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Abstract

Fitting piecewise affine models to data points is a pervasive task in many scien-
tific disciplines. In this work, we address the k-Piecewise Affine Model Fitting
with Piecewise Linear Separability problem (k-PAMF-PLS) where, given a set
ofm points {a1, . . . ,am} ⊂ Rn and the corresponding observations {b1, . . . , bm} ⊂
R, we have to partition the domain Rn into k piecewise linearly (or affinely) sep-
arable subdomains and to determine an affine submodel (function) for each of
them so as to minimize the total linear fitting error w.r.t. the observations bi.

To solve k-PAMF-PLS to optimality, we propose a mixed-integer linear
programming (MILP) formulation where symmetries are broken by separating
shifted column inequalities. For medium-to-large scale instances, we develop a
four-step heuristic involving, among others, a point reassignment step based on
the identification of critical points and a domain partition step based on multi-
category linear classification. Differently from traditional approaches proposed
in the literature for similar fitting problems, in both our exact and heuristic
methods the domain partitioning and submodel fitting aspects are taken into
account simultaneously.

Computational experiments on real-world and structured randomly gener-
ated instances show that, with our MILP formulation with symmetry breaking
constraints, we can solve to proven optimality many small-size instances. Our
four-step heuristic turns out to provide close-to-optimal solutions for small-size
instances, while allowing to tackle instances of much larger size. The experi-
ments also show that the combined impact of the main features of our heuristic
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is quite substantial when compared to standard variants not including them.
We conclude with an application to the identification of dynamical piecewise
affine systems for which we obtain promising results of comparable quality with
those achieved with state-of-the-art methods from the literature on benchmark
data sets.

—————————————————————————

1. Introduction

Fitting a set of data points in Rn with a combination of low complexity
models is a pervasive problem in, essentially, any area of science and engi-
neering. It naturally arises, for instance, in prediction and forecasting when
determining a model to approximate the value of an unknown function, or
whenever one wishes to approximate a highly complex nonlinear function with
a simpler one. Applications range from optimization (see, e.g., [TV12] and
the references therein) to statistics (see, e.g., the recent work in [BM14]), to
data mining (see, e.g., [AM02, BS07]), and to system identification (see, for
instance, [FTMLM03, BGPV05, TPSM06]), only to cite a few.

Among the different options, piecewise affine models have a number of advan-
tages with respect to other model fitting approaches. Indeed, they are compact
and simple to evaluate, visualize, and interpret, in contrast to models obtained
with other techniques such as, e.g., neural networks, while allowing to approxi-
mate even highly nonlinear functions.

Given a set of m points A = {a1, . . . ,am} ⊂ Rn, with index set I =
{1, . . . ,m}, with the corresponding observations {b1, . . . , bm} ⊂ R and a posi-
tive integer k, the general problem of fitting a piecewise affine model to the data
points {(a1, b1), . . . , (am, bm)} consists in partitioning the domain Rn into k con-
tinuous subdomains D1, . . . , Dk, with index set J = {1, . . . , k}, and in determin-
ing, for each subdomain Dj , an affine submodel (an affine function) fj : Dj → R,
so as to minimize a measure of the total fitting error. Adopting the notation2

fj(x) = wjx − wj0 with coefficients (wj , wj0) ∈ Rn+1, the j-th affine submodel

corresponds to the hyperplane Hj = {(x, fj(x)) ∈ Rn+1 : fj(x) = wjx − wj0}
where x ∈ Dj . The total fitting error is defined as the sum, over all i ∈ I,
of a function of the difference between bi and the value fj(i)(ai) provided by
the piecewise affine model, where j(i) is the index of the affine submodel corre-
sponding to the subdomain Dj(i) which contains the point ai.

In the literature, different error functions (e.g., linear or quadratic) as well
as different types of domain partition (with linearly or nonlinearly separable
subdomains) have been considered. See Figure 1 (a) for an illustration of the
case with k = 2 and a domain partition with linearly separable subdomains.

2For greater readability, transposition symbols will be omitted throughout the paper. If
one wanted to specify the row and column nature of the vectors that we use, ai would be a
column vector, while wj and, in the following, yj , would be row vectors.
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Figure 1: (a) A piecewise affine model with k = 2, fitting the eight data points A = {ai}i∈I
and their observations {bi}i∈I with two submodels (in dark gray). The points (ai, bi) assigned
to each submodel are indicated by � and N. The model adopts a linearly separable partition
of the domain R2 (represented in light gray). (b) An infeasible solution obtained by solving a
k-hyperplane clustering problem in R3 with k = 2. Although yielding a smaller fitting error
than that in (a), this solution induces a partition A1, A2 of A where the points ai assigned to
the first submodel (indicated by �) cannot be linearly separated from those assigned to the
second submodel (indicated by M). In other words, the solution does not allow for a domain
partition D1, D2 of R2 with linearly separable subdomains that is consistent with the point
partition A1, A2.

In this work, the focus is on the version of the general piecewise affine model
fitting problem with a linear error function (`1 norm) and a domain parti-
tion with piecewise linearly3 separable subdomains. We refer to it as to the
k-Piecewise Affine Model Fitting with Piecewise Linear Separability problem
(k-PAMF-PLS). A more formal definition of the problem will be provided in
Section 3.

k-PAMF-PLS shares a connection with the so-called k-Hyperplane Cluster-
ing problem (k-HC), an extension of a classical clustering problem which calls
for k hyperplanes in Rn+1 which minimize the sum, over all the data points
{(a1, b1), . . . , (am, bm)}, of the `2 distance from (ai, bi) to the hyperplane the
point is assigned to. See [BM00, AC13, Con11, Con15] for some recent work
on the problem and [ADC13] for the problem variant aiming at minimizing the
number of hyperplanes needed to fit all the points within a prescribed toler-
ance ε > 0.

It is nevertheless crucial to note that, differently from many of the approaches
in the literature (which we briefly summarize in Section 2) and depending on
the type of the domain partition that is adopted, a piecewise affine function
cannot be determined by just solving an instance of k-HC. A naive application
of algorithms designed for k-HC to tackle k-PAMF-PLS can indeed lead to
solutions with a large fitting error, as a consequence of the domain partitioning

3Although this kind of separation employs piecewise affine functions, it is usually referred
to, in the literature, as piecewise linear. We will do so also here for uniformity with previous
work.
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aspect being entirely neglected. As illustrated in Figure 1 (b), the two aspects
of k-PAMF-PLS, namely, submodel fitting and domain partitioning, should be
taken into account at once to obtain a solution where the two are consistent.
For this reason, most of the algorithms in the literature incorporate techniques
to enforce the piecewise linear separability of the domain, typically after first
solving k-HC (or one of its variants). In this work, we propose exact methods for
k-PAMF-PLS based on mixed-integer linear programming as well as heuristic
algorithms which consider both aspects of the problem simultaneously, rather
than deferring the domain partitioning aspect to a later stage of the solution
process.

