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Abstract

A heuristic algorithm, called LANCOST, is introduced for vehicle routing and scheduling
problems to minimize the total travel cost, where the total travel cost includes fuel cost,
driver cost and congestion charge. The fuel cost required is influenced by the speed. The
speed for a vehicle to travel along any road in the network varies according to the time of
travel. The variation in speed is caused by congestion which is greatest during morning and
evening rush hours. If a vehicle enters the congestion charge zone at any time, a fixed charge
is applied. A benchmark dataset is designed to test the algorithm. The algorithm is also used
to schedule a fleet of delivery vehicles operating in the London area.
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1 Introduction

The routing and scheduling of a fleet of vehicles to deliver goods to customers plays an
important part in the distribution business. Vehicle operators are concerned with how to
minimize the total costs for distributing goods to their customers in order to maximize the
operational profit. Many available models assume that the travel times are constant
throughout the day, based on constant average speeds. However, this assumption is a weak
approximation of the real-world condition where travel time and travel speed are subject to
significant variation over time. These variations may result from foreseeable events (e.g.,
congestion during peak time which increases the fuel cost) or from unforeseeable events like
accidents, vehicle breakdowns, transport workers strikes and others. Therefore, the optimal
solution to a formulation of the problem that assumes constant travel times may be

suboptimal or even infeasible for the time-dependent problem.
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Congestion charge schemes are applied in various places. For example, London is one of the
places applying a congestion charge zone scheme to reduce the traffic in its central area. A
congestion charge is one type of road toll that attempts to reduce road congestion. Time-
dependent minimum cost vehicle routing problems (VRP) have seldom been addressed in the
literature. Including the congestion charge as another factor that impacts the total cost makes
the VRP problem even harder to solve. The paper introduces a heuristic method to solve the
minimum cost VRP with time-dependent travel times in a road network with a congestion
charge zone. The heuristic method is an enhanced version of the LANTIME algorithm which
was introduced by Maden et al. [1]. The new heuristic method is called LANCOST.

The rest of the paper is organized as follows: in the next section there is a literature review of
relevant previous work about using heuristic methods to solve time-dependent vehicle routing
problems. Section 3 describes the LANCOST algorithm to solve a VRP with a time-
dependent road network and congestion charge. A benchmark dataset is designed to test the
new algorithm. The subsequent section presents computational results obtained through
LANCOST using data including real-life traffic information in London. The last section

presents conclusions and directions for further research.

2 Literature review

The VRP is an NP-hard problem because it includes the travelling salesman problem (TSP)
as a special case when only one vehicle with infinite capacity is used to deliver goods. Some
VRPs can be solved by exact methods providing they are not too large. However, in practice,
the VRP is considerably more difficult to solve than a TSP of the same size. For example,
Applegate et al. [2] mention that a TSP involving hundreds and even thousands of vertices
can be solved by means of advanced Branch and Cut and Price algorithms. However, the
exact algorithm of Baldacci et al. [3] for the VRP can only solve problems with up to about
100 customers, and with a variable success rate. Classical heuristics and metaheuristic

methods are used to search for good solutions.

The book of Toth and Vigo [4] provides a comprehensive review of the VRP. It discusses
both exact and heuristic methods for the VRP and describes solution approaches for some of
the most important variants of the VRP such as the VRP with time windows, backhauls, and
pickup and delivery. The book also covers issues arising in real-world VRP applications and

includes both case studies and references to software packages. However the book does not



include time-dependent models, so the remainder of the literature review will mostly focus on
models where the time to travel between customers is not constant but depends on the time of
day. The final section introduces the Vehicle Routing Problem with Multiple Trips which is
relevant to the experiments reported in this paper.

Ichoua et al. [5] introduce a time-dependent model for the vehicle routing problem with time
windows based on time-dependent travel speeds which satisfies the First In First Out (FIFO)
property. They implement a parallel tabu search approach and test its performance both in
dynamic and static environments. The scheduling horizon is divided into three time intervals
by taking into account the rush hours and three types of road are considered. The results show
that the time-dependent model provides significant improvements compared to the model
with fixed travel times. Van Woensel et al. [6] modelled VRPs with time-dependent travel
times by using a queuing approach. Traffic volumes instead of vehicle speeds are required in
the model. The approach is able to deal with a large number of time slots, which improves
solution quality.

Eglese et al. [7] show how the use of time-dependent data can affect results for a hypothetical
distribution operation and develop a model to use the historical data to construct a Road
Timetable that shows the shortest time between nodes when the journeys start at different
times. The shortest times and routes may vary as the speed of travel on individual roads may
differ significantly by the hour of the day, by the day of the week and by the season of the
year. The times required to travel from one end of a road to the other are calculated to ensure
that the FIFO property holds and then Dijkstra’s algorithm is adapted to find the shortest-time
paths between nodes efficiently. The paper describes a case study using real speed data on a
road network in the north of England. Maden et al. [1] introduce a vehicle routing and
scheduling algorithm, called LANTIME, that is able to accept data from a Road Timetable
and to construct a set of vehicle routes that aims to minimize the total time required to deliver
goods from a depot to a set of customers subject to a set of constraints. The LANTIME
algorithm uses the parallel insertion algorithm firstly to generate an initial feasible solution.
Then a tabu search algorithm is used to find better solutions.

Figliozzi [8] has proposed an iterative route construction and improvement algorithm to solve
a time dependent vehicle routing problem. The problem is formulated with both soft and hard
time windows. The primary objective is to minimize the number of routes and the secondary
objective is to minimize total cost, which is proportional to the travel time or travel distance.

