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1. Introduction

Location optimization problems on a network in a competitive
environment have been extensively studied in operational
research. Hakimi [4] formulated the competitive problem under
the assumption that consumers deterministically choose the
nearest store. In the real world, this assumption is not always
acceptable because consumers do not usually choose the nearest
store, they rather choose probabilistically among several stores.
This probabilistic choice behavior is modeled by Huff, known as
the Huff model [5]. Huff formulated a model for capturing market
share, assuming that the probability of a consumer patronizing a
shopping center is proportional to its attractiveness and inversely
proportional to a power of the distance needed for a consumer to
reach it. Although the original Huff model was based on an
assumption that a market area is represented by a continuous
plane with Euclidean distance, Okabe and Kitamura [10] extended
it to the network Huff model by using the shortest path distance
on a network. Ghosh et al. [3] considered the problem under the
same assumption but for discrete demand (nodal demand). Oku-
nuki and Okabe [11] considered link based demand with slightly
changed objective function.
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In this paper we apply the network Huff model to a competitive
location problem, optimizing new facility locations on a network.
We assume that new facilities can be located at any point on the
network, and that the demand is generated in the vertices. We
introduce a slight modification of the nonlinear mathematical
model proposed earlier in [13]. As a step forward with respect to
[13], we implemented the model. The implementation was per-
formed by KNITRO software package for solving nonlinear opti-
mization problems, and our computational experience is reported,
as well. We considered three different metaheuristics for solving
this problem: Variable Neighborhood Search, Simulated Annealing
and Multi-Start Local Search metaheuristics for solving this pro-
blem. An ampler number of test instances than in [12] is con-
sidered and detailed results of the extensive computational testing
are shown, as well.

2. Problem formulation

We assume that customers are located in the vertices of a
network N = (V,E), V={vi,...,vn}, E< V2. The customers make
demand. Further, we assume that there are q facilities already
located on the network. The facilities provide service and satisfy
the demand. They are located at points y,...,y, on network .
Hence, the facility locations can be network vertices, as well as
other points along the edges. Adopting the notation that w; = w(v;)
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is the demand associated with vertex v;, ie(1,...,
the following properties:

n}, we assume

1. w; >0 and
2.0 wi=1.

The demand w may vary from one vertex to another one. For
instance, if the demand among the vertices is considered as a
random variable, its distribution can be uniform.

Our goal is to locate p new facilities x4, ...,X, on the network,
which will respond to the demand made by customers, so that the
captured demand is maximal.

To state the above location optimization problem more expli-
citly, let us formulate the network Huff model on . Firstly, let us
introduce facility attractiveness, a property assigned to each facility
in the system. Facility attractiveness of a specific facility is a scalar,
defining the power of the facility to attract customers. It is not
related to the location of a facility, yet, it reflects the rating of the
facility. It may be measured by the floor area, by the number of
services/items that specific facility offers, by the quality of service,
by the level of service updating or in any other predefined way.
Therefore, let us denote by ay,, cees Gy, and ay,,...,ay, the attrac-
tiveness of the existing and new facilities, respectively. In order to
unify the notations and to simplify formulas, let us denote by ay,
either

e the attractiveness of the existing facility, when f=y and
jef{l,....q}, or

® the attractiveness of the new facility, when f=x and
je{l,...p},

located at point f;. Let d(v;,f;) be the distance from the customer
located in vertex v; to the facility at f; on network A. Let us now
introduce the distance deterrence function F(d(v;,f;)) which, actu-
ally, involves the distance d(v;,f;) between the customer in v; and
the facility at f;. The distance deterrence function is a mono-
tonically decreasing function with respect to d(v;,f;). In his original
model, Huff specified the distance deterrence function F as a
power function, i.e.

Fdi.f) =dvi.f)~* 1>0. 1)

Eventually, let P(v;,f;) be the probability of a customer in v;
choosing facility at fj among the q+p possible facilities. On these
terms, the network Huff model is as follows:

ag d(vi. f;)~
>, dvi. i)~

Using the network Huff model, we proceed with formulating a
problem for obtaining the demand D(f;) captured by facility at f.
Let D(v;,f;) be the demand in v; captured by facility at f;. Since the
Huff model gives the probability of the customer in v; choosing the
facility at f;, D(v;,f;) is obtained from multiplying the probability
P(v;.f;) by w(vy), i.e.

P(vi.f)) = )

( Iaf])_ (
kaafkd(vz,fk) A

To obtain the demand D(f;) captured by facility at f;, we need to
sum Eq. (3) over all vertices v; eV, i.e.

as, d(vi, )~
D(f:) = D f;) = /it LAV CTA 4
(fj) v;/ v fj) v;/z:fkafkd(vbfk) A ) @

With q existing facilities located at points y,, ...,y, of network
N, we are supposed to locate p new facilities at points x4, ..., X, in
order to compete them and capture maximal demand. The total

D(vi.fj) = P(vi, fjyw(v)) = i)- 3)

demand captured only by new facilities is given by the formula

S b= 3%

j=1 j_lv,eVkaafkd(Vz,fk

ay, d(vi, X;)

-2
= W), ©)

where f e {y,x}; ke{1,...,q} if f=y, and ke (1, ...,p} if f =x. Since
it has to be maximal, the problem we have to solve is
d(vi. x;
max ij)ﬂl ( 1) (6)
~Xp e N j=1vie szkafkd(vz,fk)

3. A mathematical model for the Huff location problem

In this section we discuss the mathematical programming
model for the Huff location problem. Let V ={vy,...,v,} and E =
{e1,...,em} be a vertex set and an edge set of a network, respec-
tively. If [ : E—R is a weight function defining edge lengths, let
Iy =I(e;) be the length of edge e;. Since the edge lengths of the
graph are known in advance as input data, all pair shortest path
distances can be precalculated and considered as input data, too.
Therefore, let d(v;,v;) be the shortest path distance between ver-
tices v; and v;, Vi,je{l,...,n}.

The location of any point of the graph is given by a triple
(vj, Vi, y), where

® y; and vy are endpoints of edge containing the point,
® yis the relative position of the point on edge (v;, vi) with respect
to edge end v;.

Let us assign a point to every pair of vertex v and edge
e = (Ue, Ve), SO that being on the edge e, it is on the largest distance
from vertex v. In other words, the distance between the assigned
point and vertex v is larger than the distance between vertex v
and any other point on the edge e. Relative position M, of this
point on the edge, with regard to preselected endpoint of the edge
e, can be expressed as a number from [0, 1]. Denote with dist,, the
distance between vertex v and the assigned point.

The location of these points are graph properties, therefore,
they can be precalculated and considered as input data, as well as
their distances dist,. from the corresponding vertex v.

Let us now introduce binary variables xz (where f is a facility
and e e E is an edge) whose meaning is given with:

1,
Xfe = 0

Also, we introduce variables yr whose value is the relative position
of facility f on an edge chosen for the facility to be located on. In
this context, the shortest path distance d,; between facility f on
edge e and vertex v is:

| Mye —yrl I(e). €]

if facility with index f is on edge e,
otherwise.

)

dvf = divae —

On the other hand, if facility fis not located on edge e’ then, the
distance between vertex v and facility f can be described with the
inequality:

dvf = disrve’ = Mve’ *yﬂ l(e/) - (1 *Xfe’)sa (9)

where S is a very big number (for example, greater than the sum of
lengths of all edges in the graph).

Also, we must bound from above these distances in the fol-
lowing way:

dyy < distye — | Mye — 71 1(€)+(1-X5)S. (10)
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Finally, we can formulate our problem in the following way:

P apdvif)
, Max . )
filedp e N f ey 2opapd(vi f)
where f7, ie (1, ...,p}, are locations of new facilities on the graph,
ar, je{1,...,p}, related attractiveness, while f and ar are facility
locations (either the existing or new ones) on the graph and
related attractiveness, respectively.

