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In this paper, we propose a new metaheuristic to solve the Risk constrained
Cash-in-Transit Vehicle Routing Problem (RCTVRP). The RCTVRP is a vari-
ant of the well-known capacitated vehicle routing problem and models the
problem of routing vehicles in the cash-in-transit sector. In the RCTVRP, the
risk associated with a robbery represents a critical aspect that is treated as a
limiting factor instead of the vehicle capacity which is typical of capacitated
vehicle routing problems. The risk of being robbed is assumed to be propor-
tional both to the amount of cash being transported and the time/distance
covered by the vehicle carrying the cash. The maximum vehicle exposure to
risk limited by a certain risk threshold.

A new metaheuristic, called aLNS (Ant colony heuristic with Large Neigh-
bourhood Search), is described. The aLNS metaheuristic combines the ant
colony heuristic for the travelling salesman problem and a large neighbour-
hood search heuristic within an iterated local search heuristic framework.

A new library of RCTVRP instances with known optimal solutions is pro-
posed, and split in two sets named SET O and SET S respectively. The aLNS
algorithm is extensively tested on small, medium and large benchmark in-
stances and compared with all existing solution approaches for the RCTVRP
problem.

Key words: Vehicle routing, Risk, Security, Cash-in-Transit, Metaheuristic.

1 Introduction

Vehicle routing problems (VRP) have been widely studied by a large number of re-
searchers during the last years. Different variants of the problem have been developed
to cope with many real life applications (e.g. waste collection, freight distribution,



dangerous materials transportation). An interesting field of research, which has not re-
ceived much attention so far, concerns the issue of security during the transportation
of cash/valuables between banks, large retailers, ATMs, jewellers, casinos, etc. The
cash-in-transit (CIT for short) sector refers to the physical transfer of banknotes, coins
and items of value from one location to another by specialized transportation compa-
nies. In general, cash and valuables are moved from customer locations (e.g. shopping
centres, retail stores and other premises holding large amounts of cash) to one or more
depots/banks by the means of armoured vehicles. Due to the nature of the transported
goods, CIT companies are constantly exposed to real risks such as robbery and armed
assault. The attacks carried on by crime organizations may also cause serious injuries
to retail staff, customers and CIT personnel and so forth.

During the last decades, several efforts have been made to drive the attacks to CIT
vehicles down by improving the vulnerability of the vehicles i.e. reducing the probability
that a robbery succeeds, given that it occurs. Substantial investments have been made
by CIT companies in vehicles, equipment, infrastructure and technology. Although the
implementation of such measures (e.g. armoured vehicle, weapons on board, on-board
drop safes and interlocking doors, active vehicle tracking) can serve as a deterrent, the
risk reduction can be also achieved by implementing other preventative measures aimed
at reducing the occurrence of a robbery and/or at mitigating the consequences of a CIT
attack (Erasmus, 2012; Smith and Louis, 2010). In this paper, we attempt to reduce the
risk and its components, in particular occurrence and consequences, by generating safe
routes directly in the routes planning phase.

An approach suggested in the literature is to reduce the risk of being attacked by building
routes that are “unpredictable” for criminals. In so-called “peripatetic” routing problems
(Wolfer Calvo and Cordone, 2003; Krarup, 1975; Ngueveu et al., 2010), customers are
visited several times, but the use of the same road segment twice is explicitly forbidden.

In a previous work of Talarico et al. (2013), the Risk-constrained Cash-in-Transit Vehicle
Routing Problem has been introduced and named for short RCTVRP. The RCTVRP is a
variant of the VRP problem, where the total risk, that any vehicle may incur during its
operations, is limited by a pre-specified risk threshold. Using a particular kind of risk
index, which is proportional both to the amount of cash being carried (consequence)
and the time/distance covered by the vehicle carrying the cash (occurrence), we can
measure the global risk faced by each vehicle along its route. The aim of the RCTVRP
is to determine K routes, where a route is a tour that begins at the depot, traverses a
subset of the customers in a specified sequence and returns to the depot. Each customer
must be assigned to exactly one of the K routes. The total risk for each route must not
exceed the risk threshold 7. The routes should be chosen to minimize total travel cost.
In Talarico et al. (2013), seven different metaheuristics to solve the problem have also
been proposed. Computational results show that the metaheuristics named p-TLK and
m-CWg obtain the best performances (in term of solution quality and robustness) while
the heuristic named m-NNg is the worst.



The p-TLK metaheuristic initially relaxes the risk constraint, effectively creating a giant
tour. By using a variant of the well known Lin-Kerninghan heuristic, implemented
in Helsgaun (2000), and subjecting this tour to a variant of the splitting procedure,
described in Prins (2004), an initial feasible solution for the RCTVRP is obtained. The m-
CWg metaheuristic determines an initial solution by applying a variant of the well known
Clarke and Wright heuristic while the m-NNg uses a constructive heuristic based on a
nearest neighbour heuristic combined with a greedy randomized selection mechanism of
unvisited nodes. In all these metaheuristics the initial solutions are then subjected to
an improvement stage to find local optima.

