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Abstract. In this paper, we consider a specific variant of the field service routing problem. 
It consists in determining vehicle routes in a single period to serve two types of customers: 
mandatory and optional. Mandatory customers have to be served within a specified time 
window whereas optional customers may be served (or not) within the planning horizon. 
For more realism, we assume that service as well as travel times are stochastic and also 
that there are multiple depots. The objective is to visit as many optional customers as 
possible while minimizing the total travel time. To tackle this problem, we propose a 2-
stage solution method: the planning stage and the execution stage. We decompose the 
planning stage into two phases: the design of a skeleton of mandatory customers and the 
insertion of optional customers in this skeleton. In the execution stage, we proceed to a 
real-time modification of the planned routes to face stochastic travel and service times and 
to enable time windows to be respected. 
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1 Introduction

The �eld service routing problem consists, given a limited number of technicians, in determining a set of optimal
technician routes to serve customer requests, while ensuring that each technician has the required skills for his tasks.
The problem we are dealing with in this paper is a variant of the single-period �eld service routing problem without
technician skills. In this variant, we suppose that all customers are known a priori and we distinguish between
two types of customers: mandatory and optional customers. Optional customers have an associated time window
corresponding to the time horizon and may be postponed at any time. Mandatory customers have an associated
hard time window (they must be served within this time window). We associate to each technician a vehicle and
we suppose that each vehicle has unlimited capacity, its own origin and destination depots and must return to this
destination depot by the end of the period (hard time window). We consider that travel and service times for all
customers (mandatory and optional) are stochastic. The objective is to visit as many optional customers as possible
while minimizing the total travel time.
This problem can also be seen as a variant of the vehicle routing problem with time windows (VRPTW). Indeed,
the VRPTW consists in determining a set of optimal vehicle routes serving all customers to meet customer demands
within speci�ed time windows, each of these routes starting and ending at a given depot. The objective in the VRPTW
is to minimize the total traveled distance and also, sometimes, the number of vehicles. Compared to this classical
VRPTW, our variant present some di�erences as we consider multiple depots, uncapacitated vehicles, priority within
customers as well as stochastic travel and service times. In the remainder of this paper, we will call this variant the
Multi-Depot Vehicle Routing Problem with Time Windows, Stochastic Service and Travel Times and with priority
(MDVRPTWSSTT with priority).
A generic application of the MDVRPTWSSTT with priority we consider, is the design of routes for technicians for
repair and maintenance operations. Mandatory customers are requiring repair operations whereas optional customers
are requiring a service (control, maintenance, meter-reading...). In this application, as it is about service routing,
vehicles are used only for carrying material and personnel. Thus we can suppose that the vehicle capacity is unlimited.
Moreover, as vehicles do not carry goods, they can have their own origin and destination depots (typically technician
homes). Last, as the service provided to the customer may be a repair operation, we understand the need to consider
stochastic service times.
To the best of our knowledge, no previous work has been reported on the problem we just de�ned. Therefore, we will
�rst focus on litterature dealing with variants of the �eld service routing problem and then on literature dealing with
the vehicle routing problem with time windows (VRPTW) with common characteristics to the MDVRPTWSSTT
with priority.

Since a few decades, the problem of �eld service routing has arised in the literature with the development of the ser-
vice industry. In 2002, Grötschel et al. [1] address a realtime variant of the �eld service routing problem and propose
a column generation method with a dynamic pricing strategy. More recently, Kovacs et al. [2] propose an adaptive
large neighborhood search for solving the �eld service routing problem with and without team building. Borenstein
et al. [3] and Delage et al. [4] consider the �eld service routing problem with stochastic service times. Borenstein et

al. [3] proceed in many steps: they �rst partition customers into di�erent clusters, then assign technicians to them.
To get a soft clustering, they make the tasks located at the boundary between areas belong to all adjacent areas.
After this soft clustering, they de�ne some rules to allocate tasks to technicians. Delage et al. [4] propose a two-step
method: he �rst establishes workload planning and then he deals with stochastic service times thanks to a dynamic
programming approach. Last, Cortes et al. [5] and Souyris et al. [6] address the �eld service routing problem with
stochastic service times and a priority within customers (corresponding to a target response time).
Tricoire et al. [7, 8] and Bostel et al. [9] have been interested in the deterministic multiple depot, multiperiod �eld
service routing with priority within customers (MDVRPTW with priority), distinguishing mandatory and optional
customers. For this problem, they propose a column generation-based method [10] as well as a memetic algorithm
[11]. In 2006, Dugardin et al. [12] deals with the single-period �eld service routing problem with priority within
customers, but he considers stochastic travel times. However, he does not take into account the stochasticity when
building the route plan. Given a route plan, he de�nes simple rules to react to the di�erent events which may occur.
Even if the VRPTW has been adressed in many articles, few are those taking into account stochastic travel and/or
service times. Ando et al. [13], Russell et al. [14], Jie [15], and Tas et al. [16] formulate the VRPTW with stochastic
travel times as an integer program and seek to minimize the weighted sum of total traveled distance and penalties
related to the violation of time windows. Moreover, Ando et al. [13] and Russell et al. [14] minimize the number of
vehicles used. To solve this problem, Russell et al. [14] and Tas et al. [16] propose a tabu search based algorithm
whereas Jie [15] present an evolutionary algorithm.
Some authors have been interested in the VRPTW with stochastic service times. In 2007, Flatberg et al. [17] propose
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a scenario-based approach with local search. In 2011, Lei et al [18] propose a two-stage dynamic programming model
with recourse, where the recourse consists in going back to the depot as soon as the end of the depot time window is
reached.
To solve the VRPTW with stochastic travel and service times, Wang et al. [19] present assignment models whereas
Li et al. [20] propose a tabu search algorithm. In 2007, Zeimpekis et al. [21] add to this problem priorities within
customers (depending on pro�t, on time window and on travel cost to access a customer) but limit the problem to a
single vehicle. For this variant, they propose a variant of the S-algorithm [22].
In this paper, we address a di�erent problem as we consider a variant of the VRPTW with multiple depots, priority
within customers and stochastic travel and service times. All of these characteristics have not been considered all
together previously in the litterature. We assume that all customers are known a priori, as well as the minimal,
modal and maximal values for speed and service times. Regarding the number of mandatory customers, we suppose
that it is su�cient, in order for our method to be consistent. This assumption is not restrictive since, if we do not
have enough mandatory customers, we can decide to make some optional customers become mandatory. Making
these assumptions, we propose a two-stage method: a planning stage followed by an execution stage. As Delage et

al. [4], we decompose the planning stage into two phases: i) we build routes considering only mandatory customers
(we call the set of these routes �skeleton�); ii) we insert optional customers in this skeleton. At the beginning of the
execution stage, we have a planned route for each vehicle. In this stage, we use dynamic programming to deal with the
stochasticity on travel and service times. The key idea in this two-stage method is to use the optional customers as
bu�er to absorb variations on travel and service times. The remainder of the paper is organized as follows. We present
the planning stage in Section 2, the execution stage in Section 3, computational results of the two-stage method in
Section 4 and we conclude in Section 5.