The solution method is tested on Solomon [9] benchmark problems, but with time-varying



speeds applying to all of the arcs. The algorithm efficiently solves time-dependent vehicle
routing problems with time windows and provides a good solution quality when dealing with
hard time windows. To further quantify the impacts of congestion on time-dependent real-
world networks, this method is applied to a real road network in Conrad and Figliozzi [10].
The results showed that the congestion influences the number of vehicles and travel distances
dramatically, especially for depots located outside the customer service area. In order to meet
the hard time window constraints, extra vehicles as well as increased travel distances are
required. Figliozzi [11] has introduced an emissions vehicle routing problem (EVRP), where
departure time and travel speeds are decision variables. The algorithm for solving these
problems is to minimize the number of vehicles firstly and then to optimize emissions subject
to a fleet size constraint by using a heuristic method. The algorithm is tested using the
Solomon [9] benchmark dataset. The results show that significant emissions savings can be
achieved by the algorithm. Furthermore, the results indicate that congestion effects on
emission levels are not uniform.

Bektas and Laporte [12] do not deal with time-dependent travel times. However they address
VRPs with different objective functions that are relevant to this study. They compare four
different models with different objectives including distance, energy, weight load and cost
minimizing objectives. They provide numerical analyses on some small instances and
conclude that minimizing the energy consumption is not equivalent to minimizing the cost.
As the labour cost constitutes a major proportion of the total cost, the cost minimizing model
focuses on the labour cost in order to reduce the total costs. Advances in engine technology
lower the amount and cost of emissions hence lowering the overall total cost. Minimizing the
cumulative weight load only does not necessarily imply energy minimization, particularly

when time window restrictions are applied.

Estimating greenhouse gas emissions plays an important part in freight transportation
planning. Demir et al. [13] review and compare several available freight transportation

vehicle emission models and discuss how emissions depend on speed.

The Vehicle Routing Problem with Multiple Trips(VRPMT) is an extension of the classical
Vehicle Routing Problem in which each vehicle may perform several routes in the same
planning period.The VRPMT was introduced by Fleischmann [14], who used a savings based
algorithm to construct the routes and a bin packing heuristic to combine them into working
shifts. Followed by using a bin packing heuristic for the working shift aggregation, Taillard et
al. [15] introduce a tabu search heuristic to solve the VRPMT which is shown to produce



high quality solutions on a series of test problems. An adaptive memory approach has been
proposed by Olivera and Viera [16] where the adaptive memory is a large pool of routes. At
each iteration, a subset of these routes is chosen and improved through a tabu search
procedure that also aggregates them. The resulting routes are returned into the adaptive
memory and the process is iterated. Battarra et al. [17] proposed a adaptive guidance
mechanism to reduce the overall number of required vehicles within a limited computing
time. Nguyen et al. [18] introduce a tabu search meta-heuristic for the Time-dependent Multi-
zone Multi-trip Vehicle Routing Problem with Time Windows. A diversification strategy,
guided by an elite solution set and a frequency-based memory, is used to drive the search to
potentially unexplored good regions. Azi et al. [19] propose an adaptive large neighborhood
search, exploiting the ruin-and-recreate principle, to solve the VRPMT. The algorithm is
tested on the well-known benchmark instances proposed by Solomon [9] and other examples

to demonstrate the benefits of this multi-level approach.

3 Model formulation and algorithm design

3.1 Model formulation

The problem considered is a conventional single-depot Vehicle Routing Problem with Time
Windows in a time dependent road network. The route for each vehicle starts and ends at the
depot. A homogenous fleet of vehicles is used to serve the customers.

The full detail of the model formulation can be found in the PhD thesis of Maden [20]. The
main points are summarized below.

The set of customers is denoted by N, the set of vehicles by K and {0} represents the depot.
For each customer i e N, the service time requirement is s(i), the demand required is w(i) and
a time window [e(i),I(i)] is specified for beginning of service. The set of vehicles K
represents a homogeneous fleet of vehicles. Each vehicle has capacity W, a starting time
and a maximum working time D.

The travelling times between locations are all known and depend on the time when the

vehicle starts to travel between the locations. This can be defined as t.(i, ), where
{i, }= N {0}, where h indicates the starting time. The cost c, (i, j) associated with

traversing an arc includes fuel cost, congestion charge and driver cost and replaces travelling

time in the original formulation in Maden et al. [1]. The formulation has been extended to



allow the time to travel between locations t, (i, j) and the travel cost between locations

c,(i, J) to be varied according to the time that the journey is started (h).
For each individual vehicle, k, R, :[v('j,...,vr';k] represents the sequence of locations to be
serviced by the vehicle k where v“j e N for p=1,...,m" -1, and, vg and v'n:k are identified with O,

because the route starts and ends at the depot. m* represents the number of stops on the

complete path, including depot stops, for vehicle k.
The starting time of the service for customer p on the path of vehicle k is denoted by a(v';)

and is defined in equation (1). In this equation, h represents the time when the vehicle leaves

the previous stop, which is the start time plus the service time at the previous stop, so

h= a(v$_1)+s(v‘;,_l). The service start time for service at stop p is defined as the maximum
between (1) the departure time at previous stop, which is a(v‘;fl)+s(v';71) ,plus the travelling
time t,(v;_,,V5)to stop p and (2) the start of the time window e(v;) at stop p. The waiting

time before a service is denoted as b(v';) and is defined in equation (2). By convention

a(0) =rand s(0) =0. The waiting time is dependent on both the starting time and the time

window start time.

o e(vy)
a(vp) =Mmax {a(vg_l) " S(le()—l) +t, (VI;()—l’ VE)} (1)
b(v}) = max {e(v'k]) 0 a(vf,)} .

The only constraint applied directly to each individual customer is that the service must start
within the given time window. This is a time window on beginning of service and not on
completion of service.

e(v¥) <a(vk) <I(v),VieN 3)

The working time required on each route must be under the total work time available, D. in

the VRPTW the working time includes travelling time, service and waiting time.

mk -1 m<—1 m<—1
Dot (v, v )+ D s(vi)+ D b(vi) <D vk e K (4)
p=0 p=1 p=1

Formula (4) ensures that the vehicle returns to the depot on time. Equation 5 defines the

variable R« as the sequence of locations to be serviced by vehicle k with the depot stops

removed.



