An effective heuristic for solving a combined cargo and
inventory routing problem in tramp shipping

Ahmad Hemmati', Magnus Stilhane’, Lars Magnus Hvattum',
Henrik Andersson

" Department of Industrial Economics and Technology Management, Norwegian University of Science
and Technology, Alfred Getz veg 3, NO-7491 Trondheim, Norway
{ahmad.hemmati} {magnus.staalhane} {lars.m.hvattum} {henrik.andersson} @iot.ntnu.no

Abstract

In this paper a vendor managed inventory (VMI) service in tramp shipping is
considered. VMI takes advantage of introducing flexibility in delivery time and cargo
quantities by transferring inventory management and ordering responsibilities to the
vendor which in this case is a shipping company. A two-phase heuristic is proposed to
determine routes and schedules for the shipping company. The heuristic first converts
inventories into cargoes, thus turning the problem into a classic ship routing and
scheduling problem. It then uses adaptive large neighborhood search to solve the
resulting cargo routing and scheduling problem. The heuristic iteratively changes the
cargoes generated to handle the customer’s inventories, based on the information
obtained from an initial solution. Computational results are presented, discussed and
compared with exact solutions on large realistic instances. The results reveal the
potential savings from converting traditional contracts of affreightment to an
integrated VMI service. The factors that influence the benefits obtainable through
VMI are also analyzed.

Keywords: maritime transportation; vendor managed inventory; supply chain
management; adaptive large neighborhood search; ship routing; maritime inventory
routing;

1 Introduction

Maritime transportation plays a major role in international trade today. More than nine billion tons of
goods are carried by ships annually (UNCTAD 2013), having an estimated range from 65% to 85% of
the total weight transported in international trade (Christiansen et al., 2007). Maritime transportation is
the obvious choice for heavy industrial activities where large volumes are transported over long

1|Page

distances since it has the lowest per unit cost of all transport modes (Christiansen et al., 2013). This is
exploited by industries related to a wide range of products from oil and chemicals to cars and foods.

There are many commercial shipping routes in the world. Even though the main routes are between
continents, there are also major domestic routes along shorelines and between islands, for example in
Greece, Indonesia, Japan, Norway, Philippines, and the USA.

Among the three basic modes of operation in maritime transportation (liner, industrial and tramp
shipping) distinguished by Lawrence (1972), we are interested in tramp shipping which is comparable
to a taxi service and follows the available cargoes (a mix of mandatory contract cargoes and optional
spot cargoes). Tramp shipping companies often engage in contracts of affreightment (COA) which
describe obligations to carry specified quantities of cargo between specified ports within a given time
frame for an agreed payment per ton. Some COAs have flexibility in the size of each cargo or
shipment. Contracts between the shipping company and the cargo owner can be split into two main
categories, More-Or-Less-Owner’s-Option (MOLOO) and More-Or-Less-Charterer’s-Option
(MOLCO) (Brenmo et al. 2007b). In a typical contract, the quantity transported can vary up to +10%
or +20% of the expected cargo quantity. In MOLCO contracts, the cargo owner has flexibility to
determine the quantity, which is often not decided until the ship enters the loading port. In these
situations, the shipping company planner must ensure that the ship assigned to this particular cargo has
enough free capacity to carry the upper limit of the cargo quantity. However, in MOLOO contracts the
ship owner decides the cargo quantity within the given interval. Sometimes, the planner can utilize this
flexibility to achieve better fleet schedules and higher profits (Fagerholt and Lindstad, 2007).

There are mainly two types of problems that have been considered in ship routing and scheduling
problems; cargo routing and inventory routing (Al-Khayyal and Hwang, 2007). In this paper we focus
on a mix of these two which is described in detail in Section 2. Different variants of cargo routing
problems have been targeted in the literature and various solution methods have been employed to
solve them. For instance, Bronmo et al. (2007a) presented a multi-start local search heuristic for a ship
routing and scheduling problem. Afterwards Korsvik et al. (2010) proposed a tabu search heuristic and
Malliappi et al. (2011) developed a variable neighborhood search heuristic to solve almost the same
problem. Recently Hemmati et al. (2014) presented a wide range of benchmark instances for the ship
routing and scheduling problem. They proposed an adaptive large neighborhood search heuristic to
solve the problem.

The maritime inventory routing problem is also considered by many researchers (Christiansen, 1999;
Song and Furman, 2010; Engineer et al., 2012; Papageorgiou 2014). Some of the works are based on
real-life problems, for example Grenhaug et al. (2010), who worked on a maritime inventory routing
problem in the liquefied natural gas business and Christiansen et al. (2011) who presented a case study
from the cement industry. Recently, Stilhane et al. (2014) introduced a new problem that combines
traditional tramp shipping with a vendor managed inventory (VMI) service. They presented an arc-
flow model describing the problem, a path-flow model which is solved using a hybrid approach that
combines branch-and-price with a priori path-generation, and a heuristic path-generation algorithm.
Their results show that replacing the traditional COAs with VMI services increases supply chain profit
and efficiency. However, even with the heuristic path-generation algorithm, they are only able to solve
small size instances in which only a few COAs have been replaced by VMI services. In addition,
running times presented in their paper drastically increase from seconds to days by small increases in
the problem size or even by increasing the number of replaced COAs. The method in (Stélhane et al.,
2014) can only solve small instances, and it is therefore interesting to develop a method to solve

2|Page

realistically sized instances and to evaluate the contribution of introducing a VMI service for such
instances.

Our contributions in this paper lies in 1) presenting a powerful novel heuristic to solve the problem
introduced in (Stalhane et al., 2014) which enables the solution of realistically sized instances in
reasonable time. In particular, we propose a heuristic algorithm which transforms the inventory
management problem into a pickup and delivery problem with time windows; 2) introducing new
realistically sized benchmark instances for a tramp shipping company offering VMI services; 3)
presenting a computational study illustrating the performance of the heuristic; 4) analyzing the
economic impact for the shipping company, and the supply chain, from replacing some of the
traditional COAs with VMI services for realistically sized instances and also analyzing the factors that
influence the benefits obtainable through VMI.

