

DIPARTIMENTO DI MECCANICA ◼ POLITECNICO DI MILANO
via G. La Masa, 1 ◼ 20156 Milano ◼ EMAIL (PEC): pecmecc@cert.polimi.it
http://www.mecc.polimi.it
Rev. 0

A parallel tabu search for solving the primal buffer
allocation problem in serial production systems

Costa, A; Alfieri, Arianna; Matta, Andrea; Fichera, S.

This is a post-peer-review, pre-copyedit version of an article published in COMPUTERS &
OPERATIONS RESEARCH. The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.cor.2015.05.013

This content is provided under CC BY-NC-ND 4.0 license

mailto:pecmecc@cert.polimi.it
http://www.mecc.polimi.it/
http://dx.doi.org/10.1016/j.cor.2015.05.013
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

A parallel tabu search for solving the primal buffer allocation problem
in serial production systems

A. Costa
a,n, A. Alfieri b, A. Matta

c, S. Fichera
a

a University of Catania, DII, V.le A. Doria 6, 95125 Catania, Italy
b Politecnico di Torino, DIGEP, Corso Duca degli Abruzzi, 24 - 10129 Torino, Italy
c Shanghai Jiao Tong University, School of Mechanical Engineering, 800 Dong Chuan Road, Shanghai, China

Available online 9 June 2015

1. Introduction In general, to solve a buffer allocation problem, a combination of
an evaluative method and a generative method is needed. The

former is necessary to assess the throughput rate of the production

line for a certain buffer configuration. The latter iteratively makes

use of the evaluative method to optimize the buffer configuration.
The buffer allocation problem has been extensively studied in

the literature in the last decades as demonstrated by the several
surveys [9,4,42,40,15] that describe the multitude of available

methodological approaches. The following paragraphs shortly

present an overview of these approaches.
Dynamic programming is a popular and effective approach for

solving the BAP though the exponential complexity of dynamic

programming techniques significantly reduces their applicability to

small-sized instances. A pioneer research was conducted by Chow

[5], who used the dynamic programming to tackle the buffer
allocation problem in reliable production lines. Later, Jensen et al.
[26] coped with the problem of optimal location and sizing for
buffer inventories in a serial production system that is subject to

random variations of timing of stage failures, repair times and

demand of finished goods. Huang et al. [25] developed a design

method including an approx-imate analytic procedure to evaluate

the performance measure of an unreliable production line under a

certain allocation strategy. Recently, other contributions adopted

the dynamic programming for solving the buffer allocation

problem on reliable production lines [16,22].

The buffer allocation problem (BAP) is one of the most chal-
lenging issues in the manufacturing system design as it involves

several kinds of applications like automatic transfer lines,
production/assembly lines, and communication networks. It deals

with selecting the optimal storage size to be assigned to every

intermediate buffer of a production line. Accordingly to the JIT

philosophy, the main role of buffers consists of smoothing and

balancing the flow of semi-finished products between two

successive stages of a production line, so as to maximize the

productivity or to minimize the overall buffer storage capacity. In

fact, the bulk of literature on buffer allocation falls into different
areas, depending on the goal to be achieved. According to

Gershwin and Schor [20], minimizing the total buffer capacity

under a minimum production rate constraint represents the primal
problem, while the dual problem consists of maximizing the

throughput rate of the line without exceeding a fixed amount of
buffer size. Furthermore, minimizing the average-work-in-process

or maximizing the average profit of the line are two other popular
objectives in literature.

n Correspondence to: Viale Andrea Doria, 6, 95125 Catania, Italy. Tel.:
þ39 957382457; fax: þ39 95337994.

E-mail address: antonio.costa@dii.unict.it (A. Costa).

Heuristics and search methods, if compared with an exact
approach like dynamic programming, generally achieve a near
optimal solution in a reasonable computational time, even for
large-sized problems. However, due to their restrictive assump-
tions, their applicability is rather limited [8]. Two heuristic algo-
rithms, namely SEVA and Non-SEVA, based on the concept of local
search, have been developed by Seong et al. [48] to maximize the

line throughput rate. Jeong and Kim [27] used a conventional
gradient search method powered by a sophisticated algorithm to

reduce the excessive computation time. Gershwin and Schor [20]
analyzed the two well-known problems concerning the BAP,
namely the primal and the dual problem. The dual problem is

solved by means of a gradient method and the primal problem is

faced through another algorithm that makes full use of the dual
solution. Solving the dual BAP was the objective of the research

conducted by Kim and Lee [29], who proposed a new heuristic

algorithm that preliminarily was validated through a numerical
comparison with the Non-SEVA algorithm. A significant paper in

this field is that by Papadopoulos and Vidalis [43], which pre-
sented a heuristic in conjunction with a method able to determine

a “good” initial solution that reduces the iterations to find the

optimal solution. More recently, an improved local search techni-
que named degraded ceiling algorithm was developed to max-
imize the throughput rate of unreliable production lines under a

given number of total buffer slots [38]. A simple heuristic algo-
rithm is proposed in Hillier and So [24] to estimate the buffer space

in a production lines affected by failures, so that the buffer space is

able to compensate for the negative effect of failures on the

efficiency of the system. The same authors also study how the

buffer allocation is affected by the variability of the processing time

[23,24].
Metaheuristics play a leading role in solving buffer allocation

problems nowadays. They are very popular for their versatility and

their search ability combining diversification and intensification

strategies. Tabu search, simulated annealing, genetic algorithms

and other unconventional algorithms are some of the most popular
metaheuristic techniques used for solving the buffer allocation

problem. The effectiveness of metaheuristics has been widely

demonstrated by the literature over the last years, regard-less of
the specific issue to be faced. Nevertheless, a well-known drawback

of such techniques is that they must be tailored to the specific

problem. To this end, the parameters driving the search

mechanism need to be selected through a preliminary calibration

analysis. However, such a weakness may be partially compensated

by adopting a so-called adaptive structure, according to which the

algorithm parameters are automatically adjusted during the opti-
mization path, e.g., on the basis of the current iteration. A first
approach to figure out a buffer allocation problem is that of Lutz et
al. [31]. The main purpose of their study was to develop a

procedure based on a tabu search, combined with simulation, for
determining the size and location of work-in-process inventory

buffers. Notably, they coped with the primal buffer allocation

problem through a tabu search that may employ two distinct
search modes, namely Swap and Global search. Each search mode

runs the subset of neighbor buffer profiles in a different way. In

addition, in order to enhance the performance of their tabu search,
the authors implemented a dynamic concept of tabu list, neigh-
borhood set and change factor, in step with the modern trend

embracing the adaptive approach. Spinellis and Papadopoulos [52]
used both the exact numerical algorithm and the decomposition

algorithm to solve the dual buffer allocation problem by means of
simulated annealing and genetic algorithms. Dolgoui et al. [17]
developed a genetic algorithm where the tentative solutions are

evaluated with an approximate method based on the Markov-
model aggregation approach. The goal was to select the buffer
capacities of an unreliable production line so as to minimize a

cost-based objective function. In addition to the serial algorithms

above described, there are hybrid and parallel metaheuristics. A

hybrid metaheuristic is one that combines a metaheuristic with

other optimization approaches, such as algorithms from mathe-
matical programming, constraint programming, and machine

learning [56]. A first attempt in terms of hybrid optimization

algorithms is that of Shi and Shuli [49], who incorporated the tabu

search heuristic into the Nested Partitions framework. The

obtained numerical results confirmed the effectiveness of their
approach in large production lines. A hybrid metaheuristics for
solving the buffer allocation problem in unreliable tandem pro-
duction lines was developed in (Dolgoui et al. [18]). In particular,
they proposed a genetic algorithm combined with a branch-and-
bound that exploits the Markov model aggregation technique for
goal function evaluation. A genetic algorithm connected with a

simulation-based evaluation method and an Artificial Neural Net-
work, was proposed to investigate the buffer allocation of unba-
lanced�unreliable flow lines [30]. The cross-entropy method is a
new paradigm for stochastic optimization that Alon et al. [1] used

along with a simulation approach to solve the throughput rate

maximization for the BAP. The authors stated that it is able to

quickly generate near-optimal solutions for fairly large production

lines. To determine the optimal buffer allocation for maximum line

throughput rate and maximum line economic profit an artificial
immune system has been recently presented [34]. Also, it is worthy

to point out that they made use of a decomposition method to

address the aforementioned issue related to unreliable production

lines. Two research contributions emphasizing the effectiveness of
tabu search in solving the BAP are ascribable to [13,14]. First, they

presented an adaptive tabu search (ATS) for designing unreliable

non-homogenous production lines with the objective of
throughput rate maximization. Then, they proposed a binary

search (BS) and a tabu search (TS) for solving the primal problem

aiming to minimize the total buffer size under through-put rate

constraint. Numerical results revealed that there is not a significant
difference of performance between the two optimiza-tion

techniques, whereas a lower computational time is required by BS

on the average. Recently, five metaheuristics, also including a tabu

search, have been compared in order to detect which search

algorithm is more suitable to find an efficient solution of the BAP

[41]. From their experiments, simulated annealing and a myopic

heuristic search resulted the most performing algorithms, whereas

tabu search performed quite well for small and medium flow lines.
The measures of performance were CPU time and closeness to the

maximum throughput rate.
The goal of this paper is to introduce a new metaheuristic

algorithm able to solve the buffer allocation problem in a more

efficient and effective way than the other metaheuristics proposed

by literature so far. A parallel tabu search (PTS) algorithm has been

developed to address the primal buffer allocation problem in

reliable production lines. Differently from the previous tabu search

procedures, as for example those proposed by Demir et al. [14] and

Lutz et al. [31], PTS exploits the parallel configuration inherited

from the parallel computing field to enhance the search strategy

over the available space of solutions. In addition, an adaptive

neighborhood generation mechanism that tunes the entity of
buffer size variations according to the number of iterations allows a

quick convergence of the parallel branches towards feasible and

promising near-optimal solutions. Then, PTS holds a proper restart
procedure that strengthens the intensification strategy and avoids

to be trapped into local optima. Although neither physical nor
virtual parallel computing architectures have been used for the

proposed PTS, the combination of the parallel structure composed

by three different branches with a properly designed tight neigh-
borhood allows to reduce the number of iterations needed for
convergence and to favor the algorithm efficiency. In order to

validate the effectiveness of PTS, an extended comparison analysis,
involving four metaheuristics and an exact method, has been

arranged. Since the buffer allocation problem at hand can be

classified as a non-linear integer problem, three real-encoding

metaheuristics usually adopted to address non-linear and even

non-differentiable objective functions have been derived from the

literature on applied mathematics and computation. The fourth

method consists of a binary search recently presented in the

literature specifically for addressing the BAP. All the metaheuristic

algorithms employ the same simulation-oriented evaluative pro-
cedure to measure the throughput rate of a given buffer config-
uration. As for the exact optimization method, it consists of a MILP-
based simulation/optimization approach derived from [35]. Due to

the exponential complexity of the problem, it was used to generate

the optimal solutions related to small- and medium-sized

problems.
The remainder of the paper is organized as follows. The problem

statement is reported in Section 2. Section 3 deals with all the

optimization approaches adopted in this paper, namely linear
programming-based simulation/optimization, parallel tabu search,
genetic algorithm, differential evolution, particle swarm

optimization and binary search. Section 4 explains how the

numerical examples have been generated. In particular, the differ-
ent factors involved in the benchmark generation are examined.
Section 5 includes both the multiple-comparison statistical analy-
sis and the computational analysis, which emphasize the effec-
tiveness of the proposed optimization approach. Finally, the

findings from of a multiple-factor ANOVA analysis along with a

series of main effect and interaction plots have been discussed in

the last sub-section. Section 6 concludes the paper.