The paper is organized as follows. After summarizing previous and related
works in Section 2, we formally define the problem under consideration in Sec-
tion 3. In Section 4, we provide a Mixed-Integer Linear Programming (MILP)
formulation for k-PAMF-PLS. We then strengthen the formulation when using
it for solving the problem in a branch-and-cut setting by generating symmetry-
breaking constraints. In Section 5, we propose a four-step heuristic to tackle
larger-size instances. Computational results are reported and discussed in Sec-
tion 6. In Section 7, we consider the application of k-PAMF-PLS to problems
in the area of dynamical system identification and compare the obtained re-
sults with those provided by state-of-the-art methods. Section 8 contains some
concluding remarks. Portions of this work appeared, in a preliminary stage,
in [ACT11, ACT12].

2. Previous and related work

Recently, there has been a growing interest in mixed-integer programming
and discrete optimization approaches to a wide range of problems in the areas
of data mining and statistics, see, e.g., [IR03, CSK06, BS07, CBR12, BM14,
MT15]. As to the problem of fitting a piecewise affine model to data points,
many variants have been considered in the literature. We briefly mention some
of the most relevant ones in this section.

In some works, the domain is partitioned a priori, exploiting the domain-
specific information about the dataset at hand. This approach has a typically
limited applicability, as it requires knowledge of the underlying structure of
the data, which may often not be available. For some examples, the reader is
referred to [TV12] (which admits the use of a predetermined domain partition
as a special case of a more general approach) and to the references therein.

In other works, a domain partition is easily derived when the attention is
restricted to convex or concave piecewise affine models. Indeed, if the model is
convex, each subdomain Dj is uniquely defined as Dj = {x ∈ Rn : fj(x) ≥
fj′(x) ∀j′ ∈ J} (similarly, for concave models, with ≤ instead of ≥). This is,
for instance, the case of [MB09] and [MRT05], where the fitting function is the
pointwise maximum (or minimum) of a set of k affine functions. In the case of
hinging hyperplane models, see [Bre93] or [RBL04] and the references therein,
the domain partition does not need to be explicitly derived due to the special
structure of this type of piecewise affine models.

4



In more general versions of the problem, a partition of the domain has to
be explicitly derived together with the fitting submodels in order to obtain a
piecewise affine function from Rn to R. To the best of our knowledge, most
of the available methods are two-phase in nature, in that they split the prob-
lem into two subproblems that are solved sequentially: i) a clustering problem
aiming at partitioning the data points and simultaneously fitting each subset
with an affine submodel, and ii) a classification problem asking for a domain
partition consistent with the previously determined submodels and the corre-
sponding point partition. Note that the clustering problem considers the data
points {(a1, b1), . . . , (am, bm)} ⊂ Rn+1, whereas the classification problem con-
siders the original points {a1, . . . ,am} ⊂ Rn but not the observations bi. The
clustering phase is typically carried out by either choosing a given number k of
hyperplanes which minimize the fitting error, or by finding a minimum number
of hyperplanes yielding a fitting error of, at most, a given ε. Although such
two-phase approaches turn out to perform satisfactorily in several of the control
applications that are cited in this section, in the general case they may lead to
solutions with a large fitting error (due to deferring the domain partition to the
end), as also illustrated in Section 6 with our computational experiments.

Among the two-phase methods available in the literature, we first mention
[BGPV05], which includes a postprocessing phase aiming at enforcing piecewise
linear separability. In its clustering phase, as proposed in [AM02], the problem
of fitting the data points in Rn+1 with a minimum number of linear submodels
within a given error tolerance ε > 0 is formulated and solved as a Min-PFS
problem, which amounts to partitioning a given infeasible linear system into
a minimum number of feasible subsystems. Then, in the classification phase,
the domain is partitioned via a Support Vector Machine (SVM). In [TPSM06]
the authors solve a k-hyperplane clustering problem via the heuristic proposed
in [BM00], resorting to SVM for the classification phase. A similar approach
is also adopted in [BS07], where, in the first phase, a k-hyperplane clustering
problem is solved as a mixed-integer linear program and, in the second phase,
the domain partition is derived via Multicategory Linear Classification (MLC).
For references to SVM and MLC, see [Vap96] and [BM94], respectively. The
method proposed in [FTMLM03] associates, to each data point ai, a hyper-
plane computed by solving a least square problem over the c closest points, and
then clusters them into k groups via a weighted version of the k-means algo-
rithm4 [Mac67]. To avoid grouping together hyperplanes corresponding to far
away points and, thus, partially accounting for the domain partitioning aspect,
clustering is carried out in a 2n + 1-dimensional feature space which includes
the hyperplane parameters and the centroid of the c points corresponding to
the neighbourhood. Finally, SVM is applied to derive the domain partition a
posteriori.

4k-means is a well-known heuristic to partition m points {a1, . . . ,am} into k groups (clus-
ters) so as to minimize the total distance between each point and the centroid (mean) of the
corresponding group.
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Note that, in several of the cited articles, the authors also propose heuristics
to select a suitable number k of submodels which, in our work, we assume to
be given. In Subsection 6.6, we will give an idea on how to estimate a suitable
value for k using a cross-validation technique.

As already mentioned in the previous section, these two-phase approaches
may produce, in the first phase, affine submodels inducing a partition A1, . . . , Ak
of the points of A which does not allow for a consistent domain partition
D1, . . . , Dk, i.e., for a partition where all the points ai in a subset Aj are con-
tained into one and only one subdomain Dj(i). Refer again to Figure 1 (b) for
an illustration.

A large body of work on problems related to piecewise affine model fitting has
been carried out in the context of dynamical system identification for the case
of so-called hybrid systems. Many approaches typically encompass two-phase
heuristic methods such as those in [BGPV05, TPSM06, FTMLM03], which we
have already mentioned. A few mixed-integer programming formulations have
also been proposed for similar fitting problems. In the case of switched system
identification, such as in [PJFTV07, MK05], the focus is on finding an optimal
assignment of the points to the submodels without determining the domain
partition. In the case of hinging hyperplane models [Bre93, RBL04], no explicit
domain partition needs to be derived. Another line of research is that pursued in,
among others, [OL13, OSLC12], where the authors consider sparse optimization
approaches aiming at the identification of piecewise affine models with a trade-
off between number of pieces and fitting error. For further details on similar
applications and methodologies, we refer the reader to the surveys [PJFTV07,
GPV12], as well as to Section 7.

3. Problem definition

In this work, we require that the domain partition D1, . . . , Dk of Rn satisfy
the property of piecewise linear separability, which forms the basis of multicat-
egory linear classification [BM94]. In the following, we briefly recall some key
features of this well-known classification paradigm, which we will then leverage
in the remainder of the paper.

3.1. Piecewise linear separability and multicategory linear classification

Given k groups of points A1, . . . , Ak ⊂ Rn, the multicategory linear clas-
sification problem calls for a partition of the domain Rn into k subdomains
D1, . . . , Dk which, as shown in [DF66] (also see [BM94]) can be defined by
introducing, for each group of points Aj with j ∈ J , a vector of parameters

(yj , yj0) ∈ Rn+1 such that a point ai ∈ Aj belongs to the subdomain Dj if and

only if, for every j′ 6= j, we have (yj −yj
′
)ai− (yj0−yj

′

0 ) > 0. This equivalently
amounts to imposing that, for any pair of indices j1, j2 ∈ J with j1 6= j2, the
sets of points Aj1 and Aj2 are separated by the hyperplane Hj1j2 = {x ∈ Rn :

(yj1 − yj2)x = yj10 − yj20 } with coefficients (yj1 − yj2 , yj10 − yj20 ) ∈ Rn+1, see
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Figure 2: (a) Piecewise linear separation of five linearly separable groups of points. (b)
Classification with a minimum misclassification error of two linearly inseparable groups of
points (note the misclassified black point).