The rest of the paper is organized as follows. Section 2 describes the routing and scheduling problem
of a tramp shipping company which offers VMI services. In Section 3 an iterative cargo generating
and routing (ICGR) heuristic is presented. Numerical experiments appear in Section 4. Finally,
conclusions are drawn in Section 5.

2 Problem description

A regular tramp ship routing and scheduling problem is usually classified as a maritime version of the
pickup and delivery problem with time windows and consists of routing a given fleet of ships to
service a set of cargoes. Each cargo consists of a given quantity and has to be transported from a
pickup port to a delivery port within given time windows. In maritime transportation there is usually a
mix between contracted cargoes that the shipping company must transport, and a set of optional (or
spot) cargoes that the company may transport if it is profitable and there is sufficient capacity in the
fleet. The fleet of ships is usually heterogeneous with the ships having different cargo capacities,
speeds, and cost structures. In addition, the ships are located at different positions, either in a port or
somewhere at sea, at the beginning of the planning horizon.

Often the contracted cargoes of shipping companies are based on COAs, however, as argued in
(Stalhane et al., 2014), these COAs may, in some cases, be replaced by a VMI service. VMI services
are based on a business model where a third party logistics provider, here a shipping company, has
taken on the responsibility of inventory management at both supplier and customer sites. This service
permits the customer to focus on its core business and outsource the inventory management processes.
The use of VMI has several positive effects on the supply chain performance, such as decreasing the
inventory holding costs, reducing stock outs, increasing competition and improving the service level.

In this paper, we consider a combined cargo routing and inventory management problem faced by a
shipping company that offers VMI services to some of its customers, i.e. some of the COAs are
replaced by VMI services. Thus, the company is engaged in transporting the remaining COAs and
optional spot cargoes, as well as offering VMI services to some of its customers. Each VMI service
consists of transporting a single product from one storage where the product is produced to another
one where the product is consumed, and the shipping company must ensure that the inventory level of
both storages stay within their limits throughout the planning horizon.

The problem consists of a set of transportation tasks, C = {1, ..., N}, that may be partitioned into three
disjoint sets: the set of inventory pairs C!, which represents COAs that are replaced with VMI
services, the set of mandatory cargoes C™, which represents the remaining COAs, and the set of
optional cargoes C°. It may be defined on a graph G = (IV, A) where N = {1,2, ..., 2N} is the set of

3|Page

nodes, and A is the set of arcs. With each transportation task i € C there are associated two nodes, the
pickup node i and the delivery node (N + i). The nodes may also be divided into three disjoint sets:
the set of nodes which are associated with inventory pairs V!, the set of nodes associated with
mandatory cargoes MM, and the set of nodes associated with optional cargoes NV'?. The set of arcs,
A S N X N, consists of the feasible movements of a ship between the nodes.

During a given planning horizon, going from time 0 to T, the inventory level of the storage associated
with inventory node i € N must lie between an upper and a lower limit (S; and S;). The initial
inventory level is denoted S;, and a production (if positive) or consumption (if negative) rate R;, is also

associated with each inventory node. Inventory pairs may be serviced at most M; times during the
planning horizon to keep the inventories within their limits. It is assumed that there are lower and

upper limits (Q; and ai) on the loaded and unloaded quantities and that the associated handling time in

port is quantity-dependent. The cargo quantity associated with node i € NCUN? that must be
transported between the pickup and delivery port is denoted by Q;.

The combined cargo routing and inventory management problem consists of designing routes and
schedules for the vessels. The problem also aims at determining the quantities handled at each
inventory node without exceeding the storage's inventory limits. The objective of the problem is to
maximize the profit of the shipping operations which is the difference between revenues and costs.
Revenues come from servicing the inventory and mandatory cargoes and also from the optional
cargoes that are serviced, while the costs are associated with the sailing performed by the fleet of
ships. A feasible solution considers the ship capacities, time windows for service at ports, and
precedence and pairing of visits to the pickup and delivery ports of a given transportation task for each
ship. In addition, a feasible solution must ensure feasible upper and lower limits on the cargo quantity
loaded or unloaded at each visit to an inventory node, and that all inventory levels stay between their
limits. For a mathematical model of the problem, we refer the readers to (Stalhane et al. 2014).

3 Iterative cargo generating and routing heuristic

To solve the routing and scheduling problem of a tramp shipping company offering VMI services an
iterative two-phase heuristic is proposed. The basic idea of the heuristic is to first convert the cargo
and inventory routing problem into a pure cargo routing problem by transforming the inventories into
sets of cargoes. This problem is solved by an adaptive large neighborhood search. The solution is
analyzed and the sets of cargoes are updated. The heuristic then iterate between solving the cargo
routing problem for a given set of cargo sizes and updating the cargo sizes to obtain a new cargo
routing problem. A pure cargo routing problem consists of cargoes with predefined origin and
destination nodes, quantity and time windows for both origin and destination nodes. When the cargo
and inventory routing problem is converted to a pure cargo routing problem the inventory balance in
inventory pairs is taken into account.

In the first step, the iterative cargo generating and routing (ICGR) heuristic finds the amount of cargo
that has to be transported on each trip between two nodes associated with a paired inventory by
considering the production and consumption rates, the initial stock levels, the inventory limits, and a
predefined number of trips. For each trip required between two nodes of a paired inventory, we define
a mandatory cargo. The next step of the heuristic is to consider all inventory management constraints
to calculate time windows for mandatory cargoes arising from paired inventories. These time windows
guarantee that the inventory levels at the inventories remain within their limits if the cargoes are
picked up and delivered within the time windows.

4|Page

The heuristic then checks the feasibility of the problem. To accomplish this, the optional cargoes are
ignored and the heuristic tries to find a feasible set of cargoes which replace the inventory
management for each inventory pair. Having a feasible set of cargoes along with the mandatory and
optional cargoes and time windows related to each cargo, the initial cargo routing problem is prepared
and solved by the ALNS heuristic.

After the cargo routing problem is solved, the heuristic creates new alternative cargo quantities for
each visit to each inventory and adds them to a list. Then, it generates all possible combinations of
cargo quantities for all inventory pairs, where each combination corresponds to a set of cargoes and
represents a new cargo routing problem. The number of these combinations grows exponentially with
the number of inventories and the number of visits to each inventory. To reduce solution times, the
ALNS is not applied to all possible cargo combinations. Instead, a K-means clustering algorithm is
used to partition the combinations into clusters of similar combinations. An iterative process is then
used to select new cargo quantity combinations that are used as input to the ALNS. The pseudo-code
of the heuristic is presented in Algorithm 3.1.