We have the following constraints:

fo?ezl j=12,..,p (12)

ecE

w(vy), an

dv,f," > distye — |Mve—yf]n|l(e)—(1 —xfjne)S, veV,eeE,j=1,2,...,p
(13)

dvﬁ < distye — |Mve—yf}x|l(e)+(1 —xf}.e)S, veV,eeE,j=1,2,...,p

(14)
Xpe€{0.1), ecEj=1.2....p (15)
Ypel0 1l j=1.2,...p. (16)

Constraints (12) ensure that every facility is located. By using
constraints (13) and (14), we define the lower and the upper
bound on the distance between vertices and facilities.

Regarding complexity of the model we have the following
facts:

® We have p x |E| +p+|V]| x p variables (p x |E| of them are
binary, while the others are continuous).
® There are p+2 x p x | V| x |E| constraints.

4. The metaheuristics and the applications to the Huff location
problem

4.1. Variable Neighborhood Search

Variable Neighborhood Search (VNS) [6,7,9] is a well known
metaheuristic method. It is designed for solving various optimi-
zation problems: continuous as well as combinatorial. The basic
idea of VNS metaheuristic is to use more than one neighborhood
structure and to proceed with their systematic change within a
local search. Unlike many other metaheuristics based on local
search methods, VNS does not follow a trajectory, but explores
increasingly distant neighborhoods of the current incumbent
solution. The search is recentered around a new solution if and
only if an improvement has been made with respect to the global
best solution. A local search routine is applied repeatedly to find
local optima, starting from these neighboring solutions.

Neighborhoods are usually ranked in such a way that intensi-
fication of the search around the current solution is followed
naturally by diversification. The level of intensification and the
level of diversification can be controlled by a few (easy to set)
parameters. We may view the VNS as a “shaking” process, where a

F N

u v

———

0.25/(u,v)

Fig. 1. Physical representation of facility F; given with a pair (0.25, (u, v)).

movement to a neighborhood further from the current solution
corresponds to a harder shake. Unlike random restart, the VNS
allows a controlled increase in the level of the shake.

Therefore, to construct different neighborhood structures and
to perform a systematic search, there must be a way for finding the
distance between any two solutions, i.e., the solution space must
be supplied with some metric (or quasi-metric) and then, neigh-
borhood structures are derived (induced) from it. In the following
sections we answer this problem-specific question for our parti-
cular problem.

4.2. The application of VNS to the Huff network model

In order to implement VNS for the specific variant of the Huff
location problem, we need to define a solution representation, as
well as neighborhood structures and a local search strategy.

4.2.1. Solution space

A particular solution consists of the location set for the p new
facilities on the given network. The location of each facility is
uniquely determined by the edge, i.e. by the pair of vertices, and
the position on the edge. The position on the edge is given by 1-
dimension coordinate belonging to the [0, 1] interval with respect
to one of the vertices of the edge. Therefore, the location of the
particular facility is given by the ordered pair (x, (u, v)), where the
first entry of the pair refers to the position on the edge given by
the second entry. The position x is calculated with respect to the
first vertex of the pair referring to the edge. As an example, Fig. 1
shows facility F; located with coordinate x=0.25 on edge (u, v).
Since a particular solution consists of p facility locations, it will be
presented as a list [(X1, (U1, V1)), ..., (Xp, (Up, Vp))] of p ordered pairs
where the ith pair corresponds to the ith facility location.

4.2.2. Neighborhood structures

Let us now define a neighborhood structure in the solution
space we introduced. If s =[(x1, (U1, V1)), ..., (Xp, (Up, Vp))] is a solu-
tion, we may choose at random one of p facilities and move it to
some of the adjacent edges. Then, we perform local search on the
new edge by some of the well known line search techniques
(Dichotomous search, Fibonacci search, Golden-section search (see
more details of these methods in [1]), etc.) in order to reach the
location that improves the objective function the most. We call
this operation rank 1 stepping. Fig. 2 demonstrates a step of facility
F; from edge (u;,,u;,) to the adjacent edge (u;,, u;,). If we repeat this
operation k times, k < p, we call it rank k stepping. We say that a
solution s’ is at the step-distance k from the solution s if s can be
transformed into s’ by applying the rank k stepping.

In order to improve the implementation performance, we have
introduced another type of neighborhood structures. If s = [(x1, (U1,
V1)), ..., (Xp, (Up, Vp))] is a solution, we may chose at random two of p
new facilities of the solution and swap their locations. We call this
operation rank 1 swapping. Fig. 3, for instance, demonstrates a
swap of facilities F; on (u;,, u;,), and F; on (u;,, u;,). If we repeat this
operation k times, k < |p/2], we call it rank k swapping. We say
that a solution s’ is at the swap-distance k from the solution s if s
can be transformed into s’ by applying the rank k swapping. The
best results are obtained by combining these two types of neigh-
borhood structures.

4.2.3. Local search strategy

To complete the VNS implementation, we have to define a local
search strategy.

The first improvement local search strategy is performed:
starting from a solution s, we move a particular new facility from
its current position on an edge to an adjacent edge, while per-
forming a line search on the new edge. This process is repeated for
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Fig. 3. Rank 1 swapping of facilities F; and F;.

all adjacent edges, or until on some edge, the improvement of the
objective function value is encountered. After repeating this step
for each of the p new facilities, the new solution corresponds to
the choice of p facilities where the best objective function value
(out of p) is found, and the local search continues from the so
obtained solution. We also introduce the best improvement local
search strategy: starting from a solution s, we move a particular
new facility from its current position on an edge to an adjacent
edge while performing some line search on the new edge. This
process is repeated for all the adjacent edges and the best
improvement of the objective function value (if there is any) is
stored. After repeating this for each of the p new facilities, the new
solution is defined by the best of p stored objective function values
and the corresponding positions of facilities. The local search
continues from this solution.

We have implemented and tested both local search strategies.
The experiments showed that there was not a significant

difference between solution improvements obtained either by the
first or the second strategy, but execution time for the first strategy
was notably shorter. Thus, we continued with the first strategy
since it is more suitable for our problem.

To make our algorithms more efficient, we introduced an
additional improvement in the search strategies. Namely, while
performing the experiments, we have noticed that the optimal
facility locations are close to the vertices of graphs. Therefore,
while performing line search on an edge, we first exploit the small
areas around vertices. In case the local optimum is not found, we
extend the searching area, and repeat the procedure, otherwise,
we stop. In the worst case, the whole edge is searched, decreasing
the time required for obtaining local optimum.

4.2.4. VNS algorithm for the Huff location model

Let us denote by Ny, k=1,...,kme a finite sequence of pre-
selected neighborhood structures, and by N, (x) the set of feasible
solutions corresponding to the neighborhood structure N at the
point X, where x is a solution. Algorithm 1 demonstrates the
application of the basic VNS heuristic to the multifacility Huff
location model on a network.

Algorithm 1. Basic VNS algorithm for the Huff location model.