Figure 2 (a) for an illustration. It follows that, for any j ∈ J , the domain Dj is
defined as:

Dj =
{
x ∈ Rn : (yj − yj

′
)x− (yj0 − yj

′

0 ) > 0 ∀j′ ∈ J \ {j′}
}
. (1)

If the group of points A1, . . . , Ak are not piecewise linearly separable, there
exists at least a point ai and a pair j1, j2 for which the inequality (yj1−yj2)ai−
(yj10 − yj20 ) > 0 is violated for any choice of the vectors of parameters (yj , yj0)
with j ∈ J . In this case, the typical approach is to look for a solution which
minimizes the sum, over all the data points, of the so-called misclassification
error. For a point ai ∈ Aj(i), where j(i) is the index of the group the point
belongs to, the misclassification error is defined as:

max

{
0, max
j∈J\{j(i)}

{
−(yj(i) − yj)ai + (y

j(i)
0 − yj0)

}}
, (2)

thus corresponding to the largest violation among the inequalities (yj(i)−yj)ai−
(y
j(i)
0 − yj0) > 0. For an illustration, see Figure 2 (b).

Since the set of vectors (yj , yj0), for j ∈ J , satisfying constraint (yj(i) −
yj)ai−(y

j(i)
0 −yj0) > 0 is an open subset of Rn+1, it is common practice to replace

the constraint by the inhomogeneous constraint (yj(i)−yj)ai− (y
j(i)
0 −yj0) ≥ 1,

which induces a closed feasible set. This can be done without loss of generality if

we assume that the norm of the vectors (yj(i)y
j(i)
0 ) and (yj , yj0) can be arbitrarily

large, for all j ∈ J . Indeed, if (yj(i) − yj)ai − (y
j(i)
0 − yj0) > 0 but (yj(i) −

yj)ai− (y
j(i)
0 − yj0) < 1 for some ai ∈ A, then a feasible solution which satisfies

the inhomogeneous constraint can be obtained by just scaling (yj(i), y
j(i)
0 ) and

(yj , yj0) by a constant λ ≥ 1

(yj(i)−yj)ai−(yj(i)0 −yj0)
. The misclassification error for

the inhomogeneous version is thus:

max

{
0, max
j∈J\{j(i)}

{
1− (yj(i) − yj)ai + (y

j(i)
0 − yj0)

}}
. (3)
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3.2. k-Piecewise affine model fitting problem with piecewise linear separability

We can now provide a formal definition of the k-Piecewise Affine Model
Fitting with Piecewise Linear Separability problem.

k-PAMF-PLS: Given a set of m points A = {a1, . . . ,am} ⊂ Rn
with the corresponding observations {b1, . . . , bm} ⊂ R and a positive
integer k:

i) partition A into k subsets A1, . . . , Ak which are piecewise lin-
early separable via a domain partition D1, . . . , Dk of Rn in-
duced, according to Equation (1), by a set of vectors (yj , yj0) ∈
Rn+1, for j ∈ J ,

ii) determine, for each subdomain Dj , an affine function fj : Dj →
R where fj(x) = wjx− wj0 with parameters (wj , wj0) ∈ Rn+1,

so as to minimize the linear error function

m∑
i=1

∣∣∣bi − (wj(i)ai − wj(i)0

)∣∣∣,
where j(i) ∈ J is the index for which ai ∈ Aj(i) ⊂ Dj(i).

It is worth emphasizing that, in this problem, both the domain partition and
the fitting hyperplanes have to be determined jointly.

4. Strengthened mixed-integer linear programming formulation

In this section, we propose an MILP formulation to solve k-PAMF-PLS
to optimality via a branch-and-cut method, as implemented in state-of-the-art
MILP solvers. To enhance the efficiency of the solution algorithm, we break
the symmetries that naturally arise in the formulation by generating symmetry-
breaking constraints, as we will explain in the following.

Our MILP is derived by combining an adapted hyperplane clustering for-
mulation with a multicategory linear classification one. The former allows us
to partition the data points into k subsets A1, . . . , Ak and to determine an
affine submodel for each of them (see, e.g., [AC13] or [MK05, PJFTV07] for
closely related formulations for the identification of switched systems). The
latter guarantees a piecewise linearly separable domain partition D1, . . . Dk,
consistent with the k subsets A1, . . . , Ak (see the previous section and [BM94]).
Consistently with the definition of the problem, in the resulting formulation,
the parameters of the fitting affine submodels and the piecewise linear domain
partition are determined simultaneously.

4.1. MILP formulation

For each i ∈ I and j ∈ J , we introduce a binary variable xij which takes
value 1 if the point ai is contained in the subset Aj and 0 otherwise. Let zi
be the fitting error of point ai ∈ A for each i ∈ I, (wj , wj0) ∈ Rn+1 be the

parameters of the submodel of index j ∈ J , and (yj , yj0) ∈ Rn+1, with j ∈ J , be
the parameters used to enforce piecewise linear separability. Let also M1 and

8



M2 be large enough constants (whose value is discussed below). The formulation
is as follows:

min

m∑
i=1

zi (4)

s.t.

k∑
j=1

xij = 1 ∀i ∈ I (5)

zi ≥ bi −wjai + wj
0 −M1(1− xij) ∀i ∈ I, j ∈ J (6)

zi ≥ −bi +wjai − wj
0 −M1(1− xij) ∀i ∈ I, j ∈ J (7)

(yj1 − yj2)ai − (yj1
0 − yj2

0 ) ≥ 1−M2(1− xij1) ∀i ∈ I, j1, j2 ∈ J : j1 6= j2 (8)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (9)

zi ≥ 0 ∀i ∈ I (10)

(wj , wj
0) ∈ Rn+1 ∀j ∈ J (11)

(yj , yj
0) ∈ Rn+1 ∀j ∈ J. (12)

Constraints (5) guarantee that each point ai ∈ A be assigned to exactly one

submodel. Constraints (6) and (7) impose that zi = |bi −wj(i)ai +w
j(i)
0 |. This

is because, together, they imply that zi ≥ |bi − wjai + wj0| − M1(1 − xij).

When xij = 1, this amounts to imposing zi ≥ |bi −wjai + wj0| (which will be
tight in any optimal solution due to the objective function direction), whereas
it becomes redundant (since zi ≥ 0) when xij = 0 and M1 is large enough. For
each j1 ∈ J , Constraints (8) impose that all the points assigned to the subset
Aj1 (for which the term −M2(1 − xij) vanishes) belong to the intersection of

all the halfspaces defined by (yj1 − yj2)ai − (yj10 − yj20 ) ≥ 1, whereas they are
deactivated when xij1 = 0 and M2 is sufficiently large. This way, we impose
a zero misclassification error for each data point, thus guaranteeing piecewise
linear separability among the points assigned to the different submodels. Note
that, if Constraints (8) are dropped, we obtain a relaxation corresponding to
a k-hyperplane clustering problem where the objective function is measured
according to (4), (6), and (7).