Algorithm 3.1 ICGR heuristic

1: Inputs: time horizon, number of cargoes, number of inventory pairs, number of vessels, net
production-consumption rates, lower stock limits, upper stock limits, initial stocks, vessels
capacity, vessels compatibility, travel timetable, travel cost table, minimum and maximum limits
on the (un)loaded quantity, (un)loading time, revenue of the cargoes;

2: Generate initial cargo quantities to replace the inventory pairs (Algorithm 3.2);

3: Calculate time windows for the generated cargoes (Algorithm 3.3);

4: Find feasible quantities for inventory cargoes (Algorithm 3.4);

5: Add mandatory and optional cargoes together with the feasible set of inventory cargoes into the
cargo list and set (§*) as the best solution and f(S§*) = —Inf as the objective value;

6: For (Initial_iteration < Max Initial_iteration)

T: Solve the cargo routing problem by ALNS considering all cargoes and get the solution (S)

and the objective value f(S) (Algorithm 3.5);

8: Update S*if (f(S) > f(S*))

9: For each inventory pair

10: For each visit

11: Create pool of New cargo quantities (Algorithm 3.6);

12: End-for

13: End-for

14: End-for

15: Generate all possible combinations of cargo quantities;
16: Use K-means clustering algorithm to cluster the combinations (Algorithm 3.7);
17: For (Iteration < Max Iteration)

18: Cluster Selection to select potentially improving clusters (Algorithm 3.8);

19: Pick a random combination from the selected cluster which is not explored yet;

20: Update the quantities of the inventory cargoes using the combination picked;

21: Calculate time windows for new cargoes (Algorithm 3.3);

22: Assign the (un)loading time to the inventory cargoes based on their new quantities;

23: Solve the cargo routing problem by ALNS considering all cargoes and get the solution (S")
and f(S") (Algorithm 3.5);

24: Update S* if (f(S") > f(5%))

25: Adjust cluster weights (Algorithm 3.8);

26: End-for

5|Page

Algorithm 3.2 Generate initial cargo quantities

The purpose of this algorithm is to generate initial cargo quantities for all inventory pairs. To this end,
for each inventory pair i € N, we define the minimum total quantity Q; that should be loaded at node
i and unloaded at node N + i during the planning horizon. This is to ensure that at the end of the
planning horizon (T'), the inventory level at nodes i and N + i will remain within the limits.

Q] = max{(S; + TR; — 5, (Sw+i — Sn+i — TRy+1)} M

In formula (1) we take the maximum of two terms where the first is related to the loading node i and
the second to the unloading node N + i. At the end of the planning horizon (T), the loading node i
with a production rate of R;, produces TR; of the product. Considering the initial inventory level (S;),
the total amount that must be transported to ensure that the inventory level at node i does not exceed
the upper inventory limit (S;), is equal to the first term. The second term is calculated with the same
concept for node N + i. Because node N + i is a consumption node, the lower inventory limit (Sy+;)
is considered in this case.

Inventory pairs may be visited up to M; times to keep the inventories within their limits. It is assumed
that the quantities of the initial cargoes are equal for all visits but they may change during the main
algorithm. Thus, the quantity of the m!" visit to the inventory node i € N', Q;,,, which is initiated in
this section is calculated as in formula (2).

T

_ @
Um =% @

It is to note that the sum of quantities on all the visits for node i is constant and is equal to Q] .

Algorithm 3.3 Calculate time windows

For each new generated cargo (i, m), we need to define time windows for both the pickup node and
the delivery node taking the inventory levels into account.

(0,5 =3, Q;

L%=<WQ”HS 3)
J%] S, <™, 0y

0 'Si :§i

Tim = 3 4)
IZJ 1 Ql] SL+SJ S < S

Formulas (3) and (4) calculate the time windows for each generated cargo at its pickup node. T}, and

—I
T are the earliest and latest time that we can visit inventory node i to pickup for the m!" time.

Figure 1 illustrates the above formulas of calculate time windows for a pickup node with 3 visits with
different quantities and it is the same concept for delivery nodes.

6|Page

0 ySnai — Sn+i = 278 Q)

I

ZN+i,m = sm _ (5)
j=1Qij*SN+i—SN+i g s m
, . — C < Y0y
l —Ry+i N+i N+i Jj=1 QU
0 »Sn+i = Sh+i
—I
Teim =14 (6)
Yj=1 Qij+*SN+i—SN+i

- ySn+i > S+
N+i

Formulas (5) and (6) calculate the time windows for each generated cargo at its delivery node. T, +im

—I
and Ty 4; m, are the earliest and latest time that we can visit inventory node N + i to deliver for the mth
time.

Upper limit

Inventory level

Lower limit

~
rd

Time

Figure 1: Inventory level during the planning horizon for a production inventory and time windows for 3 visits.

Algorithm 3.4 Find feasible combination of Q;,,-values

The aim of this algorithm is to find a feasible set of Q;;,, and related time windows which satisfy the
inventory limits. To accomplish this, the optional cargoes are ignored and mandatory cargoes are
considered as well as inventory cargoes. We start with the mandatory cargoes plus initial cargo
quantities for inventory pairs (Algorithm 3.2). If there exist no feasible routing and scheduling solution
where all of these cargoes are transported, we start a semi-full search inside the minimum and
maximum feasible amounts for Q;;,,. The term semi-full search is used because we divide the feasible
interval for each Q;,, into 100 values and we do not consider all the values inside the interval. Thus for
each Q;,, we have certain number of values which are uniformly distributed within the feasible
interval for that Q;,,. We then consider all the combinations of these Q;,, and for each combination we
find the time window (Algorithm 3.3). The next step is to solve each combination as a cargo routing

7|Page

problem by ALNS (Algorithm 3.5) and if we get a feasible solution the algorithm stops and the
incumbent combination of Q;,,,-values, is kept as feasible set of cargoes.