2 Planning stage

In the planning stage, we aim at building optimal routes containing both mandatory and optional customers. Assuming
that lower and upper bounds on travel and service times are known (as mentioned before), we proceed in two phases:
�rst, we build a skeleton of routes serving mandatory customers and then we insert optional customers in this skeleton.
In phase I (skeleton design), we formulate the problem as a mixed integer program and we solve it exactly using a
commercial solver. In the second phase (insertion of optional customers), we formulate the problem as an integer
program and we proceed in two steps: we �rst solve this model with pessimistic estimates using a branch and cut
algorithm or a Lagrangian decomposition method and we then repair and improve the solution with a heuristic
method.

2.1 Phase I: Skeleton design

In this step, we consider only mandatory customers, which are a priori known and have an associated time window.
In order to design the skeleton of routes including mandatory customers only, we just have to solve a m-TSPTW on
mandatory customers. As we do not allow any delay for serving mandatory customers, we consider that travel and
service times are maximal. Let K be the set of vehicles and M the set of mandatory customers. We note ok and
dk the origin and destination depots for vehicle k and [ei, li] the time window for customer i (service should begin
after ei and before li). Let σi and σi be respectively the minimal and maximal service time for customer i, τ ij and
τ ij be respectively the minimal and maximal travel time between i and j. Let T be a large constant. We de�ne the
following variables. A binary variable xki indicates if mandatory customer i is served by vehicle k. A binary variable
ykij indicates if customer i is served just before j by vehicle k, and last ti corresponds to the time at which service
starts at customer i. Then the skeleton design is modelled as follows:

Model 1 (M1):

min
∑
k∈K

∑
i∈M∪{ok}

∑
j∈M∪{dk}

τ ijy
k
ij

subject to:
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∑
k∈K

xki = 1 ∀i ∈M (1)∑
j∈M∪{dk}

ykij = xki ∀i ∈M,k ∈ K (2)

∑
i∈M∪{ok}

ykij = xkj ∀j ∈M,k ∈ K (3)

∑
i∈M∪{dk}

ykoki = 1 ∀k ∈ K (4)

ei 6 ti 6 li ∀i ∈M ∪ {ok; dk} (5)

tj > ti + σi + τ ij +
∑
k∈K

T (ykij − 1) ∀i ∈M ∪ {ok}, j ∈M ∪ {dk} (6)

ykij ∈ {0; 1} ∀k ∈ K, i ∈M ∪ {ok}, j ∈M ∪ {dk}
xki ∈ {0; 1} ∀i ∈M,k ∈ K
ti > 0 ∀i ∈M ∪ {ok; dk}

Constraints (1) state that every mandatory customer must be served exactly once. Constraints (2) and (3) are in-
degree and out-degree constraints. Constraints (4) state that each vehicle should leave its origin, even if going directly
to destination. Constraints (5) ensure the respect of time windows (service for customer i must begin within the time
window [ei, li]). Finally, constraints (6) are precedence constraints, which also ensure the elimination of subtour.
Since the number of mandatory customers is low in the instances considered, this model is solved exactly using a
commercial solver.

2.2 Phase II: Inserting optional customers

Once the skeleton of routes serving mandatory customers is built, we have for each vehicle a sorted list of manda-
tory customers to be visited. In order to improve the quality of service, we update the earliest and latest times for
beginning service, ei and li, associated with mandatory customer i. They correspond to the beginning service time
respectively in the best and in the worst case. Therefore we state li = ti and we calculate ei with the minimal travel
and service times (while ensuring that ei respects the previous time window) according to the routes of the skeleton.

In this phase, we introduce the concept of segment, which is a route portion between two successive mandatory cus-
tomers (the origin depot and destination depot of each vehicle are considered as mandatory customers). Segment
p has three main characteristics: an origin op, a destination dp and a length ∆p. As we wish to use optional cus-
tomers as bu�er to absorb variations of travel and service times, we de�ne this length as the largest possible one:
∆p = ldp − eop −σop where ldp is the latest time to begin service at customer dp, σop the minimal service time for the
origin customer op and eop the earliest time to begin service at customer o

p. Note that, for a given vehicle, segments are
sorted the following way (see Figure 1 below): segment (p+1) has for origin dp (the destination customer of segment p).

With this new concept of segment, the problem of inserting optional customers in the skeleton consists in establishing
routes associated with each segment of the skeleton while ensuring on each segment p that the length of the route
does not exceed ∆p. Two objective functions are considered in this insertion phase: the maximization of the pro�t
associated with servicing optional customers and then, the minimization of the total traveled time. To deal with these
objectives, we use the classical weighted sum technique to combine them into a single one, where α is the weight
for the travel time (α ∈ [0; +∞[). Let O be the set of optional customers and P the set of segments over all the
routes. Customer i has an associated pro�t pi. We use reference values τ̃ij and σ̃i respectively for travel and service
times. We de�ne the following variables. A binary variable xpi indicates if customer i is served on segment p, and a
binary variable ypij indicates if customer i is served just before j on segment p. With these notations, we formulate
the insertion of optional customers in the skeleton of routes as follows:
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Figure 1: Segment order for a given vehicle (route)

Model 2 (M2):

max
∑
p∈P

∑
i∈O

pix
p
i − α

∑
p∈P

∑
i∈O

∑
j∈O

τ̃ijy
p
ij

subject to:

∑
p∈P

xpi 6 1 ∀i ∈ O (7)

∑
j∈O∪{dp}

ypij = xpi ∀i ∈ O, p ∈ P (8)

∑
i∈O∪{op}

ypij = xpj ∀j ∈ O, p ∈ P (9)

∑
i∈O∪dp

ypopi = 1 ∀p ∈ P (10)∑
i∈O∪{op}

∑
j∈O∪{dp}

τ̃ijy
p
ij +

∑
i∈O

σ̃ix
p
i 6 ∆p ∀p ∈ P (11)

∑
i∈S

∑
j∈S

ypij 6
∑

i∈S\{l}

xpi ∀S ⊂ O, |S| > 2,∀l ∈ S, p ∈ P (12)

ypij ∈ {0; 1} ∀i ∈ O ∪ {op}, j ∈ O ∪ {dp}, p ∈ P
xpi ∈ {0; 1} ∀i ∈ O, p ∈ P

Constraints (7) state that each optional customer is served at most once. Constraints (8) and (9) are in-degree and
out-degree constraints. Constraints (10) ensure that each vehicle leaves the origin of the segment (eventually to go
directly to the destination of the segment). Constraints (11) force the length of the route associated with a segment to
be smaller than the length of this segment. Constraints (12) are subtour elimination constraints. They are necessary
in this model because optional customers do not have any time window.