Re = Ri\{vy, v, } VkeK (5)

UR =N (6)

keK

The equality constraint (6) ensures that all customers N are dealt with by the individual

customer sets R .

mk —

le(v';) <W vkeK (7

p=1
Formula (7) ensures the capacity of the vehicle is not exceeded by the demand requirements

of the individual customer setsR, .
The total cost of travelling between locations i and j, starting at time h, is defined as c, (i, J)
where {i, j} = N U{0}.

The travel cost includes three parts: the fuel cost, driver cost and congestion charge. The fuel
cost F, (i, ) denotes the fuel cost on arc (i,j) departing at time h. L, (i, j) is the driver cost on
arc (i,j) starting at time h and it is proportional to the time of travel. CC is the congestion
charge and A is a binary scalar. As the congestion charge is paid once per day, A =1 if it is
the first time that a vehicle enters the congestion charge zone, otherwise 2 =0.Then the travel

cost of a vehicle on an arc(i, j)is calculated as follows:

c,(h ) =F, (1, )+ L, j)+ACC (8)
The objective function (9) is to minimise the total travelling cost over all the routes.

m<—1
mins 56040 o
eK p=

Compared with the formulation in Maden et al. [1], the objective of the model has been

changed from minimizing the total travelling time to minimizing the total cost.



3.2 Algorithm design

3.2.1 LANTIME Algorithm

The LANTIME algorithm (Maden et al. [1]) solves the least time VRP problem with multiple
trips in a road network with time-dependent speeds. A new algorithm, called LANCOST, is
based on the LANTIME algorithm and some new enhancements are added to solve the
minimum cost version of the problem. The LANCOST algorithm works on Cost Based Road
Timetables which are generated by the heuristic methods introduced in Wen et al. [21]. The
following section is a description of the LANTIME algorithm, which is the basis for
LANCOST.

In LANTIME, an initial solution is created for the VRPTW using the parallel insertion
algorithm of Potvin and Rousseau [22]. The parallel insertion algorithm must ensure that the
solution is feasible with respect to all constraints.

The initial solution is then improved using a tabu search algorithm. Four possible
neighbourhood operations are used in LANTIME: CROSS Exchange, insertion/removal, one
exchange and swap.

According to probabilities assigned in advance, the algorithm randomly selects which
neighbourhood to explore at each stage. The tabu list is not fixed but varies as proposed by
Gendreau et al. [23]; a move added to the tabu list at iteration t is forbidden until iteration

t+&where € is randomly selected from [4?, é]. This device helps to eliminate the probability

of cycling between solutions. A standard aspiration criterion overrides the restriction implied
by the tabu list if the move leads to a new best solution. A long-term memory structure is
used to diversify the search. The tabu search objective has an additional component to

represent the long-term memory cost M(x,,,) of the proposed move that leads to solution

Xl

COStig = M (Xiar) T (Kiiar) (10)
The value of M(X,,,) is higher when x,,., has been an accepted move in previous iterations.
Thus multiplying the original VRPTW objective f (x) by the memory cost

M(x) produces a function with lower values when x,,, has never or rarely been accepted

before and so helps to diversify the search. The value of M(x,,, ) is multiplied by the value of



a parameter, £, which thus controls the strength of the effect of the memory cost. Fuller

details are provided in Maden et al. [1].
The tabu search objective tries to locate a solution x which leads to the minimum search cost.
The search cost includes the original VRPTW objective f (x), the memory cost M(x) and the

function P(x) that is a measure of the infeasibility of solution x.

Ctrial =M (Xtrial) f (Xtrial ) + ap(xtrial) (11)

The parameter « is dynamically adjusted throughout the search. It is initially set at 1, in the

same way as Gendreau et al. [23]. Then, every & iterations, « = 2« if all previous &

solutions were infeasible, and « = 1/2 « if all previous & solutions were feasible.

3.2.2 Differences between LANTIME and LANCOST

The LANTIME algorithm works on one set of Road Timetables which are described in
Eglese et al. [7]. The LANCOST algorithm works on two sets of Cost Based Road Timetables.
The first of the Timetables finds the least cost route if the congestion charge must be paid for
any entry into the congestion charge zone through a link. The route corresponding to this cost
may avoid the congestion charge zone or may travel through the congestion charge zone; it
will depend on the amount of the congestion charge compared to the additional travel cost
incurred by avoiding the zone. The second timetable ignores the effect of the congestion
charge when constructing the timetable. The route corresponding to the cost in the second
timetable may or may not pass through the congestion charge zone. The reason for two sets of
Cost Based Road Timetables is that the vehicle only incurs the congestion charge once per
day. Once the congestion charge has been paid, the effect of the congestion charge does not
need to be considered. The program uses these two sets of Cost Based Road Timetables to
select the least cost route for each vehicle and hence determines whether the vehicle will

enter the congestion charge zone on the day in question and so incurs the charge.



Figure 1 — a small example to demonstrate how the two Cost Based Road Timetables are
applied.