Algorithm 3.5 Adaptive large neighborhood search

The ALNS heuristic was first introduced by Ropke and Pisinger (2006) and is an extension of the large
neighborhood search (LNS) heuristic of Shaw (1997). ALNS provides the possibility of having
multiple destroy and repair methods within the same search process as in LNS (Ribeiro and Laporte
2012). In Algorithm 3.5 a general pseudo-code for our ALNS implementation based on Hemmati et al.
(2014) to solve the cargo routing problem is presented.

Algorithm 3.5 ALNS heuristic for cargo routing problems

1: Function ALNS

2 generate initial solution s
3 Sbest = S
4 Repeat
5: s'=s
6: select removal and insertion heuristics based on search parameters
7 select the number of cargoes to remove and reinsert, q
8 remove q cargoes from s’
9: reinsert removed cargoes into s’
10: If (f(s") > f(Spest)) then
11: Spest = S’
12: If accept (s’ , s) then
13: s=s'
14: update search parameters
15: Until stop-criterion met

16: return Sz

In our ALNS implementation for the cargo routing problem, a solution is represented by one vector for
each vessel. Each vector consists of a sequence of nodes representing the order in which the nodes are
visited along the route of the ship. The ALNS heuristic generates an initial solution based on the
feasible combination of Q;,,-values found in Algorithm 3.4, and in each iteration g requests are
removed from the current solution and then reinserted in new positions. The value of q is chosen
randomly from the interval [4, min(100,¢én)] where n is the number of cargoes and ¢ is a constant
parameter. Thus, the number of removed requests varies during the search to provide different
neighborhood size. This algorithm uses three different removal heuristics: the Shaw removal heuristic,
the random removal, and the worst removal. The Shaw removal heuristic is based on removing a set of
similar cargoes, while the random removal heuristic selects g cargoes at random and removes them
from the solution. Finally, the worst removal heuristic removes cargoes that are placed in high cost
positions. Two insertion heuristics is used in this this algorithm: Basic greedy and regret-k. A regret-k
heuristic calculates the regret value which is equal to the sum of the cost differences when a cargo is
inserted in its best position and when it is inserted in its A-th best position, where in this paper, k varies
randomly from 2 to 4. In each iteration the regret-k heuristic chooses to insert the request that
maximizes regret value and insert it at its minimum cost position. This continues until all requests are

8|Page

inserted. Ties are broken by selecting the insertion with lowest cost. The basic greedy heuristic is
equivalent to the regret-1 heuristic. We use an adaptive weight adjustment in line 14 of Algorithm 3.5
to define and adjust the weight of each removal and insertion heuristic by using statistics from earlier
iterations. To this end, the entire search is divided into segments with 100 iterations in each. We then
calculate a score for each of the heuristics during the search in the current segment and at the end of
the segment new weights will be calculated based on their performances.

After weighting the heuristics, we select one of them using a roulette wheel mechanism. The removal
and insertion heuristic are selected independently. We have implemented the acceptance criterion of
simulated annealing, and the ALNS heuristics stops after 1000 iterations. For more details we refer the
readers to Hemmati et al. (2014).

Algorithm 3.6 New cargo quantity generator

This algorithm generates new cargo quantities for the inventory cargoes. The total quantity transported
between pairs of inventories is held constant. Thus, when an inventory cargo quantity related to a port
visit changes, the quantities of the rest of the visits to this pair must change as well. New quantities for
each inventory cargo are defined based on six different criteria, defined later in this section. Limits on
the quantity (un)loaded in ports and the sum of the cargo quantities in an inventory pair are considered
when a new value is generated for an individual cargo. To ensure a constant total quantity transported,
new cargo quantities are generated for the m — 1 first visits, while the remaining quantity is assigned
to the last visit. If the quantity for the last visit violates the minimum or maximum quantity limit, the
quantities assigned to the m — 1 first visits are impossible and the combination is discarded.

The inputs for this algorithm are the current solution and the onboard quantities during the planning
horizon. The algorithm also needs the capacity of the vessels and the minimum and maximum limits
on the quantity (un)loaded in the ports. We now explain the criteria through an example. Let us
assume that C;*and C;” represent the pickup and delivery visits of the i*" non-inventory cargo and that
I+, and I, represent the m*" pickup and delivery visits of the i*" inventory pair. Table 1 presents a
feasible solution to an instance with 4 vessels, 2 inventory pairs (each of them has an upper limit of
two visits) and 4 contracted cargoes. The 4 contracted cargoes have different sizes: 184, 620, 860, and
210.

V#1 Capacity: 900 Route: I B P
Onboard: 690 0

V#2 Capacity: 1200 Route: L In
Onboard: 690 0

V#3 Capacity: 1200 Route: Cf ¢} ¢ ¢; ¢+ I, ¢ I3
Onboard: 184 804 184 0 210 900 690 O

V#4 Capacity: 900 Route: I I
Onboard: 690 0

Table 1: Feasible solution to an instance with 4 vessels, 2 inventory pairs and 4 contracted cargoes

9|Page

The solution presented contains the vessel capacity, visit sequence, and the onboard quantity after each
visit. For example, vessel number 3 has a capacity of 1200 units. It starts its route by picking up 184
units of the contracted cargo number 2 and then picks up the contracted cargo number 1 with the
quantity of 620. Thus, the onboard quantity is equal to 804. The vessel continues its route to deliver
them, first cargo number 1 and then cargo number 2 and after delivering both the onboard quantity is
zero. So, these four visits make a segment. The vessel then picks up the last contracted cargo and the
inventory cargo related to the first visit of the second inventory pair and delivers them respectively,
creating a second segment. A segment is defined as the list of successive cargoes in a route from the
vessel is empty until it is empty the next time. Thus, a route consists of one or more segments. In the
example above, all cargoes are serviced with the exception of cargo 3, which is an optional cargo that
the fleet does not have sufficient capacity to service in this example.

In the following we generate new quantities based on the criteria. In the example, we have two
inventory pairs and each has two visits. As mentioned, new quantities should be defined for all
inventory cargoes but in the following we explain the criteria for only the inventory pair I, and I5;
which is serviced by vessel 3. Criteria 1 to 6 should be applied similarly to the remaining inventory
pairs.