Regarding the value setting for travel and service times τ̃ij and σ̃i, many choices are possible. If we choose minimal
values (optimistic estimates), we may obtain solutions with empty routes while some routes serve a large number of
customers each. It is an admissible solution as long as we are in the optimistic case. However, during execution stage,
many customers remain unserviced while some routes remain empty. In order to avoid this pitfall, we have to balance
workload over vehicles during the insertion of optional customers. We thus perform the insertion of optional customers
in two steps. First, we insert optional customers with pessimistic estimations of travel and service times. Next,
we insert optional customers with optimistic estimations of travel and service times, while keeping the assignment
of customers to vehicles obtained in the �rst step. With these choices, we build route portions on segments with a
duration limit corresponding to the length of the segments. But if we consider a route containing several segments,
this route has a duration limit corresponding to the sum of the lengths of the associated segments, i.e. ldp − eop −σop
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(optimistic estimate for the length of segment p). The obtained route can thus be much longer than the time horizon.
Indeed, preliminary experiments lead us to observe that the feasibility probability for some routes can fall to 0.2.
As a consequence, during the execution stage, we completely changed the planned routes. In order to avoid this, we
choose to ensure a minimal probability for the routes to be feasible. The insertion of optional customers now consists
in inserting �rst optional customers with pessimistic estimations of travel and service times. Then, we repair and
improve the solution obtained, while ensuring that each route has a su�cient probability to be feasible (greater than
a given threshold).

We develop a basic branch and cut algorithm for solving (M2). We obtain a �rst subproblem by relaxing the subtour
elimination constraints (12) as well as the integrality constraints on the variables. Then, constraints (12) are added
dynamically to improve the upper bound. When no cuts can be identi�ed, branching is performed in priority on
the xi variables. The fractional variable xpi closest to 0.5 is selected for branching. When all xpi variables are
integer, ypij variables are considered using the same selection rule. As inserting optional customers with pessimistic
estimations on small instances with this branch and cut algorithm can be time consuming, we propose some speedup
techniques to improve computation times. In order to solve larger instances, we also propose a Lagrangian relaxation
to decompose the problem into one subproblem per segment. As the routes obtained by both methods (branch and
cut and Lagrangian relaxation) may have a low probability to be feasible, we propose to repair and improve these
routes afterwards in order to get routes with a su�cient feasibility probability. In what follows, we will �rst detail
the di�erent speedup techniques we propose for the branch an cut algorithm in section 2.2.1, present the Lagrangian
relaxation method in section 2.2.2 and then describe the repair and improve algorithms in section 2.2.3.

2.2.1 Speedup techniques for the branch and cut algorithm

As we mentioned before, solving model (M2) with a branch and cut algorithm can be very time consuming. In order
to improve computation times, we propose in this section di�erent speedup techniques: preprocessing, an insertion
heuristic to build an initial integer solution, reachability cuts and subset elimination inequalities.

Preprocessing

A commonly used speedup technique is to make some preprocessing to �x some variables before beginning the branch
and cut method. This preprocessing is based on the idea that, when inserting optional customers in the skeleton,
some customers cannot possibly be served on some segments. In order to avoid this, when comparing maximal travel
and service times to the length of segments, we obtain conditions which allow us to set the values of some variables
or to strengthen the formulation by adding some valid inequalities:

Proposition 1. The following clauses are valid:

If τopj + σj + τ jdp > ∆p, then xpj = 0 (13)

If τopi + σi + τ ij + σj + τ jdp > ∆p, then ypij = 0 (14)

If
τopi + σi + τ + σj + τ jdp > ∆p

}
,

τopj + σj + τ + σi + τ idp > ∆p then xpi + xpj 6 1 (15)

Clause (13) states that customer i cannot be visited on segment p if the total time needed to serve only i on
segment p (travel time from op to i, service time at i and travel time from i to dp) exceeds the length ∆p of segment
p. Likewise, clause (14) indicates that customer j cannot be served after customer i if the total time needed to serve
only customer i followed by customer j on segment p (travel time from op to i, service time at i, travel time from i
to j, service time at j and travel time from j to dp) exceeds the length ∆p of this segment. Finally, clause (15) is a
valid inequality based on clause (14). This clause expresses that if both the total time needed to visit only i and j
in this order and the one needed to visit only j and i in this order on segment p exceed the length ∆p of segment p,
then i and j cannot be served together on segment p. Indeed, using clause (14) on the conditions of clause (15), we
obtain ypij = 0 and ypji = 0 (i.e. j cannot be served after i and i cannot be served after j on segment p). Thus, we
conclude that i and j cannot be served together on segment p.
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Insertion Heuristic

To build an initial solution for the branch and cut, we propose a heuristic based on the insertion of customers. This
heuristic can be described as follows. We compute the insertion costs of each customer on each segment (if a customer
i cannot be inserted on a segment p, the insertion cost cpi associated will be +∞). Then we solve an assignment
problem (assigning customers to segments). Given the assignment solution, we have for each segment a route serving
potentially one optional customer. Thus, insertion costs are possibly modi�ed for the unassigned customers. This
process is then reiterated until one of the following stopping conditions is satis�ed:

i) All optional customers have been inserted ;

ii) No optional customer was inserted in the last iteration.

Reachability Cuts

In order to speedup the branch and cut algorithm, we propose to strengthen subtour elimination constraints (12) in
model (M2). They can be reformulated as follows. Let δ−(S) = {(i, j)|i /∈ S, j ∈ S} for a set of customers S, we have:∑

(k,l)∈δ−(S)

ypkl > xpi ∀S ⊂ O, |S| ≥ 2,∀i ∈ S, p ∈ P (16)

Constraints (16) are known to be equivalent to constraints (12). Lysgaard [23] propose to reinforce such constraints
by de�ning the so-called reachability cuts. Following the lines of Lysgaard [23], we de�ne the reachability set Ap−i as
being the minimal set of arcs enabling access to customer i from the origin of segment p. For instance, if (op, a, b, i)
is a feasible path (with respect to the maximum duration constraint) from op to i, then {(op, a); (a, b); (b, i)} ⊂ Ap−i
as long as the time matrix satis�es the triangle inequality. Then, constraints (16) can be strengthened by considering
the following reachability cuts: ∑

(k,l)∈δ−(S)∩Ap−
i

ypkl > xpi ∀S ⊂ O, |S| ≥ 2,∀i ∈ S, p ∈ P (17)

In other words, let p be a segment, i a customer and S a set of customers (with op /∈ S and i ∈ S), if customer i
is served on segment p (xpi = 1), then there exists a path from the origin of the segment op to i, and every arc on
this path belongs to Ap−i . Especially, as i ∈ S and op /∈ S, there exists at least one arc in Ap−i entering S. These
constraints are clearly stronger than the classical subtour elimination constraints (SEC) since (δ−(S) ∩Ap−i ) ⊆ δ−(S).
In constraints (17), we can see that the number of terms in the lefthand side depends on the size of Ap−i . Therefore,
when the accessibility set Ap−i is large, the constraint Rp−i (S) is not so strong compared with the associated SEC
constraint. For a given customer, the size of the accessibility set increases with the length of the corresponding segment.
For this reason, in a �rst approach, we choose to generate these new constraints only on segments whose length does
not exceed a threshold Lmax and to generate the classical subtour elimination constraints on other segments.
To separate the reachability cuts, we determine a priori the set of arcs Ap−i for each i ∈ O. In the preprocessing phase,
we create a list Cp of customers who can be served on each segment p (with respect to the length of the segments).
For each customer i and segment p, we go through all arcs (j, k) such that j ∈ Cp and k ∈ Cp. If the path (op, j, k, i)
is feasible on segment p, we add the corresponding arcs to the set Ap−i if they do not already belong to this set. Then,
to identify violated reachability cuts, we consider all possible couples (customer i, segment p) and for each of them,
we solve a maximum �ow problem on the support graph G = ({j|j ∈ Cp} ∪ {op}, Ap−i ).