In order to have a better idea of the use of these two types of Cost Based Road Timetables,
one small example is illustrated in Figure 1. Three nodes and the costs for travelling between
each pair of nodes are shown in Figure 1. Node 0 is the depot; the other two nodes (C1 and
C2) are customers’ nodes. The value of the CC is equal to y, which is assumed to be greater
than 2. The dotted lines are the routes for the Cost Based Road Timetable considering the CC
and the minimum costs are described in Table 1. For the purposes of this small illustrative
example, costs are the same for travelling between a pair of nodes in each direction. The solid
lines are the routes for the Cost Based Road Timetable without considering the CC and the
minimum costs are described in Table 2. The vehicle will start from the depot at node 0, and
then deliver goods to C1 and C2 and finish at the depot. From Figure 1, the solid lines are
going across the CC Zone while the dotted line will drive longer distances to avoid the CC
Zone and paying the CC charge. There are two minimum cost routes for both Cost Based
Road Timetables. One is 0->C1->C2->0; the other is 0->C2->C1->0. From Table 1 and Table
2, the minimum costs for these routes are a+b+c+6 and a+b+c respectively. But the cost
recorded in Table 2 does not include the CC charge. As the corresponding route enters the CC
Zone, the CC cost is incurred. So, the total cost is a+b+c+y. Comparing the results from these

two tables, the result from Table 2 will be selected if y < 6 and the result from Table 1 will be



selected if y > 6. If y = 6, then the two routes have equal cost and either route may be

selected.
0 C1 C2 0 Cl | C2
0 - at2 | b+2 0 - a b
Cl| a+2 - C+2 Cl a - c
C2 | b+2 | c+2 - C2 b C -
Table 1. Cost matrix considering CC Table 2. Cost matrix without considering CC

The following three additional enhancements are added to the original LANTIME algorithm.

® A method is developed to minimize the number of vehicles going into the congestion
charge zone that is described in the next section.

® A complete exploration of the neighbourhood is implemented when the algorithm cannot
improve the solution further.

® A 2-opt move algorithm is applied to improve the single routes at the end of the program.

3.3 Method for reducing the number of vehicles going into the

congestion charge zone

When the congestion charge is considered, the vehicle operators may benefit from fewer
vehicles running into the congestion charge zone. However, when developing the solution
algorithm, a particular problem encountered was that the heuristic search would not move
towards such solutions unless the objective was modified to guide the search in an
appropriate direction. So an additional component was added to the objective used by the
tabu search. Different methods were tested, but the following version was the one finally used
to produce the results.

Let ¢ be the total number of customers from within the congestion charge zone that need to

receive a delivery. Let n, be the number of customers within the congestion charge zone

2
delivered by vehicle k. A negative cost (—5*Z(n—kj ) is added to the search function. The
c

keK

search function is defined as follows:

Ctrial = M (Xtrial) f (Xtrial ) + ap(xtrial) - 52(&)

keK C

(12)



2
Z(n—"j is less than or equal to 1 and when c is fixed, it will tend to be smaller when there
kekK C

are more non-zero values of n.. Formula (12) is a modification of Formula (11), where the

2
last term (—52 (n—kj ), is added to guide the search so that that less vehicles run into the

keK
CC zone. The value of & needs to be chosen to relate to the values chosen for the other

weighting parameters, @ and S.

3.4 Benchmark Datasets

A family of benchmark datasets is constructed where the optimal solution is known from the
structure of the datasets. These are used to test whether the LANCOST algorithm can find

optimal solutions.

3.4.1 4*6 Benchmark Dataset

An initial 4*6 grid based network is constructed and is illustrated in Figure 2. Node 0 is the
depot node and each of the other 23 nodes is the location for a customer with demand of one
unit. The 38 edges linking the nodes form a rectangular grid and can be traversed in either
direction. A congestion charge fee of 5 is imposed for any vehicle entering the central area of
the network indicated by dashed lines in Figure 2 and includes edges with one end at nodes 7,
8, 9, 10, 13, 14, 15 and 16. Vehicles must start and finish their routes at the depot (node 0).
The cost for a vehicle to travel along any edge is 1. The capacity for each vehicle is 12 units.

The minimum cost for a solution to this bench mark data set is found from the following
argument. The total demand is 23 units and the capacity of each vehicle is 12 units, so at least
2 vehicles are required. In order to service a new customer, a vehicle must travel at least one
additional unit from the previous customer or depot, so the total distance travelled > 23. In
addition, each of the two vehicles required must return to the depot from the last customer
visited, so the total distance travelled > 25. The structure of the grid means that only 2
customers are within 1 unit of the depot node. So if 2 vehicles must start and finish at the the
depot, then 2 of the 4 links from the depot to the first customer or from the last customer to
the depot must be at least 2 units, so the total distance travelled > 27. Also from the structure

of the rectangular grid, the length of any vehicle route starting and ending at the depot must



be even. Hence the total distance travelled > 2&8. At least one vehicle must enter the CC zone

to serve the central customers, incurring the CC fee of 5. Hence the total cost >28 + 5 = 33.

Vehicle2 route is 0->18->19->20->21->22->23->17->11->5->4->3->2->0.

A feasible solution with total cost of 33 is as follows:

-- ( 13 )————( 14 )————( 15 )———-’\ 16 )____

Figure 2 - 4*6 Grid Based Network

Vehiclel route is 0->1->7->8->9->10->16->15->14->13->12->6->0.

Figure 3 illustrates the solution. The total distance travelled is 12 + 16 = 28 units. Only
Vehicle 1 enters the CC zone, so the CC charge is 5 and the total cost of the solution is 28 + 5
= 33. As it has been shown that any feasible solution has a cost of > 33, then this represents
an optimal solution.

Figure 3 - Solution of 4*6 Benchmark Dataset



The LANCOST algorithm is able to solve the problem and find an optimal solution.

3.4.2 Generalised Benchmark Datasets

The initial small example was generalised to test the LANCOST algorithm on larger
problems. The row number in the benchmark dataset is fixed to 4. The number of columns
can be expanded to N. The total number of nodes is 4N including the depot. So, the total

number of customers is 4N -1. Total number of edges is 7N-4. The maximum capacity of a

vehicle is (4 1 CC is the value of the congestion charge. One vehicle will serve all

customers within the congestion charge zone, its cost equal to 2N+CC, while the other
vehicle serve the rest of the customers at a cost of 2N+4 each, so the total cost is 4(N+1)+CC.
This benchmark dataset is designed so that the optimal solution requires one vehicle to
deliver goods to all customers within the congestion charge zone.

