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Abstract

In arc routing problems, customers are located on arcs, and routes of minimum cost
have to be identified. In the Orienteering Arc Routing Problem (OARP), in addition to a
set of regular customers that have to be serviced, a set of potential customers is available.
From this latter set, customers have to be chosen on the basis of an associated profit.
The objective is to find a route servicing the customers which maximize the total profit
collected while satisfying a given time limit on the route. In this paper, we describe large
families of facet-inducing inequalities for the OARP and present a branch-and-cut algo-
rithm for its solution. The exact algorithm embeds a procedure which builds a heuristic
solution to the OARP on the basis of the information provided by the solution of the
linear relaxation. Extensive computational experiments over different sets of OARP in-
stances show that the exact algorithm is capable of solving large instances, with up to
1500 vertices and 10500 arcs, within one hour and often within a few minutes.

Keywords: Orienteering Arc Routing Problem, Routing Problems with Profits, Branch-
and-Cut.

1 Introduction

Arc routing problems deal with the design of routes traversing a subset of arcs or edges of
a graph. The arcs or edges that have to be traversed in an arc routing problem are usually
called customers. In the classical arc routing setting, all customers must be serviced and the
objective is to minimize the total cost of the routes. A new class of arc routing problems
is gaining attention in the last years which is called arc routing problems with profits. In
problems of this class, the given set of customers comprises a subset of required customers,
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i.e., customers that have to be serviced, and a subset of profitable customers. For each
profitable customer a decision has to be taken to determine whether it will be serviced or
not. A profit is associated with each profitable customer and the decision concerning their
service is based on convenience.

As it happens for the classical routing problems, that is routing problems without prof-
itable customers, the literature on vehicle routing problems with profits, where customers are
placed on nodes of a graph, is much broader than the one on their arc routing counterpart,
where customers are placed on arcs or edges. We refer the reader to Archetti, Speranza
and Vigo [6] and Archetti and Speranza [4] for two recent surveys of vehicle and arc routing
problems with profits, respectively.

Routing problems with profits deal with the dichotomy of maximizing the profit collected
and minimizing the traveling cost. These two contrasting objectives can be handled in dif-
ferent ways and this gives rise to different types of problems. Vehicle routing problems with
profits can be classified in three classes (see Feillet, Dejax, and Gendreau [8] and Archetti,
Speranza and Vigo [6]):

• Prize-collecting problems: a lower bound is set on the total profit collected and the
objective is to minimize the traveling cost;

• Profitable problems: the objective is to maximize the difference between the collected
profit and the traveling cost and no bound is fixed neither on traveling cost nor on profit
collected;

• Orienteering problems: an upper bound is set on the traveling cost and the collected
profit is maximized.

In orienteering problems the traveling cost is often interpreted as traveling time and the
upper bound as a limit on the time duration of a route.

Adapting the above classification to the arc routing problems, we define the Orienteering
Arc Routing Problem (OARP) as follows. Customers are placed on arcs or edges of a graph.
Profitable and required customers, i.e. customers which must be serviced and have no associ-
ated profit, are given. Note that in the Orienteering Problem, the node routing counterpart
of the OARP, required customers are typically not considered. The OARP aims at finding
a single route which maximizes the total collected profit while satisfying a maximum time
duration.

The OARP can model a number of real-life applications. For instance, nowadays it is
more and more frequent that demand for transportation services is posted on the web and
carriers respond to that demand and offer their services, possibly in the framework of an
electronic auction. Within this set of potential customers, the carrier has to select those
which best fit for its fleet and its customers. In an electronic auction, the carrier will make
a bid for these customers. In a truck-load type of service, a transportation service consists
of reaching a node with an empty truck, filling the truck with a load, traversing an arc and
unloading the truck completely. A vehicle (or fleet of vehicles) with limited traveling time is
usually available to perform the service. The carrier may need to take into account a set of
regular customers who have to be serviced. This is, in fact, the most common situation. The
carrier looks for additional profitable customers in order to fully use the unused traveling time
of the vehicle. The above situation can be modeled as an arc routing problem with profits.
Consider a set of customers as the one depicted in Figure 1(a), where required and profitable
customers are represented by dotted and solid arcs, respectively. A profit is associated with
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Figure 1: OARP example.

each profitable customer, a traveling time is associated with each arc of the graph, and a
maximum traveling time is available to perform the service. The objective is to find a route
leaving from and coming back to the depot (represented as a triangle in Figure 1), with total
time duration not greater than the maximum traveling time, that maximizes the profit of the
profitable customers that are serviced (see Figure 1(b)).