Subset elimination inequalities

Another commonly used speedup technique consists in using a very well-known family of valid inequalities known as
�subset elimination inequalities�. These inequalities are derived from constraints (10).

Proposition 2. Given a set S of customers and a segment p, let Lp(S) be the length of the shortest path from node

op to node dp serving all customers contained in S. If Lp(S) > ∆p, then the following subset elimination inequality:

xp(S) 6 |S| − 1 (18)

is valid.

Note that for |S| = 2, we have xpi + xpj 6 1. These inequalities have already been generated when preprocessing.
In our branch and cut algorithm, such inequalities are generated for 3 6 |S| 6 Smax.
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Constraints (18) are separated heuristically. Given a solution (x̃, ỹ) and a segment p, we �rst sort customers i verifying
xpi > 0 in decreasing order of x̃pi . Given this sorted list, we identify k-tuples {i1, i2, ..., ik} verifying x

p
i1

+xpi2 +...+xpik >
k − 1. For each of these k-tuples, we check �rst if (op, i1, i2, ..., ik, d

p) is admissible. In such case, there is no violated
subset elimination inequality associated with this k-tuple and this segment. Otherwise, we identify the shortest path
from op to dp serving all customers of the k-tuple. If the shortest path is not admissible, we just identi�ed a violated
subset elimination inequality of size k with S = {i1, i2, ..., ik}.

2.2.2 Lagrangian relaxation

We can observe that the problem of inserting optional customers in the skeleton of routes can be decomposed into
subproblems (one subproblem per segment) if we disregard binding constraints (7). A solution approach thus consists
in relaxing these constraints and in giving them a Lagrangian multiplier in the objective function, obtaining the
Lagrangian relaxation R(u) for a given value of u = (u1, u2, ..., u|O|) > 0:

max
∑
p∈P

∑
i∈O

pix
p
i − α

∑
p∈P

∑
i∈O

∑
j∈O

τ̃ijy
p
ij +

∑
i∈O

ui(1−
∑
p∈P

xpi )

subject to constraints (8) to (12)

In order to be able to break this problem down into subproblems, we reformulate the objective function as:

max
∑
p∈P

∑
i∈O

(pi − ui)xpi − α
∑
p∈P

∑
i∈O

∑
j∈O

τ̃ijy
p
ij +

∑
i∈O

ui

As the last term
∑
i∈O ui is a constant for a given vector u, we can decompose R(u) in subproblems. Considering

segment p, subproblem Rp(u) can be formulated as follows:

max
∑
i∈O

(pi − ui)xpi − α
∑
i∈O

∑
j∈O

τ̃ijy
p
ij

subject to:

∑
j∈O∪{dp}

ypij = xpi ∀i ∈ O (19)

∑
i∈O∪{op}

ypij = xpj ∀j ∈ O (20)

∑
i∈O∪dp

ypopi = 1 (21)∑
i∈O∪{op}

∑
j∈O∪{dp}

τ̃ijy
p
ij +

∑
i∈O

σ̃ix
p
i 6 ∆p (22)

∑
i∈S

∑
j∈S

ypij 6
∑

i∈S\{l}

xpi ∀S ⊂ O, |S| > 2, ∀l ∈ S (23)

ypij ∈ {0; 1} ∀i ∈ O ∪ {op}, j ∈ O ∪ {dp}
xpi ∈ {0; 1} ∀i ∈ O

Rp(u) is solved using the branch and cut method with speedup techniques mentioned above. In order to proceed to
the insertion of optional customers in the skeleton, we have to solve the Lagrangian dual, which can be formulated as
follows:
To solve the Lagrangian dual, we apply a subgradient algorithm. For this algorithm, we need a good lower bound for
the optimal value in order to ensure the convergence of the method. For this purpose, we build a feasible solution,
using the insertion heuristic presented in section �2.2.1 and we improve the obtained solution using string exchange,
arc exchange and relocalisation (without moving mandatory customers). Let ω be the value of this solution (lower
bound value) and u0 = (0, 0, ..., 0), we proceed as follows at each iteration k of the subgradient algorithm:
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min
u>0

(
max
x

∑
p∈P

∑
i∈O

pix
p
i − α

∑
p∈P

∑
i∈O

∑
j∈O

τ̃ijy
p
ij +

∑
i∈O

ui(1−
∑
p∈P

xpi )

)

subject to (19)-(23)

Iteration k:

• u = uk

• For each segment p ∈ P , solve Rp(uk) with pessimistic estimates for travel and service times, using the branch
and cut method with speedup techniques.

• With the values (xpi )i∈O,p∈P of the obtained solution, calculate the value z(uk) of the solution of R(uk).

• Calculate the step length µk and the step directions Dk
i for each i ∈ O with formulas:

µk =
ε(z(uk)− ω)∑

i∈O

(
1−

∑
p∈P

xpi
)2 and Dk

i = 1−
∑
p∈P

xpi

• Calculate the new vector uk+1 with uk+1
i = max(uki + µkD

k
i , 0).

• k ← k + 1

The subgradient algorithm terminates prematurely either when the gap between the best upper bound mink z(u
k)

and the best lower bound maxk ω
k falls under a given threshold or when the number of iterations reaches a given

maximal value. This turns the subgradient algorithm into a Lagrangian heuristic.
In order to accelerate convergence, we calculate a new lower bound at each iteration. After obtaining the solution
at iteration k, we repair this solution (by removing repeated customers) and improve the solution (proceeding to
successive string exchanges, arc exchanges and relocalisations without moving mandatory customers). We thus obtain
a feasible solution, i.e., a new lower bound ωk. The solution returned by the subgradient algorithm is the best feasible
solution, i.e. the best lower bound.
This Lagrangian heuristic provides us a good lower bound for the problem of inserting optional customers in the skele-
ton. As mentioned previously, after this Lagrangian relaxation, we can obtain a solution with a very low probability
to be feasible. We thus apply the repair and improve algorithms to the obtained solution (see �2.2.3).

2.2.3 Solution repairing and improving algorithm

When proceeding to the insertion of optional customers in the skeleton, we may obtain routes with a low probability to
be feasible (see �2.2). Indeed, in phase II, we insert optional customers on segments, while ensuring on each segment
p that the length of the route does not exceed ∆p. As mentioned above, the length of a segment is de�ned with the
formula ∆p = ldp − eop − σop . In the worst case, the length of the segment is rather ldp − lop − σop . For this reason,
the probability for a route to be feasible can be very low. To avoid this pitfall, we introduce a new parameter F as
being the feasibility threshold (a route must have a probability to be feasible greater or equal to F ). We propose a
procedure that consists in repairing �rst the solution so that each route has a feasibility probability greater or equal
to F . Then, we improve the solution (trying to insert unserved customers and to relocate customers while ensuring
the probability for each route to be feasible to be greater or equal to F ).
A pseudo-code description of the repair procedure is given in Algorithm 1. Let Pk be the set of segments associ-
ated with vehicle k. For a vehicle k, given the planned route (and associated segments Pk), using the probability
distributions for travel and service times, we can calculate at each mandatory customer the possible arrival times
and associated probabilities. CalculateProbaFeasible(op, dp) returns the probability for the route to be feasible at
dp (probability to arrive before ldp), knowing the possible arrival times and associated probabilities at op. We note
CustomerLargestDetour(a, b) the function returning the customer located between a and b (a and b excluded) gen-
erating the largest detour regarding travel times. The repair algorithm consists in removing the customer generating
the largest detour until the feasibility probability is su�cient.
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Algorithm 1 Repair solution