We can make T copies of the 4*N dataset and each copy is assumed to have a common depot
node at 0. The total number of nodes is (4N-1)T+1 including the depot. So, the total number

of customers is (4N-1)T. The total number of edges is (7N-4)T. The maximum capacity of

each vehicle is (4N _1] There are T*2 vehicles to deliver goods to the customers. T

vehicles will serve all customers within the congestion charge zones at a cost of 2N+CC,
while another T vehicles serve the rest of the customers costing 2N+4 each, so the total cost
is (4(N+1)+CC)T. This benchmark dataset is designed so that the optimal solution requires T
vehicles to deliver goods to all customers located in the congestion charge zones.

The method described in Section 3.3 was tested using the dataset with N=20 and T=2. This
version of LANCOST was able to minimize the number of vehicles going into the congestion

charge zones and solved the benchmark dataset problem with an optimal solution.

4 Case Study with Real Traffic Data

4.1 Background

The case study is based on the distribution system of a supermarket chain. Customer
locations are based on the locations of supermarkets and a distribution centre is located on the

outskirts of London.



The type of vehicle used for the case study is a HGV Diesel rigid >32 t EURO 5. The type of
vehicle chosen affects the relationship between fuel consumption per kilometre and the speed of
the vehicle. Figure 4 shows this relationship for this particular type of vehicle. The formulae
used to construct the graph can be found in Department for Transport [24]. The fuel

consumption function is convex.

Fuel Consumption for HGV

E 100
(=]
5 8 \\
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§ 40 ~—— ———HGV Rigid Disel >32t
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>
o 0 20 40 60 80 100
Speed(km/h)

Figure 4 - Fuel Consumption for HGV Diesel Rigid >32 t EURO 5

As the night shift restrictions are applied in the London area, the driver cannot start
operations until 7am. Each vehicle can carry a maximum of 24 cages. The unloading time for
each cage is 2 minutes. Each driver is available only for a maximum working day of 10 hours

including the statutory breaks for driving time and working time.

The objective of the vehicle routing problem is to minimize the total cost. The total cost
includes fuel cost, driver cost and congestion charge. There are 10 customers within the
congestion charge zone. The vehicle is allowed to wait at the customer locations in order to
satisfy the time window constraints. The price of diesel is set to be £1.20 per litre. Fuel
consumption is calculated firstly and then converted to CO2e emissions and fuel cost by
using the specific conversion factors. From the GHG conversion factor table (2010), one litre
of diesel emits 3.1787 kg CO2e. The CO2e can be calculated using the speed along each road
in the route using the emissions function provided in Department for Transport [24]. The
tables provided allow an estimate to be made of various emission factors in term of emissions

per kilometre for different average speeds.

Cost Based Road Timetables were constructed for the set of customers included in each

instance tested based on the speeds observed in 96 15-min time bins. The cost based Road



Timetables generate the results for time, distance, cost, CO2e between a pair of locations.

The new algorithm works on the cost based Road Timetables to find the minimum cost routes.

Figure 5 shows the customer locations. There are 60 customer locations and 10 of them are in
the congestion charge zone. The demands of customers are randomly generated in advance so
that the demand for each customer is 4, 5, 6, 7 or 8 cages, each with a probability of 0.2. The
customers located in the congestion charge zone have a total demand that can be delivered by
only one vehicle, given that each vehicle can perform several trips per day. The distances and
time available are such that it is possible for a vehicle to return to the depot to reload after
completing all the deliveries for the first trip. The congestion charge is applied from 7am to
6pm during the weekdays. The value of the congestion charge is £8 per vehicle per day.

Location 0 is the depot.
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Figure 5 - Customer Locations

The total customer demand is 359 cages. The solution found requires only one vehicle to go
into the congestion charge zone. Six vehicles using 16 trips are required to complete the
delivery. The routes generated by the new VRP algorithm are shown in Figure 6. The total
cost of the fleet is £482.4 with 794kg CO2e emissions. The total distance is 570km. The total
driver working time is 2177 minutes. The details of the trips are described in the Appendix A.
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Figure 6 - VRP Routes

4.2 Benchmark Dataset Instances

In order to further examine the performance of the LANCOST algorithm, we test the new
algorithm by using 10 different benchmark instances. The number of customers served for the
10 benchmark instances ranged from 40 to 45 and were selected from the 60 original
customers. The number of vehicles required is up to 10. All of the computations were carried
out on a Dual Core processor PC of 3.00GHZ with 3.25GB of RAM and computing times are
expressed in seconds. The average computing time for 40 nodes is 4694 seconds and the

average computing time for 45 instances is 5566 seconds.

For each instance, three runs were made using the LANCOST algorithm. The first set of runs
(A) where the congestion charge is set to 8, the second set of runs (B) where the congestion
charge is set to 4, the third set of runs(C) where the congestion charge is set to 0. The traffic
conditions are assumed to remain the same even though the value of the congestion charges
changes. Changing the value of the congestion charge affects the results of the Cost Based
Road Timetable. The results are shown in Table 3. N is the number of customer nodes. As we
are using a random number generator, different seeds for the random number generator will
give different values of the total cost. The result reported in the table is best one of three runs.
As some benchmarks instances do not contain any customers within the congestion charge
zone (i.e. Test 3, Test 4, Test 6, Test7), the total congestion charge for Run A is always 0 for

these cases. When the value of congestion charge is decreased, the best solution may be for a



vehicle to enter the congestion charge zone in order to save the time and fuel cost with the

expense of paying congestion charge, e.g. Test 3 and Test 4 for Run B.