To the best of our knowledge, the only paper that is closely related to the OARP is due
to Souffriau et al. [10]. In this paper the authors consider a practical application where
cycle trips for tourists have to be built in the province of East Flanders. The differences
with respect to the OARP we have defined are that no required customers are considered
and a profit is associated with every arc of the graph. The authors propose a mathematical
formulation, which assumes that the graph is complete, and a fast heuristic algorithm based
on the greedy randomized adaptive search scheme. Computational tests are performed on
instances generated from data related to the real application.

The multiple vehicle version of the OARP, called the Team Orienteering Arc Routing
Problem (TOARP), has been studied in Archetti et al. [3, 2]. In [3], a formulation for the
problem is presented, its polyhedron is studied, and a branch-and-cut algorithm solving small
and medium size instances is described. In [2] a matheuristic is proposed.

In this paper we study the OARP and propose an exact algorithm for its solution. Fur-
thermore, we present a heuristic which makes use of the information provided by the linear
relaxation and builds a feasible solution to the OARP through the exact solution of a min-
imum cost network flow problem. The heuristic is embedded into the exact branch-and-cut
algorithm and provides a good lower bound that helps pruning the nodes of the branch-and-
bound tree. This algorithm can be classified as a matheuristic as it embeds the exact solution
of a Mixed Integer Linear Programming model (MILP). Matheuristics are more and more
used for the solution of hard combinatorial problems in general and for routing problems
in particular, as witnessed by the large amount of contributions surveyed in Archetti and
Speranza [5]. Extensive computational experiments over different sets of OARP instances
show that the exact algorithm is capable of solving large instances, with up to 1500 vertices
and 10500 arcs, within one hour and often within a few minutes.

The paper is organized as follows. In Section 2 we define the problem and present a
mathematical programming formulation. The associated polyhedron and several families
of valid inequalities are described in Section 3. The proposed branch-and-cut algorithm
is presented in Section 4, while the computational experiments are described in Section 5.
Finally, some conclusions are drawn in Section 6.
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2 Problem definition and formulation

Let G = (V,A) be a directed graph, where vertex 1 represents the depot. Let AR ⊆ A be the
set of required arcs, those that have to be serviced mandatorily, and let AP ⊆ A be the set
of profitable arcs, those that may be serviced if beneficial. Each arc (i, j) ∈ AP is associated
with a nonnegative profit sij that can be collected at most once, and each arc (i, j) ∈ A
is associated with a traveling time cij . The OARP consists in finding a route, starting and
ending at the depot, such that its total time duration is not greater than Tmax, all the arcs
in AR are traversed at least once, and the sum of the profits of the traversed arcs in AP is
maximum. The traveling time on every traversed arc contributes to the time duration of the
route.

As in most arc routing problems, we assume that all the vertices are incident with arcs in
AR ∪ AP . When G does not satisfy this condition, it can be transformed into an equivalent
graph which does. This assumption makes the formulation and the solution of the problem
easier.

We use the following notation. Given a subset of vertices S ⊆ V , let A(S) be the set of arcs
with both endpoints in S, A(S) = {(i, j) ∈ A : i, j ∈ S}. We define similar sets AP (S) and
AR(S). The subgraph of G induced by the set of vertices S is denoted by G(S). Given two
disjoint sets S, T ⊆ V , we define (S, T ) = {(i, j) ∈ A : i ∈ S, j ∈ T}, (S : T ) = (S, T ) ∪ (T, S)
and δ(S) = (S : V \ S). Finally, given a set of arcs W ⊂ A and a vector x indexed by the

arcs in A, x(W ) =
∑
a∈W

xa.

We formulate the OARP by using the following variables:

• For each (i, j) ∈ A, let xij be the number of times arc (i, j) is traversed.

• For each (i, j) ∈ AR ∪ AP , let yij be a binary variable that takes value 1 if arc (i, j) is
serviced and 0 otherwise.