The idea followed in this paper is to generate initial solutions for the RCTVRP that
balance both the solution quality (that is characteristic of p-TLK and m-CWg) and
the solution variability (that is characteristic of m-NNg), making the diversification
and intensification stages more effective. For this purpose, a new metaheuristic (aLNS
for short) is developed. The aLNS algorithm uses a natural inspired heuristic, the
ant colony optimization described in Dorigo and Gambardella (1996), to generate an
initial solution for the RCTVRP. The ant colony optimization outperforms other nature-
inspired algorithms such as simulated annealing and evolutionary algorithms (Dorigo
and Gambardella, 1997) and is able to generate initial solutions for the RCTVRP with a
better quality than the m-NNg (but worse than the m-CWg and p-TLK), and with a
higher variability than the m-CWg and p-TLK heuristics (but lower than the m-NNg
heuristic). The initial solution for the RCTVRP is then improved by an effective large
neighbourhood search (LNS) heuristic. Both the ant colony and the LNS heuristics are
embedded into an iterated local search framework (Lourengo et al., 2010) that uses two
diversification mechanisms to escape from local optima and explore different areas of the
search space (see Section 3 for more details).

The aLLNS metaheuristic has been tested and compared with the existing metaheuris-
tics for the RCTVRP by using the benchmark instances (contained in SET R and SET
V) described in Talarico et al. (2013). Moreover, an additional library of medium and
large instances, with known optimal solutions, is proposed in this paper and used in
the computational experiments. The aLNS metaheuristic, developed in this paper, out-
performs the existing algorithms used to solve the RCTVRP problem, considering all the
benchmark instances.

The main contributions of this paper are twofold. (1) An effective metaheuristic for the
RCTVRP has been developed; (2) A new set of benchmark instances, with known optimal
solutions, is presented and used to test the solution approaches for the RCTVRP.

The remainder of the paper is organized as follows. In Section 2, the literature on
vehicle routing in risk-prone situations is surveyed, and the concept of risk constraint is
introduced. In Section 3, the different components of the solution approach are described.
In Section 4, the algorithm is tested and computational results are reported. Section 5
concludes the paper and includes some suggestions for future research.



2 Risk constraint

The concept of risk has received limited attention in the context of vehicle routing prob-
lems. An early contribution to define the risk on a path from an origin to a destination
node, is due to Pijawka et al. (1985). In their work, the concept of “vulnerability as-
sessment” is introduced and used to evaluate transportation risks and capabilities to
respond and mitigate the consequence of an unwanted event. According to the Center
for Chemical Process Safety (1995), the risk can be defined as a cardinal measure of po-
tential economic loss, human injury or environmental damages in terms of both incident
probability and magnitude of the loss, injury, or damage.

In Russo and Rindone (2011), risk is defined in terms of three main components: (1) oc-
currence of an event in term of probability /frequency of a specific unwanted event hap-
pening; (2) vulnerability, that is the resistance that objects to be protected exhibit, when
the event occurs; (3) exposure (or possible consequences) that quantifies an equivalent
homogeneous weighted value of people, goods and infrastructure affected during and
after the event. Depending on the specific application domains, risk has to be assessed
in all its components (occurrence, vulnerability and exposure) and a numerical value
needs to be determined to express a cardinal measure of safety and security levels. The
higher the risk, the lower the safety and security levels.

The general concept of risk can be adapted to the CIT sector to support specific opti-
mization applications aimed at generating safe vehicle routes. Some preliminary remarks
need to be done. First of all, the concept of vulnerability depends on several factors such
as: (1) the modus operandi of the criminals, that is not under the direct control of
the CIT company; (2) the type of vehicle (e.g. heavy armoured, light armoured or not
armoured), the weapons on board, the preparedness of the crew, that are all under the
control of the CIT companies, even though they can be modified only in the medium-
long term. Since all these factors are either not under the control of the CIT companies
or can be modified only in the medium-long term, for short-term operational decisions
concerning the route planning, the vulnerability is considered as a fixed parameter and
thus neglected in the formula of the risk described later on.

Moreover, the concept of ezposure can be distinguished between: (1) foreseeable conse-
quences of a robbery that are related to the amount of cash/valuables being transported.
These consequences can be mitigated by CIT companies by selecting appropriate routes;
(2) unforeseeable consequences of a robbery related to the criminal activity itself, in-
volving significant additional costs (e.g. damaged vehicles and/or equipment, costs of
policing, ambulance and hospital treatments, the opportunity cost as a result of inactive
CIT personnel). Since the unforeseeable consequences are not under the direct control of
the CIT companies and because they cannot be quantified a priori, only the foreseeable
consequences of a robbery are considered in the formula of the risk for CIT applications.
For these reasons, the concept of risk, proposed in Russo and Rindone (2011), can be
simplified as follows:



R=P-M (1)

where P is the probability that a robbery occurs and M is the magnitude defined as
a cardinal measure associated to the consequences of a robbery. As mentioned before,
the probability of being robbed is directly related to the time/distance that the vehicle
spends/travels along its route, being a potential target for criminals. Therefore, the
time/ distance covered by the vehicle can be used as an approximation for P, while M
is approximated by the amount of cash carried inside the vehicle that will be lost in
case of robbery. Considering Eq.(1), two types of measures for risk reduction may be
adopted by designing safe routes: (i) prevention, that consists in reducing the level of P;
(ii) protection, that consists in reducing the level of M . In this paper, both measures
are addressed.