1. Minimum and maximum possible quantities. The idea behind this criterion is that the extreme
points sometimes give the opportunity to handle more cargoes in a route and exploit the vessel
capacity efficiently. It mostly happens when the capacity of two vessels are different. Minimum

and maximum possible amounts (Q;, ai) are input parameters, here for the given example they
are (250, 1000).

2. Equal quantities. Sometimes equal quantities for all cargoes of an inventory pair give the best
route. For example where the capacities of two vessels are the same or when extreme points
lead to inefficient routes. The initial values for the cargoes are based on this criterion. Here the
equal quantity is 690.

3. Vessel capacities. The idea is to use the full capacity of a vessel. In the given example the only
vessel capacity between 250 and 1000 is 900, which is for vessels 1 and 4.

4. Vessel capacity subtracted by the maximum load of segments in the same vessel. Using the
onboard quantities of the given route, segments are defined. The idea of this criterion is to
exploit the vessel capacity in a segment as much as possible. For cargoes which are not in the
segment, a new cargo quantity is defined to use the whole capacity of the vessel in the segment.
This criterion is implemented for all vessels and segments. In the example, this criterion can be
applied to the first segment of the third route since there are no inventory cargoes in this
segment. The vessel capacity, 1200, minus the maximum onboard quantity of the first segment
804 is equal to 396.

5. Vessel capacity plus the initial cargo quantity minus the maximum value of the segment. This
criterion is used for the segment which includes the given inventory cargo which is the second
segments in this example. The idea is to increase the initial quantity of the cargo and use the
whole capacity of the vessel. This criterion, in addition to exploit the whole vessel capacity in a
segment, gives the opportunity of having cargoes (the rest of cargoes in that inventory pair) of
smaller size that are able to fit in other routes. The vessel capacity, 1200, plus initial quantity
690 minus the maximum onboard quantity of the second segment, 900, is equal to 990.

10|Page

6. Vessel capacities subtracted by the quantity of each mandatory or optional cargo. The idea
behind this criterion is to use the whole capacity of the vessel by matching a cargo related to an
inventory pair with a mandatory or optional cargo. This criterion considers the quantity of
mandatory or optional cargoes, here (620, 184, 860 and 210), and subtracts these amounts from
all vessel capacities and keep those between 250 and 1000. This gives potential cargo size of:
280, 716, 580 and 340.

By bringing all new quantities of each criterion together, the inventory cargo related to the first visit of
the second inventory pair I;; and I;, has a list of possible quantities: 250, 280, 340, 396, 580, 690,
716, 900, 990, and 1000. These are new quantities for the inventory pair I5; and I3;. The same criteria
are applied for the remaining inventory pairs which may generate additional new different quantities.
Then, in step 15 of Algorithm 3.1, we generate all feasible combinations of these new quantities.
Criterion 4 and 5 create quantities that depend on which vessel is handling the cargo in the initial
solution. While this may be seen counterintuitive, computational testing revealed that all six criteria
are useful.

Algorithm 3.7 K-means clustering algorithm

All feasible combinations of new quantities (generated in Algorithm 3.6) are generated at step 15 of
Algorithm 3.1. Each combination represents a cargo routing problem that is solved by ALNS in this
paper. Since the number of these combinations is enormous, the ALNS is not applied to all possible
cargo combinations. Thus, a systematic selection among combinations is proposed here as well as in
Algorithm 3.8. The aim of the algorithm is to select diverse combinations. At the same time we need
intensification to select more from a set of similar combinations which lead us to better results.
Therefore K-means clustering is used to cluster the combinations based on a similarity measure and
then in Algorithm 3.8 an adaptive selection method handles the selection.

K-means is a heuristic that solves the well-known clustering problem. The algorithm partitions objects
into a pre-defined (k) number of clusters. The similarity measure in the classic form of K-means
clustering is the Euclidean norm which is an intuitive notion of the length of a vector. In our
implementation, each combination is a vector of quantities for inventory pairs. The K-means clustering
algorithm first chooses k cluster centers that are preferred to be as far as possible from each other.
After this, each combination is assigned to its closest cluster center, based on the similarity measure.
When this assignment process is over, a new center is calculated for each cluster using the points
assigned to it. The assignment is then restarted using the new cluster centers. As a result of this loop
we may notice that the k centers change their locations between iterations. When the centers do not
move any more, the clustering has reached a local minimum. The algorithm is expressed in the
following pseudo-code (MacQueen, 1967):

Algorithm 3.7 K-means clustering algorithm

1: Choose k random points to set as cluster centers

2: Assign each object to the closest cluster center

3: When all objects have been assigned, recalculate the positions of the centers
4: go back to Step 2 unless the centers are not changing

11|Page

Algorithm 3.8 Cluster Selection and cluster weight adjustment

This algorithm aims at selecting a cluster at each iteration and updating the cluster weights at the end
of each segment. The idea is to choose a cluster which may yield a better combination and
consequently a better solution. At each iteration a cluster is selected based on its weight. Higher
weight means the cluster potentially contains better combinations. Then, an unexplored combination is
selected randomly from the selected cluster. This combination is used during the current iteration and
at the end of this iteration according to its performance, the selected cluster gets a score. The cluster
weights are updated automatically by the scores they obtain during each segment.

The algorithm starts with equal weights for all clusters and then automatically adjusts the weights
using statistics from earlier iterations in accordance with the idea of adaptive weight adjustment in
(Ropke and Pisinger, 2006). To accomplish this, the entire search is divided into segments with 20
iterations in each segment. Clusters get new weights according to the scores they obtain during the
search in the current segment. The score of a cluster is increased based on the quality of the selected
combination. When a combination from the selected cluster is evaluated, if it improves the best
solution of that cluster then the score of that specific cluster is increased. The cluster gets double score
if the combination selected from that cluster improves the global best solution.

Let w;s be the weight of cluster i in segment s. The new weights which are considered during the
segment s + 1 are calculated as following:

n.
Wis+1) = Wis(1—7) + 7‘9—;, (7)

where m; is the score of cluster i, 6; is the number of times cluster i have been selected, and r is a
predefined parameter to balance the earlier weights and the new normalized scores. The values of m;
and 0; are re-set between segments. In the current segment, s’ after weighting the heuristics, we have
\

js

k
YizaWigt

k clusters with weights w;, i € {1,2, ..., k}. We then select cluster j with probability by using

a roulette wheel selection principle.