The OARP can be formulated as follows:

Maximize
∑

(i,j)∈AP

sij yij

∑
j∈V \{i}

xij =
∑

j∈V \{i}

xji ∀i∈V (1)

∑
i∈V \S, j∈S

xij ≥ 1 ∀S⊂V \{1} with AR(S) 6= ∅ (2)

∑
i∈V \S, j∈S

xij ≥ ya ∀S⊂V \{1}, ∀a ∈ AP (S) (2’)

xij ≥ 1 ∀(i, j)∈ AR (3)

xij ≥ yij ∀(i, j)∈AP (3’)
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∑
(i,j)∈A

cijxij ≤ Tmax (4)

xij ≥ 0 and integer ∀(i, j) ∈ A (5)

yij ∈ {0, 1} ∀(i, j) ∈ AP , (6)

where (1) are the symmetry equations, connectivity constraints (2) and (2’) ensure that the
route is connected to the depot, constraints (3) and (3’) force the vehicle to traverse the arcs
that it services, and constraint (4) limits the traveling time of the route.

3 The OARP polyhedron

Determining the dimension of the polyhedron defined as the convex hull of the OARP so-
lutions is a very difficult task, because it does not only depend on the number of vertices
and arcs, but also on the traveling times on the arcs and the time limit Tmax. The difficulty
in obtaining the dimension makes the task of proving that an inequality is facet inducing
almost impossible in general. In Archetti et al. [3], the constraints limiting the duration of
the routes were removed from the polyhedron of the TOARP. We proceed in the same way
here.

If we remove constraint (4), given that the OARP is a special case of the TOARP, the
convex hull of the solutions satisfying (1) to (3’), (5) and (6) is a polyhedron of dimension
(|A| + |AP | − |V | + 1) (if G is strongly connected) and the following inequalities are facet
inducing:

• xij ≥ 0, for all (i, j) ∈ A \ (AR ∪ AP ), if G \ {(i, j)} is strongly connected. If (i, j) ∈
AR∪AP , then xij ≥ 0 is not facet-inducing because it is dominated by the corresponding
inequality xij ≥ yij ;

• yij ≥ 0, for all (i, j) ∈ AR ∪ AP , if G \ {(i, j)} is strongly connected. Inequalities
yij ≤ 1 are not facet-inducing because they are dominated by inequalities yij ≥ 0 and
inequalities (3) or (3’), if (i, j) ∈ AR or (i, j) ∈ AP , respectively;

• xij ≥ yij , for all (i, j) ∈ AP , if G \ {(i, j)} is strongly connected;

• xij ≥ 1, for all (i, j) ∈ AR, if G \ {(i, j)} is strongly connected;

•
∑

i∈V \S,j∈S

xij ≥ 1, for all S⊂V \{1}, for all a ∈ AR(S), if subgraphs G(S) and G(V \S)

are strongly connected;

•
∑

i∈V \S,j∈S

xij ≥ ya, for all S⊂V\{1}, for all a ∈ AP (S), if subgraphs G(S) and G(V \S)

are strongly connected.

In addition, several families of valid inequalities for the TOARP were described in Archetti
et al. [3], namely the K-C, path-bridge, and max-length inequalities. In what follows, we
present the version of these inequalities for the OARP. Although the new inequalities can not
be directly obtained from the results presented in [3], similar proofs show that they are valid
for the OARP. For this reason, we omit the proofs.
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3.1 K-C inequalities

K-C inequalities are a well-known family of facet-inducing inequalities for different variants
of arc routing problems.

A K-C inequality is defined by a partition of V intoK+1 sets {M0,M1,M2, . . . ,MK−1,MK},
with K ≥ 3, where all the required arcs are contained either in A(M0 : MK) or in a set A(Mi).
Let F ⊆ (M0 : MK)P be a set of profitable arcs such that |F | + |(M0 : MK)R| is an even
number greater than or equal to 2. Let IR be the set of indices i ∈ {1, . . . ,K − 1} such that
either A(Mi) contains a required arc or Mi contains the depot:

IR = {i : AR(Mi) 6= ∅ or 1 ∈Mi}.