It is important to observe that, in principle, there exists no (large enough)
finite value for the parameter M1 in Constraints (6) and (7). As an example,
the fitting error between a point (a, b) = (e,−1) ∈ Rn+1, where e is the all-one
vector, and the affine function f = wa− 1 is equal to ‖w‖1 (the `1 norm of w)
and, thus, it is unbounded and arbitrarily large for an arbitrarily large ‖w‖1.
Let j(i) ∈ J such that xij(i) = 1. The introduction of a finite M1 corresponds
to letting:

zi = max


j=j(i) and xij(i)=1︷ ︸︸ ︷
|bi −wj(i)ai + w

j(i)
0 |,

j 6=j(i) and xij=0︷ ︸︸ ︷
max

j∈J\{j(i)}
{|bi −wjai + wj0| −M1}

 , (13)

rather than zi = |bi − wj(i)ai + w
j(i)
0 |. Therefore, a finite M1 introduces a
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penalization term into the objective function equal to:

m∑
i=1

max

{
0, max
j∈J\{j(i)}

{|bi −wjai + wj0| −M1} − |bi −wj(i)ai + w
j(i)
0 |

}
. (14)

The effect is of penalizing solutions where the fitting error between any point
and any submodel is too large, regardless of the submodels to which each point
is assigned.

We face a similar issue with Constraints (8) due to the presence of the pa-
rameter M2. Indeed, for any finite M2 and for xij1 = 0, each of such constraints

implies (yj1 − yj2)ai − (yj10 − yj20 ) ≥ 1 −M2. Hence, Constraints (8) impose

that the linear distance5 −(yj1 − yj2)ai + (yj10 − yj20 ) (notice that the signs are
consistent with Equation (3)) between each point ai and the hyperplane sepa-
rating any pair of subdomains Dj1 , Dj2 be smaller than M2− 1 even if ai is not
contained in either of the subdomains, i.e., even if ai /∈ Aj1 and ai /∈ Aj2 .

In spite of the lack of theoretically finite values for M1 and M2, setting
them to a value a few orders of magnitude larger than the size of the box
encapsulating the data points in Rn+1 typically suffices to produce good quality
(if not optimal) solutions. We will mention an occurrence where this is not the
case in Section 6.

4.2. Symmetries

Let X ∈ {0, 1}m×k be the binary matrix with entries {X}ij = xij for i ∈ I
and j ∈ J . We observe that Formulation (4)–(12) admits symmetric solutions as
a consequence of the existence of a symmetry group acting on the columns of X.
This is because, for any X representing a feasible solution, an equivalent solution
can be obtained by permuting the columns of X, an operation which corresponds
to permuting the labels 1, . . . , k by which the submodels and subdomains are
indexed.

From a computational point of view, the solvability of our MILP formu-
lation for k-PAMF-PLS is hindered by the existence of symmetries. On the
one hand, this is because, when adopting methods based on branch-and-bound,
symmetries typically lead to an unnecessarily large search tree where equiva-
lent (symmetric) solutions are discovered again and again at different nodes.
On the other hand, the presence of symmetries usually leads to weaker Lin-
ear Programming (LP) relaxations, for which the barycenter of each set of
symmetric solutions, which often yields very poor LP bounds, is always fea-
sible [KP08]. This is the case of our formulation where, for a sufficiently large
M = M1 = M2 ≥ k

k−1 max{1, |b1|, |b2|, . . . , |bm|}, the LP relaxation of Formu-

lation (4)–(12) admits a solution of value 0. To see this, let xij = 1
k for all

i ∈ I, j ∈ J . Constraints (5) are clearly satisfied. Let then zi = 0 for all i ∈ I,

5Given a point a and a hyperplane of equation wx − w0 = 0, the distance from a to the

closest point belonging to the hyperplane amounts to
|wa−w0|
‖w‖2

. Then, the linear distance

mentioned in the text corresponds to the point-to-hyperplane distance multiplied by ‖w‖2.
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(wj , wj0) = (0, 0) and (yj , yj0) = (0, 0) for all j ∈ J . Constraints (6), (7), and (8)
are then satisfied whenever we have, respectively, M1

k−1
k ≥ bi, M1

k−1
k ≥ −bi,

and M2
k−1
k ≥ 1.

A way to deal with this issue is to partition the set of feasible solutions
into equivalence classes (or orbits) under the symmetry group, selecting a single
representative per class. Different options are possible. We refer the reader
to [Mar10] for an extensive survey on symmetry in mathematical programming.
A possibility, originally introduced in [MDZ01, MDZ06], is of selecting as a
representative the (unique) feasible solution of each orbit where the columns
of X are lexicographically sorted in nonincreasing order. According to [KP08],
we call the convex hull of such lexicographically sorted matrices X ∈ {0, 1}m×k
orbitope.

4.3. Symmetry breaking constraints from the partitioning orbitope

Since, in our case, X is a partitioning matrix (a matrix X ∈ {0, 1}m×k with
exactly a 1 per row), we are interested in the so-called partitioning orbitope,
whose complete linear description is given in [KP08].

Neglecting the trivial constraints, the partitioning orbitope is defined by the
set of so-called Shifted Column Inequalities (SCIs). Call B(i,j) a bar, defined
as B(i,j) = {(i, j), (i, j + 1), . . . , (i,min{i, k})}, and col(i,j) a column, defined
as col(i,j) = {(j, j), (j + 1, j), ..., (i, j)}. Intuitively, a shifted column S(i,j) is a
subset of the indices of X obtained by shifting some of the indices in col(i,j)
diagonally towards the upper-left portion of X. More formally, for a pair of
indices (i, j), a shifted column S(i,j) is a collection of indices in I × J such
that S(i,j) = {(c1, c1), (c2 + 1, c2), . . . , (cη + η − 1, cη)} with η = i − j + 1 and
1 ≤ c1 ≤ c2 · · · ≤ cη ≤ j. For c1 = · · · = cη = j, we obtain the original
(nonshifted) column col(i,j). For an illustration, see Figure 3. For two subsets
of indices B(i,j), S(i−1,j−1) ⊂ I × J thus defined, an SCI reads:∑

(i′,j′)∈B(i,j)

xi′j′ −
∑

(i′,j′)∈S(i−1,j−1)

xi′j′ ≤ 0.

As shown in [KP08], the linear description of the partitioning orbitope is:

k∑
j=1

xij = 1 ∀i ∈ I (15)

∑
(i′,j′)∈B(i,j)

xi′j′ −
∑

(i′,j′)∈S(i−1,j−1)

xi′j′ ≤ 0 ∀B(i,j), S(i−1,j−1) : i, j ∈ J, i, j ≥ 2 (16)

xij = 0 ∀i ∈ I, j ∈ J : j ≥ i+ 1 (17)

xij ≥ 0 ∀i ∈ I, j ∈ J, (18)

where Constraints (16) are SCIs, while Constraints (17) restrict the problem to
the only elements of X that are either on the main diagonal or below it.