for each k ∈ K do

for each p ∈ Pk do
proba← CalculateProbaFeasible(op, dp)
while proba < F do

c← CustomerLargestDetour(op, dp)
remove customer c
proba← CalculateProbaFeasible(op, dp)

end while

end for

end for

The improvement algorithm pseudo-code description is given in algorithm 2. In this algorithm, let L be an empty
list, U the list of unserved customers and N the total number of customers. CustomerLargestDetour(L) returns the
customer generating the largest detour within the solution and not belonging to L. BestInsertion(c) returns the best
possible insertion of customer c in the solution with respect to travel times. An insertion is feasible if it generates a
route with a feasibility probability larger than F and if time windows are respected. BestInsertion(U), with U a list
of customers, is a method consisting in getting the best possible insertion over all the routes and all the customers in
U and proceeding to this insertion if this one is valuable until no more customers can be inserted. The improvement
algorithm consists in proceeding to the best possible insertion, to improve the quality of the solution, until no more
customer can be inserted. In this algorithm, an insertion will not be considered if the feasibility probability treshold
is violated.

Algorithm 2 Improve solution

U ← GetUnservedCustomers()
BestInsertion(U)
L← []
while size(L) < N − size(U) do

c← CustomerLargestDetour(L);
(bestRoute, bestPosition, bestProfit)← BestInsertion(c);
if bestProfit > 0 then

remove customer c
insert customer c on the route bestRoute in the position bestPosition

end if

add c to the list L
end while

3 Execution stage

At the beginning of the execution stage, we have a planned route for each vehicle obtained at the end of the planning
stage. The goal of the execution stage is to adjust planned routes to reality. In this stage, we consider stochastic
travel and service times and we react in real-time to face stochasticity. We thus use dynamic programming tools to
determine the optimal policy. We �rst describe the probability distributions used in this stage and then we detail the
dynamic programming algorithm.

3.1 Probability distributions

In this stage, as we just mentioned, we consider stochastic travel and service times. To model bounded travel and
service times, we need truncated probability distributions. We also assume that time units are discrete (i.e. minutes).
Hence we choose to model stochastic travel and service times with discrete triangular distributions. For service time
at customer i, we use a symmetric discrete triangular distribution law between σi − 1 and σi + 1 where σi and σi
correspond respectively to the minimal and maximal service time at customer i.
For distance units we use the arbitrary units (a.u.) proposed by Tricoire [7]. Regarding travel time (min) per distance
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unit (a.u.) δ, we use a discrete triangular distribution between δ and δ. As travel speed varies between 20km/h and
50km/h and as 41km=1000a.u. (see Tricoire [7]), travel speed v (in a.u./min) lies in the interval [8.13, 20.33] and travel
time per distance unit (in min/a.u.) lies in the interval [0.05; 0.12]. In order to get discrete values for travel time per

distance unit, we use a scale factor and we set δ =

⌈
100

vmax

⌉
− 1 and δ =

⌈
100

vmin

⌉
+ 1 with mode

⌈
100

vmode

⌉
where vmin,

vmax and vmode correspond respectively to the minimal, maximal and modal travel speed (in u.a./min). Then, the

probability for the travel time between customers i and j is given by the formula: P (τij = m) = P

(⌈
Dijδ

100

⌉
= m

)
.

3.2 Dynamic programming algorithm

For each vehicle, we have a route including both mandatory and optional customers. So far we assumed that travel
and service times were either minimal or maximal. In this last stage, we take into account the stochasticity on travel
and service times and we modify the planning in real time to face stochasticity. We assume that segments are sorted
the following way: segment p+ 1 has for origin mandatory customer op+1 = dp (mandatory customer corresponding
to the destination of segment p).
Each dynamic programming step corresponds to the end of service at a customer's location. At each step, we have
a list of unserviced optional customers who could possibly be served before the next mandatory customer. In this
context, two choices are to be taken into account: either the vehicle goes directly to the next mandatory customer or
it visits the optional customer in this list that maximizes the pro�t.
Let Γj be the lateness penalty and lj the end of the time window at mandatory customer j. In this phase, we consider
real travel and service times, noted respectively τij and σi (with τ ij 6 τij 6 τ ij and σi 6 σi 6 σi). At step k, we
�nish servicing customer vk at time tk. Let V

p be the sorted list of optional customers associated with segment p and
V̄ pk the list of optional customers of segment p located after vk (see �gure 2).

Figure 2: Step k of the dynamic programming algorithm

Using these notations, we propose two di�erent dynamic programming methods. In the �rst algorithm, we consider
only one segment p whereas we consider the remaining route in the second one.

• Method considering one segment (OS)
In this method, when a vehicle �nishes servicing customer vk at time tk with V̄ pk the remaining customers to
be visited before the next mandatory customer, there are two possibilities. Either it goes directly to the next
mandatory customer dp, earning thus a pro�t corresponding to the expected pro�t at dp. Or it visits the op-
tional customer v̄ from V̄ pk maximizing the expected pro�t (pro�t for visiting customer v̄ + expected pro�t at
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v̄). Moreover, in this method, the revenue associated with mandatory customer dp is the opposite of the penalty
cost for arriving late at this customer. The revenue function for the �rst method can thus be stated as follow:

f(vk, tk, V̄
p
k ) = max

(
E[f(dp, tk + τvkdp , ∅)],maxv̄∈V̄ p

k
(pv̄ + E[f(v̄, tk + τvkv̄ + σv̄, V̄

p
k \{v̄})])

)
with f(dp, t, ∅) = −Γdp max(t− ldp , 0)

• Method considering the whole route (WR)
In this method, the only change concerns the revenue associated with mandatory customer dp at time t: in this
revenue, we still have the opposite of the penalty cost for arriving late at this customer but we also have the
expected pro�t associated with �nishing the service at customer dp at time t + σdp . The revenue function for
the second algorithm can thus be stated as follow:

f(vk, tk, V̄
p
k ) = max

(
E[f̂(dp, tk + τvkdp)],maxv̄∈V̄ p

k
(pv̄ + E[f(v̄, tk + τvkv̄, V̄

p
k \{v̄})])

)
with f̂(dp, t) = −Γdp max(t− ldp , 0) + f(dp, t+ σdp , V

p+1)

Solving the Bellman's equations, it can be shown that the optimal policies for both methods are threshold policies.
For each customer, we obtain di�erent time thresholds de�ning time intervals. With each interval is associated a
decision (for example, if t1 6 t 6 t2, go to customer c).