1 Procedure VNSForRHUFF (Kpax)
2 X« INITIAL  SOLUTION();
3 Choose a stopping criterion;
4 repeat
5 k<1;
6 while k < kiqx do
7 X'« SHAKING(N(x));
8 if Ranpom() < Probsyqp then
9 | X" < SwAPFIRSTIMPROVEMENTLS(X');
10 else
11 | X" —MovEeFiRsTIMPROVEMENTLS(X');
12 end
13 if X" is better than x then
14 XX
15 k<1;
16 else
17 | k—k+1;
18 end
19 end
20 until stopping criterion is met;
21 return x;

Usually, the initial solution is determined by some constructive
heuristic, and then improved by local search before the beginning
of actual VNS procedure. In our case, the initial solution is gener-
ated randomly, and then improved by Fibonacci local search
method (for more details regarding Fibonacci search, see [1]). The
stopping criterion may be, e.g., a predetermined maximal allowed
CPU time, a maximal number of all iterations, or the iterations
between two improvements. Here the stopping criterion is max-
imal allowed CPU time. Often, successive neighborhoods Nj are
nested, but not necessarily. Let us note that the point X’ is gener-
ated at random in order to avoid cycling, which might occur if any
deterministic rule was used. Basic VNS is a simple metaheuristic
and its only parameter is k., the preselected number of neigh-
borhoods. However, for each particular problem, the solution
representation, the number and order of neighborhoods, and
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stopping criterion should be defined in a way to ensure efficient
execution of the search.

The results obtained by VNS are compared with the results
obtained by Simulated Annealing (SA) and Multi-Start Local Search
metaheuristics (MSLS).

4.3. Simulated Annealing

Simulated Annealing [8,2] is a stochastic metaheuristic
approach for solving optimization problems. It is inspired by the
annealing in metallurgy, a technique involving heating and con-
trolled cooling of a material in order to improve its crystal struc-
ture and reduce their defects. Each point s of the search space is
analogous to a state of some physical system, and the function E(s)
to be minimized is analogous to the internal energy of the system
in the particular state. The goal is to bring the system from the
initial state to a state with the minimum possible energy. At each
step, the SA metaheuristic considers some neighboring state s’ of
the current state s, and probabilistically decides whether to move
the system to state s’ or to stay in state s. These probabilities
ultimately lead the system to states of lower energy. Typically, this
step is repeated until the stopping criterion is met, which can be
reaching a state that is good enough for the application or the
exhaustion of the given computation budget. In order to apply the
SA to the Huff location model, we have to decide how to find an
initial solution, create the cooling schedule, choose the type of
neighborhood, predefine the acceptance probability and the
stopping criterion. The initial solution is generated at random.
After performing a series of preliminary experiments, we have
obtained a rough estimate of potentially good parameter values.
Therefore, we define the cooling schedule with decreasing the
temperature of 20 by multiplying it by 0.5 after each 50 iterations.
The neighboring solution is chosen by applying rank 1 stepping
strategy. The acceptance probability is given with e®E)—E&)/T
where T is current temperature. Eventually, the stopping criterion
is the maximal number of iterations.

Table 1

4.4. Multi-Start Local Search

Multi-Start Local Search [14] is an iterative approach where a
single iteration consists of generating a random solution, and
performing a local search strategy with the random solution as a
starting point. In case there was the improvement of the objective
function value, the incumbent is updated. Initial solution is gen-
erated randomly.

We apply a first improvement local search strategy. The best
improvement local search is time consuming:
® Neighborhoods are Move

neighborhood).

e Exploring each neighbor is also relatively time consuming.

relatively  big  (especially

So, in the same time limit, the number of performed first
improvement local search may be much greater than the number
of best improvement local search. Intuitively, the chance to obtain
better solutions increases as the number of performed local search
increases.

5. Computational results

Since there is no set of benchmark problems for the Huff
location model, we have chosen the problems from the TSPLIB
library, where network dimension (number of nodes - customers)
varies from 100 to 800. The number q of the existing facilities
depends on the number of customers, so we generate instances
with different number of existing facilities (qeQ = {|2&],|7%].
|&]. [4]}). The number p of new facilities, belonging to the set
P= { 14/, Pﬂ,q , depends on the number of existing facilities, so
we define instances with different number of new facilities. In this
way, for each network and a set of existing facilities, three test
cases are made. The locations of the existing facilities are created
in the following way. Firstly, they were chosen randomly. Then, the
VNS method was applied with 10% of total running time planned
for the VNS algorithm execution for the particular test instance,

and with p set to %1 In the end, randomly chosen p, out of g

Comparison of VNS with first improvement local search and best improvement local search.

Instance n q p VNS-fi VNS-bi Dev.
Best Avg. Std. Time Best Avg. Std. Time

rat99 99 12 6 33.451 33.214 0.124 98.67 33.356 32.562 0.581 98.67 0.28

rat195 195 24 12 40.733 40.309 0.255 194.35 32.933 31491 0.939 194.43 19.15
rat575 575 71 35 41.156 40.711 0352 506.56 28.029 27.482 0.355 574.96 31.90
rat783 783 97 48 40.472 39.728 0.490 716.59 25.717 25.099 0.338 703.12 36.46
rat99 99 12 8 46.576 46.479 0.077 98.67 46.022 44.900 1.156 98.67 119

rat195 195 24 16 48.588 47917 0389 194.35 35.628 34.072 0.900 194.35 26.67
rat575 575 71 47 46.586 45.841 0.401 505.87 31.716 31.338 0.199 502.04 31.92
rat783 783 97 64 46.873 46.215 0.386 713.26 32.456 32.165 0.184 706.48 30.76
rat99 99 12 9 50.413 50.217 0.119 98.67 49.548 48.625 0.711 98.67 1.72

rat195 195 24 18 52.104 51.055 0.788 194.36 35.520 34.442 0.679 194.35 31.83
rat575 575 71 53 48.651 47.837 0.556 506.89 34.022 33.270 0.584 502.78 30.07
rat783 783 97 72 49.042 48.423 0.404 782.00 35.190 34.445 0.516 706.80 28.25
rat195 195 24 19 53.835 52.234 0.844 194.36 37.230 35.440 0.832 194.35 30.84
rat575 575 71 56 50.541 49.148 0.873 511.35 34.743 34.384 0.394 503.41 31.26
rat783 783 97 77 51.309 49.954 0.798 782.08 36.278 35.710 0.519 707.35 29.30
rat99 929 12 10 55.286 53.590 1.306 98.67 53.766 51.725 1421 98.67 2.75

rat195 195 24 20 54.949 53.208 0.981 194.36 37.375 36.310 0.614 194.35 31.98
rat575 575 71 59 51.943 50.241 0.967 526.76 36.196 35.397 0.671 503.52 30.32
rat783 783 97 80 52.437 50.746 0.816 782.15 37438 36.636 0.536 708.47 28.60
rat99 99 12 12 63.732 58.655 2.159 98.67 61.035 55.947 2.405 98.67 4.23

rat195 195 24 24 59.183 57.241 1.420 194.36 40.497 38.233 1.569 194.35 31.57
rat575 575 71 71 55.553 53.517 1.209 539.12 40.699 39.030 1.010 503.62 26.74
rat783 783 97 97 57.253 55.494 0.820 782.47 42132 40.806 0.784 707.88 26.41
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existing facility locations, were switched with new facility loca-
tions, obtained by the VNS algorithm. The attractiveness of each
facility was chosen randomly.

Our experience shows that the best results are obtained if the
probability of choosing either stepping or swapping shaking
strategy is set to 0.5. Parameter k,qx Was set to p/2. Execution time
(in seconds) was set to the number of locations (customers).

5.1. Comparison of first and best improvement strategy for local
search

The first set of experiment is dedicated to comparing impact of
local search strategy (first improvement and best improvement)
on performance of complete Variable Neighborhood Search. In
order to compare, we execute 10 times two variants of Variable

Table 2

Comparison of VNS, SA and MSLS on test instances with q = |44] existing facilities.