Let m; be the amount of cash that is collected by the vehicle at customer 7. It is assumed
that a vehicle only picks up cash along its route and only deposits these valuables at the
end of its route, at a depot. Under this assumption, a risk index R} can be defined for
each node 7 in route 7 as follows. Let M, be the total amount of money on board of the
vehicle when it leaves node i along 7. Suppose also that route r contains arc (7, j) whose
length is d;;. The risk index for node j can then be computed as follows (see Talarico
et al. (2013) for more details).

R} = R + Mj - d;; (2)

Since the risk index in Eq. (2) is a cumulative measure of the risk incurred by the vehicle
while it travels along its route, the global route risk of route r, denoted by GR", is the
risk incurred by the vehicle upon its return to the depot. In the RCTVRP, the global
route risk of every route is limited to a certain maximum value, named the risk threshold
T. This value represents the maximum risk level that CIT companies accept for the risk
faced by any vehicle along its route during which valuables are collected.

The example in Figure 1 may clarify the calculation of the global route risk. A vehicle is
supposed to travel along route r, where nodes A, B, and C are visited before returning
to depot 0. The risk index at node A is zero because the vehicle is empty along the arc
(0,A) (R") =0-7=0). At node A, the vehicle collects one unit of money and continues to
customer B. The risk index at node B is therefore equal to Ry = Ry +Ms-dap = 1-8 =
8. Similarly, the risk index at node C' is equal to R;, = Rz+Mp-dpc = 8+(1+3)-9 = 44.
The global route risk is equal to the risk incurred by the vehicle upon its return to the
depot: GR" = R+ Mc - dco = 89. Route r = (0, A, B, C,0) is feasible in the RCTVRP
if GR™ < T. The global route risk of a route r depends on the order in which nodes are
visited and generally it is not the same as the global route risk of the reversed route r.
For this reason, it is possible for a route to be feasible if covered in one direction and
infeasible in the other one.



GR™ =89

Figure 1: lllustrative example. The numbers on the arcs represent the travel times between nodes,
while the values on the nodes denote the cash to be picked up by the vehicle at each
customer place

3 aLNS metaheuristic

The aLLNS metaheuristic, described in this section, uses the ant colony heuristic for the
travelling salesman problem introduced by Dorigo and Gambardella (1996) to generate
an initial solution for the RCTVRP (see Section 3.1). The risk constraint is initially relaxed
and, since no capacity constraint is imposed on the vehicle (or any other constraint that
restricts the route length), a giant TSP (Travelling Salesman Problem) tour is obtained.
Then, the risk constraint is considered and feasible routes, presenting a global route risk
not greater than the risk threshold T, are generated by subjecting the giant TSP tour
to a variant of the splitting procedure, described in Prins (2004).

The solution obtained after the splitting heuristic serves as input for the large neigh-
bourhood search heuristic (see Section 3.2), which is composed of seven of the most
common local search operators for vehicle routing problems, modified for the RCTVRP.
Two-opt, Or-opt, and Relocate are intra-route operators, that attempt to improve a
single route. Inter-route operators change more than one route simultaneously. Our
algorithm implements Two-opt, Relocate, Exchange, and Cross-Ezchange.

The intensification stage stops when the current solution cannot be further improved by
any of the local search operators and a local optimum is reached. In order to examine
unexplored areas of the solution space and escape from local optima, two diversification
mechanisms are employed (see Section 3.3). The first one perturbs the current solution
by partially destroying and rebuilding a restricted number of routes contained in it.
If a maximum number of iterations without having obtained any improvement of the
current solution is reached, the second diversification mechanism is used. It consists in
generating a new initial solution for the RCTVRP by using the ant colony optimization
followed by the splitting procedure.

The overall schema of the aLNS metaheuristic is shown in Algorithm 1.



Algorithm 1: aLNS metaheuristic pseudo-code

Let @ be the current solution and f(z) its cost;

Let a* be the best solution found so far and f(z*) its cost;
Set z,z* + 0 and f(z), f(z*) + oc;

Phase 1: Generation of an initial solution

Generate a giant TSP tour using the ant colony heuristic;
x < split the giant TSP tour in feasible routes;

repeat
Phase 2: Intensification stage

Select a set of neighbourhood structures Ay, I =1... Lz}
Set [ «— 1;
repeat
' +— Ni(z);
if (f(2') < f(z)) then
| set z+— 2’ and [ +— 1
else
| le—1+1;
until (I = lyaz);
if (f(z) < f(z*)) then
set ¥ +— x;
update number of iterations without improvement;
Phase 3: Diversification stage
if (mazx number of iterations without improvement not reached) then
‘ x < Perturbation(x);
else
Generate a giant TSP tour using the ant colony heuristic;
x < split the giant TSP tour in feasible routes;

until (stopping criterion not met);
Report the best solution z*

3.1 Generation of an initial solution for the RCTVRP

The generation of an initial solution for the RCTVRP follows a two steps procedure. In
the first step (described in Section 3.1.1), the risk constraint is temporarily relaxed and
the ant colony heuristic is used to create a giant TSP tour. In the second step (described
in Section 3.1.2), this giant tour is split into feasible routes for the RCTVRP using an
optimal splitting procedure.