For each of the remaining indices i /∈ IR we assume there is a profitable arc ai ∈ A(Mi).
Let us denote H = {ai : i /∈ IR}. We call K-C inequality:∑

(i,j)∈A

bij xij ≥ (K−2)|(M0 : MK)R|+ (K−2)(2y(F )− |F |) + 2|IR|+ 2y(H), (7)

where the coefficients bij are shown in Figure 2. Each number close to an arc represents the
coefficient of the variable xij associated with the traversal of the corresponding arc:

bij =


K − 2 if (i, j) ∈ (M0 : MK)
|r − s| if (i, j) ∈ (Mr : Ms), {r, s} 6= {0,K}

0 otherwise.
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Figure 2: K-C configuration

3.2 2-PB inequalities

Path-Bridge (PB) inequalities were introduced by Letchford [9] for the undirected General
Routing Problem (GRP) and extended to the TOARP in Archetti et al. [3]. They are also
valid for the OARP, but since the separation of the general case is difficult, we only consider
the particular case with two paths, called 2-PB inequalities, which is the one that we describe
in what follows.

Consider a partition
{
MA,MZ , {M1

q }q=1,...,n1 , {M2
q }q=1,...,n2

}
of V , where n1 and n2 are

integer numbers greater than or equal to 2, and all the required arcs are contained either in
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Figure 3: 2-PB configuration.

MA∪MZ or in a set M s
q , s = 1, 2. For the sake of simplicity, we identify MA with M s

0 and MZ

with M s
ns+1, for both s = 1 and s = 2. Let F ⊆ (MA : MZ)P be a set of profitable arcs such

that |F | + |(MA : MZ)R| is an odd number. Hence, a 2-PB inequality is defined by 2 paths
from MA to MZ , each of them with ns + 2 node-sets, and by |F | + |(MA : MZ)R| required
and profitable arcs joining the sets MA and MZ , which form the bridge. For each path s, let
IsR be the set of indices i ∈ {1, . . . , ns} such that either A(M s

i ) contains a required arc or M s
i

contains the depot:
IsR = {i : AR(M s

i ) 6= ∅ or 1 ∈M s
i }.

For each of the remaining indices in path s, i /∈ IsR, we assume there is a profitable arc
asi ∈ A(M s

i ) and we denote Hs = {asi : i /∈ IsR}.
The coefficients of the 2-PB inequality are bij = c(M s

q ,M
t
r), where:

• c(MA,MZ) = c(MZ ,MA) = 1,

• c(M s
q ,M

s
r ) = |q−r|

ns−1 for all q, r ∈ {0, 1, . . . , ns+1}, s∈ {1, 2},

• c(M1
q ,M

2
r ) = c(M2

r ,M
1
q ) = 1

n1−1+ 1
n2−1+

∣∣ q−1
n1−1−

r−1
n2−1

∣∣ q ∈ {1, . . . , n1}, r ∈ {1, . . . , n2},
and bij = 0 otherwise. The 2-PB inequality is then

∑
(i,j)∈A

bij xij ≥
∣∣∣(MA : MZ)R

∣∣∣+
(

2y(F )− |F |
)

+

2∑
s=1

2

ns−1

(
|IsR|+ y(Hs)

)
− 1. (8)
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Note that, if we multiply the above inequality by (n1− 1)(n2− 1), all the coefficients can
be expressed with integer numbers and the inequality can be rewritten as:

(n1 − 1)(n2 − 1)
∑

(i,j)∈A

bij xij ≥ (n1 − 1)(n2 − 1)
(∣∣∣(MA : MZ)R

∣∣∣+ 2y(F )− |F |
)

+2(n2 − 1)
(
|I1R|+ y(H1)

)
+ 2(n1 − 1)

(
|I2R|+ y(H2)

)
− 1. (9)

This configuration is shown in Figure 3, where the number close to each pair of arcs
joining sets M s

q and M t
r represents the coefficient bij associated with the variables of the arcs

(i, j) ∈ (M s
q ,M

t
r).

3.3 Max-time constraints

This class of valid inequalities is related to the maximum duration of the route.
Let F be a subset of profitable arcs. Consider the problem of finding a tour of minimum

duration traversing all the arcs in F ∪AR and visiting the depot. This problem is known as
the Directed General Routing Problem (DGRP) and has been recently studied in Ávila et
al. [7], where a branch-and-cut algorithm producing good computational results is described.
Let z(F ∪AR) represent the optimal value of the DGRP on the graph induced by F ∪AR. If
z(F ∪AR) > Tmax, then the vehicle cannot service all the arcs in F and hence the inequality

y(F ) ≤ |F | − 1 (10)

is valid.