Neighborhood Search (VNS with first improvement local search
and VNS with best improvement local search) on four instances of
different sizes (with different value of parameter p). Obtained
results are presented in Table 1. The first column of the table
contains instance name. The next three columns contain value for
n, q, and p, respectively. Columns 4-7 contain summary results for
VNS with first improvement local search (best results, average
results, standard deviation and average time). Next four columns
contain results obtained by VNS with best improvement local
search (the same order). The best and average results are pre-
sented as the percentage of the total demand serviced by new
facilities. The last column contains percentage deviation of best
result obtained by VNS based on best improvement from best
result obtained by VNS based on first improvement, for corre-
sponding instance. Percentage deviation is calculated by the

Name n q p VNS SA MSLS % dev.

Best Avg. Std. Time Best Avg. Std. Time Best Avg. Std. Time SA MSLS
gri20 120 6 3 34.92 3478  0.07 119.00 34.82 3453 046 119.40 31.82 3099 048 120.02 0.30 8.88
gr229 229 11 5 41.48 41.38 0.07 22800 4138 40.67 057 22824  34.89 3368 058 22915 0.23 15.88
gr431 431 21 10  36.76 36.47 020  430.01 3696 3667 023 43014 2591 2566 025 43259 -0.54  29.52
gr666 666 33 16 4311 4259 036  665.03  41.80 41.02 0.65 60039 2758 26.56  0.67 715.41 3.05 36.03
1in105 105 5 2 36,56  36.52  0.02 10400 3656 3649 0.10 104.47 36.00 35.55 0.10 105.01 0.00 1.52
1in318 318 15 7 33.17 3292 017 317.00 3329 32091 026  317.21 24.03 2348 027 318.31 -036 2755
pcb442 442 22 11 42.21 41.91 0.25 441.01 42.39 4193 0.28 44112 33.10 3218 0.29 44419 —0.44 21.58
pri24 124 6 3 37.60 37.54 017 123.00 37.60 3711 0.33 123.38 34.75 33.83 0.33 124.02 0.00 7.58
pr152 152 7 3 4041 4034 016 151.00 40.38 3990 0.35 151.24 37.34 36.30 037 152.05 0.06 7.59
pr226 226 1 5 38.65 38.61 0.03 22500 38.61 38.18 028  225.25 3278 3227 029 22617 0.10 15.19
pr264 264 13 6 3884 3869 0.16 263.00 3864 38.04 044 26312 3034 2985 0.47 264.58  0.52 21.89
pr299 299 14 7 3735 3714 0.16 298.00 3721 3689 026  298.25 29.64  28.82 026 29933 0.39 20.64
pr439 439 21 10 3516 3480 029 438,01 35.15 3476 023 43812 26.02 25.22 0.23  441.60 0.04 25.99
rat99 99 4 2 3640  36.37 0.05  98.00 3638 3632 007 9848 3568 3498 0.07 99.01 0.06 1.98
rat195 195 9 4 34.82 3482 001 194.00 34.76 3426 021 194.35 3113 3060 023 195.04 0.18 10.60
rat575 575 28 14 4104 4048 039  574.01 40.54  40.21 0.16 500.27  28.83 28.31 0.18 578.37 1.22 29.74
rat783 783 39 19 4176 40.97 036  782.02 3920 3890 0.21 700.71 28.76 28.45 0.21 79482  6.14 31.14
gr120 120 6 4 41.45 41.16 0.21 119.00 4113 40.78  0.28 119.40 36.27 3529 030 120.03 0.77 12.51
gr229 229 11 8 47.97 47.50 022 22800  47.81 4699 0.66 22824 3890 3749 0.71 22923 0.33 18.91
gr431 431 21 15 49.75 4925 033  430.01 50.31 49.81 027  430.14 3586  34.92 029  435.04 -113 2792
gr666 666 33 24 4971 48.11 073  665.03  47.71 45.81 131 600.68  30.85 29.07 139 677.97 4.02 37.93
1in105 105 5 3 40.61 40.51 0.16 104.00 4061 39.73  0.80 104.47 3741 36.51 0.83 105.02 0.00 7.88
1in318 318 15 1 51.79 51.29 038 31701 5244  51.88 029  317.21 37.75 3733 030  318.83 -1.25 2712
pcb442 442 22 16 49.63  48.23 1.04 44102 4937 4795 095 44112 3426 3283 096 44380 0.52 30.97
pri24 124 6 4 4229 4226  0.08 123.00 4221 41.71 0.29 123.38 38.55 37.60 0.31 124.03 0.19 8.84
pri52 152 7 5 49.74 4964 013 151.00 49.50 48.82 041 151.24 41.22 40.02 0.44 152.09 0.47 1713
pr226 226 1 8 57.37 57.10 017 225.00 57.08 5640 046 22525 4511 44.01 049 22680 0.50 2137
pr264 264 13 9 4583 4556 027  263.00 46.16 4538 047 263.12 3594 3473 0.47 264.58 -0.74 21.57
pr299 299 14 10 4457 4430 015 298.01 44.61 44.17 023  298.25 32.51 31.85 025  299.74 -0.09 2706
pr439 439 21 15 47.09 46.43 039  438.01 47.32 46.50 046  438.12 31.72 31.02 0.51 442.01 -049  32.65
rat99 99 4 3 4850 4839 005 98.00 49.46 4920 013 98.67 4637  46.02 0.13 99.02 -1.97 4.39
rat195 195 9 6 46.23  46.10 0.09 19400 4620 4564 039 194.35 3859 3751 0.41 195.21 0.08 16.53
rat575 575 28 21 53.03 51.25 093  574.02 50.72 4895 1.10 50044  38.82 3718 115 595.91 435 26.80
rat783 783 39 29 5131 49.57 099  782.03 4986  47.77 0.97 701.37 36.52 3457 1.05 803.00 2.82 28.82
gr120 120 6 6 54.87 5159 2.33 119.00 5454  51.07 2.62 119.40 4392  40.83 2.85 120.09 0.61 19.96
gr229 229 1 11 63.51 57.40 289 22800 6344 5739 3.03 22824 3845 3440 321 22962 011 39.46
gr431 431 21 21 5944  56.99 1.87 430.02 59.99 56.61 211 430.14 40.11 37.24 228  437.77 -093 3252
gr666 666 33 33 56.47 54.73 177 665.04 5542 52.95 1.94 601.18 28.14 2656 212 739.52 1.87 50.18
1in105 105 5 5 57.43 52.68  3.63 104.00 56.96  51.78 3.57 104.47 4030 3623  3.57 105.04 0.81 29.83
1in318 318 15 15 61.68 58.40 1.83 317.01 61.10 57.21 1.78 317.21 47.58 44.31 1.94 321.95 0.93 22.85
pcb442 442 22 22 5774 55.48 1.77 441.01 55.87 53.50 1.95 44112 36.88 3494 210 45484 324 36.13
pri24 124 6 6 54.85 51.89 230  123.00 54.61 51.27 2.54 123.38 43.19 40.51 2.64 124.07 0.44 21.26
pri152 152 7 7 61.10 57.05 2.29 151.00 61.18 56.49 2.29 151.24 44.50 40.72 245 152.24 —-0.13 2717
pr226 226 1 1 75.71 69.43 292 225.01 7513 68.98 297 22525 52.63 4745 3.01 22743 0.77 3049
pr264 264 13 13 63.15 57.21 2.83  263.01 6246  57.53 269  263.12 33.45 3029 274 265.56 11 47.04
pr299 299 14 14 60.08  55.13 2.41 298.01 60.58 55.41 266  298.25 3424  31.06 2.66  299.80 -0.84  43.00
pr439 439 21 21 59.42 56.64 1.96  438.02 58.45 5496 219 438.12 4330 40.04 240  459.92 1.63 2713
rat99 99 4 4 64.45  61.89 1.92 98.00 58.08 57.81 023  98.67 52.82 5209 025 99.03 9.88 18.05
rat195 195 9 9 58.92 55.61 1.87 194.00 59.08 55.49 1.97 194.35 4694 4327  2.09 195.36 -029 2032
rat575 575 28 28  58.05 56.74 1.55 574.03 56.04  54.58 1.59 500.85  44.67  43.32 1.59 598.31 3.46 23.06
rat783 783 39 39 5833 56.50 1.74 782.02 5742 55.03 1.72 702.07 3866  36.70 1.81 810.64 1.55 33.73
Average 48.87 4742 092 32060 4840  46.75 1.03 307.97 36.76 3519 1.08 327.71 0.85 23.60
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formula: ® We suppose that with increasing the size of an instance, the size
of the neighborhood (which must be completely explored in