In order to test the initial solutions provided by the aLNS metaheuristic and compare
them with the solutions provided by other known metaheuristics for the RCTVRP, a pre-
liminary experiment has been conducted. Ten instances have been randomly selected
from the test sets SET V, SET R, SET S and SET O (all described in Section 4.1) and used
for this test. Each test instance has been run 20 times by using all the existing meta-
heuristics for the RCTVRP. The best solutions and the average solutions over these 20
runs have been used to compute the best and the average percentage gaps from the best
known solutions that are reported in Table 1. It can be observed that the average quality
of the initial RCTVRP solutions (measured by the best percentage gap from best known
solutions) provided by the aLNS metaheuristic is better than the m-NNg (or p-NNg,
both using the same constructive heuristic to generate an initial RCTVRP solution) but



worse than the m-CWg (or p-CWg, both using the same constructive heuristic to gen-
erate an initial RCTVRP solution) and the p-TLK. In this way, the large neighbourhood
search heuristic may have more room for improvement during the intensification stage
than m-CWg and p-TLK, without being far from promising search areas. With regard
to the robustness of the initial RCTVRP solutions (measured by the average percentage
gap from best known solutions), the aLNS metaheuristic produces a wider variety of
initial solutions than the m-CWg (or p-CWg) and the p-TLK (that uses a deterministic
constructive heuristic), helping the large neighbourhood search heuristic to efficiently
escape from local optima.

Table 1. Quality and robustness of initial solutions provided by the existing metaheuristics for the

RCTVRP
Metaheuristic Best % gap Average % gap
p-TLK 2.39% 2.39%
m-CWg (p-CWg) 3.16% 4.57%
aLNS 5.26% 7.73%
m-TNNg (p-TNNg) 8.72% 12.26%
m-NNg (p-NNg) 9.52% 13.68%

3.1.1 Giant TSP creation

In the first step of the constructive heuristic, the risk constraint is relaxed and a giant
TSP tour is obtained by using the ant colony heuristic, as described in Dorigo and
Gambardella (1996), to which the reader is referred for more details. In the ant colony
heuristic, a set of agents (ants) cooperate to find good solutions for the TSP. Ants
cooperate using an indirect form of communication mediated by the pheromone that
they deposit on the arcs of the graph while building solutions.

A predefined number of ants (parameter nAnts) is initially selected and then each ant
is positioned on a randomly chosen network node. Each ant builds a TSP tour by
repeatedly applying a stochastic greedy rule, named the state transition rule. While
constructing its tour, an ant also modifies the amount of pheromone on the visited arcs
by applying a local pheromone updating rule, that also considers the quality of the
obtained tour. The number of times each ant applies both the state transition rule, to
incrementally build a solution, and the local pheromone updating rule is a parameter of
the heuristic named step number in the remainder of the paper.

Once all ants have terminated their tour, the amount of pheromone on arcs is modified
again by applying the global updating rule, during which a fraction of the pheromone
evaporates on all arcs. Ants are guided, in building their tours, by both heuristic infor-
mation (e.g. preference of short edges), and by pheromone information: an edge with
a high amount of pheromone is a very desirable choice. The pheromone updating rules
are designed so that they tend to give more pheromone to edges which should be visited
by ants.



The process is then iterated a number of time (parameter antRepetition) and the best
found TSP tour represents the input for the splitting procedure (described in Section
3.1.2) used to generate a feasible solution for the RCTVRP.

3.1.2 Splitting Procedure

In the second step of the constructive heuristic, implemented in aLLNS, the best found
giant TSP tour is subjected to a variant of the splitting procedure described in Prins
(2004). The original procedure creates an auxiliary graph containing n + 1 nodes (0 to
n), and adds an arc between nodes i — 1 and j (with i < j) if the route visiting the
i-th customer to the j-th customer in the order they appear in the giant tour is feasible.
Contrary to the original procedure, the modified procedure also adds an arc if the reverse
route is feasible. The weight of the arc is equal to the cost of the route.

The best possible way to split the giant tour in feasible routes is achieved by finding
the shortest path from node 0 to node n in the auxiliary graph. If the shortest path
contains the arc from ¢ — 1 to j, the giant tour is split between the 7 — 1-th node and
the i-th node and between the j-th and the j + 1-th node. The auxiliary graph is useful
to understand how to split a big TSP tour in feasible routes. However, in practice, the
generation of an auxiliary graph is not needed. In order to find the optimal splitting,
we adapted a labelling algorithm that is described in Chang and Chen (2007).