2. Description of the problem

We consider the buffer allocation problem in a reliable serial
production line with J stages and J�1 buffers, on which N identical
parts with stochastic processing times have to be processed. The
processing policy is a-priori known so that no scheduling problem
has to be addressed. No machine breakdown may occur and the
first machine is never starved. The release time of each part and
the processing time of each part on each stage are known in
advance and are denoted as ai (i¼1,…,N) and tij (j¼1,…,J),
respectively. In particular, stochastic processing times are assumed
to be drawn from a general distribution and, due to the absence of
scheduling decisions, airaiþ1 for each part i. Completion time of
part i at stage j is denoted by yij. Each stage j, with exception of the
first, is preceded by a buffer with finite capacity BjA ½0;N�1� (j¼1,
…,J�1), while the first stage is supposed to be preceded by a
buffer with infinity capacity. Part i needs to be temporarily stored
in buffer Bj whether stage jþ1 is processing another part. The
objective is minimizing the total buffer capacity subject to the
constraint that the corresponding throughput rate must be greater
than or equal to a lower bound θn fixed by the system designer.

Basically, if Z is the total buffer capacity to be allocated into the
(J�1) intermediate buffers, the total amount of possible alloca-
tions increases dramatically with Z and J, according to Eq. (1):

Zþ J�2

J�2

!

¼
ðZþ1ÞðZþ2ÞU U UðZþ J�2Þ

ðJ�2Þ!
ð1Þ

3. Solving the stochastic buffer allocation problem

Among the evaluative methods proposed in the literature, the

most popular are Markov state [43,17,18], decomposition method

[19] and simulation [31,35,47]. Basically, Markov models are not

practical to assess the throughput rate of a production line with

finite buffers. Indeed, due to the exponential growth in the number
of states, the exact computation of the production rate for lines

with more than two machines is a tricky task. Hence, most of the

evaluation methods adopted to analyze such issues consider either
analytic approximation or simulation. Analytical approximation

methods, with the exception of Markov models for two-machine-
one buffer models, are based on either aggregation or
decomposition approaches. On the other hand, simulation models

based on discrete-event models are computationally time-
expensive but allow an exact analysis of the system

performance and they can be adapted to several kinds of
problems. However, both approximation and simulation models

make use of system states that, in case of lines with multiple

machines and buffers, tends to become very large [51].
In this paper, an alternative evaluative method based on a

recursive procedure has been devised. After the randomness of part
processing times is realized by random sampling, the pro-posed

procedure exactly computes the throughput rate of a production

line once the size of each buffer has been fixed. Similarly to what is

done by the discrete-event simulators, such method accurately

replicates the behavior of the system in a time-effective way. The

simplicity of the algorithm encourages both repeatability and

easiness of implementation in every develop-ment framework, so

that no discrete-event simulation package is required. In this

research it was implemented through the visual basic editor within

a regular MS Excels worksheet. The VBAs code of the proposed

algorithm is reported in Appendix A.
As far as the generative method is concerned, the proposed PTS

and three additional metaheuristics using the same evaluative

algorithm will be presented in detail in the following. Since exact
solutions represent a valid reference to validate both efficacy and

efficiency of any metaheuristic method, first we deal with the exact
simulation/optimization model adopted to optimally solve a set of
small- and medium-sized benchmarked problems.

3.1. Mathematical programming formulation

Whenever the effectiveness of a meta-heuristic technique needs

to be evaluated, exact solutions may represent a valid reference to

be compared with. To this end, this section describes the mixed

integer linear programming (MILP) model derived from [35], which

both simulates the flow line and selects the optimal capacity to be

allocated to each buffer.

min Z ¼
X

Uj

k ¼ Lj

zjkk ð2Þ

s.t.

yi1Zaiþti1; 8 i¼ 1;…;N ð3Þ

yiþ1;j�yijZtiþ1;j; 8 i¼ 1;…;N�1; j¼ 1;…; J�1 ð4Þ

yi;jþ1�yijZti;jþ1; 8 i¼ 1;…;N; j¼ 1;…; J�1 ð5Þ

yiþk;j�yi;jþ1Ztiþk;jzjk�Mð1�zjkÞ; 8 j¼ 1;…; J�1;

i¼ 1;…;N�k; k¼ Lj;…;Uj ð6Þ

X

Uj

k ¼ Lj

zjk ¼ 1; 8 j¼ 1;…; J�1 ð7Þ

N

yNJ
Zθn ð8Þ

where, the objective function (2) is the minimization of the total
buffer capacity Z. zjk is a binary variable equal to one if capacity of

buffer Bj is equal to k (k¼Lj,…,Uj); Lj and Uj are the bounds for the
j-th buffer defined by the decision maker. Constraints (3) simply
provide that the completion time of a part in the first machine
must be greater than or equal to its arrival time plus its processing
time. Constraints (4) state that a machine cannot process two
consecutive parts at the same time. Constraints (5) impose that a
part cannot be processed by the downstream machine if it is
occupied by another part. Constraints (6) make use of the big M to
manage the following condition. If zjk¼1 and k is the capacity of Bj
between stage j and jþ1, then the completion time of part i on
stage jþ1 must be lower than or equal to the starting time of part
iþk on stage j. Only one capacity k must be chosen for each buffer
Bj as imposed by constraints (7). According to constraint (8) the
mean throughput rate must be greater than or equal to a mini-
mum value θn.

In reality, the generalized approach provides that Lj and Uj

should be equal to 1 and N�1, respectively. In this research, the
output from the metaheuristics has been used to quantify Uj for
speeding up the convergence of the MILP model, as follows:
Uj¼2� max

j
(Bn

j), where Bn

j is the capacity of the j-th buffer in
the best solution among the five metaheuristics.

3.2. The parallel tabu search

Buffer allocation problem is a NP-hard combinatorial optimiza-
tion problem [25,32]. Two different approaches can be adopted to

tackle such kind of issue: exact methods and metaheuristics.
In this paper, a novel tabu search named Parallel Tabu Search

(PTS) has been developed. Tabu Search is a trajectory based meta-
heuristics algorithm for addressing combinatorial optimization

problems ([3]). It was first introduced by Glover [21] and basically

consists of a neighborhood search method that keeps track of the

up-to-now search path to avoid to be trapped into local optima or
to try an explorative search of the solution domain. Unlike the

regular single-trajectory tabu search, the framework of PTS is

inspired by the field of parallelism in computer science. A parallel
metaheuristic uses the techniques of parallel programming to run

multiple metaheuristic searches in parallel; these may range from

simple distributed schemes to concurrent search runs that interact
to improve the overall solution [56]. In fact, differently form the

regular tabu search, which iteratively makes use of a single seed to

generate the corresponding neighborhood to investigate the space

of solutions, the proposed technique exploits the search ability of
three parallel seeds that periodically exchange information and

interact each other through a common optimization framework.
Although the proposed PTS has been designed as a sequential
metaheuristics, i.e., with no parallel distribution of the computa-
tional burden, the structure of the proposed PTS allows to be

executed in large clusters or grids equipped with GPUs (Graphics

Processing Units) and multi-core processors, so as to significantly

increase the quality of solution as well as to decrease the

computational time. In fact, the construction of parallel algorithms

makes it possible to increment significantly the number of solu-
tions considered (in a unit of time) using multi-processor comput-
ing environments.

Fig. 1 shows the flow chart of the proposed PTS; lighter boxes

refer to the parallelized processes, darker boxes should be exe-
cuted on the main framework. The pseudo-code of PTS is also

reported. In addition to the neighborhood generation procedure,
that will be hereinafter discussed, two distinct procedures have

been properly developed to enhance the search mechanism

connected to the buffer allocation problem, namely Initial Seed

Generation (ISG) and Stochastic Buffer Distribution (SBD), respec-
tively. SBD procedure supports another phase of the optimization

procedure named seed re-generation, which replaces the currents

seed solutions in case of no improvement after Nmax/5 evaluations

occurs. The same seed re-generation is applied whether it has
never been applied before (flag¼0); it means that a new local
optimum has been found just before the algorithm stop. Conse-
quently, since a further investigation of the space of solutions is
needed, the number of evaluations to stop the algorithm is
increased to 1.3�Nmax, i.e., 0.3�Nmax additional evaluations are
executed. A detailed description of the aforementioned procedures
is reported on the following.

Procedure: parallel tabu search (PTS)

Step 1: Initialization: flag¼0, eval¼0, c_worse¼0, Nmax;
Step 2: launch ISG procedure and elaborate the total

buffer capacityBtot;
Step 3: generate the three seed solutions, S1, S2, S3. S1 is

generated making full use of the ISG procedure.
The other two seeds are generated as follows:
BkðS2Þ ¼ ⌈Btot=ðn�1Þ⌉; 8kA1;…;n�1;
BkðS3Þ ¼ ⌈Btot=½2� ðn�1Þ�⌉; 8kA1;…;n�1;

Step 4: generate the neighborhood for each seed;
Step 5: evaluate objective function for each solution of

the neighborhoods. Select the new candidate
seed (S1ʹ, S2ʹ, S3ʹ) accordingly to both the
aspiration criterion and the tabu list;

Step 6: select the best seed (S_best) among S1ʹ, S2ʹ, S3ʹ, i.
e, the seed that provides the best objective
function.

Step 7: update the number of evaluated solutions (eval).
If eval4Nmax then two options may occur: (a) if
flag¼0 (i.e., no seed regeneration has been
carried so far) increase Nmax, flag’1, goto Step
11, (b) if flag¼1 stop the PTS; else, go to Step 8;

Step 8: if S_best improve the current local optimum then
store S_best and restore the counter of worse
solutions w_count; then goto Step 10; else,
update the worse solutions counter and goto
Step 9;

Step 9: if w_countoNmax goto Step 10, else goto Step 11;
Step 10: replace the old seeds with the new ones and goto

Step 4;
Step 11: keep track that one seed regeneration has been

performed, at least. Make use of the SBD
procedure applied three times to S_best to
generate three new seeds, S1ʹ, S2ʹ, S3ʹ; goto
Step 4;

3.2.1. Initial seed generation (ISG)

Generally, the first seed solution from which the search

mechanism starts plays a key role for a successful application of
metaheuristics and tabu search as well. In most literature about
metaheuristics applied to BAP, the designer arbitrarily fixes an
initial total buffer capacity sensibly lower than (J�1) � (n�1),
regardless of any rationale or quantitative method (See for
example [14,18,57]). As a result, the search ability of any meta-
heuristics may be strongly supported by such a forced choice and

the global performance may be significantly improved.
In this paper, a specific procedure named IGS has been devel-

oped to overcome any uncertainty in the choice of the initial buffer
capacity, as it aims to generate an initial seed solution assuring the

maximum throughput rate. The IGS procedure is reported herein-
after and works as follows.