4 Computational results

4.1 Instances

To test the 2-stage method we just described, we chose to use instances proposed by Tricoire [7] since they correspond
to the multi-period, multi-depot vehicle routing problem with time windows and priority within customers (i.e. the
multi-depot and deterministic variant of our problem).
In his instances, Tricoire [7] considers 3 vehicles and a planning horizon of 5 days. He proposes to take into account
two types of customers: appointments with an associated time window of 2 or 4 hours and a one-day validity period
(mandatory customers), and postponable customers without time windows and with a validity period of some days
(optional customers).
From these instances, we extracted three sets of instances with 30, 40 and 50 customers. Moreover, as mentioned
before, our method assumes having a su�cient number of mandatory customers in our instances (if this is not the
case, it can be decided to make some optional customers become mandatory). Thus we chose to keep a number of
mandatory customers between 5 and 9. Therefore, from each original instance, we extracted 5 instances in each set,
each instance considering 3 technicians but having a di�erent number of mandatory customers. From the instances
called I (with I ∈ {C1_1;C1_2;C1_3;C1_4;C1_5}) from Tricoire [7], we build instances called I_N with N being
the number of mandatory customers (N ∈ {5; 6; 7; 8; 9}). For example, instance C1_1_5 is extracted from instance
C1_1 and contains 5 mandatory customers.
We also modi�ed the time windows of Tricoire [7] associated with mandatory customers in order to have only half-day
(4 hours) time windows. Thus we attributed to the �rst half of mandatory customers the morning and to the rest the
afternoon.

4.2 Experimental context

The planning stage is solved exactly with Cplex 12.4 for instances with up to 40 customers. As mentioned above,
for the skeleton design, we use the integer programming algorithm proposed in Cplex whereas, for the insertion of
optional customers, we use a branch and cut algorithm by adding dynamically the subtour elimination cuts (12).
For larger instances containing 50 customers, we use a branch and bound algorithm for the skeleton design, but we
use the Lagrangian heuristic to insert optional customers in the skeleton. In both cases, at the end of the planning

12

A 2-Stage Method for a Field Service Routing Problem with Stochastic Travel and Service Times

CIRRELT-2013-76



stage, we use repair and improvement algorithms to get routes with a su�cient feasibility probability. As for the
execution stage, we use dynamic programming tools to get the optimal policy and its thresholds. We thus obtain,
for each customer, a list of time thresholds and associated decisions corresponding to the optimal policy. We then
proceed to 100 simulations per instance, each simulation consisting in: �rst, generating stochastic travel and service
times and then, each time the service at a customer's location is completed, in comparing the current time to the
thresholds and in meeting the optimal decision determined by the dynamic programming algorithm. Our experiments
were conducted on a machine with 4 CPU, 2.8 Ghz, 30 Go of RAM.

For setting our parameters, we based ourselves on Tricoire's [7] work. For instance, as he proposed to consider an
average speed of 35km/h, we chose a minimal speed of 20km/h and a maximal speed of 50km/h (to keep an average
of 35km/h). We also set the modal speed (speed that has the biggest probability to occur) to 40km/h. Regarding
service time, we considered that optional customers service times varied between 15 and 30 minutes whereas manda-
tory customers service times were between 30 and 60 minutes. For the insertion of optional customers, we assumed
that the service of any optional customer yields a revenue pi = 100. To set the parameter α for weighting travel time
in the second step objective function, we made some experimentation. By choosing α = 1, we ensure our preference
for inserting optional customers rather than traveling a smaller distance. Finally, for the execution phase, we choose
Γdp = 5000 for any p.

4.3 Planning stage results

Before presenting the planning stage results, we set values for two parameters of the planning stage: Lmax (maximal
size of segments on which we generate reachability cuts instead of classical subtour elimination constraints) and Smax
(the maximal size of subset elimination inequalities to be generated).

To adjust the Lmax value, we made some experimentation on small instances containing 30 customers and 3
vehicles. Results were obtained by varying Lmax from 0 to the time horizon (Lmax = 480) and are summarized in
Table 1. Unlike what we could expect, we observe in this table that the best computation times are obtained for

Number of
mandatory Instances Lmax = 0 Lmax = 80 Lmax = 160 Lmax = 240 Lmax = 320 Lmax = 400 Lmax = 480
customers

5

C1_1_5 4 5 4 27 14 4 4
C1_2_5 10 11 11 23 23 24 10
C1_3_5 39 40 40 46 46 46 29
C1_4_5 1159 1208 1190 609 607 610 263
C1_5_5 55 55 35 57 57 57 41

6

C1_1_6 69 69 90 97 97 97 68
C1_2_6 139 136 100 64 64 64 82
C1_3_6 267 259 263 206 165 166 148
C1_4_6 120 120 120 82 83 83 76
C1_5_6 1024 1033 1041 247 319 322 320

7

C1_1_7 1219 1230 1427 565 559 561 559
C1_2_7 26 27 23 16 19 19 18
C1_3_7 75 75 75 63 47 47 47
C1_4_7 96 97 77 92 92 92 47
C1_5_7 54 54 54 36 37 37 36

8

C1_1_8 315 317 316 115 117 117 117
C1_2_8 25 25 29 25 62 18 18
C1_3_8 13 13 14 24 12 12 12
C1_4_8 76 78 75 80 80 80 76
C1_5_8 23 24 23 23 31 31 31

9

C1_1_9 101 98 98 35 35 35 35
C1_2_9 28 27 27 25 41 41 41
C1_3_9 28 28 28 41 41 24 24
C1_4_9 134 132 132 110 110 80 80
C1_5_9 7 8 8 11 12 6 6

Table 1: Lmax adjustment (maximal size of segments for reachability cuts)

Lmax = 480 (time horizon), i.e. when we generate reachability cuts on all segments. We thus set Lmax = 480 in
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further experiments.

For choosing Smax, we also made some experimentation summarized in Table 2. We can observe in this table
that the best computation times are obtained for Smax = 6, i.e., when we generate subset elimination inequalities for
subsets containing at most 6 customers. We thus choose Smax = 6.

Number of
mandatory Instances Smax = 3 Smax = 4 Smax = 5 Smax = 6 Smax = 7
customers

5

C1_1_5 4 4 4 4 4
C1_2_5 8 8 8 12 17
C1_3_5 27 28 27 26 28
C1_4_5 163 131 177 139 153
C1_5_5 32 34 34 34 46

6

C1_1_6 61 40 44 40 44
C1_2_6 65 58 59 55 60
C1_3_6 124 76 68 80 75
C1_4_6 69 46 45 53 59
C1_5_6 211 105 102 102 102

7

C1_1_7 368 145 144 144 145
C1_2_7 16 16 16 15 15
C1_3_7 28 21 21 21 21
C1_4_7 65 64 51 53 49
C1_5_7 52 33 33 33 33

8

C1_1_8 66 56 56 56 56
C1_2_8 21 28 21 23 22
C1_3_8 17 13 12 13 12
C1_4_8 63 46 58 60 70
C1_5_8 22 23 25 17 16

9

C1_1_9 31 23 23 23 23
C1_2_9 21 26 25 26 27
C1_3_9 28 29 33 26 27
C1_4_9 69 46 42 40 40
C1_5_9 5 7 7 7 6

Table 2: Smax adjustment (maximal size of subset elimination inequalities)

In Table 3 we report the average computation times for our 2-stage method in which the insertion of optional
customers consists in a single step (the one with pessimistic estimation). We limited the computation times to 2
hours (i.e., 7200). If the problem could not be solved within this time, we replace the computation time by a �-�.
Many variants of the branch and cut algorithm are considered. The column headings are the following ones: #
solved: number of instances solved optimally within 2 hours; B&C: Branch and cut; P: Preprocessing on variables; H:
Heuristic to generate an initial solution; RC: Reachability cuts; SEI: Subset elimination inequalities. In these tables,