3.4 Cover inequalities

Let us suppose that the Linear Programming (LP) model solved at the root node has an
optimal value z(LP0). This value is an upper bound on the optimal OARP value and, hence,
any set of profitable arcs {a1, . . . , aQ} such that the sum of corresponding profits exceeds
z(LP0) corresponds to an infeasible solution. Then, any OARP solution must satisfy the
following inequality:

ya1 + · · ·+ yaQ ≤ |Q|. (11)

For instance, consider an optimal LP solution at the root node like the one depicted
in Figure 4, where again required and profitable customers are represented by dotted and
solid arcs, respectively. The optimal value is z(LP0) = 34, while the sum of the profits of the
profitable arcs serviced by the vehicle is 40. Therefore, we have the following cover inequality:

y1 + y2 + y3 + y4 ≤ 3,

which is violated by this solution. Note that if we consider the LP solution at any other
node k of the branch-and-cut tree, the corresponding inequality is not valid for any OARP
solution, but it must be satisfied by all the solutions of the subproblems associated with the
children of node k, and it can therefore be used as a local cut.

8



Figure 4: Solution violating a cover inequality.

4 The branch-and-cut algorithm

In this section we present a branch-and-cut algorithm that incorporates separation procedures
for the inequalities described in the previous section as well as a lower bound obtained through
a heuristic which makes use of the information provided by the linear relaxation of formulation
(1)-(6).

4.1 A heuristic algorithm

To obtain lower bounds that help prune the branch-and-cut tree, we designed a heuristic
that, starting from an optimal solution of any LP relaxation, produces a feasible solution to
the OARP. Such heuristic makes use of the information provided by the linear relaxation of a
mathematical programming formulation and can be classified as a matheuristic (see Archetti
and Speranza [5] for a recent survey on matheuristics for routing problems).

We illustrate the heuristic by means of an example. Consider the fractional LP solution
in Table 1 obtained at a certain node of the branch-and-cut tree. Note that most of the
x variables take integer values and only a few of them are fractional. Let us consider the
weighted graph induced by the arcs associated with the variables with fractional values, and
define their weights as the fractional parts of the LP solution (see Figure 5.a). Note that all
the vertices are balanced except for vertex 49, which can be considered a source node with
supply 1, and vertex 25, which can be considered a sink node with demand 1 (see Figure
5.b). If we solve the minimum cost flow problem from the source node to the sink node on
the original graph G, we can replace the fractional part of the LP solution by that of the flow
problem, thus obtaining an integer solution.

The general scheme of the heuristic is the following:

1. Consider the subgraph G′ induced by the arcs which have a positive fractional part in
the solution of the linear relaxation;

(a) Assign a weight wij to each arc of G′ equal to the fractional part of the corre-
sponding x variable;
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(b) Identify in G′ the set of source nodes having a positive balance and the set of sink
nodes having a negative balance;

2. Solve a minimum cost network flow on G with the source and sink nodes defined in
1(b).

3. Replace the fractional part of the LP solution by that of the flow problem.

Not all the solutions obtained with the algorithm described above are feasible solutions
to the OARP. They may be infeasible because their duration may exceed Tmax or because
they induce a disconnected graph. This happens mainly when the number of unbalanced
vertices is high. For this reason, we run this procedure only when the number of unbalanced
vertices is less than 10. Note that disconnected solutions could be easily modified and made
connected. However, some computational tests have shown that the quality of the solutions
obtained in this way is not good and, thus, we simply discard disconnected solutions.

This heuristic has resulted to be quite successful in finding good solutions. Preliminary
tests have shown that, however, it is too cumbersome to run the heuristic at every node of
the branch-and-cut tree. Thus, we execute the heuristic at the first 10 nodes. After that and
until node 50, it is executed only once every two nodes. From node 50 on, it is executed only
once every 10 nodes.