Although there are exponentially many SCIs, the corresponding separa-
tion problem can be solved in linear time by dynamic programming, as shown
in [KP08].
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Figure 3: (a) The bar B(i,j) (in black and dark gray) and the column col(i−1,j−1) (in light
gray). (b) and (c) Two shifted columns (in light gray) obtained by shifting col(i−1,j−1). Note
how the shifting operation introduces empty rows.

When solving the MILP formulation (4)–(12) with a branch-and-cut algo-
rithm, we generate maximally violated SCIs both at each node of the enumera-
tion tree (by separating the corresponding fractional solution) and every time a
new integer solution is found (thus separating the integer incumbent solution).

5. Four-step heuristic algorithm

As we will see in Section 6, the introduction of SCIs has a remarkable impact
on the solution times. Nevertheless, even with them, the MILP formulation only
allows for the solution of small to medium size instances in a reasonable amount
of computing time.

To tackle instances of larger size, we propose an efficient heuristic that takes
into account, at each iteration, all the three aspects of the problem, namely,
affine submodel fitting, point partition, and domain partition. At each itera-
tion, the heuristic alternately and coordinately carries out a sequence of four
steps, the last two of which guarantee that the current solution always admits
a piecewise linear domain partition. Before describing the details of the four
steps, it is worth pointing out that the structure of our algorithm differs from
other heuristics (such as [BGPV05, FTMLM03]) where the domain partitioning
aspect is considered directly just once, in the very last iteration. Moreover, our
method does not amount to just running an off-the-shelf clustering algorithm
(tackling the first and second aspects of the problem) until convergence to a
local minimum, deriving a domain partition, and then feeding a refined solution
again to the clustering method as a warm start.

We start from a feasible solution composed of a point partition A1, . . . , Ak, a
domain partition D1, . . . , Dk (induced by the parameters (yj , yj0) for j ∈ J), and

a set of affine submodels of parameters (wj , wj0), for j ∈ J . At each iteration,
the algorithm tries to improve the current solution by applying the following
four steps (until convergence or until a time limit is met):

i) Submodel Fitting: Given the current point partition A1, . . . , Ak of A =
{a1, . . . ,am}, determine, for each j ∈ J , an affine submodel with param-

12



eters (wj , wj0) which minimizes the linear fitting error over all the data
points {(a1, b1), . . . , (am, bm)} ⊂ Rn+1. As we shall see, this is carried out
by solving a single linear program.

ii) Point Partition: Given the current set of affine submodels fj : Dj → R
with fj(x) = wjx − wj0 and j ∈ J , identify a set of critical data points
(ai, bi) ∈ Rn+1 and (re)assign them to other submodels in an attempt
to improve (decrease) the total linear fitting error over all the dataset.
As described below, the identification and reassignment of such points is
based on an ad hoc criterion and on a related control parameter.

iii) Domain Partition: Given the current point partition A1, . . . , Ak of A =
{a1, . . . ,am}, a multicategory linear classification problem is solved via
linear programming to either find a piecewise linearly separable domain
partition D1, . . . , Dk of Rn consistent with the current point partition or,
if none exists, to construct a domain partition which minimizes the total
misclassification error. In the latter case, i.e., when there is at least an in-
dex j ∈ J for which Aj 6⊂ Dj , we say that the previously constructed point
partition is not consistent with the resulting domain partition D1, . . . , Dk.

iv) Partition Consistency: If the current point partition and domain par-
tition are inconsistent, the former is modified to make it consistent with
the latter. For every index j ∈ J and every misclassified point ai (if any)
belonging to Aj (i.e., for any ai ∈ A where ai ∈ Aj and ai ∈ Dj′ , for some
j, j′ ∈ J such that j 6= j′), ai is reassigned to the subset Aj′ associated
with Dj′ .

We now describe the four steps in greater detail.
In the Submodel Fitting step, we determine, for each j ∈ J , the submodel

parameters (wj , wj0) yielding the smallest fitting error by solving the following
linear program:

min

m∑
i=1

di (19)

s.t. di ≥ bi −wj(i)ai + w
j(i)
0 ∀i ∈ I (20)

di ≥ −bi + wj(i)ai + w
j(i)
0 ∀i ∈ I (21)

(wj , wj0) ∈ Rn+1 ∀j ∈ J (22)

di ≥ 0 ∀i ∈ I, (23)

where j(i) denotes the submodel to which the point ai is currently assigned.
Note that this linear program, which is standard for solving regression problems
in `1-norm, decomposes into k independent linear programs, one per submodel.

Let us now consider the Point Partition step. Many clustering heuris-
tics (see, e.g., [Mac67, BM00]) are based on the iterative reassignment of each
point ai to a subset Aj whose corresponding submodel yields the smallest fit-
ting error. As shown in Figure 4 (a), and as can be confirmed computationally,
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Figure 4: (a) A solution corresponding to a local minimum for an algorithm where each point
is reassigned to the submodel yielding the smallest fitting error. (b) An improved solution that
can be obtained by reassigning the point a1 in (a) which, according to our criterion, achieves
the highest ranking, to the rightmost submodel, and by updating the affine submodel fitting
as well as the domain partition.

this choice is likely to lead to poor quality local minima. In our method, we
adopt a criterion to help identify a set of critical points which might jeopardize
the overall quality of the current solution. The criterion is an adaptation of
the one employed in the Distance-Based Point Reassignment heuristic (DBPR)
proposed in [AC13] for the k-hyperplane clustering problem.

The idea of the criterion is to identify as critical those points which not only
give a large contribution to the total fitting error for their current submodel, but
also have another submodel to which they can be reassigned without increasing
too much the overall fitting error. The set of such points is determined by
ranking, for each subset Aj , each point ai ∈ Aj in nonincreasing order with
respect to the ratio between its fitting error w.r.t. the current submodel of
index j(i) and the fitting error w.r.t. a candidate submodel. The latter is
defined as the submodel that best fits ai but which is also different from j(i).
Formally, for each j ∈ J , the criterion ranks each point ai ∈ Aj with respect to
the quantity:

|bi −wj(i)ai + w
j(i)
0 |

minj∈J\{j(i)}{|bi −wjai + wj0|}
. (24)

The Point Partition step relies on a control parameter α ∈ [0, 1). Given
a current solution characterized by a point partition A1, . . . , Ak and the k as-
sociated affine submodels, let m(j) denote, for all j ∈ J , the cardinality of Aj .
At each iteration and for each submodel of index j ∈ J , dαm(j)e of the points
with highest rank are reassigned to the corresponding candidate submodel, even
if this leads to a worse objective function value. The remaining points are sim-
ply reassigned to the closest submodel (if they are not already assigned to it).
Then, α is decreased exponentially, by updating it as α := 0.99ρt, for some
parameter ρ ∈ (0, 1), where t is the index of the current iteration. For an
illustration, see Figure 4 (b).

Since the reassignment of critical points, as identified by our criterion, in-
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troduces a high variability in the sequence of solutions that are generated, the
search process is stabilized by decreasing α to 0 over the iterations, thus pro-
gressively shifting from introducing (for a large α) substantial changes in the
current solution to performing fine polishing operations (for a smaller α).