As mentioned in the main algorithm, when a cluster and a combination from the cluster is selected, the
time windows for the new combination are calculated using Algorithm 3.3.

4 Computational results

To evaluate the ICGR heuristic, we have tested it on the instances proposed by Stélhane et al. (2014),
and also generated a set of new and larger instances using the same instance generator. The instances
have been generated to reflect the operations of a deep-sea liquid bulk shipping company operating in
the Atlantic basin. The ports are divided into two regions, and 80 % of the loading/unloading pairs
have ports in different regions. The distance between the two regions is considerably longer than the
distances within each region. The quantities of the optional cargoes are between 0.1 and 0.8 times the
capacity of the smallest ship, and the revenue obtained from transporting optional cargoes is
proportional to the quantity and the distance between the loading and unloading ports. As in (Stalhane
et al., 2014), the revenues obtained from transporting mandatory cargoes and inventory cargoes have
been set to zero.

12|Page

The difference between the lower (S;) and upper limits (S;) on the inventory levels is about three times
the capacity of the smallest ship, and all inventories are half-full at the beginning of the planning
horizon. The production and consumption rates (R;) have been set so that roughly two full ship loads
of the smallest ship must be transported during the planning horizon. The fleet of ships is
heterogeneous regarding load capacity and cost structure. The largest ship has roughly 50 % larger
cargo capacity than the smallest ship, and the sailing costs are proportional to the cargo capacity of the
ship. The initial position of each ship is drawn randomly from the set of ports in the instance.

The new instances have been generated by varying the number of ships, cargoes, and inventory pairs.
The number of ships is between 4 and 8, the number of cargoes between 10 and 30, the number of
inventory pairs between 1 and 4, and the maximum number of visits for each port is set to 4. Since
some combinations of ships and cargoes are unrealistic in practice, e.g. 8 ships and 10 cargoes, we
have limited the testing to a subset of the possible combinations.

The results on the original instances from (Stalhane et al., 2014) are summarized in Table 2. Stalhane
et al. (2014) presented both an exact column generation method and a heuristic alternative. Out of the
27 instances in Table 2, the exact method failed to find solutions in 5 cases and the results are not
available for them. Our proposed heuristic is much faster than the heuristic column generation method
when the number of inventory pairs is large, and in general finds better solutions.

The first three columns in Table 2 describe the instance size, with respect to the total number of
cargoes and inventory pairs (|C|), the number of inventory pairs, and the maximum number of visits to
each inventory. The next two columns report the total running time (consisting of route generation
time and solution time) for the exact and the heuristic column generation, respectively. The sixth
column shows the optimality gap of the heuristic route, whereas the next two columns report the
optimality gap and the running time for the ICGR heuristic. Finally, the last column shows the effect
of Algorithm 3.6 — Algorithm 3.8, giving the improvement from the initial solution obtained at Step 7
in Algorithm 3.1 in the first iteration, and the best solution found after the complete search.

The ICGR heuristic usually finds the same solution as the exact method, but there are three exceptions.
First, one of the instances has a negative gap, meaning that the ICGR heuristic finds a solution that is
better than the solution found by the exact column generation approach. The explanation lies in a small
difference in the assumptions used: the column generation does not allow a vessel to visit an inventory
pickup node twice without visiting the corresponding delivery node in between. However, our
heuristic can exploit this additional flexibility which is allowed by the arc-flow model in Stélhane et
al. (2014), but that was not exploited by the column generation methods. Second, for two instances the
proposed heuristic has relatively large gaps. It turns out that the optimal routes from the column
generation are not possible to find for our proposed heuristic, since we have assumed that arrival times
must be integer (the time windows are rounded to integers). In very tight instances, this assumption
may remove some good solutions that would otherwise be feasible.

Table 3 shows profit loss incurred when comparing the COA solution of MOLCO and MOLOO
models presented in (Stalhane et al., 2014) with VMI solution. Out of 40 instances introduced in this
paper, 2 instances were infeasible, and were discarded. The exact column generation fails for most of
these instances, and we focus on comparing the ICGR heuristic for the VMI version of the problem
with optimal solutions to MOLCO and MOLOO versions of the instances.

13|Page

Opt. gap

Original];:;(jg Higlrllts(;uc Heuristic OI%G%p ICGR Improvement
Instances . . route . heuristic. from initial
generation generation generation heu(flstlc (seconds) solution (%)
cl ¢ o, (seconds) (seconds) (%) (%)
6 1 2 1 1 0.01 0.00 1 0.00
6 1 3 1 1 0.01 0.00 6 0.00
6 1 4 1 0.01 0.00 12 0.00
6 2 2 13 2 1.30 0.00 4 2365.60
6 2 3 52 4 1.24 0.00 64 2365.60
6 2 4 257 6 1.24 0.00 83 486.11
6 3 2 872 12 0.07 0.00 39 1279.07
6 3 3 29,516 51 0.25 0.00 83 1249.36
6 3 4 NA 286 NA NA 236 526.50
10 1 2 7 0.00 0.00 2 16.20
10 1 3 4 1 0.00 8.13 21 7.79
10 1 4 7 1 0.00 0.00 92 7.18
10 2 2 98 15 0.00 0.01 15 79.61
10 2 3 1,946 92 0.00 0.05 159 81.78
10 2 4 14,970 223 0.00 0.00 236 82.67
10 3 2 586 27 0.00 0.00 158 0.00
10 3 3 NA 4,639 NA NA 520 86.90
10 3 4 NA 32,101 NA NA 236 NA
15 1 2 440 156 3.10 0.00 11 20.34
15 1 3 2,654 177 2.69 0.13 102 12.87
15 1 4 5,752 220 2.69 -2.45 268 16.56
15 2 2 5,181 265 0.00 0.00 183 141.75
15 2 3 89,422 237 0.00 9.80 303 65.59
15 2 4 438,729 369 0.00 0.00 372 60.23
15 3 2 63,829 320 0.00 0.00 278 146.28
15 3 3 NA 1,200 NA NA 363 63.57
15 3 4 NA 2,423 NA NA 517 59.62

Table 2: Summary of results on the original test instances, comparing the ICGR heuristic to both an exact and a heuristic

column generation method.