First, a maximum capacity N�1 to each buffer (Bk¼N�1
8k¼1,…, J�1) is assigned as to obtain an infinite-buffered flow
line whose production rate is equal to θmax. Successively, the whole

set of parts is scheduled through the flow line by means of the

evaluative algorithm (see Appendix A) and the buffer capacity

actually required by each buffer is a-posteriori computed through

the algorithm portion reported in Step 3 (See IGS procedure). Since

the obtained buffer configuration still assures the maximum

throughput rate θmax, it may be considered as a feasible initial
solution for the proposed buffer allocation problem and the

related total buffer capacity Btot can be assumed as an upper
bound for the problem at hand.

Hence, the IGS procedure makes it possible to launch any

metaheuristics from a feasible buffer allocation whose total
capacity is significantly lower than the maximum allowable one,
i.e., (J�1) � (N�1). Consequently, the space of feasible solutions

can be favorably restricted and the expected computational times
reduced too.

Procedure: Initial Seed Generation (IGS)

Step 1: initialization;
i¼ 1;…;N; part index;
j¼ 1;…; J;machine index;
Bk ¼N�1; 8k¼ 1;…; J�1; temporary buffer size;

Bk ¼ 0; 8k¼ 1;…; J�1; final buffer size;
Step 2: schedule jobs through the infinite-buffer flow line.

Compute ti;j, ti;j;

Step 3: compute the actual capacity Bj of each buffer;

Bk ¼ 0; 8k¼ 1;…; J�1
for j¼2 to J

for i¼1 to N

for k¼ i to N�1

if tkþ1;j�1oti;j and tkþ1;j�14ti;j�1 then

Bj�1’Bj�1þ 1

if Bj�14Bj�1 then

Fig. 1. PTS flow chart.

Bj�1’Bj�1

endif

else

goto Step 4
endif

next k

Step 4: continue
Bj�1’0

next i

next j

Btot¼Sumk(Bk)

3.2.2. Stochastic buffer distribution

In order to improve the exploration ability of PTS, a proper
Stochastic Buffer Distribution (SBD) procedure has been devised.
To avoid a premature convergence to a local optimum, it stochas-
tically re-allocate the total buffer capacity Btot related to the

current best solution. Basically, such procedure works similarly

to a roulette wheel criterion. First, the average processing times

per each stage are computed. Then, they are normalized and

cumulated with respect to the number of production stages.
Hence, for each unit of buffer capacity to be allocated, a random

number x is drawn from a uniform distribution U[0,1]. Of course,
the bigger is the average processing time of a given stage, the

greater is the probability of assigning a unit of capacity to the

corresponding upstream buffer. As reported in Fig. 1, the SBD

procedure is enabled whether there is not any objective function

improvement after Nmax/5 evaluations. The pseudo-code of such

procedure is as follows.
Procedure: Stochastic Buffer Distribution

Step 1: Btot¼total buffer capacity connected to the current
solution;

Step 2: considering the whole set of N parts to be
processed, compute the average processing time
per each machine;

Step 3: normalize the average processing times;
Step 4: cumulate the normalized values and generate a

probability interval for each buffer;
Step 5: set b¼1;
Step 6: drawxAU 0;1½ �;

select the probability interval and the
corresponding buffer where such unit of buffer
capacity has to be allocated;
b’bþ1;

Step 7: if boBtot then goto Step 6 else goto Step 8;
Step 8: stop the procedure.

3.2.3. Move representation and adaptive neighborhood generation

A neighborhood structure is a mechanism which gains a new
set of neighbor solutions by applying a small perturbation to a
given seed solution. Each neighbor solution is reached immedi-
ately from a given seed solution by a move [21]. Defining the
neighborhood of a given seed solution is a crucial phase of the TS
development as its structure may considerably affect the search
ability through the search space and the computational efficiency
as well. Therefore, unnecessary and infeasible moves must be
eliminated if it is possible [39]. Generally, the structure of the
neighborhood from a seed solution depends on the kind of

problem to be tackled. For instance, in the buffer allocation
problem, all neighbors of a given seed may be taken into account
or, in alternative, only a subset of those may be considered. In this
paper, a neighborhood structure made by two distinct sub-
structures has been devised. Each sub-structure depends on a
specific move and, as a result, the whole neighborhood entails 2�
(J�1) solutions. Each move is denoted by the notation [η,ν] where
η is the amount of capacity added/subtracted to element, i.e.
buffer, ν of the seed solution. In fact, η may assume either positive
or negative value, thus generating the two mentioned sub-struc-
tures, each one populated by (J�1) neighbors. The first sub-
structure is connected to a negative value of η (�η) and holds
the neighbors from 1 to J�1. If S is the seed solution and B(S)1 is
the buffer capacity related to the first location then the first
neighbor S1 is identical to S with exception of the first buffer
whose capacity will be B(S1)1¼B(S)1�η. In the same way, the
second neighbor S2 is identical to S with exception of the second
location that will be B(S2)2¼B(S)2�η, and so on. The second sub-
structure refers to the positive value of η (þη) and includes the
neighbors from J to 2� (J�1). Similarly as before, the first
neighbor is identical to the seed S except for B(SJ)1¼B(S)1þη, the
second neighbor except for B(SJþ1)2¼B(S)2þη, and so on. In this
manner, each solution of the neighborhood is univocally identi-
fied. If the move [η,ν] generates a better objective function than the
concurrent move then [�η,ν] is not permitted. i.e., it is a tabu
move. Table 1 shows an example of neighborhood for the seed
solution S¼(7�8�15�4�12) for a buffer allocation problem
with 6 machines and 5 buffers. Underlined locations denote the
only difference between each neighbor and the seed solution. The
role of the first sub-structure (hereinafter called �η-neighbor-
hood) is quite clear. It aims to minimize the total buffer capacity to
be allocated. Conversely, the second sub-neighborhood (herein-
after called þη-neighborhood) is crucial when the current seed is
a local optimum and all its �η neighbors are infeasible, i.e., they
do not satisfy the throughput rate related constraint. In this case,
since every infeasible solution is strongly penalized by the
objective function, a non-tabu solution included in the þη-
neighborhood can be accepted as a new seed. In this way, the
combination of such twofold neighborhood structure with the
proposed objective function ensures an effective balance between
exploration and exploitation phases.

Exploitation and exploration, or intensification and diversifica-
tion, are two major components of any metaheuristic algorithms,
([3]). Diversification means to generate diverse solutions so as to
explore the search space on a global scale, while intensification
means to focus the search in a local region knowing that a current
good solution is found in this region. A good combination of these
two components will usually ensure that global optimality is
achievable.

The first part of the optimization path concerning any meta-
heuristic algorithm consists in an extended exploration phase,
according to which several areas of the search space are quickly
investigated and the quality of the initial solution may be
drastically improved. Adopting a unit of buffer capacity as a move
to generate the neighborhood could excessively slow down such
initial exploration phase, thus increasing the computational time
of the whole tabu search. In order to speed up the diversification
phase, an adaptive configuration of the neighborhood generation
mechanism has been devised. It is based on a proper exponential
function that adaptively changes the η value according to the
current iteration. Notably, the role of such function is to assign a
high value to η during the first part of the search, thus enhancing
the diversification strategy. The higher is the number of iterations,
the smaller will be the η value, i.e., the unit of buffer capacity to be

allocated. Then, once η is equal to one, a regular intensification
phase can take place. The following function has been considered
where Βmax is the maximum value of buffer capacity in a certain
seed, α and β are two specific parameters and t is the amount of
currently evaluated solutions.

Symbol bc indicates that the quantity in parenthesis must be
rounded down to the nearest integer.

η¼
Bmax

sUγ Uβ
� exp

�t � 100
Nmax

�
1
α

� �� �

þ1 ð9Þ

Using the exponential function to adaptively control variables/
parameters of metaheuristics is a common practice in adaptive
optimization. Such methodology has the effect of narrowing the
search, and gradually changes the model from an exploratory
mode to an exploitative mode.

Parameter γ was fixed to θn=0:9θmax. This value is motivated by
the fact that the smaller is θn the smaller will be the required total
buffer capacity; thus, if θno0.9θmax the convergence speed
towards lower values of buffer capacity increases, the provided
number of iterations being equal. In turn, since seed S3 initially
holds a lower total buffer capacity, it was necessary to adequate η

to the related smaller solution space; thus, parameter s must be
set to 3 only for seed S3 and to 1 for the other seed solutions, S1
and S2.

To illustrate how the exponential function works, Fig. 2 shows
the η¼ f(t) diagram for a value of Bmax equal to 200. As the number
of evaluations t increases, the η value adaptively decreases until a
unit buffer capacity is achieved. Continuous curves refer to
θn¼0.9θmax, i.e., γ¼1, while dotted lines relate to θn¼0.7θmax, i.e.,
γo1. The two lower curves show the variation of μ for seed S3
(s¼3), while the upper curves relate to the η variation concerning
with either seed S1 or seed S2 (s¼1). Moreover, it should be noted
that a faster convergence of η to one occurs when θn¼0.9θmax, s
being equal. As far as parameter s is concerned, if it is equal to one

a stronger algorithm diversification is allowed; otherwise, s¼3
encourages the algorithm intensification in the neighborhood of
seed S3.

After a proper calibration, parameters α and β were fixed to
4 and 2, respectively. The structure of the aforementioned function
as well as the other parameters have been designed through a
series of trial-and-error runs on several instances with 9 and 15
machines, whose results are not reported for the sake of brevity.

3.2.4. Further characteristics of PTS

As mentioned before, tabu moves allow TS to escape from local
optima. Nevertheless, good solutions could be rejected because
of the same tabu moves. As a result, it is necessary to provide
a so-called aspiration criterion to disregard a tabu move in
certain situations. A well-established aspiration criterion consists
of allowing a move, even though it is tabu, whether it is able to
improve the current best solution. All the three branches of the
proposed PTS have been equipped with such aspiration criterion.

The termination criterion of the PTS consists of the total
number of solutions evaluated Nmax. As discussed in the previous
section, the Nmax threshold may be increased to 1,3Nmax during the
search path whether the regeneration procedure has been never
used before, i.e., when a new local optimum has been found just
before the algorithm stop. The size of the tabu list has been fixed
to 7, in accordance with most TS applications [45].

3.2.5. Objective function

Over the last few decades, several methods have been proposed
to handle constraints in the evolutionary algorithms. A common
approach consists of the use of penalties [6,50,59].

Several penalty methods may be used to transform a con-
strained problem into an unconstrained one. In this paper we
consider an objective function composed of two functions (See Eq.
(10)). The upper one aims to minimize the total buffer capacity
while maximizing the production rate. The lower function pena-
lizes solutions whose throughput rate is lower than θn. It is based
on a static approach, as the penalty applied to infeasible solutions
do not depend on the current generation number.

f ðBtot ; θÞ ¼
Btotþ

1
cϑ; ifθZθn

K� Btotþϑð Þ;otherwise

(

ð10Þ

Parameter c is necessary to classify two close feasible solutions.
In words, it allows to privilege a certain solution over another one
which holds an extra unit of buffer capacity and a significantly
higher throughput rate. For example, let suppose the former
solution is characterized by Btot¼100 and θ1¼0.35 while the latter
provides Btot¼101 and θ2¼0.81. To assure the priority of the total
buffer capacity over the throughput rate it must be:

c4
Δθ

1�Δθ
ð11Þ

where Δθ is equal to θ2�θ1. Thus, only a value of c greater than
1.04 is able to assure the correct ranking between the aforemen-
tioned solutions. In this study, c was set to 2 to support a
difference on the throughput rate up to 0.667.