Fa—Fui case of best improvement local search) also increases.
dev(fg. ) = x 100 e For example,
o network (instance) rat575 contains 575 vertices and 32848
where f; is the best solution obtained by VNS based on first edges,

o average degree of vertex is 114,

o each new facility contains in average 2 x 114 = 228 neighbors
in Move neighborhood,

o there are between 35 and 71 new facilities (depending on
case), so number of neighbors in Move neighborhood is
between 8000 and 16,000.

improvement local search and f,; is the best solution obtained by
VNS based on best improvement.
From this table we can conclude:

® VNS based on first improvement produces better solution on all

instances.
® Percentage deviation increases with increasing the size of an . . .
instanceg g Based on this results, we decided to use the first improvement
’ local search with VNS in the rest of our experiments.
Table 3

Comparison of VNS, SA and MSLS on test instances with q = |{%| existing facilities.

Name n q p VNS SA MSLS % dev.

Best Avg. Std. Time Best Avg. Std. Time Best Avg. Std. Time SA MSLS
gri20 120 8 4 31.26 31.22 013 119.00 31.25 30.83 0.39 119.00 2849 2811 0.42 120.04 0.03 8.88
gr229 229 15 7 39.12 3894 016 22800  39.01 3870 029 228,00 3095 30.21 030 22937 0.27 20.89
gra31 431 28 14 39.37 38.67 045  430.01 3933 39.05 0.17 430.00 24.10 2360 019 43254 01 38.78
gr666 666 44 22 4022  39.08 0.63 665.04 3730 36.63 0.51 665.00  23.85 2286 054 69099 726 40.70
1lin105 105 7 3 2340 2296 0.29 10400 22.81 2254 036 105.00 20.35 19.69 0.38 105.02 2.53 13.06
1in318 318 21 10 4248 4218 024  317.00 4276 4239 023 31700 3004 2940 023 31857 -0.66 2930
pcb442 442 29 14 37.50 3717 0.24 441.01 37.09 36.52 0.42 441.00 26.09 25.77 0.46 447.01 112 3042
pri24 124 8 4 38.74 38.47 0.22 123.00 38.74 38.31 0.29 123.00 3497 3414 0.31 124.03 0.00 9.74
pr152 152 10 5 41.52 41.40 0.14 151.00 41.50 40.72 0.42 151.00 3426 34.14 0.43 152.07 0.04 17.49
pr226 226 15 7 42.42 42.22 0.11 225.00 42.21 41.59 0.51 225.00 31.87 3113 0.55 226.26 0.48 24.88
pr264 264 17 8 41.24 40.82 026  263.00 4112 40.74 029  263.00 3037 29.82 030 26453 0.30 26.36
pr299 299 19 9 43.08  42.88 0.11 298.01 4325 42381 038  298.00 32.75 32.57 039 30094 -041 23.97
pr439 439 29 14 3855  37.81 040  438.01 3640  35.75 045 43800 2464 2383 045 44253 5.57 36.06
rat99 99 6 3 3959 3959 0.00 98.00 3959 3939 043  99.00 3620 3584 044  99.02 0.00 8.55
rat195 195 13 6 36.65 36.21 0.76 19400 3636  36.02 0.21 194.00 29.74 29.16 0.22 195.13 0.80 18.86
rat575 575 38 19 4210 41.38 0.40 574.01 3998  39.27 030  574.00 29.56 2852  0.32 586.87 5.05 29.80
rat783 783 52 26 4031 39.72 0.43 782.02 3888  38.08 0.52 782.00  26.10 2538 055 841.61 3.55 35.25
gr120 120 8 6 4721 4696  0.21 119.00 47.06 46.32 0.46 119.00 3938 3875 046 120.02 0.31 16.59
gr229 229 15 1 50.01 49.64 023 228.01 49.81 49.27 049 22800 39.00 38.05 050 229.88 0.39 22.00
gra31 431 28 21 51.62 50.20 1.02 430.03  49.87 4770 1.36 430.00 30.33 29.03 142 437.21 337 41.23
gr666 666 44 33 4734 46.15 092 665.04 4597 4471 1.03 665.00 28.69 2793 1.07 768.88 2.89 39.40
lin105 105 7 5 53.84 53.78 0.13 104.00 53.83 52.78 0.59 10400 4598 4531 0.63 105.02 0.01 14.60
1in318 318 21 15 5033  49.74 034 31701 50.66  49.43 0.70  317.00 35.72 3524 073 315.64 -0.66  29.02
pcb442 442 29 21 4986  49.38 040  441.02 4745 46.47 0.73  441.00 3526 3459 074 45693  4.82 29.29
pri24 124 8 6 4696  46.73 0.17 123.00 4659  46.15 0.35 123.00 39.67 3944 037 124.06 0.78 15.52
pri52 152 10 7 4718 46.97 0.28 151.00 46.77  46.31 0.41 151.00 37.06 36.88 044  152.03 0.87 2144
pr226 226 15 1 54.65 5400 042 22501 54.51 53.65 0.51 22500  39.65 38.73 053 22650 0.26 2745
pr264 264 17 12 53.87 53.07 0.47 263.01 54.23 53.28 037 263.00 3829  37.09 039  265.07 -0.67 2892
pr299 299 19 14 53.02 51.37 1.30 298.01 53.81 51.46 1.55 298.00 3464  33.07 1.55 302.16 —1.48 34.67
pr439 439 29 21 52.06  50.88 072  438.01 4849 4751 0.78  438.00 34.76 3340 086  441.68 6.85 33.23
rat99 99 6 4 49.64 4942 034  98.00 49.64 49.04 048  99.00 43.00 4249 051 99.02 0.00 13.39
rat195 195 13 9 48.76  47.52 175 194.00  48.51 4822 020 194.00 37.22 36.01 0.21 195.11 0.50 23.67
rat575 575 38 28 51.46 50.07 0.60 574.03 50.24 4848 087  574.00 3367 3275 092 59596  2.36 34.56
rat783 783 52 39 49.63 4835 0.73 782.02 4889 4722 115 782.00 3112 30.13 1.24 913.06 1.47 37.29
gr120 120 8 8 60.58 55.64 284 119.00 60.80 55.03 3.19 119.00 46.54  42.02 349 120.24 -036 2317
gr229 229 15 15 60.60 5712 1.74 22800 60.56  57.09 1.94 22800  41.92 39.04 1.98 234.87 0.06 30.82
gra31 431 28 28 58.85 56.40 1.81 430.05 57.05 5420 239 43000 32.72 31.03 262 44243  3.06 4441
gr666 666 44 44 53.06 5197 0.75  665.03 53.37 51.71 1.21 665.00  29.61 2844 131 671.56 —-0.58 4420
1in105 105 7 7 66.73 6249 255 10400 66.60 6152 2.78 104.00 56.57 52.18 3.03 105.20 0.19 15.23
1in318 318 21 21 58.48 56.85 1.57 317.02 57.73 5482 230  317.00 41.74 4053 241 317.34 1.28 28.63
pcb442 442 29 29 5785 56.05 1.51 441.02 5540  53.20 1.81 441.00 4359 4142 1.82 46280  4.25 24.65
pri24 124 8 8 59.31 54.72 2.69 123.00 59.45 5395  2.90 123.00 4396 4032  3.09 124.02 -024  25.88
pr152 152 10 10 62.79  57.03 2.64 151.01 62.05 56.88  2.45 151.00 38.82 34.71 2.68 152.50 117 3817
pr226 226 15 15 67.65 64.09 210 225.02 6715 6353 224 22500 4596 4276 239 22786 0.74 32.06
pr264 264 17 17 63.01 60.03 1.66 263.02 6299  59.65 1.70 263.00 4462 4167 1.71 265.65 0.04 29.20
pr299 299 19 19 61.47 58.85 1.87 298.02  60.78 57.67 1.90 298.00 36,59 3497 209  304.08 112 40.48
pr439 439 29 29 5951 57.77 1.73 438.03 56.09 5445 1.56 438.00 3897 3766 1.59 472.97 5.75 34.51
rat99 99 6 6 63.67 6135 1.81 98.00 63.12 60.63 1.88 98.00 53.13 51.05 1.98 99.16 0.87 16.56
rat195 195 13 13 58.51 55.58 1.53 194.01 59.64  55.79 1.70 19400 4587  43.24 1.79 196.94 -1.93 21.61
rat575 575 38 38 5711 55.76 1.45 574.03 55.76 54.12 1.46 574.00 36.31 34.83 1.58 703.19 237 36.42
rat783 783 52 52 56.94 5424 1.22 782.03 5496 5224 143 782.00 3339 3153 1.53 901.99 348 4137