To avoid cycling effects, whenever a worse solution is found, we add the
whole set of the point-to-submodel assignments that we carried out involving
critical points to a tabu list of short memory. We also consider an aspiration
criterion, that is, a criterion that allows to override the tabu status of a move if,
by performing it, a solution with an objective function value that is better than
that of the best solution found so far can be achieved. Since it is computationally
too demanding to compute the exact objective function value of a solution
obtained after the reassignment of a model from a submodel to another one (as
it would require to carry out the Submodel Fitting, Domain Partition, and
Partition Consistency steps for each point and at each iteration), we consider
a partial aspiration criterion in which we override the tabu status of a point-to-
submodel reassignment only if the corresponding fitting error is strictly smaller
than the value that was registered when the reassignment move was added to
the tabu list.

In the Domain Partition step, we derive a domain partition by construct-
ing a piecewise linear separation of the sets A1, . . . , Ak which minimizes the
total misclassification error. This is achieved by solving a Multicategory Linear
Classification problem via the linear program proposed in [BM94]:

min

m∑
i=1

ei (25)

s.t. ei ≥ −(yj(i) − yj)ai + (y
j(i)
0 − yjo) + 1 ∀i ∈ I, j ∈ J \ {j(i)} (26)

ei ≥ 0 ∀i ∈ I (27)

(yj , yj0) ∈ Rn+1 ∀j ∈ J, (28)

where j(i) denotes the submodel to which the point ai is currently assigned,
and ei represents the misclassification error of point ai, for all i ∈ I. If this
subproblem admits an optimal solution with total misclassification error equal
to 0, then the k subsets are piecewise linearly separable. Otherwise, the current
solution contains at least a misclassified point ai ∈ Aj(i) with ai ∈ Dj for
j ∈ J with j 6= j(i). Each such point is then reassigned to Aj in the Partition

Consistency step.
The overall four-step algorithm, which we refer to with the shorthand 4S-

CR (4 Steps-CRiterion), starts from a point assignment obtained by randomly
generating the coefficients of k affine submodels and assigning each point (ai, bi)
to a submodel yielding the smallest fitting error (ties are broken arbitrarily).
The four steps are then repeated until α = 0, while storing the best solution
found so far. The method is then restarted until the time limit is reached.

Note that the Domain Partition step drives the search towards solutions
that induce a suitable domain partition, thus avoiding infeasible solutions which
are good from a submodel fitting point of view but do not admit a piecewise
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linearly separable domain partition, i.e., where Aj ⊂ Dj does not hold for all
j ∈ J . Then, the Partition Consistency step makes sure that the point
partition and domain partition are consistent at the end of each iteration.

6. Computational results

In this section, we report and discuss on a set of computational results ob-
tained when solving k-PAMF-PLS either to optimality with branch-and-cut and
symmetry breaking constraints or with our four-step heuristic 4S-CR. First, we
investigate the impact of symmetry breaking constraints when solving the prob-
lem to global optimality. On a subset of instances for which the exact approach is
viable, we compare the best solutions obtained with the exact algorithm (within
a time limit) to those produced by our heuristic method. Then, we experiment
with 4S-CR and some variants on larger instances, and assess the impact of the
main components of 4S-CR on the overall quality of the solutions it finds.

6.1. Experimental setup

Our exact formulation is solved with CPLEX 12.5, interfaced with the Con-
cert library in C++. The separation algorithm for SCIs and the heuristic meth-
ods are implemented in C++ and compiled with GNU-g++-4.3. SCIs are added
to the default branch-and-cut algorithm implemented in CPLEX via both a lazy
constraint callback and a user cut callback, thus separating SCIs for both in-
teger and fractional solutions. This way, with lazy constraints, we guarantee
the lexicographic maximality of the columns of the partitioning matrix X for
any feasible solution found by the method. With user cuts, we also allow for
the introduction of SCIs at the different nodes of the branch-and-cut tree, thus
tightening the LP relaxations. In 4S-CR (and its variants, as introduced in
the following), the Submodel Fitting and Domain Partition steps are carried
out by solving the corresponding LPs, namely (19)–(23) and (25)–(28), with
CPLEX.

The experiments are conducted on a Dell PowerEdge Quad Core Xeon
2.0 Ghz, with 16 GB of RAM. In the heuristics, we set ρ = 0.5 and adopt
a tabu list with a short memory of two iterations.

6.2. Test instances

We consider both a set of structured, randomly generated instances, as well
as some real-world ones taken from the UCI repository [FA13].

We classify the random instances into four groups: small (m = 20, 30, 40,
50, 60, 75, 100 and n = 2, 3, 4, 5), medium (m = 500 and n = 2, 3, 4, 5), and
large (m = 1000 and n = 2, 3, 4, 5)6. They are constructed by randomly sam-

6We do not consider instances with n = 1 since k-PAMF-PLS is pseudopolynomially solv-
able in this case. Indeed, if the domain coincides with R, then the number of linear domain
partitions is, at most, O(mk). An optimal solution to k-PAMF-PLS can thus be found by
constructing all such partitions and then solving, for each of them, an affine model fitting
problem in polynomial time by linear programming.
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pling the data points ai and the corresponding observations bi from a randomly
generated (discontinuous) piecewise affine model with k = 5 pieces and an addi-
tional Gaussian noise. First, we generate k subdomains D1, . . . , Dk by solving a
multicategory linear classification problem on k randomly chosen representative
points in Rn. Then, we randomly choose the submodel parameters (wj , wj0) for
all j ∈ J and sample, uniformly at random, the m points {a1, . . . ,am} ∈ Rn.
For each sampled point ai, we keep track of the subdomain Dj(i) which contains
it and set bi to the value that the affine submodel of index j(i) takes in ai, i.e.,

wj(i)ai − wj(i)0 . Then, we add to bi an additive Gaussian noise with 0 mean
and a variance which is chosen, for each submodel, by sampling uniformly at
random within [ 7

10 · 3
1000 ,

3
1000 ]. For convenience, but w.l.o.g., after an instance

has been constructed, we rescale all its data points (and their observations) so
that they belong to [0, 10]n+1.

As to the real-world instances, we consider four datasets from the UCI reposi-
tory: Auto MPG (auto), Breast Cancer Wisconsin Original (breast), Computer
Hardware (cpu), and Housing (house). We remove data points with missing
features, convert each categorical attribute (if any) to a numerical value, and
normalize the data so that each point belongs to the interval [0, 10]n+1. We then
perform feature extraction via Principal Component Analysis (PCA), using the
Matlab toolbox PRTools, calling the function PCAM(A,0.9), where A is the Mat-
lab data structure where the data points are stored. After preprocessing, the
instances are of the following size: m = 397, n = 3 (auto), m = 698, n = 5
(breast), m = 209, n = 5 (cpu), and m = 506, n = 8 (house).

All the instances are solved with different values of k, namely, k = 2, 3, 4, 5.
This way, the experiments are in line with a real-world scenario where the
complexity of the underlying model is unknown.

Throughout the section, speedup factors and average improvements will be
reported as ratios of geometric means.