As for the penalty function, K is a large positive constant whose
only restriction is that it must guarantee any infeasible solution is
graded worse than a feasible one. In this study K was fixed to
(n�1)� (J�1). Also, the structure of this penalty function properly
fits the problem at hand. In fact, since the throughput rate is an
increasing function of the total buffer capacity, this function aims
to privilege infeasible solutions with higher total buffer capacity
and throughput rate, as they have a higher probability to become
feasible throughout the successive generations.

Table 1

Example of neighborhood for the seed S¼(7�8�15�4�12).

μ Neighbor ν

1 2 3 4 5

�1 1 6 8 15 4 12
2 7 7 15 4 12
3 7 8 14 4 12
4 7 8 15 3 12
5 7 8 15 4 11

þ1 6 8 8 15 4 12
7 7 9 15 4 12
8 7 8 16 4 12
9 7 8 15 5 12

10 7 8 15 4 13

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

=
f(

t)

evaluations (t)

0.9,s=1 0.9,s=3 0.7,s=1 0.7,s=3

µ

Fig. 2. μ¼ f(t) graphs as α and s change.

Usually, a penalization is more efficient if its expression is

related to the amount of constraint violation than to the violated

constraint number [46]. Since in this study only one constraint
needs to be handled and the throughput rate is an increasing

function of the total buffer size, the measure of violation may be

considered the throughput rate itself whenever it is lower than θn.

3.3. Other generative approaches

In order to validate the efficiency of the proposed PTS the

following metaheuristics have been implemented. A Binary Search

(BS), recently presented by the relevant literature to cope with the

primal buffer allocation problem, and three evolutionary techni-
ques from the field of applied mathematics and computer science,
namely a Genetic Algorithm (GA), a Particle Swarm Optimization

(PSO) and a Differential Evolution (DE).
As for the proposed evolutionary algorithms, they do not make

use of any additional procedure or local search focusing on the

buffer allocation problem. The search path starts from a popula-
tion generated by means of the ISG procedure and makes use of
regular perturbation operators, not specifically oriented to the

problem at hand.
Conversely, the binary search was specifically developed to

solve the total buffer capacity minimization problem under a

minimum throughput rate. In the following, the difference

between the general purpose metaheuristics and the focused

optimization technique will be investigated under both the effi-
cacy and the efficiency viewpoint.

3.3.1. Genetic algorithm

Genetic Algorithms (GA) are stochastic optimization techniques

that exploit a population based heuristic methodology. They belong

to the class of evolutionary algorithms (EA) which mimic the

principle of survival of the fittest individuals by Charles Darwin.
GAs, like most metaheuristics, need an encoding scheme to

represent the problem in terms of a numerical string named

chromosome; thus, a chromosome holds the decision variables of
the problem and, as a consequence, it is a solution of the problem

itself. A set of chromosomes are arranged into a population and

then, repeatedly, a series of generations are executed making full
use of the following major operators: selection, crossover and

mutation. Recently, real coded genetic algorithm has been used to

solve integer and mixed integer optimization problems [11].
In this paper, a real-coded genetic algorithm has been imple-

mented for solving the stochastic buffer allocation problem. It
consists of a regular real coded GA that was inspired to the HX-
NUM configuration presented by Deep and Thakur [12]. Population

has been randomly generated and each chromosome is coded as a
string of J�1 integer values; each gene refers to the capacity of the

corresponding buffer and it is defined in the range [1, N�1].
Chromosomes are selected according to a Tournament method

before being subject to the heuristic cross-over operator. Actually

both the Laplace and the Heuristic cross-over operator have been

tested on a set of preliminary runs that involved different sizes of
problem. For the sake of brevity, numerical results have not been

reported in this paper. However, the final outcome was the clear
outperformance of the GA equipped with the heuristic cross-over.
Then, a regular non-uniform mutation [36] was embedded into the

proposed real-coded GA. Finally, it is worth pointing out that an

elitism strategy, which preserves the fittest individual during the

different generations, has been included in the genetic framework.
Integrality of variables was ensured by rounding real values down

to the nearest integer. If a gene exceeds the provided upper bound

due to a perturbation operator, then it is forced to be equal to the

upper bound itself, i.e., N�1. On the other hand, if a gene

assumes a negative value then it is forced to be equal to the lower
bound, i.e., zero. The same strategy has been used for the other
real-coding metaheuristic algorithms.

As for the genetic parameters, population size has been set to

50, the tournament size is equal to 2, while both probability of
crossover and mutation has been selected after a calibration

analysis whose results will be illustrated in Section 5.1. The

stopping criterion is the total number of generations.

3.3.2. Differential evolution

During the last decades Differential Evolution (DE) [55,54]
became one of the most popular evolutionary computation meth-
ods, able to solve continuous optimization problems. There is

probably a twofold reason to explain such success. Firstly, the

efficacy of DE in solving benchmark, engineering and real-world

problems, as confirmed by the literature [10,44]. Secondly, in

comparison with other recently developed metaheuristics, the

basic DE is very easy to be understood as well as simple to be

implemented. Conforming to the well-established nomenclature

scheme, a DE/rand/1/bin version of DE has been implemented

according to the procedure reported in Appendix B.
As for the setting parameters, population size has been set to

M¼20 while parameters F and CR have been selected after a
calibration analysis whose results will be illustrated in Section 5.1.
Since buffer sizes must be integers, during the algorithm evolution

real values assumed by variables are rounded to the nearest
integer. The stopping criterion depends on the total number of
iterations.

3.3.3. Particle swarm optimization

Particle Swarm Optimization (PSO) is a modern evolutionary

technique introduced by James Kennedy and Heberhart [28]. It
consists of a metaheuristic algorithm based on the social metaphor
and gained attention as an effective tool for solving various

optimization problems. Similarly to genetic algorithms, PSO is a

stochastic, population-based optimization technique. Conversely, it
is easier to be implemented and does not require a significance

computational burden. Due to its algorithm structure, PSO allows to

carry out a diversification phase at the beginning of the search and a

local search at the end, according to the provided inertia weight
parameter and acceleration coefficients, respectively. Unlike the

canonical PSO that uses a large inertia weight and static acceleration

coefficients, namely cognitive and social parameters, the proposed

PSO is inspired to the GLBest version [2], where the aforementioned

parameters are adaptively managed in terms of global best and local
best values. For the sake of clarity, the equations of the adopted

GLBest algorithm are illustrated in Appendix C.
Both inertia weight wi (Eq. (17)) and acceleration coefficient ci

(Eq. (18)) depend on two parameters, λ and μ. The authors of GLBest
fixed them to 1.1 and 1, respectively. In this paper, they have been

selected through a proper calibration analysis. Similarly to the

previous metaheuristics, the initial swarm has been randomly

generated by means of the ISG procedure. The swarm dimension has

been fixed to 20 particles. Similarly to the previous techniques, the

algorithm stops when a given number of iterations have been

achieved.

3.3.4. Binary search

The Binary Search (BS) considered in this paper consists of a

hybrid meta-heuristic algorithm incorporating a tabu search algo-
rithm to manage the throughput rate related constraint. The

algorithm structure is identical to the BS proposed by Demir
et al. [14], the only difference being the initial solution generation

mechanism that is based on the proposed ISG method. Actually,

the aforementioned authors used BS as an alternative technique to

validate a novel tabu search (TS). However, since the computa-
tional experiments highlighted a balance of performance between

the two approaches and revealed the outperformance of BS in

terms of computation time, it was preferred to TS. It is worth

reminding that the original BS was developed to cope with a buffer
allocation problem in unreliable production lines where the total
buffer capacity to be allocated ranges from 50 to 400, on the basis

of the number of machines. The numerical outcomes revealed that
the performance of both BS and TS is strongly affected by the

choice of the initial capacity to be allocated, as much as the

number of machines increases. Accordingly to these findings, since

the choice of the initial buffer capacity has not been supported by

any rigorous criterion so far, the implemented BS was equipped

with the IGS method, so as to align all the proposed metaheuristics

under the starting solution viewpoint.
Due to the complexity of the overall optimization procedure,

which embeds an adaptive tabu search into the binary search, the

structure of the BS algorithm has been here omitted. For further
details readers should refer to [13,14].

4. Computational experiments

A comprehensive experimental campaign has been carried out
to strengthen the effectiveness of the proposed parallel tabu
search with respect to the other metaheuristics. To this end, an
extended benchmark of test problems has been generated on the
basis of four different factors: number of production stages (i.e.,
machines), type of line, desired throughput rate, and coefficient of
variation of processing times. Different levels have been provided
for each factor, as follows:

� Production stages (PS): 5�10�15;
� Type of line (TL): balanced (BAL), unbalanced with bottleneck

in the first station (UNB_F), unbalanced with bottleneck in the
middle station (UNB_M), unbalanced with bottleneck in the
last station (UNN_L);

� Throughput rate (TR): High (H), i.e., 90% of the maximum
achievable θmax; Low (L), i.e., 70% of the maximum achievable
θmax;

� Coefficient of variation (CV): High (H), i.e., σ2⧸μ2¼1.5; Low (L),
i.e., σ2⧸μ2¼0.5, where μ and σ

2 are mean and variance of the
processing time distribution, respectively.

A number of parts equal to 2000 has been considered to
simulate the problem at hand. For each combination of the
aforementioned parameters, 10 instances have been generated.
For each instance, processing times have been extracted from a
log-normal distribution. If the line is balanced then the mean is set
to 2 and the variance arises from the selected CV value (High/Low).
Otherwise, if the type of line is unbalanced then processing times
of the bottleneck station are extracted from a log-normal distribu-
tion with mean equal to 4 while, as for the other machines, the
mean is set to 2. Again, the variance depends on the selected CV
level. For each instance, θmax has been computed by means of

the evaluative procedure reported in Appendix A assuming
Bk¼ J�18k, i.e., simulating an infinite-buffered production system.
In conclusion, the total amount of runs provided for each meta-
heuristics is equal to 3 � 4 � 2 � 2 � 10¼480. Since 5 distinct
metaheuristics have been compared and 5 replicates connected

to different random seeds have been run for each instance, the
total amount of experiments to compare such metaheuristics is
equal about to 5 � 2400¼12,000. Furthermore, both small-(5
machines) and medium-sized (10–15 machines) problems have

been optimally solved by means of the MILP-based simulation/
optimization approach; thus additional 320 runs were executed.
No warm-up period was taken into account as it is demonstrated
that no statistically significant difference exists between test
simulations with and without a warm-up [53]. The proposed
metaheuristics have been implemented on the VBAs develop-
ment framework, within a MS Excels worksheet executed on a PC
equipped with an Intels Core duo 2, 33 GHz processor and 2 Gb

RAM memory.