3.2 Intensification stage

After having generated an initial RCTVRP solution, during the intensification stage, a
large neighbourhood search (LNS) heuristic is employed to improve the current solution.
Different from the local search heuristics used in Talarico et al. (2013), the LNS, employed
in the aLNS metaheuristic, contains: (1) a Reverse operator, that is executed at the
beginning of the LNS heuristic and every time the current solution gets improved; (2) an
additional local search operator, the Internal Relocate Operator, for which specific short-
cut calculations are developed to check if the movement is both desirable (from the point
of view of the solution cost) and feasible (from the point of view of the risk constraint)
in O(1) (see Section 3.2.1).

The Reverse operator takes advantage of the fact that the global risk associated to a
generic route r (e.g. (0,4, B,C,D,0)) is different from the global risk of the reversed
route 7, in which the order of the nodes is inverted (i.e. (0,D,C, B, A,0)). The Reverse
operator is executed only if the reversed route of r (named 7) presents a global risk
GR™ < GR". In case the Reverse operator is applied, 7 will present the same cost of
r (whether the RCTVRP is symmetric), but also a lower value of the global route risk.
Therefore, 7 will offer more room for additional nodes to be added in 7 resulting in higher
chances to reduce the solution cost.



The LNS heuristic, employed in this paper, uses 7 local well-known local search operators
for vehicle routing problems (see Braysy and Gendreau (2005) for more details) and the
Reverse operator, described before, which are explored sequentially in the order shown
in Algorithm 2. Each local search operator uses a first improvement strategy and every
improvement encountered is accepted. Moreover, short-cut calculations (similar to the
ones described in Talarico et al. (2013)) are implemented by each local search operator
to efficiently determine whether a move results in an improved solution and what the
new risk indices are for the different routes, affected by the move. In many cases, the
feasibility checks can be performed in O(1). If none of the operators can lead to a better
solution, the current solution is saved as a local optimum.

Algorithm 2: LNS structure

Let = be the current solution;
Set stop = false;
repeat
V routes in x apply the Reverse operator;
Apply Internal Or-Opt to x;
if no improvement then
Apply Internal Relocate to x;
if no improvement then
Apply Internal Two-Opt to x;
if no improvement then
Apply Ezternal Exchange to x;
if no improvement then
Apply Ezternal Relocate to x;
if no improvement then
Apply Ezternal Cross-Exchange to x;
if no improvement then
Apply Ezternal Two-Opt to x;
if no improvement then
‘ set stop = true;

until (stop==true);

3.2.1 Internal Relocate Operator

In this section, the short-cut calculations, used inside the internal relocate operator to
test the desirability and the feasibility of a move, are described.

Letr = (0,...,A,B,C...,D,E,...,0) (see Figure 2 on the left) be a route in the current
solution, where node 0 represents the depot. A relocate intra-route move consists in the
relocation of node B within r, e.g. between D and F, maintaining the same direction of
the initial route. The movement is desirable only if the following condition is satisfied:

dap +dpc +dpg — dac — dpp — dpg > 0. (3)

In order to evaluate if the new route ey = (0,...,A,C ..., D, B, E,...,0) (see Figure 2
on the right) is feasible, from the risk constraint point of view, a short-cut calculation
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can be applied to evaluate the global route risk for r,e,, without computing all the
risk labels for each node in 7,¢,. To make this calculation possible, the following data
structures are used: (1) Dj, which represents the cumulative distance travelled from
the depot 0 to node h along route r; (2) GR", which is the global route risk of route
r; (3) M’;, which denotes the amount of money on board of the vehicle when it leaves
node A along route r. The global route risk for 7, can be calculated as follows:

GR™v =GR" — (M;l +ma + mB) -dpc —mp - (D% - DTC) + Mg . (dBE — dDE) (4)
+ (M4 +ma)- (dac —dap) + (Mp +mp+mp) -dpp

All data structures in Eq. (4) are updated throughout the running of the algorithm.

Therefore, this feasibility check can be performed in O(1). If the global route risk for

Thew 1S lower than the risk threshold 7', the move can be executed. The resulting route,
after the application of the move, is depicted on the right side of Figure 2.

ma me ma me

0 @ el

4 ; 4 mp

g% mp mE,v" @

Figure 2: Relocate inter-route operator

3.3 Diversification strategies

As mentioned before, the whole metaheuristic is repeated until a stopping condition is
met. In particular, the aLNS metaheuristic stops its execution when a predefined max-
imum number of iterations (parameter p) is reached. Alternately, a maximum allowed
running time, as done in Section 4, can be employed as a stopping criterion. At each
iteration, a new solution for the RCTVRP is obtained. At the end of the p repetitions,
the best solution found so far is reported.

During each repetition, two different structures are used to escape from local optima.
The first one, named multi-start, is adopted in case a maximum number of iterations
without having obtained any improvement in the current solution (parameter nolmpr)
is reached. In this case, a new initial solution is built from scratch by applying the ant

11



colony heuristic followed by the splitting procedure. This new solution is then improved
by reapplying the LNS heuristic, described before. In case the maximum number of iter-
ations without improvements is not passed, a second diversification mechanism, named
perturbation is employed.