6.3. Exact solutions via the MILP formulations

We test our MILP formulation with and without SCIs on the small dataset,
considering four figures:

• total computing time (in seconds) needed to solve the problem, including
the generation of SCIs as symmetry breaking constraints (Time);

• total number of branch-and-bound nodes that have been generated, di-
vided by 1000 (Nodes[k]);

• percent gap at the end of the computations (Gap), defined as 100 |LB−UB|10−4+|LB| ,

where LB and UB are the tightest lower and upper bounds that have been
found; if LB = 0, a “-” is reported;

• total number of generated symmetry breaking constraints (Cuts).

The instances are solved for k = 2, 3, 4, 5, within a time limit of 3600 seconds.
We run CPLEX in its deterministic mode on a single thread with default set-
tings. In all the cases, we set M = M1 = M2 = 1000.
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Table 1: Results obtained on the small dataset when solving the MILP formulation for k = 2
(without SCIs) and for k = 3 (with and without SCIs). For k = 3 and for each instance, if
both variants achieve an optimal solution, the smallest number of nodes and computing time
are highlighted in boldface. If at least a variant does not achieve an optimal solution, the
smallest gap is highlighted.

k=2 k=3

without SCIs without SCIs with SCIs

n m Time Nodes[k] Gap Time Nodes[k] Gap Time Nodes[k] Gap Cuts

2 20 0.1 0.2 0.0 2.3 2.0 0.0 2.1 1.1 0.0 12
2 30 0.7 0.5 0.0 4.8 6.5 0.0 4.3 5.0 0.0 10
2 40 0.7 0.7 0.0 7.9 11.3 0.0 4.1 4.0 0.0 18
2 50 0.8 0.6 0.0 9.3 9.8 0.0 4.0 5.2 0.0 17
2 60 1.2 1.0 0.0 14.7 17.9 0.0 8.7 8.3 0.0 8
2 75 2.4 1.2 0.0 20.2 20.7 0.0 8.8 7.7 0.0 8
2 100 3.8 1.7 0.0 43.6 28.9 0.0 43.1 28.4 0.0 13

3 20 0.4 0.9 0.0 13.9 29.0 0.0 5.6 9.3 0.0 7
3 30 0.7 1.2 0.0 58.3 124.4 0.0 35.6 55.1 0.0 20
3 40 1.8 2.2 0.0 226.9 291.7 0.0 49.1 64.6 0.0 19
3 50 1.5 3.1 0.0 603.6 467.0 0.0 117.7 122.2 0.0 15
3 60 4.7 5.1 0.0 615.9 440.3 0.0 171.5 147.8 0.0 22
3 75 5.4 7.4 0.0 3600.0 802.4 76.7 512.7 324.8 0.0 29
3 100 9.9 19.6 0.0 3600.0 757.1 89.4 3196.2 1272.8 0.0 42

4 20 1.2 2.3 0.0 131.0 270.1 0.0 35.2 84.0 0.0 10
4 30 2.1 3.8 0.0 633.1 802.8 0.0 167.8 224.8 0.0 11
4 40 5.6 11.1 0.0 3600.0 1519.4 79.3 3345.2 1867.2 0.0 21
4 50 8.6 20.8 0.0 3600.0 1096.8 - 3600.0 1206.0 85.3 19
4 60 15.2 39.0 0.0 3600.0 970.8 - 3600.0 1238.7 89.7 22
4 75 50.3 87.1 0.0 3600.0 851.1 - 3600.0 1014.9 86.6 17
4 100 98.9 192.3 0.0 3600.0 529.5 - 3600.0 508.1 - 26

5 20 1.9 5.6 0.0 679.6 974.1 0.0 170.0 311.7 0.0 11
5 30 6.3 16.2 0.0 3600.0 1775.3 - 3600.0 2054.0 73.3 18
5 40 27.7 61.4 0.0 3600.0 1422.8 - 3600.0 1363.3 - 13
5 50 54.4 125.6 0.0 3600.0 1118.3 - 3600.0 1132.1 - 24
5 60 491.2 830.6 0.0 3600.0 963.5 - 3600.0 1009.1 - 17
5 75 1751.1 1841.4 0.0 3600.0 788.0 - 3600.0 815.1 - 17
5 100 3600.0 3649.2 9.3 3600.0 769.3 - 3600.0 623.1 - 32

18



Table 2: Results obtained on the small dataset when solving the MILP formulation for k = 4, 5
with and without SCIs. For each instance, if both variants achieve an optimal solution, the
smallest number of nodes and computing time are highlighted in boldface. If at least a variant
does not achieve an optimal solution, the smallest gap is highlighted.
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The results are reported in Table 1 for k = 2, 3 and in Table 2 for k = 4, 5.
In the second table, we omit the results for the instances with n = 4, 5 as, both
with or without SCIs, no solutions with a finite gap are found within the time
limit (i.e., the lower bound LB is always 0). Note that, for k = 2, symmetry is
broken by just fixing the top left element of the matrix X to 1, i.e., by letting,
w.l.o.g., x11 = 1. Hence, we do not resort to the generation of SCIs in this case.

It has recently been argued that, in a number of data mining problems, feed-
ing a heuristically generated solution to the MILP solver as a warm-start might
give a significant performance boost [BM14]. Unfortunately, when experiment-
ing with this approach on k-PAMF-PLS, we only observed a negligible impact.
This is arguably due to the fact that, for hard instances, most of the difficulty
in proving optimality lies in improving the dual bound, and running a heuristic
(to obtain a primal bound) beforehand only incurs a overhead. For this reason,
we have not used this approach in our experiments.

Let us neglect the case of k = 2 and focus on the full set of 56 k-PAMF-PLS
problems that are considered for this dataset (28 instances for k = 3 and 14 for
k = 4, 5). Without SCI inequalities, we achieve an optimal solution in 24 cases
out of 56 (43%). The introduction of SCIs has a very positive impact. They
allow to solve to optimality 10 more instances, for a total of 34 (60.1%). SCIs
also yield a substantial reduction in both computing time and number of nodes.
When focusing on the 24 instances solved by both variants of the algorithm,
the overall results show that the introduction of SCIs yields a speedup, on
(geometric) average, of almost 3 times, corresponding to a reduction of 66%
of the computing times. The number of nodes is reduced by the same factor
of 66%. Interestingly, this improvement is obtained by adding a rather small
number of cuts which, in practice, prove to be highly effective. See, e.g., the
instance with m = 40, n = 3 which, when solved for k = 3 with SCIs, presents
a speedup in the computing time, when compared to the case without SCIs, of
4.6 times (corresponding to a reduction of 78%) with the sole introduction of
19 symmetry breaking constraints.

In our preliminary experiments, we observed the generation of a higher num-
ber of cuts when employing older versions of CPLEX, such as 12.1 and 12.2
whereas, with CPLEX 12.5, their number is significantly smaller. This is, most
likely, a consequence of the introduction of more aggressive techniques for sym-
metry detection and symmetry breaking in the latest versions of CPLEX. We
nevertheless remark that the improvement in computing time provided by the
introduction of SCIs appears to be comparable for all the tested versions of
CPLEX 12, regardless of the number of cuts that are generated.