5. Numerical results

Several experimental analyses have been carried out to support
the validation of the proposed parallel metaheuristic procedure.
Firstly, since the effectiveness of evolutionary algorithms notor-
iously depends on how their working parameters are set, a proper
tuning analysis has been performed. Then, the selection of para-
meters α and β, characterizing the adaptive neighborhood genera-
tion mechanism of PTS, has been investigated through the same

statistical approach. Once the best configuration of parameters has

been chosen for each metaheuristics, a multiple-comparison

statistical analysis has been developed to identify the most
performing optimization technique. Finally, on the basis of the

numerical results obtained by the best metaheuristics, the statistic

influence of factors mentioned in Section 4, namely PS, TL, TR, CV,
has been studied through a proper ANOVA analysis.

5.1. Calibration of the evolutionary algorithms

Three one-way statistical analyses have been arranged in order
to select the more suitable parameter configuration for each

evolutionary technique: PSO, GA, DE. Two factors, corresponding to

two distinct parameters, have been considered as independent
variables, for each metaheuristics. Each factor is varied to two-
levels, namely High (H) and LOW (L), as a set of preliminary test on

the medium-sized problems allowed to select the most two

promising levels. As a result, four different configurations have

been compared. Table 2 reports the parameters involved in the

tuning analysis for each optimization technique.
The benchmark problems used for the calibration analysis is the

same descripted in Section 4, the only difference consisting of the

number of instances (five instead of ten), the number of seed-based

replications (1 instead of 5) and the number of parts to be

processed (1000 instead of 2000). Hence, a total amount of
3
fi

� 5 � 2 � 2 � 2 � 4¼480 runs selecting the best parameter con-
guration of each algorithm. For the calibration phase, a different

random benchmark has been employed in terms of processing

times, to avoid any overfilling issues and biased results. The total
buffer capacity was considered as the response variable while the

following Relative Percentage Deviation (RPD) function was con-
sidered to both normalize and compare the obtained results

RPD¼
RVp�RVbest

RVbest

ð12Þ

where RV is the value of the response variable related to a given
instance, which adopts a given parameter configuration p, while

Table 2

Factors for the selection of parameters.

Metaheuristics PSO GA DE

Parameter λ μ pcr pm F CR

High (H) 1.9 2 0.8 0.05 0.90 0.95
Low (L) 1.1 1 0.5 0.01 0.65 0.30

RVbest is the best value achieved by one of the four alternative
configurations, i.e., RVbest¼min(RVp) 8p¼ 1;2…;4.

In order to find the best parameter configuration for each
metaheuristics, three statistical analyses, using the RPD measure
as response variable, have been arranged. First, the three main
assumptions of ANOVA were checked: normality, homoscedasti-
city and independence [37]. Since no group of the mentioned RPDs
satisfied the normality test, a non-parametric test was required as
data are gathered into a lower bound, i.e., the differences between
the optimum values of the benchmarks and the returned values
are gathered into 0þ .

A Kruskal�Wallis (K�W) test [7] has been employed as it may
be considered as the non-parametric counterpart of a one-way
ANOVA and it may be used to test for a difference between the
medians of 3 or more groups of data. If the p-value is lower than
0.05, the result is significant, which means that there is a
significant difference between at least two of the medians.

Three distinct H tests have been implemented by MINITABs14
to calibrate each metaheuristics. Since two parameters have to be
tuned for each algorithm, four groups characterize each test. The
outcomes of each K�W test are reported in Fig. 3 and all of them
indicate that there is a statistically significant difference between
the obtained results at a 95% confidence level. The p-values
(adjusted for ties) arising from each test for PSO, GA and DE are
equal to 0.000, 0.000 and 0.025, respectively. These results
confirm that the parameter configurations statistically affect the
performance of every metaheuristic algorithm. Since such non-
parametric test does not specify which configuration is the best,
the following considerations about the obtained rank scores and

the medians have been carried out. As for PSO, all the medians are
equal to zero, regardless of the specific combination of parameters,
but the Z rank connected to group HL, which employs λ¼1.9 and
μ¼1.0, gains the only negative value, thus indicating that there is a
significant difference between this configuration and the others.

The output results from the K�W test on the GA calibration
denote a difference about both medians and Z scores of the
provided groups. As a result, the last two configurations, namely
LH and HH, outperform the others. Due to a lower Z rank the HH
parameter setting, which involves pm¼0.8 and pcr¼0.05, has been
selected for the genetic algorithm. As far as the DE is concerned,
the medians computed by the adopted statistical test are the same
for each group. The negative Z scores related to LH and HH
highlight the most performing configurations but the latter group
involving F¼0.90 and CR¼0.95 has been definitely selected
because of the lower Z score.

5.2. Tuning analysis of PTS

As discussed in Section 3.2.3, the proposed parallel tabu search
makes full use of an adaptive neighbor generation function whose
role is speeding up the diversification phase. It assumes a value of
μ that gradually decreases during the search path, according to a
negative-exponential function depending on the number of itera-
tions as well as on two specific parameters, namely α and β.
Similarly to the previous metaheuristics, a proper calibration study
has been performed on two levels (High (H), Low (L)) of para-
meters α and β. As for α, such two levels have been set to 4 and 2,
respectively; whereas, 5 and 2 have been chosen for β. The
benchmark of test cases used to calibrate the PTS is identical to
that used for the tuning analysis of the other evolutionary
algorithms. The obtained outcomes revealed a significant robust-
ness of the PTS, as most of the RPD values, properly computed to
compare the different configurations, were equal to zero. As a
result, the group of RPDs cannot satisfy the hypothesis of normal-
ity, and a non-parametric statistical analysis was required. A
Kruskal�Walls test has been carried out to investigate any
statistical difference between the different parameter configura-
tions. Fig. 4 reports the output of the non-parametric test from
MINITABs14. The corresponding p-value equal to 0.652 demon-
strates as the null hypothesis cannot be rejected, i.e., there is not
any significantly statistical difference among the medians of the
groups. However, due to the lower Z score obtained by two of the
groups, configuration HL, namely α¼4 and β¼2, has been selected
for the subsequent experiments.

5.3. Multiple-comparison of metaheuristics

In this section a comprehensive comparison analysis involving
the proposed metaheuristic algorithms is presented. They are
assessed in terms of both quality of solutions and computational
times. First, three tables at varying number of machines have been
presented. Each table holds two sets of data: the relative percen-
tage deviation (Δ%) between each metaheuristics and the best
returned value, and the number of wins (w), which indicates how
many times a given algorithm reaches the best objective. Numer-
ical results are hierarchically sorted according to the following
factors: type of line (TL), coefficient of variation (CV) and through-
put rate (TR), respectively. Actually, numerical results reported in
each table refer to the average values computed over the 10
instances and the five seed replicates provided by the adopted
benchmark. For each sub-group of results associated to every line
type, the average Δ% and wins are computed, for each metaheur-
istics. The last row of each table denotes the grand average values
concerning with both Δ% and wins. As for small- and medium-
sized problems involving 5 and 9 machines, respectively, it worth

Kruskal-Wallis Test on RPD_PSO
FACTORS N Median Ave Rank Z

LL 240 0.000000000 499.7 1.24
HL 240 0.000000000 426.0 -3.52

LH 240 0.000000000 500.9 1.32
HH 240 0.000000000 495.5 0.97

Overall 960 480.5
H = 12.42 DF = 3 P = 0.006

H = 18.44 DF = 3 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test on RPD_GA
FACTORS N Median Ave Rank Z

LL 240 0.062500000 550.0 4.48
HL 240 0.038520000 534.5 3.49

LH 240 0.000000000 439.4 -2.65
HH 240 0.000000000 398.1 -5.32

Overall 960 480.5
H = 50.65 DF = 3 P = 0.000

H = 59.35 DF = 3 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test on RPD_DE
FACTORS N Median Ave Rank Z
LL 240 0.000000000 468.9 -0.75

HL 240 0.000000000 510.6 1.94
LH 240 0.000000000 490.7 0.66
HH 240 0.000000000 451.8 -1.85

Overall 960 480.5

H = 6.14 DF = 3 P = 0.105
H = 9.34 DF = 3 P = 0.025 (adjusted for ties)

Fig. 3. Kruskall�Wallis tests to calibrate PSO, GA and DE.

Kruskal-Wallis Test on RPD

CONFIG N Median Ave Rank Z
LL 240 0.000000000 484.0 0.22
HL 240 0.000000000 478.0 -0.16

LH 240 0.000000000 482.1 0.10

HH 240 0.000000000 478.0 -0.16
Overall 960 480.5

H = 0.09 DF = 3 P = 0.994
H = 1.63 DF = 3 P = 0.652 (adjusted for ties)

Fig. 4. Non-parametric tests for the PTS calibration.

A. Costa et al. / Computers & Operations Research 64 (2015) 97–112106

pointing out that the Δ% performance indicator is computed on the
basis of the global optimum gained by solving the MILP-based
simulation/optimization model. Conversely, the Δ% values related
to the scenario problem with 15 machines refer to the minimum
buffer capacity over the five metaheuristics to be compared and
with respect to the five seed replicates for each optimization
procedure. Table 3 shows that both PTS and BS always reach the
global optimum, regardless of the specific type of flow line. On the
other hand, both PSO and DE perform quite well when the line
type is balanced or unbalanced at the first stage (UNB_F), while
their effectiveness slightly decreases in the other scenario pro-
blems, namely UNB_M and UNB_L, particularly when both CV and
TR assume the higher value. PSO is more effective then GA in case
of BAL and UNB_F line types. Nevertheless, GA on the average
outperforms PSO as the former seems to be less influenced by the
line type and by the other factors as well.

As for medium-sized problems, Table 4 highlights again the
outperformance of PTS and BS with respect to the other compe-
titors. In fact, both of them ensure a grand average result
almost equal to zero, which means that in most test cases they
achieve the global optimum. In addition, looking at the number
of wins, PTS confirms its effectiveness as always there exists
at least one replication out of five that is able to reach the global
optimum, beyond the specific combination of factors. Although
the DE algorithm significantly improves its performance,
similarly to the previous analysis, it seems negatively affected
by a kind of line unbalanced either in the middle or in the last
stage. Nevertheless, DE outperforms BS in terms of average
number of wins. Finally, PSO and GA reveal a deterioration of
performance as demonstrated by the average Δ% as well as by
the average number of wins equal to 27 and 16 out of 40,
respectively.

Table 5 reports the numerical results related to the large-sized
problems. The main finding from this table concerns the down-
grading performance of BS, likely due to the premature stop
enabled whenever a time limit equal to 16,200 s, i.e., four hours,
is exceeded. In fact, the higher computational burden required by
the larger number of variables negatively affects the search ability
of the BS algorithm. The obtained results strengthen the effective-
ness of the proposed PTS optimization procedure, even though DE
reaches a similar outcome also under the number of wins view-
point. As expected, both PSO and GA do not take any advantage of

the large sized problems, which further emphasize their weakness
in solving the buffer allocation problem.

