicle. Figure 4 shows this relationship for this particular type of vehicle. The formulae 

used to construct the graph can be found in Department for Transport [24]. The fuel 

consumption function is convex.  

 

Figure 4 - Fuel Consumption for HGV Diesel Rigid >32 t EURO 5 

As the night shift restrictions are applied in the London area, the driver cannot start 

operations until 7am. Each vehicle can carry a maximum of 24 cages. The unloading time for 

each cage is 2 minutes. Each driver is available only for a maximum working day of 10 hours 

including the statutory breaks for driving time and working time. 

The objective of the vehicle routing problem is to minimize the total cost. The total cost 

includes fuel cost, driver cost and congestion charge. There are 10 customers within the 

congestion charge zone. The vehicle is allowed to wait at the customer locations in order to 

satisfy the time window constraints. The price of diesel is set to be £1.20 per litre. Fuel 

consumption is calculated firstly and then converted to CO2e emissions and fuel cost by 

using the specific conversion factors. From the GHG conversion factor table (2010), one litre 

of diesel emits 3.1787 kg CO2e. The CO2e can be calculated using the speed along each road 

in the route using the emissions function provided in Department for Transport [24]. The 

tables provided allow an estimate to be made of various emission factors in term of emissions 

per kilometre for different average speeds.  

Cost Based Road Timetables were constructed for the set of customers included in each 

instance tested based on the speeds observed in 96 15-min time bins. The cost based Road 
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Timetables generate the results for time, distance, cost, CO2e between a pair of locations. 

The new algorithm works on the cost based Road Timetables to find the minimum cost routes.  

Figure 5 shows the customer locations. There are 60 customer locations and 10 of them are in 

the congestion charge zone. The demands of customers are randomly generated in advance so 

that the demand for each customer is 4, 5, 6, 7 or 8 cages, each with a probability of 0.2. The 

customers located in the congestion charge zone have a total demand that can be delivered by 

only one vehicle, given that each vehicle can perform several trips per day. The distances and 

time available are such that it is possible for a vehicle to return to the depot to reload after 

completing all the deliveries for the first trip. The congestion charge is applied from 7am to 

6pm during the weekdays. The value of the congestion charge is £8 per vehicle per day. 

Location 0 is the depot.  

 

Figure 5 - Customer Locations 

The total customer demand is 359 cages. The solution found requires only one vehicle to go 

into the congestion charge zone. Six vehicles using 16 trips are required to complete the 

delivery. The routes generated by the new VRP algorithm are shown in Figure 6. The total 

cost of the fleet is £482.4 with 794kg CO2e emissions. The total distance is 570km. The total 

driver working time is 2177 minutes. The details of the trips are described in the Appendix A. 



 

Figure 6 - VRP Routes 

4.2  Benchmark Dataset Instances 

In order to further examine the performance of the LANCOST algorithm, we test the new 

algorithm by using 10 different benchmark instances. The number of customers served for the 

10 benchmark instances ranged from 40 to 45 and were selected from the 60 original 

customers. The number of vehicles required is up to 10.  All of the computations were carried 

out on a Dual Core processor PC of 3.00GHZ with 3.25GB of RAM and computing times are 

expressed in seconds.  The average computing time for 40 nodes is 4694 seconds and the 

average computing time for 45 instances is 5566 seconds. 

For each instance, three runs were made using the LANCOST algorithm. The first set of runs 

(A) where the congestion charge is set to 8, the second set of runs (B) where the congestion 

charge is set to 4, the third set of runs(C) where the congestion charge is set to 0. The traffic 

conditions are assumed to remain the same even though the value of the congestion charges 

changes. Changing the value of the congestion charge affects the results of the Cost Based 

Road Timetable. The results are shown in Table 3. N is the number of customer nodes. As we 

are using a random number generator, different seeds for the random number generator will 

give different values of the total cost. The result reported in the table is best one of three runs. 

As some benchmarks instances do not contain any customers within the congestion charge 

zone (i.e. Test 3, Test 4, Test 6, Test7), the total congestion charge for Run A is always 0 for 

these cases.  When the value of congestion charge is decreased, the best solution may be for a 



vehicle to enter the congestion charge zone in order to save the time and fuel cost with the 

expense of paying congestion charge, e.g. Test 3 and Test 4 for Run B.  

 

Table 3 - Results for 10 different Benchmark Instances 

When the congestion charge is set to £8, only one vehicle goes into the congestion zone to 

deliver goods to customers. When the congestion charge decreases, it is sometimes preferable 

to allow more vehicles to run into the congestion charge zone. Going through the congestion 

charge zone saves the distance travelled and hence it saves the fuel costs and time.  