Data | N |Run|Total time{min) | Total Dist{km) | COZ2(kg) | Total cost{f) | Total Congestion charge(£)
Testl 43| A 1677 424 608 3746 8
B 1822 428 603 37213 g
C 1637 432 610 366.2 0
Test2 |45] A 1709 456 640 391.9 8
B 1608 436 617 ITLT 8
C 1608 436 617 3697 0
Testd 43| A 1485 418 580 345.7 0
B 1536 421 589 356 4
C 1528 418 582 346.2 0
Testd 45| A 164l 457 634 3764 0
B 1546 437 604 366 4
C 1548 437 604 358.6 0
Testd |43] A& 1765 448 644 397.8 g
B 1715 439 634 381 8
C 1715 438 634 373 0
Tests 43| A 1581 438 608 361.3 0
B 1529 437 600 355.6 0
C 1529 437 600 335.6 0
Test7 40| A 1400 391 531 313 0
B 1336 377 516 304.6 0
C 1314 374 510 3I01.4 0
Testd 40| A 1302 343 479 295.4 8
B 1328 343 485 294.9 4
C 1280 341 468 278.3 0
Testd 40| A 1525 400 575 354.6 8
B 1480 397 568 34e.2 4
C 1449 393 61 337.2 0
TestlO|40| A 1541 398 571 353.4 g
B 1457 398 366 344.5 4
C 1447 397 561 337.2 0

Table 3 - Results for 10 different Benchmark Instances

When the congestion charge is set to £8, only one vehicle goes into the congestion zone to
deliver goods to customers. When the congestion charge decreases, it is sometimes preferable
to allow more vehicles to run into the congestion charge zone. Going through the congestion
charge zone saves the distance travelled and hence it saves the fuel costs and time.

Summary Statistics
Run |Total time{min)| Total dist{km)| Total CO2{kg) |Total cost{£}|Total Congestion charge(£)

A 15626 4171 5870 3564.1 43
B 15157 4139 5784 3495.4 44
C 15053 4106 5747 3423.4 0

Table 4 - Summary Statistics

Table 4 shows that a higher congestion charge will lead to higher total travelling time, total
CO2 emissions and total cost. From the total congestion charge column, Run B does not
show much difference from Run A. When the congestion charge price decreases, the best plan



has 11 vehicles (increasing from 6 vehicles) running into the congestion charge zone in order
to save cost, travelling distance and reduce CO2 emissions. The total CO2 emission column
shows that higher congestion charges lead to higher total CO2 emissions for a local delivery
service running from a depot outside a congestion charge zone. The congestion charge
increases the CO2 emissions which are an unwelcome consequence of imposing the
congestion charge for each vehicle entering the congestion charge zone. These experiments
did not consider the effect of changing the level of the congestion charge on traffic patterns
and hence speeds. In other words, the traffic conditions are assumed to be the same no matter
what level of congestion charge is applied.

In order to test whether the LANCOST algorithm can be used for larger datasets, 10 more
experiments have been run. The number of customers in these instances range from 85 to 101
and the locations are selected from actual supermarket locations. The congestion charge is set

to £8 and each vehicle can carry up to 24 cages.

The results for these instances are shown in Table 5. The number of customers within the CC
zone ranges from 0 to 25. The total number of cages required to be delivered to customers
within the CC zone (“CC cages”) is shown in Table 5. Dividing this number by the capacity
of a vehicle gives a lower bound for the number of vehicle trips into the CC zone. LANCOST
is able to reduce the total costs by organizing the trips so that vehicles entering the CC zone
often make more than one trip into the CC zone during the day. This strategy reduces the CC
paid. The table shows the number of trips for each vehicle that enters the CC zone (though
not all trips need enter the CC zone).

I | Travel Tine | CC customer | CC cages|1 trip| 2 trips|3 trips|4 trips| Travel Distance | CO2 [ Travel Cost [ CC
Teatll] B9 2923 0 f) f) 0 0 f) g3 1167 £93.1 f)
Testl2] 52 3761 25 14h f) 2 4 f) 1070 1453 539, 6 32
Teztld] 92 3789 25 142 f) 1 3 f) 1087 1519 539.1 32
Teatld| 101 3789 i 38 f) 0 2 f) 1112 1533 826, 7 16
Teatlf] 101 3802 i i f) 0 2 f) 1130 1550 541, 9 16
Teatlf] 54 3829 20 150) 1 2 2 f) 1111 1556 971 £0
Teztl7] 90 3313 il 27 () 0 1 () 950 1305 784, 4 8
Testlf] Gd 3971 25 150 1 0 4 0 1129 1567 974 40
Testl9] G4 4603 25 200 0 2 1 2 1375 1931 1196 40
Test20] 58 3011 9 A2 i 2 2 i 1116 1531 841, 2 32
Total 37771 10933 15160 9307 25k

Table 5 - Results for 10 larger instances



4.3 Time Windows

Time windows are added to the 10 instance benchmark datasets. A target delivery time is set
for each customer. The target delivery time is randomly picked between 8am to 6am and it is
always feasible. The goods need to be delivered within the range between target time minus
one hour and target time plus one hour. The congestion charge is set to £8. This set of runs is
labelled as Run D. The results are shown in Table 6 and Table 7. Compared with Run A,

Run D has higher total travelling cost, total distance, travelling time and CO2 emissions.