# of
customers

# of
mandatory

# of
instances

B&C B&C, P B&C, P, H B&C, P, H, RC
B&C, P, H,
RC, SEI

#
solved

Avg.
time

#
solved

Avg.
time

#
solved

Avg.
time

#
solved

Avg.
time

#
solved

Avg.
time

30

5 5 5 1813 5 237 5 253 5 68 5 43
6 5 4 2797 5 288 5 324 5 137 5 66
7 5 2 1118 5 408 5 294 5 138 5 53
8 5 4 1689 5 109 5 90 5 50 5 34
9 5 5 1613 5 69 5 60 5 37 5 24

40

5 5 0 - 0 - 0 - 1 3869 3 3277
6 5 0 - 3 1952 3 1720 4 1601 4 962
7 5 0 - 1 519 1 493 3 3736 4 1451
8 5 0 - 1 556 2 3428 2 1196 5 1880
9 5 0 - 3 2250 3 1988 3 1201 5 1053

Table 3: Planning stage: Average computation times (in seconds)

we can observe a signi�cant decrease of the computation times thanks to the di�erent speedup techniques. We are
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able to solve instances with 30 customers in less than 3 minutes and most of the instances with 40 customers in less
than 2 hours.

The results obtained comparing Lagrangian heuristic and branch and cut methods are summarized in Table 4. We
choose β = 0.9, ε = 1 and the subgradient method ends either when the gap falls under 2% or after 50 iterations.
The column headings are the following ones: # solved: number of instances solved to optimality; Avg. gap to opt:

average gap between the best upper bound z and the optimal value z∗ (gap =
z − z∗

z∗
); Avg. gap to LB: average

gap between z and the best lower bound z (gap =
z − z
z

); Avg. gap LB to opt: average gap between z and z∗ (gap

=
z∗ − z
z∗

). In Table 4, we observe that the branch and cut algorithm computes the optimal solution on almost all

# of
customers

# of
mandatory

# of
instances

Branch and cut Lagrangian relaxation

#
solved

Avg.
gap to

LB

Avg.
time

Avg.
gap to
opt.

Avg.
gap to

LB

Avg.
gap LB
to opt.

Avg.
time

30

5 5 5 0.0% 43 1.75% 2.03% 0.27% 192
6 5 5 0.0% 66 3.14% 3.32% 0.18% 262
7 5 5 0.0% 53 2.13% 2.83% 0.66% 102
8 5 5 0.0% 34 3.13% 3.32% 0.19% 119
9 5 5 0.0% 24 2.22% 2.95% 0.70% 99

40

5 5 3 1.8% 3277 1.98% 2.64% 0.46% 1211
6 5 4 2.0% 962 1.99% 3.09% 0.52% 1106
7 5 4 0.8% 1451 1.60% 2.81% 0.27% 572
8 5 5 0.0% 1880 2.09% 2.42% 0.32% 532
9 5 5 0.0% 1053 1.35% 2.43% 1.04% 507

50

5 5 0 4.04% 7200 - 1.44% - 1227
6 5 1 4.99% 5960 0.33% 1.63% 0.00% 3064
7 5 1 4.03% 6820 0.88% 2.57% 0.07% 2844
8 5 0 7.50% 7200 - 2.40% - 2323
9 5 2 2.78% 5365 0.54% 2.13% 0.46% 1408

Table 4: Planning Stage: Branch and cut versus Lagrangian relaxation

instances containing up to 40 customers. On larger instances (with 50 customers), most of the instances cannot be
solved to optimality within 2 hours with the branch and cut algorithm. The gap between solutions obtained with
this algorithm on instances with 50 customers and the lower bound is located between 3% and 7.5% whereas the
Lagrangian heuristic provides better solutions (with a gap to lower bound smaller than 3%) within less than one
hour. For the remaining part of experiments, we thus choose the branch and cut method for instances with up to 40
customers and the Lagrangian heuristic for instances containing 50 customers.

4.4 Execution stage results

For the execution phase results, we experiment the two strategies mentioned before: considering one segment (OS)
and considering the whole route (WR). During simulations, in order to get unpredictable service and travel times,
we increase the maximal service time σi for mandatory customers (we will note this value smax) and we decrease the
minimal speed vmin. For instances with 30 and 40 customers, we used results obtained with branch and cut method
for the insertion of optional customers (even if the result is not the optimal one), whereas we used results obtained
with Lagrangian heuristic for instances with 50 customers. The results obtained after simulation (with variant V 1,
F = 0.8 for the repair and improve algorithms) are summarized in Tables 5 to 7 giving the mean values, before and
after simulations, for the number of unserved customers, the total traveled distance and the total lateness:

In Tables 5 to 7, we observe that, for a given strategy (OS or WR), when we decrease the minimal speed and increase
the maximal service time at mandatory customers, the quality of the obtained solution decreases. Indeed, we get more
unserved customers, more lateness and, as we serve less customers, the traveled distance decreases. When comparing
results obtained before and after simulations, we observe that, with vmin = 15km/h, we modify the planned routes
less than with vmin = 10km/h (with 3 to 5 customers becoming unserved instead of 5 to 8). Moreover, in Tables
5 to 7, we observe that the strategy considering only one segment (OS) is better than the strategy considering the
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Number of
A
priori

vmin = 15km/h vmin = 10km/h
mandatory smax=75min smax=90min smax=75min smax=90min
customers WR OS WR OS WR OS WR OS

5 1.6 5.48 3.35 5.82 3.72 7.37 5.50 7.70 5.88
6 3.0 8.04 7.64 8.48 8.09 9.70 9.30 10.11 9.72
7 2.8 5.86 5.21 6.47 5.84 7.46 6.90 8.10 7.57
8 2.8 5.38 5.46 6.24 6.32 7.43 7.53 8.19 8.29
9 2.8 5.72 5.73 6.65 6.65 7.73 7.72 8.64 8.64

Table 5: Average number of unserved customers on instances with 30 customers

Number of
A
priori

vmin = 15km/h vmin = 10km/h
mandatory smax=75min smax=90min smax=75min smax=90min
customers WR OS WR OS WR OS WR OS

5 219 200 211 198 209 193 203 191 201
6 226 214 216 211 214 205 208 203 205
7 221 204 207 200 203 194 196 189 192
8 232 217 218 212 213 206 207 202 202
9 224 207 207 202 202 197 198 193 193

Table 6: Average traveled distance on instances with 30 customers

Number of vmin = 15km/h vmin = 10km/h
mandatory smax=75min smax=90min smax=75min smax=90min
customers WR OS WR OS WR OS WR OS

5 1.45 1.50 2.03 2.06 14.81 16.82 16.05 18.12
6 40.09 40.10 43.07 43.07 87.20 87.23 95.07 95.17
7 1.82 1.84 2.68 2.76 20.97 21.57 24.20 24.88
8 2.91 2.05 4.76 3.48 28.55 28.21 34.50 32.97
9 2.38 2.43 4.82 4.79 25.80 27.06 34.17 35.10

Table 7: Average lateness on instances with 30 customers

whole route (WR) regarding the average number of unserved customers. On the other hand, we should prefer the
whole route strategy for the traveled distance and the lateness. For the remaining part of our experiments, we use
vmin = 15km/h and smax = 90min.