The perturbation attempts to explore the solution space moving from the current solution
(z) to another one (z') obtained after having partially destroyed and then repaired the
current solution. The perturbation mechanism takes two parameters as input: (1) &,
which represents the percentage number of routes to be destroyed from x and (2) a,
that is used to control the balance between greediness and randomness during the repair

phase|[(1)].

During the destruction phase, a random route r is selected from the current solution .
All nodes are removed from r and inserted in a list of unvisited nodes (U). This step is
repeated & - K times, where K represents the total number of routes in x. During the
repair phase, a new current solution z’ is built, starting from the non destroyed routes
of z and adding new routes which contain the unvisited nodes in U. These new routes
are generated by applying a nearest neighbourhood approach combined with a greedy
randomized selection of the unvisited nodes in U. This means that the nodes are selected
randomly from a restricted candidate list containing the first a closest unvisited nodes
passing all a feasibility check with respect to the risk constraint. If it is not possible
to add any node to the current route without violating the risk constraint (i.e. the
vehicle can reach the depot without surpassing the risk threshold), the route is closed
(the vehicle drives back to the depot) and a new route is started until U is empty. Once
a new current solution x’ has been generated, the LNS heuristic is used to improve z’.

4 Computational experiment

In this section, the experiments that have been performed to test the aLNS metaheuristic
are described. The solution approach has been coded using Java language and the ex-
periments were executed on an Intel core i7-2760QM 2.40GHz processor using a machine
with 4GB RAM.

First, two additional sets of medium-large benchmark RCTVRP instances, named SET O
and SET S respectively, have been generated. These instances, with known optimal solu-
tions, together with the existing benchmark instances available for the RCTVRP (SET V
and SET R) have been used to tune and test the aLNS metaheuristic (see Section 4.1).

The experimental analysis is carried out in two sequential steps. In a first stage, the
parameters for the aLINS metaheuristic are calibrated in order to achieve the best results
(see Section 4.2). In the second stage, the alLNS metaheuristic with its “best” parameter
setting is used to solve all test instances contained in SET V, SET R, SET O and SET
S. In Section 4.3, the obtained results are compared with the solutions provided by the
existing metaheuristics for the RCTVRP.
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4.1 Test instances

The test instances that are used in this paper are based both on existing benchmark
instances for the RCTVRP, namely SET R and SET V, and two additional set of benchmark
instances with known optimal solutions, namely SET O and SET S.

SET R includes 180 small RCTVRP instances with a number of nodes ranging from 4 to
20. For these instances, optimal solutions are known. SET V contains 70 medium and
large instances with a number of nodes ranging from 22 to 301. Both these instance
sets have been introduced in Talarico et al. (2013) and downloadable at http://antor.
uantwerpen.be/Download.

In order to have benchmark instances, having optimal known solutions to which compare
the quality of the obtained results, that are larger than the instances contained in SET
R, two additional test sets are proposed in this paper and named SET O and SET S
respectively. These 2 sets form a library of instances for the RCTVRP that is made
available at http://antor.uantwerpen.be/Download.

These sets include in total 64 different instances. Both SET O and SET S contain 32
instances ranging from 10 to 337 nodes. These instances are generated in such a way
that the optimal solutions are known in advance. As can be seen from Figure 3 SET
O and seT S differ from each other with respect to the topology of the graph. The
special structure of the instances contained in SET O makes them really difficult to be
solved, since the distances from neighbouring nodes (e.g. the ones on the left/right or
above /below a given node) along each branch of the obelisk shapes is identical. The risk
threshold is defined so as to obtain a predefined number of customers in each route. The
optimal solutions of the instances in SET O and SET S contain as many routes as there
are either obelisk shapes or the spiral arms (3, 4, 6, 8 and 16) visible in Figure 3. The
demand vector is composed of integer values specifically defined for each node in order to
have an increasing demand that is proportional to the order of visit of the nodes in each
obelisk/spiral shape that composes the optimal solution. In other words, we assigned a
demand equal to 1 to the first node visited in each route contained in optimal solution
(the spiral/obelisk shown in Figure 3), the value 2 to the second node, 3 to the third
node and so on.

4.2 Parameter configuration

The aLNS metaheuristic uses some internal parameters that need to be tuned in order
to have a good compromise between solution quality and computation time.

Using 8 instances randomly selected from all the instances sets (SET R, SET V, SET
O and SeT S), a full factorial statistical experiment has been performed. For each
parameter, different values have been tested as shown in Table 2. All the parameters
resulted having a significant effect on both the solution cost and the running time. The
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Figure 3: Topology of instances contained in SET O and SET S

“best” setting, that has been selected for the aLNS metaheuristic, is the one reported
in last column of Table 2.