In order to statistically infer if any algorithm performs better
than others, a proper investigation analysis has been carried out.
Due to the global effectiveness of the tested algorithms, most of
obtained results in terms of RPD are equal to zero, so that data are
skewed and cannot be classified as normally distributed. As a
result, a conventional parametric test like ANOVA cannot be used
as the main hypotheses of normality and homogeneity of variance
surely are not satisfied. Therefore, in order to avoid any mean-
ingless result, similarly to what has been done for the calibration
issue, a Kruskal�Wallis non-parametric technique has been
employed to compare the performance of the different algorithms.
Fig. 5 reports the output of the test, performed by MINITABs14.
The final p-value equal to 0.000 confirms a significant difference
between at least two algorithms. The medians as well as the Z rank
put in evidence the outperformance of PTS, DE, and BS with
respect to GA and PSO. In addition, according to the obtained
ranking results, PTS is recommended as the most performing
optimization algorithm. Although the returned values are not
normally distributed, Fig. 6 allows evaluating such findings. It
shows the 95% confidence plot intervals for the means and, in
addition, it holds a series of green marks representing the
corresponding median values. Three algorithms out of five, PTS,
BS and DE, have the same median. However, Fig. 6 puts in evidence
the outperformance of PTS and DE with respect to BS, as their
variance is very tight and no overlap there exists with the other
plot intervals. To investigate more in detail the difference of
performance between PTS and DE, a post-hoc pairwise compar-
ison based on a non-parametric Mann�Whitney U test [33] has
been executed. Fig. 7 shows the output from MINITABs14, which
proves a statistically significant difference (p¼0.000) in the
median engagement between PTS and DE with 95% CI. Hence,
the outperformance of PTS is ascertained.

5.4. Computational comparison and convergence analysis

Beyond the efficacy in terms of quality of solutions, the
computational efficiency of a metaheuristics is a leading factor to
be evaluated. As mentioned in the earlier sections, the stopping
criterion of each metaheuristics is the total number of iterations
(iter) or objective function evaluations. Table 6 depicts the total

Table 3

Average numerical results for the 5 machine flow line.

TL CV TR Δ%_PSO Δ%_GA Δ%_DE Δ%_PTS Δ%_BS w_PSO w_GA w_DE w_PTS w_BS

BAL H H 0.001 0.055 0.000 0.000 0.000 10 4 10 10 10
H L 0.000 0.036 0.000 0.000 0.000 10 10 10 10 10
L H 0.000 0.025 0.000 0.000 0.000 10 9 10 10 10
L L 0.000 0.000 0.000 0.000 0.000 10 10 10 10 10

ave/sum 0.000 0.029 0.000 0.000 0.000 40 33 40 40 40

UNB_F H H 0.023 0.068 0.000 0.000 0.000 10 10 10 10 10
H L 0.045 0.045 0.003 0.000 0.000 10 10 10 10 10
L H 0.000 0.009 0.000 0.000 0.000 10 10 10 10 10
L L 0.000 0.000 0.000 0.000 0.000 10 10 10 10 10

ave/sum 0.017 0.030 0.001 0.000 0.000 40 40 40 40 40

UNB_M H H 0.349 0.087 0.202 0.000 0.000 9 10 9 10 10
H L 0.095 0.048 0.028 0.000 0.000 9 9 10 10 10
L H 0.063 0.028 0.050 0.000 0.000 8 10 7 10 10
L L 0.000 0.010 0.000 0.000 0.000 10 10 10 10 10

ave/sum 0.127 0.043 0.070 0.000 0.000 36 39 36 40 40

UNB_L H H 0.478 0.129 0.151 0.000 0.000 7 9 10 10 10
H L 0.257 0.108 0.133 0.000 0.000 9 9 10 10 10
L H 0.117 0.037 0.031 0.000 0.000 10 10 10 10 10
L L 0.000 0.016 0.000 0.000 0.000 10 10 10 10 10

ave/sum 0.213 0.073 0.079 0.000 0.000 36 38 40 40 40

g_ave 0.089 0.044 0.037 0.000 0.000 38.0 37.5 39.0 40.0 40.0

number of iterations provided per each algorithm, as the number
of machines changes. The corresponding number of total objective
functions evaluations (eval) has been reported in italics. As for PTS,
the stopping criterion is based on the total number of evaluated

Table 4

Average numerical results for the 9 machine flow line.

TL CV TR Δ%_PSO Δ%_GA Δ%_DE Δ%_PTS Δ%_BS w_PSO w_GA w_DE w_PTS w_BS

BAL H H 0.004 0.187 0.000 0.000 0.000 9 0 10 10 10
H L 0.014 0.357 0.002 0.002 0.011 4 0 10 10 5
B H 0.004 0.055 0.002 0.000 0.000 10 9 10 10 10
B L 0.003 0.222 0.000 0.000 0.000 10 0 10 10 10

ave/sum 0.006 0.205 0.001 0.000 0.003 33 9 40 40 35

UNB_F H H 0.123 0.157 0.003 0.000 0.000 4 1 10 10 10
H L 0.069 0.168 0.001 0.000 0.000 9 2 9 10 10
B H 0.000 0.000 0.000 0.000 0.000 10 10 10 10 10
B L 0.007 0.074 0.000 0.000 0.000 10 7 10 10 10

ave/sum 0.245 0.100 0.001 0.000 0.000 33 20 39 40 40

UNB_M H H 0.324 0.183 0.042 0.001 0.000 2 0 9 10 10
H L 0.441 0.301 0.035 0.000 0.000 5 0 10 10 10
B H 0.004 0.024 0.002 0.000 0.000 10 10 10 10 10
B L 0.138 0.124 0.020 0.003 0.000 3 6 10 10 10

ave/sum 0.227 0.158 0.025 0.001 0.000 20 16 39 40 40

UNB_L H H 0.397 0.198 0.043 0.000 0.000 0 1 10 10 10
H L 0.486 0.308 0.019 0.000 0.000 6 1 10 10 10
B H 0.000 0.004 0.000 0.000 0.000 10 10 10 10 10
B L 0.084 0.076 0.009 0.002 0.000 6 7 10 10 10

ave/sum 0.242 0.147 0.018 0.002 0.000 22 19 40 40 40

g_ave 0.131 0.152 0.011 0.000 0.001 27.0 16.0 39.5 40.0 38.8

Table 5

Average numerical results for the 15 machine flow line.

TL CV TR Δ%_PSO Δ%_GA Δ%_DE Δ%_PTS Δ%_BS w_PSO w_GA w_DE w_PTS w_BS

BAL H H 0.021 0.555 0.004 0.002 0.045 2 0 7 10 0
H L 0.034 0.361 0.001 0.001 0.103 6 0 10 10 5
B H 0.033 0.516 0.001 0.000 0.026 6 0 10 10 5
B L 0.053 0.319 0.002 0.000 0.010 7 2 10 10 8

ave/sum 0.035 0.438 0.002 0.001 0.046 21 2 37 40 18

UNB_F H H 0.102 0.472 0.003 0.001 0.016 5 0 10 10 5
H L 0.226 0.239 0.002 0.007 0.034 0 0 10 10 4
B H 0.021 0.182 0.001 0.001 0.000 9 0 10 10 10
B L 0.000 0.000 0.000 0.000 0.000 10 10 10 10 10

ave/sum 0.084 0.223 0.002 0.002 0.013 24 10 40 40 29

UNB_M H H 0.375 0.425 0.003 0.000 0.028 3 1 10 10 6
H L 0.343 0.329 0.020 0.011 0.626 1 1 10 10 1
B H 0.127 0.183 0.008 0.005 0.789 1 0 10 10 0
B L 0.000 0.005 0.000 0.000 1.769 10 10 10 10 0

ave/sum 0.211 0.236 0.008 0.004 0.803 15 12 40 40 7

UNB_L H H 0.555 0.483 0.011 0.008 0.110 1 0 10 10 3
H L 0.503 0.352 0.018 0.009 0.861 0 0 9 10 2
B H 0.107 0.143 0.005 0.000 0.694 3 5 10 10 2
B L 0.000 0.003 0.000 0.000 1.627 10 10 10 10 2

ave/sum 0.291 0.245 0.008 0.004 0.823 14 15 39 40 9

g_ave 0.156 0.285 0.006 0.003 0.421 18.5 9.8 39.0 40.0 15.8

Kruskal-Wallis Test on RPD

ALGO N Median Ave Rank Z
PSO 480 0.020500000 1459.7 9.16
GA 480 0.100000000 1704.9 17.83
DE 480 0.000000000 1026.5 -6.15
PTS 480 0.000000000 803.1 -14.05

BS 480 0.000000000 1008.3 -6.79
Overall 2400 1200.5

H = 546.57 DF = 4 P = 0.000
H = 695.57 DF = 4 P = 0.000 (adjusted for ties)

Fig. 5. Comparison of metaheuristics: Kruskal�Wallis non-parametric test. Output
from Minitab 14s.

ALGO

R
P

D

BSPTSDEGAPSO

0,20

0,15

0,10

0,05

0,00

Interval Plot of RPD vs ALGO
95% CI for the Mean

Fig. 6. Comparison of metaheuristics: plot interval 95% confidence.

solutions and the maximum value that may be reached when extra
evaluations are allowed is indicated in parenthesis. Due to the
structure of the BS algorithm, no limit may be fixed in terms of
either generation or evaluations. Therefore, it has been implemen-
ted according to the same setting used in the literature (See [14]).
In order to emphasize the computational effectiveness of PTS, the
maximum number of evaluations has been deliberately reduced
with respect to the other competitors.

Table 7 reports the average computational times per each
technique as the size of the flow line changes. Since the MILP
programming (LP) based optimization was able to solve only
small- and medium-sized test problems in a reasonable time,
Table 6 misses of the result corresponding to the large-sized
problems involving 15 machines. Numerical results put in evi-
dence the efficiency of PTS under the computational viewpoint,

even though the difference with the other algorithms in terms of
average time to converge decreases as the problem size increases.
Specifically for the large-sized issue, such a kind of finding is
motivated by the adaptive behavior of PTS that is able to improve
the maximum number of allowed iterations whether any solution
improvement occurs just before the algorithm stop. In light of the
aforementioned remarks, BS and LP can be considered as compar-
able in terms of average computational times, though it is
necessary to remind that the latter approach assures the optim-
ality of solutions.

Among the other evolutionary algorithms, the Differential
Evolution may represent a valid alternative to PTS as confirmed
by the quality of the solutions and the average computational
times. Its structure consists of a regular DE algorithm; thus, its
performance could be likely improved by introducing a hybridiz-
ing local search algorithm or by devising an alternative version of
mutation operator that better fits the BAP at hand. Finally, both
PSO and GA do not seem to be suitable to address the proposed
buffer allocation problem.

5.5. ANOVA analysis for PTS

The last step of the numerical study consisted in a sensitivity
analysis about the several influencing factors considered in the
proposed research. On the basis of the numerical results provided
by PTS, a multi-factor model experimental design has been carried
out to evaluate how the number of machines, the type of line, the
coefficient of variation and the minimum allowed throughput rate
influence the response variable, i.e., the total buffer capacity. The
random blocking factor “Blocks” coincides with the problem and is
varied at 10 levels, that is, for each class 10 different instances are
generated. The fixed factor A is varied at 3 levels and coincides
with the number of machines the flow line is composed of, namely
5, 9 and 15 machines. B is the fixed factor concerning with the type
of line and it varies at 4 levels: BIL, UNB_F, UNB_M, UNB_L. The
fixed factor C refers to the minimum throughput rate to be
satisfied: it is varied at two levels (1¼Low, 2¼High). The fixed
factor D involves the coefficient of variation of the lognormal
distribution from which the processing times have been drawn
and is varied at two levels (1¼High, 2¼Low), in reverse to factor
C. The seed of the generative algorithm is the random factor E,
which is varied at 5 levels: for each instance the algorithm is run
five times, each corresponding to a different random evolution.
Totally, 3�4�2�2�10�5¼2400 runs have been executed to
complete the experimental plan. The influence of this last random
factor has been investigated with the aim of concluding that the
obtained optimal buffer capacities are independent from the
random seed. Given the structure of the experimental plan,
interactions among blocks and factors were a-priori excluded.
After the main hypotheses of ANOVA have been preliminarily
checked, a proper analysis of variance has been carried out
through the General Linear Model routine of Minitabs14. Fig. 8
illustrates the ANOVA table including terms in the model up
through order two, which indicates, as expected, that all the
factors are significant, with exception of the Block as well as of
factor E. The statistically significant influence of factor A on the
response variable is trivial, while the influence of the other factors
along with some factor interactions merits a deeper investigation.