Average 49.83 48.45 0.91 320.60 49.16 47.53 1.04 320.65 35.84 34.52 110 335.83 136 27.50
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5.2. Comparison with other methods

All three algorithms for solving the specific Huff location model
were implemented in C programming language on Linux platform.
The experiments have been run on the computer with the i686
Intel Core 2 Duo CPU E6750 at 2.66 GHz and 8 GB RAM. The
summary results based on ten executions of each method for each
test instance are presented in Tables 2 (instances with q= |J]
existing facilities), 3 (instances with q= || existing facilities), 4
(instances with q = |{| existing facilities), and 5 (instances with
q = |3] existing facilities). The first column of these tables contains
the instance name. Next three columns contain information about
the instance (the number of vertices/customers (n), the number of
existing facilities (q), and the number of new facilities (p)). Next
four columns contain summary information for results obtained

Table 4

Comparison of VNS, SA and MSLS on test instances with q= || existing facilities.

by Variable Neighborhood Search (best result, average result,
standard deviation, and average time for ten executions). The best
and average results are presented as the percentage of the total
demand captured by new facilities. Next four columns contain
summary information about results obtained by Simulated
Annealing (SA in the rest). Next four columns contain information
about results obtained by Multistart local search (MSLS in the
rest). Two last columns contain percentage deviation of best
solutions obtained by SA and MSLS from best solution obtained by
VNS, for corresponding instance.

All three methods were given the same total execution time for
a particular instance, depending on the size of the test instance.
The number of seconds allowed for an instance to run is set to the
number of vertices of the graph.

From these tables, we conclude the following:

Name n q p VNS SA MSLS % dev.
Best Avg. Std. Time Best Avg. Std. Time Best Avg. Std. Time SA MSLS

gri20 120 12 6 41.29 4111 0.12 119.00 41.07 40.76  0.25 119.00 3346 3255 030 12013 0.55 18.98
gr229 229 22 11 3998 3977 019 228.01 4026 3984 040 22800 2739 2695 046  230.05 -0.69 3150
gr431 431 43 21 42.60 4148 0.62  430.02 3926 3877 042 43000 2550 2497 046 44476 7.85 40.15
gr666 666 66 33 42,68 4154 058  665.03 4198 40.59 0.75 66500 2400 2280 088 70455 1.64 43.77
1in105 105 10 5 4250 4219 0.25 104.00 42.03 4149 0.38 10400 3567 3454 040  105.08 113 16.09
1in318 318 31 15 4431 4392 031 317.01 4411 4292 081 317.00 2949 2854 090 32314 0.46 33.45
pcb442 442 44 22 4122 40.65 039  441.01 38.81 38.31 036  441.00 2838 2792 042  458.68 5.85 3115
pri24 124 12 6 35.71 3549 020 123.00 3563 3487 050 123.00 2831 27.71 0.55 12413 0.24 20.73
pr152 152 15 7 36.06 3575 022 151.00 35.68  35.11 040  151.00 27.02 2628 040  152.26 1.05 25.08
pr226 226 22 1 4566 4540 0.8 225.01 4545 4452 059 22500 @ 27.84 26.91 0.63  227.63 0.48 39.03
pr264 264 26 13 42.07 4136 041 263.01 41.70 41.06 045 263.00 2542 2499 0.51 265.76 0.88 39.57
pr299 299 29 14 4277 4224 038  298.01 4241 41.66 058  298.00 2801 2715 070  308.67 0.85 34.51
pr439 439 43 21 4340 4262 048 43803 4003 3923 047 43800 2517 2444 048  460.68 7.76 42.00
rat99 99 9 4 3538 3521 0.10 98.00 35.51 3512 0.19 99.00 32.01 3111 0.19 99.03 —-0.38 954
rat195 195 19 9 40.10 39.80 0.21 19400 4048 39.77 042 19400 2970 2890 046 19540 -094 2593
rat575 575 57 28 4347 4287 038  574.02 42.00 4103 040  574.00 27.93 27.03 045 62293 3.39 35.75
rat783 783 78 39 3859  36.81 1.58 782.03 3832 3597 1.44 782.00 2261 21.00 1.55 1117.47 0.70 4141
gr120 120 12 9 48.68 4855 012 119.00 50.57 5025  0.21 119.00 40.14 3957 024  120.29 -3.89 1754
gr229 229 22 16 4689 4642 026  228.01 46.31 44.95 1.02 22800 3637 3499 106 232.64 1.25 22.44
gra31 431 43 32 5157 50.74  0.60  430.02 49.89  47.04 126  430.00 2830  26.58 1.32 478.74 3.25 4512
gr666 666 66 49 5270 51.89 0.73  665.04 49.60 47.76 139 665.00 2896  27.55 1.61 991.32 5.89 45.05
1in105 105 10 7 51.92 51.86 0.14 10400 5257 5192 044  104.00 43.08 4233 049 10519 -1.24 17.03
1in318 318 31 23 5212 51.55 026 31701 49.75 4764 116 317.00 3275 3107 120  329.74 4.55 37.16
pcb442 442 44 33 5048 4999 045  441.03 47.77 46.13 1.02 441.00 31.16 30.09 114 472.87 537 38.27
pri24 124 12 9 4648 4636 010 123.00 4399 4313 0.65 123.00  31.81 3083 073 124.48 5.36 31.56
pri52 152 15 1 47.42 4698 023 151.00 47.56 46.71 0.38 151.00 37.64 3643 043 152.47 -0.31 20.62
pr226 226 22 16 5455 5403 027 22501 5396 5237 098 22500 3364 3221 110 228.98 1.09 38.33
pr264 264 26 19 4755 4716 032  263.01 4717 45.21 1.02 263.00 3022 2887 1.09 270.30 0.79 36.45
pr299 299 29 21 52.73 51.85 043  298.02 4698 4596 082 29800 33.06 3197 090 30293 10.92 37.31
pr439 439 43 32 5268 5218 047  438.03 4857  47.55 0.71 438.00  31.97 30.71 080  481.22 7.79 39.31
rat99 99 9 6 4496 4478 017 98.00 45.71 4427 0.76  98.00 3842 3717 0.82  99.09 -1.67 14.54
rat195 195 19 14 5298 5270  0.21 19400 5253 5103 0.97 19400 38.06  36.25 1.09 196.40 0.85 28.16
rat575 575 57 42  54.03 5327 041 574.03 49.91 47.98 099  574.00 31.26 29.82 1.08 695.14 7.64 4215
rat783 783 78 58 4861 46.68 171 782.03  46.09  43.88 1.40 782.01 27.75 26.23 1.40 1683.53 518 42.92
gr120 120 12 12 60.19 58.10 1.97 119.00 59.65 5400 259  119.00 4487 4024  3.05 120.44 0.89 25.45
gr229 229 22 22 5984 5782 212 228.01 58.43  55.50 1.97 228.00 4016 37.68 2.01 241.79 2.36 32.89
gr431 431 43 43 5734 54.71 2.21 430.03 5542  53.10 200 43000 2833 2707 218 512.57 334 50.59
gr666 666 66 66  53.21 5227 060  665.10 5294  50.81 142 665.01 29.91 2826 158 883.45 0.52 43.80
1in105 105 10 10 6162 59.95 1.30 10400 6145 5633 219 10400 5271 48.11 249  105.46 0.27 14.46
1in318 318 31 31 6034 5840 193 317.05 57.35 54.78 173 317.00 3555 3346 176 341.81 4.96 41.09
pcb442 442 44 44 5505 5334 145 441.02 5343 5195 119 441.00 30.87 2945 1.27 548.33 295 43.93
pri24 124 12 12 5484 5230 199 123.01 59.78 53.06 281 123.00 3363 2944 295 124.49 —-9.00 38.68
pri152 152 15 15 59.29  57.26 1.61 151.01 60.40 57.34 1.64 151.00 40.18 37.57 1.89 152.40 -1.87 32.23
pr226 226 22 22 6384 6174 186  225.03 58.16 56.76 1.80 225.00 4157 4032 215 229.77 8.90 34.89
pr264 264 26 26 5873 57.31 1.67 263.02 5534 5353 1.54 263.00 3774 36.23 1.56 285.81 5.78 35.75
pr299 299 29 29 5950 5705 208 298.02 5558 53.05 @ 2.01 298.00  41.51 3926 2.09  340.01 6.59 30.23
pr439 439 43 43 5742 55.99 1.31 438.03 5559  52.63 1.69 438.00 4176 38.97 1.77 499.31 3.18 2727
rat99 99 9 9 63.98 59.60 2.69  98.00 6494 59.07 3.07 98.00 50.20 45.06 346 9934 -1.49 21.54
rat195 195 19 19 59.65 57.80 1.81 194.01 59.14 56.41 1.66 19400 3898  36.53 1.97 202.96 0.87 34.66
rat575 575 57 57 5597  54.09 1.32 574.03 5584  52.96 1.39 574.01 3273 3077 1.40 779.75 0.23 41.52
rat783 783 78 78 55.00 5296 128 782.01 49.65 4731 1.37 782.01 31.89 29.91 1.38 2398.68  9.72 42.02
Average 50.00 4894 0.84 320.60 4876  46.93 1.10 320.61 3343 3186 120  407.69 2.39 32.82
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Table 5
Comparison of VNS, SA and MSLS on test instances with q = |2] existing facilities.
Name n q p VNS SA MSLS % dev.
Best Avg. Std. Time Best Avg. Std. Time Best Avg. Std. Time SA MSLS