Parameter Description Tested Values “Best”

p Number of repetitions of the aLNS meta- 50 50
heuristic

I3 Maximum percentage number of routes in the ~ 10%, 20%, ..., 90% 60%
current solution to be destroyed

a Size of the restricted candidate list (repair 1,2,...,5 3
heuristic)

noImpr Maximum number of iterations without im-  p/2, p/3, p/5, p/10 p/5
provements

antRepetition Number of initial giant tours to generate 2, 5,10, 20 5

nAnts Number of ants 4, 8, 16, 20 16

Step number Number of times each ant applies the state 3,4,5,6 6

transition rule and the local pheromone up-
dating rule to incrementally build a giant tour

Table 2: Metaheuristic parameters

It is worth observing that the higher the parameters p, the better the solution quality
at the expense of the computational time. In Figure 4, the evolution of the solution
cost obtained with different values of p is reported. It can be noticed that the aLNS
metaheuristic converges towards stable solutions when p assumes high values. It should
be noted that the marginal improvement of the solutions significantly decreases when p
assumes values greater than 1000.
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Figure 4: Solution cost over the number of repetitions (p) of the aLNS metaheuristic

4.3 Results

The aLNS metaheuristic in his “best” parameter setting, described before, has been
tested and compared with the existing metaheuristics for the RCTVRP, namely m-NNg, p-
NNg, m-TNNg, p-TNNg, m-CWg, p-CWg and p-TLK (see Talarico et al. (2013) for more
details). Moreover, since each metaheuristic involves various elements of randomness,
finding better solutions may also be achieved by repeating the solution process a number
of times. For this reason, each solution approach is run 20 times on each instance. The
average solutions and the best solutions over these 20 runs are used to evaluate the
robustness and the solution quality associated to each metaheuristic.

The comparison between the different metaheuristics is done by first solving the existing
benchmark instances for the RCTVRP namely SET V and SET R. In order to make a fair
comparison between competing metaheuristics, a fixed computation time is allowed for
all the solution approaches to solve each instance.

Since instances contained in SET R are small instances, with a maximum of 20 nodes, a
limited computation time of 5 seconds per run on each instance is allowed. In Table 3
both the best percentage gap from optimal solutions averaged over all instances in SET R
(column Best GAP) and the average percentage gap from the optimal solutions over 20
runs (column Avg. GAP) are reported. As it can be observed, the aLNS metaheuristic
produces results that are comparable with the best existing solution approaches p-TLK
and m-CWg. The aLNS metaheuristic is able to find all the optimal solutions for the
instances in SET R, as well as the other solution approaches, and the robustness of the
aLLN'S metaheuristic (looking at the average gap from optimal solutions over 20 runs) is
equal to the m-CWg metaheuristic and only 0.01% worse than p-TLK.

Successively, the aLNS metaheuristic is compared with the existing metaheuristics by
solving the medium and large instances contained in SET V. Due to the larger dimension
of the instances, a maximum running time of 30 seconds per run is allowed. Since
the optimal solutions for the instances contained in SET V are not known, the results
obtained by each metaheuristic are compared with the best solution obtained for each
instance. Also in this case, both the best percentage gap from best known solutions
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Table 3: Results obtained by solving the instances contained in SET R
Metaheuristic Best GAP Avg. GAP

m-CWg 0.0% 0.10%
m-NNg 0.0% 1.28%
p-CWg 0.0% 0.43%
p-NNg 0.0% 0.88%
m-TNNg 0.0% 0.58%
p-TNNg 0.0% 0.69%
p-TLK 0.0% 0.09%
aLLNS 0.0% 0.10%

averaged over all instances in SET V (column Best GAP) and the average percentage
gap from the best known solutions over 20 runs (column Avg. GAP) are reported in
Table 4. With regard to the instances contained in SET V, the aLNS metaheuristic is
able to produce better solutions than the existing metaheuristics. Only the robustness
is slightly worse than the p-TLK due to a higher variety of solutions that the aLLNS
metaheuristic can generate.

Table 4: Results obtained by solving the instances contained in SET V
Metaheuristic Best GAP Avg. GAP

m-CWg 0.86% 1.89%
m-NNg 1.88% 3.75%
p-CWg 1.11% 2.51%
p-NNg 1.46% 3.38%
m-TNNg 1.55% 2.84%
p-TNNg 1.32% 2.92%
p-TLK 0.52% 1.38%
aLLNS 0.50% 1.44%

Finally, all the metaheuristics are tested and compared using the newer sets of benchmark
instances, that have been introduced in this paper, namely SET O and SET S. Since the
size of the instances contained in these sets is comparable with the instances in SET V,
a maximum running time of 30 seconds per run on each instance is also allowed. For
each metaheuristic, the following results have been reported in Table 5: (1) the best
percentage gap from optimal solutions averaged over all instances in the sets (column
Best GAP); (2) the average percentage gap from the best known solutions over 20 runs
(column Avg. GAP); (3) the number of optimal solutions that have been found (column
# Optimal).