Data | N |Run | Total time{min) | Total Dist(km) | CO2(kg) | Total cost{£) | Total Congestion charge(£)
Testl (45| A 1677 424 608 374.6 8
D 3431 435 624 392.7 16
Test2 (45| A 1709 456 640 391.9 8
D 3055 471 663 412.5 16
Test3 (45| A 1485 418 580 345.7 0
D 3177 435 608 363.7 0
Testd |45 A 1641 as57 634 376.4 0
D 3076 462 641 389.5 8
Tests (45| A 1765 443 644 397.8 8
D 3072 465 663 419.5 16
Testo (45| A 1581 438 608 361.3 0
D 3053 442 615 366.8 0
Testy |40 A 1400 391 231 313 0
D 2714 3590 531 313.1 0
Tests (40| A 1302 343 473 295.4 8
D 3273 360 495 310.2 16
Testd (40| A 1525 400 575 354.6 8
D 3026 415 598 369.2 8
TestlO|40| A 1541 396 a7l 3534 8
D 2796 403 a7y 363.9 16

Table 6- Comparing Run A and Run D
Summary Statistics

Run | Total time{min)| Total dist(km) Total CO2(kg) |Total cost{£)|Total Congestion charge(£)
A 15626 4171 3870 3564.1 43
D 30673 4278 6020 3701.1 96

Adding time windows to the application makes the problem more complicated. The vehicles
spend time waiting at some customer locations in order to satisfy the time windows. The time

windows require more than one vehicle to go into the congestion charge zone in some

instances.

Table 7- Summary Statistics




5 Conclusions and Further Research

The new algorithm shows how costs for freight distribution may be significantly influenced
by traffic conditions and the presence of a congestion charging scheme. The LANCOST
algorithm has been tested on artificially generated networks to check its ability to reduce the
number of vehicles entering the congestion charge zone and hence incurring the charge. It has
then been used in a case using real traffic data based on a typical supermarket distribution

activity in the London area.

The case study has been used to investigate how changing the congestion charge value affects
the results. They show that higher values of the congestion charge can lead to more CO2
emissions, more travelling time and more travelling distance for the operator illustrated in
this study.

Further research will examine how change to the value of the congestion charge may affect

traffic patterns and consider the design of congestion charging schemes.



Appendix A

The appendix describes the details of trips for each vehicle in the experiment which have

been shown in Figure 6. Up to 10 vehicles are available, but only 6 of them are needed.

Vehicle Location | Travel Travel | Travel Travel
Name Arrive | Depart Name Time Dist CO2 Cost CcC
Vehicle 1 07:00 Depot
07:36 07:48 39 36.87 16765 23210 13.68 0
08:06 08:16 17 17.36 8455 11366 6.605 0
08:23 08:31 12 7.285 3477 4685 2.74 0
08:42 08:52 37 10.94 4630 6586 3.945 0
09:00 09:08 8 7.764 2799 4259 2.643 0
09:42 09:42 Depot 34.27 14763 21019 12.51 0
10:04 10:18 48 22.16 10293 14032 8.253 0
10:31 10:43 7 12.95 6435 8506 4.938 0
10:49 11:03 9 5.983 2157 3329 2.055 0
11:12 11:20 25 8.891 3886 5378 3.216 0
11:47 11:47 Depot 26.98 11007 15888 9.596 0
12:00 12:10 29 12.79 7445 9135 5.154 0
12:16 12:26 36 6.652 3607 4600 2.624 0
12:40 12:48 19 13.35 6212 8362 4.937 0
12:55 13:03 16 7.463 3817 4975 2.873 0
13:44 13:56 14 10.53 5625 7196 4.12 0
14:16 Depot 20.75 12027 14617 8.285 0
Vehicle 2 07:00 Depot
07:27 07:35 34 27.95 11979 17140 18.2 8
07:52 08:04 59 16.49 6870 9930 5.947 0
08:13 08:27 53 8.978 2823 4638 2.948 0
08:50 09:02 58 23.22 6934 11662 7.499 0
09:27 09:27 Depot 24.7 10352 13518 8.396 0
09:59 10:09 49 32.15 12988 19137 11.51 0
10:18 10:34 54 9.372 3324 5117 3.182 0
10:38 10:48 40 3.253 749 1409 0.9658 0
10:57 11:09 51 9.228 3221 5025 3.127 0
11:42 11:42 Depot 33.44 12675 18903 11.6 0
12:10 12:24 52 27.82 10872 15912 9.717 0
12:30 12:46 30 5.679 1244 2297 1.625 0
12:49 13:05 35 3.436 1096 1761 1.123 0
14:03 14:03 Depot 27.47 9658 15167 9.388 0
14:15 14:29 38 12.34 5487 7657 4.536 0
14:49 15:05 13 5.1 1836 2866 1.762 0




15:12 15:22 21 7.157 2590 3977 2.456
15:32 Depot 9.742 5081 6598 3.79

Vehicle 3 07:00 Depot
07:36 07:50 2 36.85 16800 23352 13.73 0
07:59 08:11 3 8.192 3094 4641 2.844 0
08:17 08:29 47 6.099 2032 3279 2.051 0
09:07 09:17 57 38.08 12118 19370 12.39 0
09:39 09:39 Depot 21.86 9209 12667 7.696 0
10:27 10:43 31 48.46 22169 30535 17.99 0
10:52 11:06 42 8.942 3224 4846 3.022 0
11:10 11:26 1 4314 1487 2370 1.47 0
12:13 12:13 Depot 46.33 19345 27737 16.65 0
12:38 12:48 32 25.15 14097 17626 10.01 0
12:51 13:03 33 3.595 1648 2306 1.35 0
13:41 13:55 24 7.179 3332 4580 2.686 0
14:33 Depot 22.97 11793 15237 8.816 0