gr120 120 15 7 37.26 37.18 0.07 119.40 37.00 3647 027 119.40 29.83 2937 029 11940 0.71 19.95
gr229 229 28 14 4101 4060 028 22824 4126 40.59 039 22824 2867 2765 043 22824 —-0.61 30.08
gr431 431 53 26 4041 39.26 054 43015 37.22 36.74 041 430.14 2202 2133 044 43017 791 45.52
gr666 666 83 41 4299 4240 053  617.05 4218 4099 0.80 60293 2452 2354 093 66509 189 42.96
1lin105 105 13 6 41.63 41.52 0.07 10448  41.30 40.81 0.32 104.48 3389 3329 036 10448  0.80 18.59
1in318 318 39 19 4152 4094 031 317.22 37.50 36,55  0.61 317.21 2487 2379 071 317.22 9.69 40.09
pcb442 442 55 27 4176 41.29 027 44113 3943 3885 041 44112 2594 2528 047 44116 5.58 37.88
pri24 124 15 7 29.77 2962 012 123.38 2945 2905 037 123.38 23.65 2297 038 123.38 1.07 20.54
pr152 152 19 9 41.05 4083 026  151.24 40.84 4030 035 151.24 2844 2799 039  151.24 0.52 30.71
pr226 226 28 14 4464 4424 022 22526 4438 4347 059 22525 2752 26.55 0.62 22526 0.56 38.34
pr264 264 33 16 4233 4156 044  263.14 37.67 37.25 026  263.12 2263 2195 030 263.14 11.02 46.53
pr299 299 37 18 4356  43.01 042 29827 4271 41.21 083 29825 2767 2639 097 29827 1.95 36.48
pr439 439 54 27 4133 4028 040 43815 3852 3739 056  438.12 23.84 2275 057 43815 6.80 42.32
rat99 99 12 6 3345 3321 0.12 98.67 33.08 3247 039 9867 27.59 26.74 042  98.67 112 17.52
rat195 195 24 12 4073 4031 026  194.35 4040  40.09 0.38 194.35 29.11 2888 039 19435 0.81 28.53
rat575 575 71 35 4116 40.71 035 50656  41.61 40.07 066  501.88 2525 2399 068 53945 -1.10 38.65
rat783 783 97 48 4047  39.73 049  716.59 39.73 3832 090 70328 2741 26.15 096  782.06 184 32.28
gr120 120 15 11 49.63 4942 012 119.40 49.27 4874 034 119.40 38.17 37.09 0.38 119.40 0.71 23.10
gr229 229 28 21 52.03 50.11 098 22825 50.89  47.86 1.52 22824  30.84  28.82 1.57 22826  2.20 40.72
gra31 431 53 39 4990 4795 0.78  430.16 47.90 45.85 1.63 430.14 29.11 27.73 177 43028  4.02 41.67
gr666 666 83 62 4991 4829 067 65261 47.44 4513 1.34 604.56  32.07 29.95 1.54 66543  4.96 35.75
1lin105 105 13 9 47.93 47.41 029 10448  47.23 46.68 039 104.48 3659 3598 045 104.48 1.47 23.66
1in318 318 39 29 5156 5043 073  317.24 4839  46.62 142 317.21 30.67  29.21 142 317.25 6.14 40.51
pcb442 442 55 41 50.01 4886 054 44115 4791 46.74 066 44112 3087 3000 069 44120 4.20 38.26
pri24 124 15 1 51.42 50.87 0.32 123.38 5032  49.82 046 123.38 3710 36.55 052 12338 214 27.85
pr152 152 19 14 5232 51.09 0.89 151.25 51.70 50.68 0.73 151.24 3366 3250 084  151.25 1.18 35.67
pr226 226 28 21 56.17 54.74 1.00 22526 5295 50.55 147 22525 3048 2876 1.50 22527 5.73 45.73
pr264 264 33 24 5272 51.44 086  263.13 48.71 4695 088  263.12 3043 2893 094  263.21 7.60 42.28
pr299 299 37 27 5311 50.83 1.25 29828  49.75 4722 1.09 29825 3250  30.33 1.21 29826 634 38.81
pr439 439 54 40 4958 4844 061 438.15 47.50 45.65 113 438.13 30.06  28.81 1.26 438.16 4.20 39.36
rat99 99 12 9 50.41 5022  0.12 98.67 49.78 4893 0.74 98.67 3945 3807 076  98.67 1.26 21.76
rat195 195 24 18 52.10 51.06 079  194.36 51.94 5037  0.84 194.35 36.13 3494 096 19436 032 30.67
rat575 575 71 53 48,65 4784 056  506.89  47.87 45.37 1.37 504.00 3086  28.82 1.56 574.32 1.61 36.58
rat783 783 97 72 49.04 4842 040 78200 4513 4355  0.88 710.88 3563 3434 1.01 782.62 798 27.34
gr120 120 15 15 62.01 58.35 1.69 119.40 62.06 58.14 1.85 119.40 38.17 3555 217 119.40 -0.08 3845
gr229 229 28 28 5801 56.66 1.38 22824 5457 53.12 1.54 22824  30.84 30.00 167 22826 593 46.83
gr431 431 53 53 5506 54.02 113 430.18 55.10 51.65 226 43014 29.11 2715 232 430.28 —-0.07 4714
gre666 666 83 83 5712 55.19 1.03 665.41 49.00  47.05 113 607.30 32.07 3045 1.23 665.43 14.21 43.85
1in105 105 13 13 62.68  58.01 2.05 104.48 61.41 57.22 2.03 104.48 3659 3350 222 10448  2.04 41.62
1in318 318 39 39 5772 56.39 1.46 317.22 55.00 52.79 1.39 317.21 3067  29.25 1.61 317.25 4.71 46.86
pcb442 442 55 55  56.62 54.77 110 44117 53.35 51.15 1.25 441.12 3087 2939 142 441.20 5.79 45.48
pri24 124 15 15 6249 5970 153 123.38 61.97 59.03 1.93 123.38 3710 3470 229 12338 082 40.63
pri52 152 19 19 60.58 5812 1.48 151.25 60.13 5649 218 151.24 33.66 3113 2.51 151.25 0.75 44.44
pr226 226 28 28 6268 6131 1.57 225.28 56.39 5429 2,00 22525 3048 2899 212 225.27 10.04 51.37
pr264 264 33 33 5993 57.94 1.07 263.14 5490  52.99 1.23 263.12 3043  29.05 140 263.21 8.38 49.23
pr299 299 37 37 6033 58.47 1.72 298.28 56.93 55.19 1.26 29825 3250 3129 1.47 29826  5.65 46.14
pr439 439 54 54 5641 54.93 1.04 43822 53.87 51.30 1.62 438.13 30.06 2844 169 438.16 449 46.70
rat99 99 12 12 63.73 58.66  2.16 98.67 61.88 57.37 214 98.67 3945 3594 245  98.67 2.90 38.11
rat195 195 24 24 5918 57.24 142 194.36 58.03 5446  2.06 194.35 36.13 3332 209 194.36 1.94 38.96
rat575 575 71 71 55.55 53.52 1.21 539.12 5233  48.63 1.93 506.66 3086 2855 230 57432 5.80 44.46
rat783 783 97 97 5725 5549 082 78247 4843  45.73 1.35 714.38 3563 3353 1.55 782.62 15.41 37.76
Average 50.17 4888 078 315.06  48.12 46.35 1.07 30892  31.02 2960 118 32022 3.948 37.348