 

 

Table 4 - Summary Statistics 

Table 4 shows that a higher congestion charge will lead to higher total travelling time, total 

CO2 emissions and total cost. From the total congestion charge column, Run B does not 

show much difference from Run A. When the congestion charge price decreases, the best plan 



has 11 vehicles (increasing from 6 vehicles) running into the congestion charge zone in order 

to save cost, travelling distance and reduce CO2 emissions. The total CO2 emission column 

shows that higher congestion charges lead to higher total CO2 emissions for a local delivery 

service running from a depot outside a congestion charge zone. The congestion charge 

increases the CO2 emissions which are an unwelcome consequence of imposing the 

congestion charge for each vehicle entering the congestion charge zone. These experiments 

did not consider the effect of changing the level of the congestion charge on traffic patterns 

and hence speeds. In other words, the traffic conditions are assumed to be the same no matter 

what level of congestion charge is applied.  

In order to test whether the LANCOST algorithm can be used for larger datasets, 10 more 

experiments have been run. The number of customers in these instances range from 85 to 101 

and the locations are selected from actual supermarket locations. The congestion charge is set 

to £8 and each vehicle can carry up to 24 cages.  

The results for these instances are shown in Table 5. The number of customers within the CC 

zone ranges from 0 to 25. The total number of cages required to be delivered to customers 

within the CC zone (“CC cages”) is shown in Table 5. Dividing this number by the capacity 

of a vehicle gives a lower bound for the number of vehicle trips into the CC zone. LANCOST 

is able to reduce the total costs by organizing the trips so that vehicles entering the CC zone 

often make more than one trip into the CC zone during the day. This strategy reduces the CC 

paid. The table shows the number of trips for each vehicle that enters the CC zone (though 

not all trips need enter the CC zone). 

 

Table 5 - Results for 10 larger instances 



4.3 Time Windows 

Time windows are added to the 10 instance benchmark datasets.  A target delivery time is set 

for each customer. The target delivery time is randomly picked between 8am to 6am and it is 

always feasible. The goods need to be delivered within the range between target time minus 

one hour and target time plus one hour. The congestion charge is set to £8. This set of runs is 

labelled as Run D.  The results are shown in Table 6 and Table 7. Compared with Run A, 

Run D has higher total travelling cost, total distance, travelling time and CO2 emissions.  

 

Table 6- Comparing Run A and Run D 

 

Table 7- Summary Statistics 

Adding time windows to the application makes the problem more complicated. The vehicles 

spend time waiting at some customer locations in order to satisfy the time windows. The time 

windows require more than one vehicle to go into the congestion charge zone in some 

instances.  



5 Conclusions and Further Research 

The new algorithm shows how costs for freight distribution may be significantly influenced 

by traffic conditions and the presence of a congestion charging scheme. The LANCOST 

algorithm has been tested on artificially generated networks to check its ability to reduce the 

number of vehicles entering the congestion charge zone and hence incurring the charge. It has 

then been used in a case using real traffic data based on a typical supermarket distribution 

activity in the London area.  

The case study has been used to investigate how changing the congestion charge value affects 

the results. They show that higher values of the congestion charge can lead to more CO2 

emissions, more travelling time and more travelling distance for the operator illustrated in 

this study. 

Further research will examine how change to the value of the congestion charge may affect 

traffic patterns and consider the design of congestion charging schemes. 



Appendix A 

The appendix describes the details of trips for each vehicle in the experiment which have 

been shown in Figure 6. Up to 10 vehicles are available, but only 6 of them are needed. 

Vehicle 

Name Arrive Depart 

Location 

Name 

Travel 

Time 

Travel 

Dist 

Travel 

CO2 

Travel 

Cost CC 

Vehicle 1  07:00 Depot           

  07:36 07:48 39 36.87 16765 23210 13.68 0 

  08:06 08:16 17 17.36 8455 11366 6.605 0 

  08:23 08:31 12 7.285 3477 4685 2.74 0 

  08:42 08:52 37 10.94 4630 6586 3.945 0 

  09:00 09:08 8 7.764 2799 4259 2.643 0 

  09:42 09:42 Depot 34.27 14763 21019 12.51 0 

  10:04 10:18 48 22.16 10293 14032 8.253 0 

  10:31 10:43 7 12.95 6435 8506 4.938 0 

  10:49 11:03 9 5.983 2157 3329 2.055 0 

  11:12 11:20 25 8.891 3886 5378 3.216 0 

  11:47 11:47 Depot 26.98 11007 15888 9.596 0 

  12:00 12:10 29 12.79 7445 9135 5.154 0 

  12:16 12:26 36 6.652 3607 4600 2.624 0 

  12:40 12:48 19 13.35 6212 8362 4.937 0 

  12:55 13:03 16 7.463 3817 4975 2.873 0 

  13:44 13:56 14 10.53 5625 7196 4.12 0 

  14:16  Depot 20.75 12027 14617 8.285 0 

                  