During the insertion of optional customers (in the planning stage), we proceed to the improvement of the solution
(see �2.2.3). Two strategies are considered: in variant V1, we proceed to a single improvement, whereas in variant
V2, we improve the solution as long as we can. We made some experiments to compare both strategies and also to
choose the value of the feasibility threshold F .

Number of variant V1 variant V2
mandatory F = 0.8 F = 0.9 F = 0.8 F = 0.9
customers WR OS WR OS WR OS WR OS

5 5.82 3.72 5.98 3.93 4.03 3.53 5.33 3.36
6 8.48 8.09 5.53 5.54 8.44 8.00 5.59 5.55
7 6.47 5.84 9.24 8.61 6.41 5.65 5.52 5.51
8 6.24 6.32 7.57 6.17 6.86 6.23 7.55 6.13
9 6.65 6.65 7.08 6.42 6.59 6.59 7.03 6.36

Table 8: Impact of the improvement variant on the average number of
unserved customers for instances with 30 customers

We observe in Tables 8 to 10 that the variant V2, consisting in improving the solution as long as we can, produces
better solutions than the variant V1. In fact, the number of unserved customers is lower for variant V2 (thus increasing
sometimes the traveled distance) whereas the lateness remains almost the same. Regarding the feasibility threshold,
we observe that increasing F induces a decrease of the number of unserved customers and of the lateness (for variant
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Number of variant V1 variant V2
mandatory F = 0.8 F = 0.9 F = 0.8 F = 0.9
customers WR OS WR OS WR OS WR OS

5 198 209 199 210 206 210 199 211
6 211 214 212 212 212 214 212 212
7 200 203 201 204 204 207 209 209
8 212 213 195 204 209 211 195 204
9 202 202 197 202 202 202 197 201

Table 9: Impact of the improvement variant on the average traveled
distance for instances with 30 customers

Number of variant V1 variant V2
mandatory F = 0.8 F = 0.9 F = 0.8 F = 0.9
customers WR OS WR OS WR OS WR OS

5 2.03 2.06 2.01 2.05 2.03 2.06 1.99 2.03
6 43.07 43.07 3.09 3.10 43.07 43.12 3.09 3.15
7 2.68 2.76 2.68 2.75 2.71 2.79 2.70 2.77
8 4.76 3.48 3.14 3.24 3.51 3.58 3.18 3.24
9 4.82 4.79 4.65 4.65 4.92 4.89 4.62 4.63

Table 10: Impact of the improvement variant on the average lateness
for instances with 30 customers

V2) while the traveled distance does not increase too much.

The results obtained on instances with 40 customers are summarized in the Tables 11, 12 and 13. In these tables, we
observe the same behaviour between variant V1 and V2 (smaller number of unserved customers and increased traveled
distances for V2, and lateness remaining almost the same). On the other hand, when F increases in variant V2, the
number of unserved customer increases with lateness whereas traveled distance decreases. However, variations remain
small in comparison to those on 30 customers. We thus choose variant V2 with F = 0.9.

Number of variant V1 variant V2
mandatory F = 0.8 F = 0.9 F = 0.8 F = 0.9
customers WR OS WR OS WR OS WR OS

5 10.91 10.13 10.87 10.09 9.74 9.73 9.66 9.66
6 13.49 12.73 12.96 12.96 12.54 12.53 12.69 12.68
7 13.84 13.11 13.28 13.28 13.00 13.02 13.28 13.28
8 13.43 13.42 13.32 13.32 13.40 13.38 13.21 13.22
9 14.93 14.41 14.24 14.33 13.94 14.02 14.51 14.00

Table 11: Impact of the improvement variant on the average number of
unserved customers for instances with 40 customers

Number of variant V1 variant V2
mandatory F = 0.8 F = 0.9 F = 0.8 F = 0.9
customers WR OS WR OS WR OS WR OS

5 189 191 189 191 196 196 193 194
6 200 202 202 202 205 204 204 204
7 191 194 198 198 195 196 198 198
8 197 198 198 198 198 198 198 198
9 188 189 193 191 192 192 189 191

Table 12: Impact of the improvement variant on the average traveled
distance for instances with 40 customers

The results obtained for the variant V 2, with F = 0.9, on instances with 50 customers are summarized in Table 14.
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Number of variant V1 variant V2
mandatory F = 0.8 F = 0.9 F = 0.8 F = 0.9
customers WR OS WR OS WR OS WR OS

5 1.82 1.85 1.79 1.80 1.80 1.85 1.77 1.81
6 2.59 2.62 2.65 2.65 2.61 2.64 2.65 2.65
7 2.52 2.54 2.41 2.45 2.52 2.54 2.41 2.45
8 3.63 3.67 3.62 3.61 3.59 3.69 3.60 3.61
9 6.69 5.61 6.71 5.60 6.71 5.57 6.75 5.59

Table 13: Impact of the improvement variant on the average lateness
for instances with 40 customers

Like previously, we can observe in this table that the one segment strategy turns out to be more e�ective regarding the
number of unserved customers whereas the average lateness and traveled distance remain almost the same, regardless
of the strategy used.

Number of Avg # unserved Avg traveled distance Avg lateness
mandatory WR OS WR OS WR OS

5 17.84 17.87 184 185 1.96 1.97
6 21.00 20.36 187 187 3.62 3.54
7 21.84 21.20 180 180 3.56 3.51
8 22.14 22.16 188 188 4.27 4.39
9 22.73 22.75 179 179 5.81 6.00

Table 14: Average values after simulations for instances with 50 customers

5 Conclusions

In this paper, we presented a 2-stage method for solving a �eld service routing problem with time windows, multiple
depots, priority within customers and stochastic travel and service times. The method consists in a planning stage
followed by an execution stage. In the planning stage, we �rst design a skeleton of mandatory customers, and then
we insert optional customers in this skeleton. In the execution stage, we use a dynamic programming algorithm to
face stochastic travel and service times. We also proposed some speedup techniques to improve computation times.
We have tested our method on instances based on realistic data. In the experimental results, we could see that these
techniques proved very e�ective on instances containing up to 50 customers and 3 vehicles. In the computational
results, we could observe that the best solutions were obtained with variant V2 (improve the solution as long as we
can during the insertion of optional customers) and setting the feasibility threshold F = 0.9. We also noticed that
the dynamic programming strategy considering only one segment turns out to be more e�ective regarding the number
of unserved customers whereas the other strategy (considering the whole route) prevents from lateness and distance
overcost.
However, even if our method gave good results, it has a drawback: we have to consider a su�cient number of
mandatory customers (otherwise, the skeleton design becomes useless). If this is not the case, it would be possible to
increase the number of mandatory customers by making some optional customers become mandatory. Nevertheless,
it would be interesting, in the future, to group the two phases of the planning stage of this method into a single one.
It would also be interesting to extend the method in order to deal with the multi-period problem, to see the impact
of the dynamic programming strategy (whole route or one segment) on a multi-period horizon.
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