® VNS and SA significantly outperform MSLS (for example, aver-
age percentage deviation of results obtained by MSLS from
results obtained by VNS presented in Table 2 is 23.61).

® Results obtained by VNS are in average better than the results
obtained by SA (0.85 for instances with q= |4 existing facil-
ities, 2.39 for instances with g = || existing facilities).

® [n general, the results do not depends on the number of existing
facilities (for example average of best results obtained by VNS
for instances with q=|f5| is 48.868, while average of best
results obtained by VNS for instances with q= || is 49.999).

e Note that percentage of total demand assigned to new facilities
are greater than the percentage participation in total number of
facilities: for example average of best results obtained by VNS
for test instances with q= || and p=|§| is 38.249 while
percentage participation of new facilities is 33.333.

5.3. Statistical test

In order to confirm the superiority of the method based on VNS
over the method based on SA (taking into account that results
obtained by MSLS are significantly worse), we perform a statistical
test known as the Wilcoxon signed-rank test [16]. For this purpose
we compute the differences between the solutions obtained by the
two compared algorithms in each instance and then rank them
according to their absolute values. The sum of ranks for the
instances in which the first algorithm (i.e. algorithm based on
VNS) outperforms the second algorithm (algorithm based on SA) is
denoted as R*, while R~ denotes the sum of ranks for the reverse
case. Ranks corresponding to zero differences are split evenly
among the sums. If min{R™, R~} is less than or equal to the critical
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Table 6
Statistical comparison on used instances grouped according to proportion of the
existing facilities (critical value=454).

Instance group Num. of inst. R* R~ Sign.
q=|%] 51 992 334 +
q= % 51 1108 218 +
q=|%] 51 1113 213 +
q= % 51 1305 21 +

value, this test detects significant differences between the algo-
rithms, which means that an algorithm outperforms its opponent.

Detailed results of this statistical test are given in Table 6. The
first column of Table 6 contains description of the group of
instances. The second column contains the number of instances in
the corresponding group. Columns 3 and 4 contain corresponding
sum of ranks (column 3 for VNS metaheuristic and column 4 for
SA). The last column indicates whether the Wilcoxon test found
statistical differences between these algorithms (+ if a significant
difference is found, and — otherwise).

Tests are performed on all instances examined above, with
significance level @ = 0.05. The critical value is taken from statis-
tical tables. Critical value for each test is given in the caption of the
table. The results from Table 6 clearly confirm the superiority of
VNS approach over the SA approach.

5.4. Getting an exact solution

In order to check whether the proposed model for solving the
multifacility Huff location problem with nodal demands is correct,
we have implemented it in KNITRO, a software package for solving
nonlinear optimization problems exactly. It is a commercial soft-
ware developed by Ziena Optimization LLC. We have used
version 8.1.1.

We first tried to solve exactly a 20-node test instance derived
randomly from the 55-node data set of Swain [15]. The number of
edges, the number of existing facilities, and the number of new
facilities are set to 50, 5, and 3, respectively. After a day and a half
of execution, KNITRO solver finished its work with a message that
the node limit of the search tree has been reached. Thus, the
problem that could not be solved had the total number of variables
3 x 50+3+20 x 3=213, while the total number of constraints
was 6003.

In order to get some conclusions regarding the size of instances
solvable by the solver, and also to check the correctness of our
mathematical model, we have tried with the smaller instance: the
number of nodes equals to 15; the number of edges equals to 37;
the number of existing facilities equals to 5, and the number of
new facilities equals to 3. This instance has 159 variables (111
binary ones) and 3333 constraints. KNITRO managed to get the
optimal solution value of 57.0360% captured demands after
11,224 s (more than 3 h). As a comparison, the VNS finds the same
optimal solution in just 1.73 s. The last experiment confirms that
our model is correct. Execution time by commercial solver (more
than 3 h) is really very large. Thus, developing heuristics for this
problem appears to be a good idea.

6. Conclusion and future lines

Although there are other approaches in modeling real world
competitive location situations, the advantage of the Huff location
model is its consumer psychology orientation. It allows taking into
consideration facility specific features, therefore, providing us with
the more refined model, which eventually implies increasing the
demand satisfiability. We have shown that VNS performs very well
in solving the multifacility Huff location problem with nodal
demand. We have shown in practice that the model we have
proposed is correct. Yet, obtaining exact solutions for the proposed
test instances is time consuming and, therefore, while dealing
with the nonlinear optimization problem with large scale solution
spaces, metaheuristics, as opposed to exact solving, are an inevi-
table approach.
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