Vehicle 2  07:00 Depot           

  07:27 07:35 34 27.95 11979 17140 18.2 8 

  07:52 08:04 59 16.49 6870 9930 5.947 0 

  08:13 08:27 53 8.978 2823 4638 2.948 0 

  08:50 09:02 58 23.22 6934 11662 7.499 0 

  09:27 09:27 Depot 24.7 10352 13518 8.396 0 

  09:59 10:09 49 32.15 12988 19137 11.51 0 

  10:18 10:34 54 9.372 3324 5117 3.182 0 

  10:38 10:48 40 3.253 749 1409 0.9658 0 

  10:57 11:09 51 9.228 3221 5025 3.127 0 

  11:42 11:42 Depot 33.44 12675 18903 11.6 0 

  12:10 12:24 52 27.82 10872 15912 9.717 0 

  12:30 12:46 30 5.679 1244 2297 1.625 0 

  12:49 13:05 35 3.436 1096 1761 1.123 0 

  14:03 14:03 Depot 27.47 9658 15167 9.388 0 

  14:15 14:29 38 12.34 5487 7657 4.536 0 

  14:49 15:05 13 5.1 1836 2866 1.762 0 



  15:12 15:22 21 7.157 2590 3977 2.456 0 

  15:32  Depot 9.742 5081 6598 3.79 0 

                  

Vehicle 3  07:00 Depot           

  07:36 07:50 2 36.85 16800 23352 13.73 0 

  07:59 08:11 3 8.192 3094 4641 2.844 0 

  08:17 08:29 47 6.099 2032 3279 2.051 0 

  09:07 09:17 57 38.08 12118 19370 12.39 0 

  09:39 09:39 Depot 21.86 9209 12667 7.696 0 

  10:27 10:43 31 48.46 22169 30535 17.99 0 

  10:52 11:06 42 8.942 3224 4846 3.022 0 

  11:10 11:26 1 4.314 1487 2370 1.47 0 

  12:13 12:13 Depot 46.33 19345 27737 16.65 0 

  12:38 12:48 32 25.15 14097 17626 10.01 0 

  12:51 13:03 33 3.595 1648 2306 1.35 0 

  13:41 13:55 24 7.179 3332 4580 2.686 0 

  14:33  Depot 22.97 11793 15237 8.816 0 

                  

Vehicle 4  07:00 Depot           

  07:25 07:35 22 25.75 12199 16679 9.73 0 

  07:40 07:52 23 4.775 1813 2678 1.648 0 

  07:57 08:07 41 5.375 1794 2839 1.788 0 

  08:32 08:42 18 24.94 7600 12212 7.935 0 

  09:01 09:01 Depot 18.94 6916 10657 6.549 0 

  09:04 09:20 4 2.989 1327 1871 1.105 0 

  09:29 09:39 26 8.823 3984 5433 3.227 0 

  09:43 09:59 50 4.057 2348 2921 1.644 0 

  10:04 10:04 Depot 4.41 1506 2342 1.472 0 

  10:35 10:47 10 31.2 16311 20940 12.06 0 

  11:04 11:16 11 17 11340 12783 7.093 0 

  11:24 11:36 27 8.237 5076 5947 3.344 0 

  11:47 11:57 15 10.71 6647 7810 4.377 0 

  12:27 12:27 Depot 30.31 17235 21186 12.04 0 

  12:49 12:57 28 21.93 18786 20450 10.64 0 

  13:36 13:48 6 9.107 3443 5117 3.146 0 

  13:56 14:10 5 8.432 4143 5472 3.19 0 

  14:17 14:29 20 6.075 2463 3538 2.146 0 

  14:44  Depot 15.39 6798 9177 5.517 0 

                  

Vehicle 5  07:00 Depot           

  07:50 08:02 60 50.99 21306 29942 18.1 0 

  08:15 08:29 55 12.43 3886 6401 4.074 0 

  08:39 08:53 56 10.13 2819 4844 3.179 0 

  09:31 09:31 Depot 37.9 14499 20376 12.75 0 

                  



Vehicle 6 07:00 07:00 Depot           

  07:42 07:52 45 42.72 16415 24569 14.97 0 

  07:55 08:09 46 2.706 826 1353 0.8719 0 

  08:18 08:32 44 9.122 2871 4706 2.993 0 

  08:37 08:47 43 5.021 1528 2518 1.62 0 

  09:39  Depot 51.91 21256 30814 18.55 0 

                  

        36:17:00 570 794 482.4 8 

Table A.1 
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