Fig. 9 shows the main effect plots of factors B, C, D and E. The
influence of factor B is clearly motivated by the upper-left plot,
which demonstrates that the total buffer capacity of the balanced
flow lines is higher than the unbalanced ones. The factor C related
plot shows that the limit on the throughput rate has not a strong
influence on the total buffer capacity to be allocated; in fact, the
significance of factor C is featured by the lower Fisher value F

among the other influencing factors. Conversely, the main F-value

Mann-Whitney Test and CI: PTS; DE
N Median

PTS 480 0.0000
DE 480 0.0000

Point estimate for ETA1-ETA2 is -0.0000
95.0 Percent CI for ETA1-ETA2 is (-0.0001;0.0000)
W = 204197.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0000
The test is significant at 0.0000 (adjusted for ties)

Fig. 7. Comparison between PTS and DE: Mann�Whitney U test output.

Table 6

Comparison of metaheuristics: total iterations and evaluations provided for each
metaheuristics.

Machines 5 9 15

GA iter 200 300 400
eval 8000 14000 18000

PSO iter 400 700 900
eval 8000 14000 18000

DE iter 400 700 900
eval 8000 14000 18000

PTS eval 5000 10000 15000

max eval (6500) (13000) (18000)

Table 7

Comparison of metaheuristics: average computational times (s).

Machines PSO GA DE PTS BS LP

5 45.1 41 42.2 30.5 102.0 766.7
9 172.4 149.5 169.6 122.7 3532.8 2994.9

15 382.6 342.9 375.9 340.7 8478.2 –

Analysis of Variance for RESP, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Blocks 9 3655 3655 406 0,98 0,454

A 2 419805 419805 209903 506,78 0,000
B 3 1046493 1046493 348831 842,20 0,000

C 1 7480 7480 7480 18,06 0,000
D 1 566077 566077 566077 1366,71 0,000

E 4 2 2 1 0,00 1,000
A*B 6 179762 179762 29960 72,33 0,000

A*C 2 396132 396132 198066 478,20 0,000
A*D 2 94616 94616 47308 114,22 0,000

A*E 8 9 9 1 0,00 1,000
B*C 3 642 642 214 0,52 0,671

B*D 3 436361 436361 145454 351,18 0,000
B*E 12 5 5 0 0,00 1,000

C*D 1 738 738 738 1,78 0,182
C*E 4 3 3 1 0,00 1,000

D*E 4 2 2 1 0,00 1,000
Error 2334 966720 966720 414

Total 2399 4118505

S = 20,3517 R-Sq = 76,53% R-Sq(adj) = 75,87%

Fig. 8. PTS analysis: ANOVA table from MINITABs14.

is achieved by factor D, namely the coefficient of variation, as
confirmed by the slope of the main effect plot. The sensitivity of
the model to this factor is an expected result and, as a result, the
higher is the coefficient of variation the higher is the total buffer
capacity to be allocated. Finally, the lower-right plot diagram
confirms that the random seed is not a significant factor of the
model, thus emphasizing the robustness of the proposed PTS
algorithm. Regardless of the interactions involving factor A, which
clearly conditions the other factors, it is worth investigating the
interaction between factor B and D, which is graphically repre-
sented by the interaction plot of Fig. 10. The main finding consists
of the different slope between the balanced line related plot and
the other plots. The balanced flow line is significantly influenced
by the coefficient of variation, while the unbalanced ones seem to
be insensitive to the change of coefficient of variation.

6. Conclusions

In this paper, the optimization of the primal buffer allocation
problem through metaheuristic algorithms has been investigated.
A parallel tabu search, PTS, which makes full use of an adaptive
neighborhood generation mechanism has been presented. PTS
algorithm was compared to three real-encoding metaheuristics
derived from the relevant literature on the field of applied
mathematics and computation. Then, a binary search specifically
developed in the literature for addressing the primal buffer
allocation problem has been implemented. A comprehensive set
of benchmark problems have been generated according to several
experimental factors and the optimal solution of both small- and
medium-sized instances have been computed by means of a MILP-

based simulation/optimization approach. An exact evaluative
method consisting of a recursive algorithm has been devised to
simulate the behavior of the system. The main parameters of the
real-encoding metaheuristic algorithms and PTS have been
selected on the basis of a proper non-parametric calibration
analysis. Then, a multiple-comparison statistical test, embracing
all the provided optimization techniques, has been carried out to
individuate the most performing algorithm.

The obtained numerical results confirmed the outperformance
of PTS with respect to the other procedures. The binary search
incorporating an adaptive tabu search demonstrated a good
performance for small and medium sized instances, even though
the high computational time it requires to converge severely limits
its application. A significant sensitivity to the initial total buffer
capacity to be allocated represents another drawback of this
method. The differential evolution algorithm confirmed its effec-
tiveness as well as its computational efficiency, despite the basic
configuration. In fact, the narrow gap from PTS, regardless of the
size of the problem, makes this technique suitable to be improved
by future researches. Both particle swarm optimization and
genetic algorithms demonstrated a worse performance in solving
the BAP at hand.

The sensitivity analysis on the considered experimental factors,
number of machines, type of line, coefficient of variation and
minimum throughput rate, confirmed the expected outcomes. On
the other hand, the influence of balanced/unbalanced line config-
urations on the response variable represents a leading finding of
the ANOVA analysis. Furthermore, the analysis of the interaction
between the type of line balancing and the coefficient of variation
revealed another characteristic to be taken into account when the
buffer capacity of a flow line has to be designed.

Future research may involve the implementation of new hybrid
metaheuristics and the investigation of longer flow lines as well.
The proposed PTS could be extended to consider non-linear flow
systems including split and merge stations by modifying the
generation of the initial solutions and adopting different neighbor-
hood strategies. The segmentation of the system in smaller
systems could be another approach [58] to couple with the
proposed PTS. Finally, the effect of different types of data distribu-
tions on the performance of the metaheuristics should be
surveyed.

Appendix A

Procedure: Total buffer capacity and throughput evaluation

Step 1: sequencing parts on the first machine
x1,1¼0
y1,1¼x1,1þt1,1
For j¼2 To J

x1, j¼y1, j�1

y1, j¼x1, jþt1, j
Next j

Step 2: sequencing parts on the other machines
For i¼2 To N

For j¼1 To J

If jo J Then

If j¼1 Then

If (i�Bj�1)r0 Then

xi, j¼yi�1, j

Else

If yi�1, j4yi�Bj�1, jþ1 Then

xi, j¼yi�1, j

Else

M
e
a
n

 o
f

R
E

S
.
V

A
R

.P

4321

60

40

20

21

21

60

40

20

54321

B C

D E

Fig. 9. PTS analysis: main effect plot for factors B, C, D, E.

D

M
e

a
n

21

120

100

80

60

40

20

0

B

3
4

1
2

Fig. 10. PTS analysis: interaction plot (data means) for the response variable.

xi, j¼yi�Bj�1, jþ1

End If

End If

End If

If jZ2 Then

If i�Bj�1r0 Then

If yi, j�1Zyi�1, j Then

xi, j¼yi, j�1

Else

xi, j¼yi�1, j

End If

Else

If yi, j�1Zyi�1, j And yi, j�1Zyi�Bj�1, jþ1 Then

xi, j¼yi, j�1

ElseIf yi�1, jZyi, j�1 And yi�1, jZyi�Bj�1, jþ1 Then

xi, j¼yi�1, j

ElseIf yi�Bj�1, jþ1Zyi, j�1 And yi�Bj�1, jþ1Zyi�1, j

Then

xi, j¼yi�Bj�1, jþ1

End If

End If

End If

Else

If yi, j�1Zyi�1, j Then

xi, j¼yi, j�1

Else

xi, j¼yi�1, j

End If

End If

yi, j¼xi, jþti, j
Next j

Next i

makespan computation: M¼y(N, J)
throughput computation:θ¼N/M
total buffer capacity Z¼Sumk(Bk)

Appendix B

Differential evolution pseudo-code

Step 1: Initialization.
Scale factor F, crossover rate CR, population size M and the
maximum number of iterations S are initialized. In addition, the
whole set of candidate solutions is generated through the ISG
procedure. Every variable is defined in the range [Lk,Uk] with
k¼1,…,J�1, where Lk¼1 and Uk¼N�1 are lower bound and
upper bound of each variable ξk, respectively.
Step 2: Mutation.
Any trial solution is mutated according to a target solution.
Usually, several equations may be used to handle such target
solution (see for example [54,44]). In our implementation of DE
the most popular equation has been employed:

vsþ1
m ¼ ξsm3þFðξsm1�ξsm2Þ ð13Þ

where F is the so-called scale factor, s indicates the current
iteration and m1, m2, m3 are different integers that are
randomly drawn from the set 1;…;Mf g.
Step 3: Crossover.
This operator aims to mix variables of a parent solution ξsk and a
trial solution vsk through the following equation:

usþ1
m;j ¼

vsþ1
m;k

if randðÞoCR or k¼ r½1;ðK�1Þ�

ξsm;k otherwise

8

<

:

ð14Þ

where rand() is a random number in the range [0,1] and
r½1;ðK�1Þ� is a random number in the range [1, K�1].
Step 4: Selection.
If the offspring improves the performance of the related parent
then it will replace the parent itself on the new population,
otherwise that parent will take place in the new population:

ξsþ1
m ¼

usþ1
m if f ðusþ1

m Þo f ðξsmÞ

ξsm otherwise

(

ð15Þ

Step 5: Stopping criterion.
If the maximum number of iteration is reached then the
algorithm is stopped; else Steps 3 and 4 are repeated.

Appendix C

Particle swarm optimization pseudo-code

Step 1: Initialization.
A swarm of M of particles obtained through the ISG procedure
is generated. The position vector of each particle is
ζiðtÞ ¼ ðζi;1ðtÞ; ζi;2ðtÞ;…; ζi;J�1ðtÞÞ and its velocity is denoted as
viðtÞ, where t is the index of the current generation.
Step 2: Velocity computation.

At each iteration, the particle velocity is computed as follows:

viðtÞ ¼w � viðt�1Þþci � rðpbestiþgbest�2ζiðtÞÞ ð16Þ

Where, pbestiis best encountered position of the i-th particle,
gbestis index of the best particle in the swarm, r is a random
number in U[0,1], while wi and ci are the inertia weight and the
acceleration coefficient, respectively.

wi ¼ λ�
gbesti
pbesti

� �

ð17Þ

ci ¼ μþ
gbesti
pbesti

� �

ð18Þ

Step 3: Position computation.