Both MOLCO and MOLOO have been solved with different upper bounds on the number of visit (M;
= 2, 3 and 4), and Table 3 is based on the best of these solutions. For some instances, the optimal

solution was not found for specific values of M;, and in this case the best of the available solutions is

considered. If no optimal solution was found for any value of M;, the corresponding entry has been

marked with “NA”. The profit loss is calculated as the difference between the objective value of the
ICGR heuristic and the MOLCO/MOLOO model, divided by the objective value of the ICGR
heuristic. Even though our heuristic does not guarantee the optimal value, it is much better than what
can be obtained in the best case within the MOLOO or MOLCO framework.

14| Page

New instances

MOLCO £10% MOLCO +20% MOLOO +10% MOLOO +20%

Ic]_Ic!] [v]

10 1 4 16.23 16.56 8.28 10.69
10 2 4 43.70 56.90 28.06 41.07
15 1 4 9.98 11.21 8.74 8.74
15 2 4 27.60 28.25 25.89 2591
15 3 4 28.55 43.38 26.76 26.76
15 4 4 42.27 56.06 44.49 44.50
20 1 4 0.03 0.03 0.01 0.01
20 2 4 18.04 18.99 0.17 8.23
20 3 4 43.94 79.23 3.32 31.67
20 4 4 73.72 80.20 37.72 37.72
15 1 6 4.82 7.28 4.65 4.76
15 2 6 4.82 7.93 4.82 6.48
15 3 6 17.55 26.28 14.09 17.79
15 4 6 17.71 31.22 27.42 27.46
20 1 6 1.08 3.26 0.21 0.80
20 2 6 5.61 10.99 6.96 7.67
20 3 6 15.45 36.23 542 13.08
20 4 6 38.23 81.23 20.93 37.70
25 1 6 0.01 0.01 0.30 0.30
25 2 6 2.70 4.00 5.68 5.68
25 3 6 12.27 21.57 13.71 13.71
25 4 6 30.90 45.96 26.45 29.85
30 1 6 4.00 4.00 NA NA
30 2 6 0.57 9.00 NA NA
30 3 6 11.01 14.52 NA NA
30 4 6 12.77 16.97 NA NA
20 1 8 0.66 2.34 0.48 0.54
20 2 8 5.74 9.27 0.41 3.32
20 3 8 14.12 28.74 2.65 9.04
20 4 8 29.13 NA 9.41 13.19
25 1 8 0.02 0.02 0.01 0.01
25 2 8 1.30 1.94 0.19 1.73
25 3 8 4.53 9.85 9.19 9.24
25 4 8 12.42 22.21 15.11 16.89
30 1 8 1.31 3.66 1.69 1.74
30 2 8 4.89 6.33 3.51 4.19
30 3 8 5.96 7.40 NA NA
30 4 8 3.53 15.04 NA NA

Table 3: The reduction in profit when using the best results obtained through MOLCO and MOLOO, compared with the
results obtained by the ICGR heuristic.

15|Page

We are interested in analyzing the factors that influence the benefits obtainable through VMI. To this
end, we have used the results of Table 3 in Figures 2—4. In Figure 2, for each number of inventory
pairs and each number of cargoes a point is defined and the average profit loss over different number
of vessels is depicted. In Figure 3, each point shows the average profit loss over different number of
cargoes for each pair of parameter settings. In Figures 2—4, the numbers are based on the best results
of MOLCO 20%. However, the trends are similar for the other variants in Table 3. First, Figures 2 and
3 show that the effect of replacing COAs with VMI increases with the number of inventory pairs |C’].
When the number of inventory pairs increases there is more flexibility, since defining VMI services
for each inventory pair brings its own flexibility. Figure 2 also indicates that the effect is smaller for
instances with many cargoes: with many optional cargoes to choose from, it is possible to utilize the
fleet relatively efficiently even without the added flexibility resulting from the introduction of VML
Figure 3 indicates that the effect is also smaller with a larger fleet |V|. Larger fleets make the problem
looser, and even without VMI there is enough flexibility to accommodate optional cargoes.

90.00

80.00 A

70.00
S 60.00
g 50.00 =—&— 10 Cargoes
§ 1000 - - 15 Cargoes
= e+<A°+ 20 Cargoes
& 30.00 = «25 Cargoes

20.00 === 3(Cargoes

10.00

0.00

1 2 3 4
Number of inventory pairs

Figure 2: Showing the average reduction in profits when using MOLCO 20%, compared to results obtained using the ICGR
heuristic, focusing on the effect of the number of inventory pairs included and the number of cargoes.

The picture is completed by Figure 4, which shows that the importance of VMI is greater when there
are a large number of inventory pairs |C!| compared with the total number of cargoes |C|. This figure
clearly illustrates the twofold source of flexibility. More inventory pairs and less contracted cargoes
give more flexibility to shipping company since they are able to choose the proper size for each
transportation task. In Figure 4, each point shows the profit loss for different ratios of inventory pairs

to the total number of cargoes and wherever the ratio is equal for two or more instances we have taken
the average.

16 |Page

80.00

70.00

60.00 L

50.00

in %)

40.00 v 2 =& -4 Vessels
30.00 L 2 =l- 6 Vessels
20.00 . ‘4. 8 Vessels

g l/‘/‘
. ’
e
10.00 ;/,_l’/
0.00

1 2 3 4
Number of inventory pairs

Profit loss (
«
\
\

Figure 3: Showing the average reduction in profits when using MOLCO 20%, compared to results obtained using the ICGR
heuristic, focusing on the effect of the number of inventory pairs included and the number of vessels.

90.00
80.00 . s
70.00
< 60.00
= ¢ .
< 50.00 .
< 40.00 ¢
% *
2 30.00 — . 23
20.00 $. s ®
10.00 $ t
.
0.00 v$ &
0 0.05 0.1 0.15 02 0.25 03 0.35

Ratio of inventory pairs to the total number of cargoes

Figure 4: Showing the average reduction in profits when using MOLCO 20%, compared to results obtained using the ICGR
heuristic, focusing on the effect of the number of spot cargoes included in the problem instances.