x(2,37) = 1 y(2,37) = 1 x(39,43) = 1 y(39,43) = 1 x(1,12) = 1
x(4,14) = 1.23 y(4,14) = 1 x(2,3) = 1 y(2,3) = 1 x(3,2) = 1
x(6,37) = 1 y(6,37) = 1 x(9,20) = 1 y(9,20) = 1 x(5,11) = 1
x(8,7) = 1 y(8,7) = 1 x(11,5) = 1 y(11,5) = 1 x(7,33) = 2
x(14,23) = 1 y(14,23) = 1 x(13,38) = 1 y(13,38) = 1 x(10,26) = 1
x(15,27) = 1 y(15,27) = 1 x(16,29) = 1 y(16,29) = 1 x(15,44) = 1
x(21,39) = 1 y(21,39) = 1 x(18,28) = 1 y(18,28) = 1 x(18,25) = 1.77
x(22,43) = 1 y(22,43) = 1 x(19,36) = 1 y(19,36) = 1 x(27,40) = 2
x(24,37) = 1 y(24,37) = 1 x(19,1) = 1 y(19,1) = 1 x(29,16) = 1
x(26,38) = 1 y(26,38) = 1 x(20,18) = 2 y(20,18) = 1 x(30,38) = 1
x(26,34) = 1 y(26,34) = 1 x(34,30) = 1 y(34,30) = 1 x(32,45) = 1
x(31,43) = 1 y(31,43) = 1 x(40,8) = 1 y(40,8) = 1 x(35,47) = 1
x(33,7) = 1 y(33,7) = 1 x(42,50) = 1 y(42,50) = 1 x(36,19) = 1
x(41,9) = 1 y(41,9) = 1 x(44,27) = 1 y(44,27) = 1 x(37,2) = 2
x(43,41) = 1 y(43,41) = 1 x(45,5) = 1 y(45,5) = 1 x(38,26) = 2
x(46,48) = 1 y(46,48) = 1 x(50,6) = 1 y(50,6) = 1 x(39,21) = 1
x(18,49) = 1 y(18,49) = 1 x(3,17) = 1 y(3,17) = 1 x(43,31) = 1
x(9,29) = 1 y(9,29) = 1 x(25,20) = 1 y(25,20) = 1 x(43,22) = 1
x(38,30) = 1 y(38,30) = 1 x(44,10) = 1 y(44,10) = 1 x(48,44) = 1
x(26,13) = 1 y(26,13) = 1 x(47,7) = 1 y(47,7) = 1 x(49,18) = 1.77
x(23,1) = 1 y(23,1) = 1 x(2,39) = 1 y(2,39) = 1 x(49,28) = 0.23
x(35,24) = 1 y(35,24) = 1 x(40,15) = 1 y(40,15) = 1 x(29,46) = 1
x(45,19) = 1 y(45,19) = 1 x(14,25) = 0.23 y(14,25) = 0.23 x(1,6) = 1
x(7,35) = 1 y(7,35) = 1 x(33,35) = 1 y(33,35) = 1 x(5,45) = 1
x(26,46) = 1 y(26,46) = 1 x(30,10) = 1 y(30,10) = 1 x(17,14) = 1
x(46,15) = 1 y(46,15) = 1 x(25,9) = 1 y(25,9) = 1 x(28,4) = 1.23
x(6,32) = 1 y(6,32) = 1 x(44,26) = 1 y(44,26) = 1 x(10,44) = 1
x(12,3) = 1 y(12,3) = 1 x(14,49) = 1 y(14,49) = 1 x(37,42) = 1

Table 1: LP solution. Total traveling time: 13123 Tmax: 13123

4.2 Cutting-plane procedure

The initial LP relaxation contains symmetry equations (1), traversing inequalities (3) and
(3’), inequalities (4) limiting the duration of the route, trivial inequalities (xij ≥ 0 and
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Figure 5: a) Fractional part of the LP solution. b) Flow problem.

0 ≤ yij ≤ 1), a connectivity inequality (2) associated with each connected component induced
by the required arcs.

The separation algorithms that have been used to identify the connectivity, K-C, and 2-PB
inequalities that are violated by the current LP solution at any iteration of the cutting plane
algorithm are based on those presented in Archetti et al. [3]. Although the algorithms are
not exactly the same, we omit their description for the sake of brevity. As in [3], the exact
separation procedure for the connectivity inequalities is applied only if the corresponding
heuristic fails to find violated inequalities. Since the separation of max-time constraints is
computationally expensive, we do not look for violated inequalities of this class.

Concerning the separation of the cover inequalities, we developed a fast heuristic separa-
tion algorithm. However, we noted that the addition of these inequalities made the algorithm
slower. Thus, instead of adding directly inequalities (11), we tried adding the following asso-
ciated knapsack-type inequality, ∑

(i,j)∈AP

sijyij ≤ bz(LP0)c, (12)

and we set the “Covers” parameter in CPLEX to 1 to allow the generation of violated cover
inequalities in a moderate way. Unfortunately, again the addition of these inequalities made
the algorithm slower. Therefore, we decided not to use this family of inequalities.