At each iteration, the new particle position depends on the
previous position and on the current velocity value, as follows:

ζiðtÞ ¼ ζiðt�1ÞþviðtÞ ð19Þ

References

[1] Alon G, Kroese DP, Raviv T, Rubinstein RY. Application of the Cross-
Entropy method to the buffer allocation problem in a simulation-based

environment; 2005.
[2] Arumugam MS, Rao MVC, Chandramohan A. A new and improved version of

particle swarm optimization algorithm with global-local best parameters. J
Knowl Inform Syst (KAIS) 2008;16(3):324–50.

[3]

[4]

Blum C, Roli A. Metaheuristics optimization: overview and conceptual com-
parison. ACM Comput Surv 2003;35(3):268–309.
Buzzacot JA, Shantikumar JC. Stochastic models of manufacturing systems.
New Jersey: Prentice-Hall; 1993.

[5] Chow W-M. Buffer capacity analysis for sequential production lines with

variable processing times. Int J Prod Res 1987;25(8):1183–96.
[6] Coello Coello CA, Mezura Montes E. Constraint-handling in genetic algorithms

through the use of dominance-based tournament selection. Adv Eng Inform

2002;16(3):193–203.
[7] Corder GW, Foreman DI. Nonparametric statistics: a step-by-step approach.

Wiley; 978-1118840313.
[8]

[9]

Cruz FRB, Duarte AR, Van Woensel T. Buffer allocation in general single-server
queueing networks. Comput Oper Res 2008;35:3581–98.
Dallery Y, Gershwin SB. Manufacturing flow line systems: a review of models

and analytical results. Queuing Syst 1992;12(1-2):3–94.
[10] Das S, Suganthan PN. Differential evolution: a survey of the state-of-the-art.

IEEE Trans Evol Comput 2011;15(1):27–54.

[11] Deep K, Singh KP, Kansal ML, Mohan C. A real coded genetic algorithm for
solving integer and mixed integer optimization problems. Appl Math Comput
2009;212(2):505–18.

[12] Deep K, Thakur M. A new crossover operator for real coded genetic algorithms.
Appl Math Comput 2007;188(1):895–911.

[13] Demir L, Tunali S, Eliiyi DT. An adaptive tabu search approach for buffer
allocation problem in unreliable non-homogeneous production lines. Comput
Oper Res 2012;39:1477–86.

[14] Demir L, Tunali S, Eliiyi DT, Lokketangen A. Two approaches for solving buffer
allocation problem in unreliable production lines. Comput Oper Res

2013;40:2556–63.
[15] Demir L, Tunali S, Eliiyi DT. The state of the art on buffer allocation problem: a

comprehensive survey. J Intell Manuf 2014;25(3):371–92.
[16] Diamantidis AC, Papadopoulos CT. A dynamic programming algorithm for the

buffer allocation problem in homogenous asymptotically reliable serial pro-
duction lines. Math Prob Eng 2004;3:209–23.

[17] Dolgoui A, Emerev A, Kolokolov A, Sigaev V. A genetic algorithm for the buffer
allocation of buffer storage capacities in a production line with unreliable

machines. J Math Model Algorithms 2002;1:89–104.
[18] Dolgoui A, Emerev A, Sigaev V. HBBA: hybrid algorithm for buffer allocation in

tandem production lines. J Intell Manuf 2007;18:411–20.
[19] Gershwin SB. Manufacturing systems engineering. PTR Prentice Hall; 1994.
[20] Gershwin SB, Schor JE. Efficient algorithms for buffer space allocation. Ann

Oper Res 2000;93:117–44.
[21] Glover F, Laguna M. Tabu search. Dordrecth: Kluwer Academic Publishers;

1997.
[22] Hasama M, Ito T, Matsuno S. Optimization of buffer-size allocation using

dynamic programming. Int J Math Models Methods Appl Sci 2011;5

(1):125–32.
[23] Hillier FS, So KC. The effect of the coefficient of variation of operation times on

the allocation of storage space in production line systems. IIE Trans 1991;23

(2):198–206.
[24] Hillier FS, So KC. The effect of machine breakdowns and interstage storage on

the performance of production line systems. Int J Prod Res 1991;29

(10):2043–55.
[25] Huang MG, Chang PL, Chou YC. Buffer allocation in flow-shop-type production

systems with general arrival and service patterns. Comput Oper Res

2002;39:103–21.
[26] Jensen PA, Pakat R, Wilson JR. Optimal buffer inventories for multi-stage

production systems with failures. Eur J Oper Res 1991;51(3):313–26.

[27]

[28]

Jeong K-C, Kim Y-D. Algorithms for determining capacities of individual
buffers in assembly/disassembly systems. Comput Ind Eng 1997;33

(3�4):605–8.
Kennedy J, Heberhart RC. Particle swarm optimization. Proceeding of the 1995

IEEE international conference on neural network, vol. 4. IEEE Press; 1995. p.
1942.

[29] Kim S, Lee H-J. Allocation of buffer capacity to minimize average work-in-
process. Prod Plan Control 2001;12(7):706–16.

[30] Lee H-T, Chen S-K, Chang S. A meta-heuristic approach to buffer allocation on

production line. J CCIT 2009;38(1):167–77.
[31] Lutz CM, Davis KR, Sun M. Determining buffer location and size in production

lines using a tabu search. Eur J Oper Res 1998;106:301–16.
[32] Mac Gregor Smith J, Cruz FRB. The buffer allocation for general finite buffer

queuing networks. IEE Trans 2005;37(4):343–65.
[33] Mann HB, Whitney DR. On a test of whether one of two random variables is

stochastically larger than the other. Ann Math Stat 1947;18:50–60.
[34] Massim Y, Yalaoui F, Amodeo L, Zeblah A. Efficient combined immune-

decomposition algorithm for optimal buffer allocation in production lines for
throughput and profit maximization. Comput Oper Res 2010;37:611–20.

[35] Matta A. Simulation optimization with mathematical programming represen-
tation of discrete event systems. December. In: Mason SJ, Hill RR, Moench L,
Rose O, Jefferson T, Fowler JF, editors. Proceedings of the 2008 Winter

Simulation Conference. Piscataway, New Jersey: Institute of Electrical and

Electronic Engineering Inc; 2008. p. 1393–400.
[36] Michalewicz S. Genetic algorithmsþdata structures¼evolution programs.

Berlin-Heidelberg: Springer-Verlag; 1994.
[37] Montgomery DG. Design and analysis of experiments. 8 edition. New York:

Wiley; 2012.
[38] Nahas N, Ait-Kadi D, Nourelfath M. A new approach for buffer allocation in

unreliable production lines; 2006.

[39]

[40]

Nowicki E, Smutnicki C. The flow shop with parallel machines: a tabu search

approach. Eur J Oper Res 1998;106(2�3):226–53.
Papadopoulos CT, O'Kelly MEJ, Vidalis MJ, Spinellis D. Analysis and design of
discrete part production lines. New York: Springer ScienceþBusiness Media;
2009.

[41] Papadopoulos CT, O'Kelly, Tsadiras AK. A DSS for the buffer allocation of
production lines based on a comparative evaluation of a set of search

algorithms. Int J Prod Res 2013;51(14):4175–99.
[42] Papadopoulos HT, Heavey C. Queuing theory in manufacturing systems

analysis and design: a classification of models for production and transfer lines.
Eur J Oper Res 1996;92:1–27.

[43] Papadopoulos HT, Vidalis MI. A heuristic algorithm for the buffer allocation in

reliable unbalanced production lines. Comput Ind Eng 2001;41:261–77.
[44] Price KV, Storn RM, Lampinen JA. Differential evolution, a practical approach

to global optimization. New York: Springer; 2005.
[45] Reeves CR. Modern heuristic technique. In: Rayward-Smith VJ, Osman IH,

Reeves CR, Smith GD, editors. Modern Heuristic Search Methods. 1st ed..
England: John Wiley & sons; 1996.

[46] Richardson JT, Palmer MR, Liepins G, Hilliard M. Some guidelines for genetic

algorithms with penalty functions. In: Schaffer D, editor. Proceedings of the

Third International Conference on Genetic Algorithms. George Mason Uni-
versity: Morgan Kaufmann Publishers; 1989. p. 191–7.

[47] Sabuncuoglu I, Erel E, Gocgun Y. Analysis of serial production lines: character-
ization study and a new heuristic procedure for optimal buffer allocation. Int J
Prod Res 2006;44(13):2499–523.

[48] Seong D, Chang SY, Hong Y. Heuristic algorithms for buffer allocation in a

production line with unreliable machines. Int J Prod Res 1995;33

(7):1989–2005.
[49] Shi L, Shuli M. Optimal buffer allocation in production lines. IEE Trans 2003;35

(1):1–10.
[50] Smith Alice E, Coit David W. Penalty functions handbook of evolutionary

computation. Section C 5.2. Oxford University Press and Institute of Physics

Publishing; 1996.
[51] Sörensen K, Janssens JK. A Petri net model of a continuous flow transfer line

with unreliable machines. Eur J Oper Res 2004;152:248–62.
[52] Spinellis DD, Papadopoulos CT. Stochastic algorithms for buffer allocation in

reliable production lines. Math Prob Eng 2000;5:441–58.
[53] Staley D, R, Kim DS. Experimental results for the allocation of buffers in closed

serial production lines. Int J Prod Econ 2012;137(2):284–91.
[54] Storn R, Price KV. Differential evolution – a simple and efficient heuristic for

global optimization over continuous spaces. J Global Opt 1997;11(4):341–59.
[55] Storn R, Price K. Differential evolution: a simple and efficient adaptive scheme

for global optimization over continuous spaces. Technical Report TR-95-012.
Berkeley, USA: International Computer Science Institute; 1995.

[56] Talbi E-G. Metaheuristics: from design to implementation. Wiley;
0-470-27858-7.

[57] Tsadiras AK, Papadopoulos CT, O'Kelly MEJ. An artificial neural network based

decision support system for solving the buffer allocation problem in reliable

production lines. Comput Ind Eng 2013;66:1150–62.
[58] Shi C, Gershwin SB. A segmentation approach for solving buffer allocation

problems in large production systems. Int J Prod Res 2015 in press.
[59] Yeniay Ö. Penalty function methods for constrained optimization with genetic

algorithms. Math Comput Appl 2005;10(1):45–56.

	A parallel tabu search for solving the primal buffer allocation problem in serial production systems
	Introduction
	Description of the problem
	Solving the stochastic buffer allocation problem
	Mathematical programming formulation
	The parallel tabu search
	Initial seed generation (ISG)
	Stochastic buffer distribution
	Move representation and adaptive neighborhood generation
	Further characteristics of PTS
	Objective function

	Other generative approaches
	Genetic algorithm
	Differential evolution
	Particle swarm optimization
	Binary search

	Computational experiments
	Numerical results
	Calibration of the evolutionary algorithms
	Tuning analysis of PTS
	Multiple-comparison of metaheuristics
	Computational comparison and convergence analysis
	ANOVA analysis for PTS

	Conclusions
	Appendix A
	Appendix B
	Differential evolution pseudo-code

	Appendix C
	Particle swarm optimization pseudo-code

	References