The results hence seem to verify the usefulness of introducing VMI, while emphasizing that the value
of VMI increases with the number of inventory pairs introduced. At the same time, the value of VMI
is lower when there are many spot cargoes available.

17 |Page

407 g 7
35+

25 ==
| L 4 |
15+ i T i

10 % i
T

1 2 3 4 5 6 7 8 9 10
Instance group index

Figure 5: Box chart of the improvement of the solutions obtained at the end of the ICGR heuristic compared to its initial
solution

Profit loss (in %)

Finally, we include Figure 5 to show the effect of Algorithm 3.6 — Algorithm 3.8. It gives a box chart
showing the difference between the initial solution obtained at Step 7 in Algorithm 3.1 in the first
iteration, and the best solution found after the complete search. The primary axis is divided in 10 and
each group consists of 4 instances with the same number of cargoes and ships and different number of
inventory pairs which varies from 1 to 4, as described in Table 3. The ICGR has been run 10 times for
each instance and the average over 4 different number of inventory pairs in a group has been
considered.

The chart indicates the 25th and 75th percentiles and median reduction in profit if the initial solution
would be used, as well as a 95 % confidence interval for the reduction in profit within the instance
group. The figure shows that the value of adding Algorithm 3.6 — Algorithm 3.8 is significant and
large.

5 Concluding remarks

Tramp shipping companies traditionally use contracts of affreightment (COAs) to regulate the service
provided to their customers. Replacing traditional COAs with vendor managed inventories (VMI)
reduces the costs of providing an acceptable service to the customers of a tramp shipping company.
Previous work (Stilhane et al., 2014) presented formulations and exact solution methods for the
tactical planning problem of a shipping company offering both COAs and VMIs. The results indicated
a very large potential benefit of being able to convert COAs into VMIs.

This work presented a novel heuristic solution method based on iteratively converting inventory pairs
into cargoes and solving, as a subproblem, an associated cargo routing problem using an adaptive large
neighborhood search heuristic. While previous work had been able to assess the value of introducing
VMI only for small instances, the ICGR heuristic allowed an analysis based on realistically sized

18| Page

instances. The results show that the value of introducing VMI is not as large as previously indicated,
and that it depends in particular on the number of contracts that are converted, the number of vessels in
the fleet, and the number of additional cargoes available for transportation.

Acknowledgements

This research was carried out with financial support from the Research Council of Norway through the
DOMinant II project.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

References

Al-Khayyal F, Hwang SJ (2007) Inventory constrained maritime routing and scheduling for
multi commodity liquid bulk, Part I: Applications and model. European Journal of Operational
Research 176(1):106—130

Brenmo G, Christiansen M, Fagerholt K, Nygreen B (2007a) A multi-start local search heuristic
for ship scheduling — a computational study. Computers & Operations Research 34(3):900-917

Brenmo G, Christiansen M, Nygreen B (2007b) Ship routing and scheduling with flexible cargo
sizes. Journal of the Operational Research Society 58(9):1167-1177

Christiansen M (1999) Decomposition of a combined inventory and time constrained ship
routing problem. Transportation Science 33(1):3-16

Christiansen M, Fagerholt K, Nygreen B, Ronen D, Barnhart C, Laporte G (2007) Maritime
transportation. Transportation, Handbooks in Operations Research and Management Science
14(North-Holland, Amsterdam) 189-284

Christiansen M, Fagerholt K, Flatberg T, Haugen O, Kloster O, Lund EH (2011) Maritime
inventory routing with multiple products: A case study from the cement industry. European
Journal of Operational Research 208(1):86-94

Christiansen M, Fagerholt K, Nygreen B, Ronen D (2013) Ship routing and scheduling in the
new millennium. European Journal of Operational Research 228(3):467—483

Engineer FG, Furman KC, Nemhauser GL, Savelsbergh MWP, Song JH (2012) A branch-price-
and-cut algorithm for single-product maritime inventory routing. Operations Research
60(1):106-122

Fagerholt K, Lindstad H (2007) Turborouter: an interactive optimization-based decision support
system for ship routing and scheduling. Maritime Economics and Logistics 9:214-233

Grenhaug R, Christiansen M, Desaulniers G, Desrosiers J (2010) A branch-and-price method for
a liquefied natural gas inventory routing problem. Transportaion Science 44(3):400-415

Hemmati A, Hvattum LM, Norstand I, Fagerholt K (2014) Benchmark suite for industrial and
tramp ship routing and scheduling problems. INFOR, 52(1):28-38

Korsvik JE, Fagerholt K, Laporte G (2010) A tabu search heuristic for ship routing and
scheduling. Journal of the Operational Research Society 61(4):594—603

19|Page

[13] Lawrence SA (1972) International sea transport: The years ahead, Lexington Books, Lexington.

[14] MacQueen J (1967) Some methods for classification and analysis of multivariate observations.
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
California, USA, 281-297

[15] Malliappi F, Bennell JA, Potts CN (2011) A variable neighborhood search heuristic for tramp
ship scheduling. Computational Logistics, Lecture Notes in Computer Science 6971:273-285

[16] Papageorgiou DJ, Nemhauser GL, Sokol J, Cheon MS, Keha AB (2014) MIRPLib — A library of
maritime inventory routing problem instances: Survey, core model, and benchmark results.
European Journal of Operational Research 235(2):350-366

[17] Ribeiro GM, Laporte G (2012) An adaptive large neighborhood search heuristic for the
cumulative capacitated vehicle routing problem. Computers & Operations Research 39(3):728—
735

[18] Ropke S, Pisinger D (2006) An Adaptive Large Neighborhood Search Heuristic for the Pickup
and Delivery Problem with Time Windows. Transportation Science 40(4):455-472

[19] Shaw P (1997) A new local search algorithm providing high quality solutions to vehicle routing
problems. Technical report, University of Strathclyde, Glasgow

[20] Song JH, Furman KC (2013) A maritime inventory routing problem: Practical approach.
Computers & Operations Research 40(3):657-665

[21] Stalhane M, Andersson H, Christiansen M, Fagerholt K (2014) Vendor managed inventory in
tramp shipping. Omega 47:60-72

[22] UNCTAD (2013) Review of Maritime Transport. United Nations, New York and Geneva

20| Page