5 Computational experiments

In this section we present the computational results obtained with the proposed branch-
and-cut algorithm on a large set of instances. The procedure was coded in C/C++ using
CPLEX 12.4 MIP Solver with Concert Technology 2.9 on a single thread of an Intel Core i7
at 3.4GHz with 16GB RAM. CPLEX heuristic algorithms and cut generation were turned
off. The optimality gap tolerance was set to zero, and strong branching (see Applegate et al.
[1]) and the best bound strategy were selected. All the experiments were carried out with a
time limit of one hour.

We first performed a set of tests on the instances proposed in Archetti et al. [3] for
the TOARP. They turned out to be very easy to solve when considering a single vehicle.
Even the largest TOARP instances were solved in a few seconds. Therefore, we decided to
generate new larger instances as follows. The vertices V are randomly chosen in a 1000×1000
square, with |V | ∈ {500, 750, 1000, 1500}. For each vertex we add a leaving arc to its closest
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four vertices. In addition, to ensure that the graph is strongly connected, we also add three
Hamiltonian tours. Each arc is declared “service arc” (either required or profitable) with
probability p1 ∈ {0.2, 0.4}. However, if a certain arc is labeled as service arc and the opposite
arc exists, the opposite arc is automatically labeled as non-service arc. Thus, the total
number of service arcs may be less than the corresponding 20% or 40%. This is done to avoid
pairs of opposite arcs that are both service arcs. Among the service arcs, an arc is declared
required with probability p2 ∈ {0, 0.25, 0.50}. A total of five instances were generated for
each combination of parameters. The generated OARP instances have between 500 and 1500
vertices, and between 3500 and 10500 arcs. The traveling time of an arc is defined as the
Euclidean distance multiplied by a random number between 0.9 and 1.1. The profit of each
profitable arc is chosen at random between 100 and 500. We also tried to define the profits
proportional to the arc traveling times, but we did not observe any effect on the difficulty
of the instances. All the instances can be found in http://www.uv.es/corberan, as well as
the optimal value, when known, or the best feasible solution and the upper bound obtained
at the root node for each instance.

In order to compute a non-trivial value of Tmax, two DGRPs were solved for each OARP
instance using the branch-and-cut algorithm described in Ávila et al. [7]. The first one
considers as the set of required arcs only the required arcs of the original OARP instance,
and its optimal value is denoted by z1. In the second one, both the required and profitable
arcs of the OARP instance define the set of required arcs for the DGRP, and its optimal
value is denoted by z2. The Tmax value is defined as z1 + (z2 − z1) ∗ r, where r is a random
number between 0.4 and 0.8. This value of Tmax guarantees that all the required arcs, but
not all the profitable ones, can be serviced.

Set |AR| |AP | Total profit # opt. UB0 Opt. value Nodes CPU

500 2 0 0 666.8 198755.8 5/5 170018.2 170005.6 309.6 51.4
500 2 2 162.8 504.0 150307.0 5/5 132130.8 132124.4 132.6 21.1
500 2 5 321.0 345.8 102323.2 5/5 94571.0 94562.6 109.0 15.8

500 4 0 0 1198.2 362402.0 5/5 343845.6 343838.4 267.4 54.9
500 4 2 301.0 897.2 271483.6 5/5 259324.2 259315.0 340.2 64.1
500 4 5 594.6 603.6 181711.8 5/5 174110.2 174098.6 188.4 33.3

Table 2: Instances on graphs with 500 vertices and 3500 arcs

Set |AR| |AP | Total profit # opt. UB0 Opt. value Nodes CPU

750 2 0 0 1002.4 300687.2 4/5 248495.8 247648.0 1049.0 359.9
750 2 2 245.4 757.0 226180.0 5/5 193322.2 193317.4 197.2 62.4
750 2 5 462.0 540.6 151701.8 5/5 122899.8 122890.4 364.4 95.5

750 4 0 0 1786.2 536352.0 5/5 469056.2 469051.8 476.4 217.2
750 4 2 452.0 1334.2 401209.2 5/5 310042.0 310037.8 292.2 112.0
750 4 5 695.2 910.8 273116.2 5/5 241787.4 241780.2 737.6 245.6