As shown in Table 5, the aLNS metaheuristic finds a higher number of optimal solutions
for SET O, while the m-CWg metaheuristic finds the highest number of optimal solutions
for set SET S (4 more than alLLNS and 2 more than p-TLK). On average, for both
benchmark sets, the solution quality obtained by aLNS is better then the other existing
approaches. In terms of robustness, the aLNS metaheuristic obtained lower average
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Table 5: Results obtained solving the instances contained in SET O and SET S
(a) Results for SET O

Metaheuristic Best GAP Avg. GAP # Optimal

m-CWg 4.91% 5.29% 8/32
m-NNg 6.35% 7.29% 3/32
p-CWg 5.21% 5.63% 6/32
p-NNg 5.88% 6.65% 2/32
m-TNNg 5.83% 6.49% 1/32
p-TNNg 5.57% 6.22% 4/32
p-TLK 4.25% 4.57% 15/32
aLNS 3.92% 4.54% 17/32

(b) Results for SET S

Metaheuristic Best GAP Avg. GAP # Optimal

m-CWg 3.48% 4.26% 13/32
m-NNg 4.90% 5.93% 7/32
p-CWg 3.95% 4.62% 8/32
p-NNg 4.78% 5.81% 6/32
m-TNNg 4.64% 5.57% 7/32
p-TNNg 3.97% 4.80% 8/32
p-TLK 3.20% 3.86% 11/32
aLNS 2.91% 3.75% 9/32

percentage gaps from the best known solutions over 20 runs. Also in this case, the
m-NNg resulted being the metaheuristic with the poorest performances.

The overall results obtained by solving all the benchmark instances, using all solution
approaches, are summarized in Table 6. It is possible to observe that the aLNS meta-
heuristic, on average, produces better solutions that the existing solution approaches for
the RCTVRP over all the benchmark sets. The best gap, averaged over all benchmark sets,
is equal to 1.83%, while the average gap is only 2.46%. The second best metaheuristic
resulted being the p-TLK, presenting a best gap, averaged over all the benchmark sets,
of 2.08%. The third place is occupied by the p-CWg metaheuristic, with a best gap of
2.23%. The m-NNg performed the worst also if the solution quality is, on average, not
so far from the best known solutions (with a best gap of only 3.28%).

5 Conclusions

In this paper, an iterated local search metaheuristic for the RCTVRP is proposed. This
solution approach has been named aLNS and uses a bio-inspired heuristic, the ant colony
heuristic, to find a solution for the underlying TSP problem. Then, the best found giant
TSP tour is split in feasible routes and then a large neighbourhood search heuristic is
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Table 6: Results obtained solving the instances contained in all the benchmark sets
(a) Best GAP
Test Set m-CWg m-NNg p-CWg p-NNg m-TNNg p-TNNg p-TLK aLNS

SET R 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%  0.00%
SET V 0.52% 1.88% 1.11% 1.46% 1.55% 1.32% 0.86%  0.50%
SET O 4.91% 6.35% 5.21% 5.88% 5.83% 5.57% 4.25%  3.92%
SET S 3.48% 4.90% 3.95% 4.78% 4.64% 3.97% 3.20%  2.91%

Average 2.23% 3.28% 2.57% 3.03% 3.01% 2.71% 2.08% 1.83%

(b) Avg. GAP
Test Set m-CWg m-NNg p-CWg p-NNg m-TNNg p-TNNg p-TLK aLNS
SET R 0.10% 1.28% 0.43% 0.88% 0.58% 0.69% 0.09%  0.10%
SET V 1.38% 3.75% 2.51% 3.38% 2.84% 2.92% 1.89%  1.44%
SET O 5.29% 7.29% 5.63% 6.65% 6.49% 6.22% 457%  4.54%
SET S 4.26% 5.93% 4.62% 5.81% 5.57% 4.80% 3.86%  3.75%

Average 2.76% 4.57% 3.30% 4.18% 3.87% 3.66% 2.60% 2.46%

applied. Finally, two different diversification mechanism are used to explore the solution
space and to escape from local optima.

Two additional sets, named SET O and SET S respectively, containing medium and large
RCTVRP instances, have been introduced. The aLNS metaheuristic has been tested and
compared with the existing solution approaches for the RCTVRP by using four different
benchmark instance having a total number of instances equal to 314.

The aLLNS metaheuristic outperformed the existing solving approaches for the RCTVRP
for what concern the solution quality and the robustness of the solution approach. The
aLLNS was also able to find a total number of optimal solutions for the instances contained
in both SET O and SET S in line with the best known solution approach for the RCTVRP
(26 optimal solutions found in total as the p-TLK). These results can be explained by
the fact that the ant colony heuristic produces initial solutions presenting on average a
better quality than the m-NNg (that results the worst solution approach for the RCTVRP)
but worse than the m-CWg and p-TLK (that result among the best metaheuristics for
the RCTVRP problem). Similar reasoning holds for the solution variability. In fact, the
variability of solutions that the aLNS can produce is higher than the m-CWg and p-
TLK heuristics, but lower than the m-NNg heuristic. These two properties, combined
together, makes both the diversification and intensification stages used inside the aLNS
heuristic more effective.

Further development can be oriented at extending the RCTVRP by modelling some real
life constraints (e.g. route length restrictions, precedence relations, delivery of money
to customers). Another interesting research path concerns the definition of a multi
objective version of the RCTVRP where e.g. both the risk and the travel cost/distance
need to be minimized.
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