Vehicle 4 07:00 Depot
07:25 07:35 22 25.75 12199 16679 9.73 0
07:40 07:52 23 4.775 1813 2678 1.648 0
07:57 08:07 41 5.375 1794 2839 1.788 0
08:32 08:42 18 24.94 7600 12212 7.935 0
09:01 09:01 Depot 18.94 6916 10657 6.549 0
09:04 09:20 4 2.989 1327 1871 1.105 0
09:29 09:39 26 8.823 3984 5433 3.227 0
09:43 09:59 50 4.057 2348 2921 1.644 0
10:04 10:04 Depot 441 1506 2342 1.472 0
10:35 10:47 10 31.2 16311 20940 12.06 0
11:04 11:16 11 17 11340 12783 7.093 0
11:24 11:36 27 8.237 5076 5947 3.344 0
11:47 11:57 15 10.71 6647 7810 4.377 0
12:27 12:27 Depot 30.31 17235 21186 12.04 0
12:49 12:57 28 21.93 18786 20450 10.64 0
13:36 13:48 9.107 3443 5117 3.146 0
13:56 14:10 8.432 4143 5472 3.19 0
14:17 14:29 20 6.075 2463 3538 2.146 0
14:44 Depot 15.39 6798 9177 5.517 0

Vehicle 5 07:00 Depot
07:50 08:02 60 50.99 21306 29942 18.1 0
08:15 08:29 55 12.43 3886 6401 4.074 0
08:39 08:53 56 10.13 2819 4844 3.179 0
09:31 09:31 Depot 37.9 14499 20376 12.75 0




Vehicle6 | 07:00 07:00 Depot
07:42 07:52 45 42.72 16415 24569 14.97 0
07:55 08:09 46 2.706 826 1353 0.8719 0
08:18 08:32 44 9.122 2871 4706 2.993 0
08:37 08:47 43 5.021 1528 2518 1.62 0
09:39 Depot 51.91 21256 30814 18.55 0
36:17:00 570 794 482.4 8

Table A.1




References

[1] Maden W, Eglese R, Black D. Vehicle routing and scheduling with time-varying data: A case study.
Journal of the Operational Research Society 2010; 61:515-522.

[2] Applegate D, Bixby R, Chvatal V, Cook W. The Traveling Salesman Problem: A Computational
Study (Princeton Series in Applied Mathematics). Princeton University Press; 2007.

[3] Baldacci R, Christofides N, Mingozzi A. An exact algorithm for the vehicle routing problem based
on the set partitioning formulation with additional cuts. Mathematical Programming 2008; 115:351-
385.

[4] Toth P, Vigo D. An overview of vehicle routing problems. The vehicle routing problem 2002; 9:1-
26.

[5] Ichoua S, Gendreau M, Potvin JY. Vehicle dispatching with time-dependent travel times.
European Journal of Operational Research 2003; 144:379-396.

[6] Van Woensel T, Kerbache L, Peremans H, Vandaele N. Vehicle routing with dynamic travel times:
A queueing approach. European Journal of Operational Research 2008; 186:990-1007.

[7] Eglese R, Maden W, Slater A. Road Timetable (TM) to aid vehicle routing and scheduling.
Computers & Operations research 2006; 33:3508-3519.

[8] Figliozzi M. The time dependent vehicle routing problem with time windows: Benchmark
problems, an efficient solution algorithm, and solution characteristics. Transportation Research Part
E: Logistics and Transportation Review 2012; 48:616-636.

[9] Solomon MM. Algorithms for the vehicle-routing and scheduling problems with time window
constraints. Operations Research 1987; 35:254-265.

[10] Conrad RG, Figliozzi MA. Algorithms to Quantify Impact of Congestion on Time-Dependent Real-
World Urban Freight Distribution Networks. Transportation Research Record: Journal of the
Transportation Research Board 2010; 2168:104-113.

[11] Figliozzi M. Vehicle routing problem for emissions minimization. Transportation Research
Record: Journal of the Transportation Research Board 2010; 2197:1-7.

[12] Bektas T, Laporte G. The pollution-routing problem. Transportation Research Part B:
Methodological 2011; 45:1232-1250.

[13] Demir E, Bektas T, Laporte G. A comparative analysis of several vehicle emission models for road
freight transportation. Transportation Research Part D: Transport and Environment 2011; 16:347-
357.

[14] Fleischmann B. The vehicle routing problem with multiple use of vehicles. In: Fachbereich
Wirtschaftswissenschaften, Universitat Hamburg 1990.

[15] Taillard ED, Laporte G, Gendreau M. Vehicle routeing with multiple use of vehicles. Journal of
the Operational Research Society 1996:1065-1070.

[16] Olivera A, Viera O. Adaptive memory programming for the vehicle routing problem with
multiple trips. Computers & Operations research 2007; 34:28-47.

[17] Battarra M, Monaci M, Vigo D. An adaptive guidance approach for the heuristic solution of a
minimum multiple trip vehicle routing problem. Computers & Operations research 2009; 36:3041-
3050.

[18] Nguyen PK, Crainic TG, Toulouse M. A tabu search for Time-dependent Multi-zone Multi-trip
Vehicle Routing Problem with Time Windows. European Journal of Operational Research 2013;
231:43-56.

[19] Azi N, Gendreau M, Potvin J-Y. An adaptive large neighborhood search for a vehicle routing
problem with multiple routes. Computers & Operations research 2014; 41:167-173.

[20] Maden W. Models and heuristic algorithms for complex routing and scheduling problems. In:
Management School. Lancaster University; 2006.

[21] Wen L, Catay B, Eglese R. Finding a minimum cost path between a pair of nodes in a time-
varying road network with a congestion charge. European Journal of Operational Research.



[22] Potvin J-Y, Rousseau J-M. A parallel route building algorithm for the vehicle routing and
scheduling problem with time windows. European Journal of Operational Research 1993; 66:331-340.
[23] Gendreau M, Hertz A, Laporte G. A tabu search heuristic for the vehicle routing problem.
Management science 1994; 40:1276-1276-1290.

[24] Department for Transport. 2009. Road vehicle emission factors:Regulated [Online]. Available:
http://www.dft.gov.uk/publications/road-vehicle-emission-factors-2009/ [Accessed September 15
2013].



http://www.dft.gov.uk/publications/road-vehicle-emission-factors-2009/