Table 3: Instances on graphs with 750 vertices and 5250 arcs

Tables 2 to 5 show the computational results obtained with the branch-and-cut algorithm
on the instances with 500, 750, 1000, and 1500 vertices, respectively. In each table, the first

12



Set |AR| |AP | Total profit # opt. UB0 Opt. value Nodes CPU

1000 2 0 0 1331.8 401591.4 5/5 356423.0 356414.8 1718.2 899.2
1000 2 2 337.4 994.4 298978.2 5/5 255688.2 255683.6 518.0 250.6
1000 2 5 654.8 677.0 204564.8 5/5 175125.6 175099.0 813.8 335.4

1000 4 0 0 2373.2 709900.8 5/5 642066.8 642064.6 146.6 189.1
1000 4 2 581.8 1791.4 533480.2 5/5 433198.4 433194.6 386.0 266.8
1000 4 5 1182.6 1190.6 355550.2 5/5 283376.2 283371.2 452.4 286.4

Table 4: Instances on graphs with 1000 vertices and 7000 arcs

Set |AR| |AP | Total profit # opt. UB0 Opt. value Nodes CPU

1500 2 0 0 2023.2 606497.8 4/5 506001.4 505955.6 740.3 1158.0
1500 2 2 502.0 1521.2 457016.4 5/5 368421.4 368417.2 473.2 541.3
1500 2 5 1011.8 1011.4 301687.8 5/5 246308.6 246291.4 201.0 226.7

1500 4 0 0 3568.4 1072711.4 4/5 964030.3 964023.4 390.5 917.9
1500 4 2 876.6 2691.8 810600.6 5/5 676398.8 676395.4 595.8 923.5
1500 4 5 1793.2 1775.2 533358.6 5/5 465266.8 465263.8 615.6 821.9

Table 5: Instances on graphs with 1500 vertices and 10500 arcs

column shows the name of the set of instances, where the first number refers to the number of
vertices, the second one to the value of p1, and the third one to p2. The number of instances
in each set is equal to 5. Columns 2 and 3 give the average number of required and profitable
arcs of each set, respectively. The average sum of the profits of all the profitable arcs is
given in column ‘Total profit’. Column labeled ‘# opt.’ shows the number of instances that
were solved to optimality. Columns ‘UB0’ and ‘Opt. value’ report the average upper bound
obtained at the end of the root node and the average optimal value (or best solution found),
respectively. Finally, columns ‘Nodes’ and ‘CPU’ give the average number of nodes of the
branch-and-cut tree and the computing times (in seconds) for the instances that were solved
optimally.

Note that the difference between the total profit and the optimal value shows that the
instances are not trivial, since there is an important gap between the two.

In all the groups of instances, the most difficult ones are those with p1 = 0.2 and p2 = 0,
that is, approximately 20% of the arcs are service arcs and all of them are profitable arcs.
We think this is due to the difficulty of making the solution connected when there are very
few service arcs and all these arcs are profitable, which may or may not be serviced. For
the remaining instances, it seems that those with p1 = 0.4 are more difficult than those with
p1 = 0.2.

We conclude that the branch-and-cut algorithm performs very well, since it is capable
of solving all the instances, but three, to optimality in short computing times. Moreover,
the unsolved instances “750 2 0 4”, “1500 2 0 1”, and “1500 4 0 4” presented a final gap of
2.08%, 0.0009%, and 0.0026%, respectively, within the time limit of one hour. Note also that
the gap between the upper bound at the end of the root node and the optimal value is very
small, which indicates that the polyhedral description is tight.
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6 Conclusions

In this paper we presented the Orienteering Arc Routing Problem, which is an arc routing
problem with profits where a single route has to be built with the aim of maximizing the
total collected profit while satisfying a maximum time duration of the route. An integer
programming formulation and several families of valid inequalities have been proposed. A
branch-and-cut algorithm, including a heuristic based on the information provided by the
fractional LP solutions, has been implemented. The computational results show that the
behavior of the algorithm is excellent since it is able to solve instances with up to 1500
vertices and 10500 arcs in a few minutes of computing time. We recall that in the TOARP
with four vehicles only instances with up to 100 vertices and 800 arcs could be optimally
solved. This leads us to think that the OARP can be considered a “well-solved” problem.
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