Although the introduction of SCIs clearly increases the number of instances
which can be solved to optimality, the results in Tables 1 and 2 show that
the exact approach via mixed-integer linear programming might require large
computing times even for fairly small instances with n ≥ 3 and m ≥ 40 for
k ≥ 4. For k = 2, all the instances are solved to optimality, with the sole
exception of the instance with m = 100, n = 5 (on which we register a gap of
9.3%). For k = 3, Table 1 shows that, already for n = 4 and m ≥ 50, the gap
after one hour is still larger than 80%. According to Table 2, the exact approach
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becomes impractical for n = 3 and m ≥ 40 for k = 4, and for n = 3 and m ≥ 30
for k = 5.

6.4. Comparison between the four-step heuristic 4S-CR and the MILP formu-
lation

Before assessing the effectiveness of 4S-CR on larger instances, we compare
the solutions it provides with the best ones found via mixed-integer linear pro-
gramming on the small dataset (within the time limit). The results are reported
in Table 3. For a fair comparison, 4S-CR is run, for the instances that are solved
to optimality by the exact method, for the same time taken by the latter. For
the instances for which an optimal solution has not been found, 4S-CR is run
up to the time limit of 3600 seconds.

When comparing the quality of the solutions found by 4S-CR with those
found by the MILP formulation with SCIs, we register, for k = 2, very close to
optimal solutions with, on (geometric) average, a 4% larger fitting error. This
number decreases to 1% for k = 3. For larger values of k, namely k = 4 and
k = 5, for which the number of instances that are unsolved when adopting the
MILP formulation is much larger, 4S-CR yields solutions that are much better
than those found via mixed-integer linear programming. When neglecting the
instances with an optimal solution of value 0 (which would skew the geometric
mean), the solutions provided by 4S-CR are, on geometric average, better than
those obtained via the exact method by 14% for k = 4 and by 20% for k = 5.

For k = 2, 3, 4, 5, 4S-CR finds equivalent or better solutions that those ob-
tained via mixed-integer linear programming in, respectively, 11, 15, 18, and
19 cases, with strictly better solutions in, respectively, 1, 5, 16, and 15 cases.
Overall, when considering the instances jointly, 4S-CR performs as good or bet-
ter than mixed-integer linear programming in 63 cases out of 112 (28 instances,
each solved 4 times, once per value of k), strictly improving over the latter in 37
cases. This indicates that the quality of the solutions found via 4S-CR can be
quite high even for small-size instances and that the difference w.r.t. the exact
method, at least on the instances for which a comparison is viable, seems to be
increasing with the number of points m, the number of dimensions n, and the
number of submodels k.

Note that, for the instance with m = 30, n = 3 and for both k = 2 and k = 3,
the MILP formulation yields, in strictly less than the time limit, a solution which
is worse than the corresponding one found by 4S-CR. As discussed in Section 4,
this is most likely due to the selection of too small values for the parameters
M1 and M2. Experimentally, we observed that the issue can be avoided by
choosing M = M1 = M2 = 10000, although at the cost of a substantially larger
computing time (due to the need for a higher numerical precision to handle the
larger differences between the magnitudes of the coefficients in the formulation).

6.5. Experiments with 4S-CR and some variants

We now present and discuss the results obtained with 4S-CR and some
variants on larger instances, and assess the impact of the main features of 4S-
CR (i.e., the criterion for identifying and reassigning critical points in the Point
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Table 3: Comparison between the best results obtained for k = 2, 3, 4, 5 on the small instances
when solving the MILP formulation (with symmetry breaking constraints and within a time
limit of 3600 seconds) and those obtained via 4S-CR. The latter is run for as much time as
that required to solve the MILP formulation (within the time limit). For each instance, the
value of the best solution found is highlighted in boldface.

k = 2 k = 3 k = 4 k = 5

Objective Objective Objective Objective
n m Time MILP 4S-CR Time MILP 4S-CR Time MILP 4S-CR Time MILP 4S-CR

2 20 0.1 18.3 22.4 2.1 9.6 9.6 4.5 6.1 7.1 31.1 4.5 6.1
2 30 0.1 30.5 30.5 4.3 19.3 19.3 7.2 10.0 10.0 59.6 7.7 8.8
2 40 0.5 61.3 61.3 4.1 37.8 45.4 19.0 24.7 35.5 98.2 14.8 21.2
2 50 0.3 56.0 56.0 4.0 39.1 40.9 35.8 26.9 29.5 347.4 22.1 22.1
2 60 1.2 86.6 91.7 8.7 53.1 61.8 244.1 43.2 53.1 1062.9 35.7 43.5
2 75 1.7 40.5 45.4 8.8 31.3 31.6 158.5 28.6 30.5 2385.9 27.3 28.4
2 100 1.6 114.9 114.9 43.1 62.9 62.9 367.0 48.4 48.5 3600.0 187.4 48.4

3 20 0.3 11.3 11.3 5.6 4.3 4.6 118.8 2.3 2.4 2013.0 0.4 0.9
3 30 0.7 14.1 13.8 35.6 9.4 9.0 2336.6 6.3 6.3 3600.0 4.5 4.7
3 40 2.9 29.3 32.3 49.1 19.6 21.2 3600.0 14.7 15.5 3600.0 11.7 11.7
3 50 2.0 48.6 55.5 117.7 26.3 26.3 3600.0 20.2 17.9 3600.0 21.2 15.1
3 60 4.9 40.0 40.0 171.5 22.7 25.0 3600.0 22.7 17.5 3600.0 17.3 12.9
3 75 5.9 72.5 82.4 512.7 43.9 47.9 3600.0 35.2 31.6 3600.0 54.0 31.5
3 100 10.3 86.5 88.0 3196.2 51.3 51.3 3600.0 77.2 33.6 3600.0 69.2 33.2

4 20 1.2 7.5 7.5 35.2 2.3 2.3 3600.0 0.2 0.3 2.1 0.0 0.4
4 30 1.2 20.0 20.3 167.8 6.8 6.8 3600.0 3.5 3.4 3600.0 1.3 1.4
4 40 4.1 34.4 34.4 3345.2 16.5 16.5 3600.0 11.0 10.3 3600.0 7.4 6.8
4 50 6.2 38.0 38.0 3600.0 20.5 20.0 3600.0 19.0 13.4 3600.0 17.7 6.3
4 60 12.1 40.1 41.0 3600.0 28.8 27.3 3600.0 24.8 17.9 3600.0 21.1 15.5
4 75 23.0 85.0 88.5 3600.0 49.4 53.9 3600.0 50.4 37.8 3600.0 46.1 32.4
4 100 57.0 110.3 118.0 3600.0 113.9 74.0 3600.0 139.3 49.7 3600.0 117.6 43.3

5 20 2.6 8.9 8.9 170.0 0.5 0.5 0.3 0.0 0.5 0.6 0.0 0.0
5 30 4.0 17.1 19.2 3600.0 6.7 6.7 3600.0 1.9 1.7 3600.0 0.3 0.6
5 40 12.1 37.9 41.7 3600.0 18.7 19.5 3600.0 13.3 8.9 3600.0 6.7 5.1
5 50 32.0 28.9 29.4 3600.0 21.7 17.9 3600.0 15.8 12.4 3600.0 9.7 8.4
5 60 457.1 58.4 58.6 3600.0 43.9 44.0 3600.0 37.5 31.9 3600.0 33.6 21.2
5 75 820.9 62.6 65.0 3600.0 26.7 29.4 3600.0 50.9 20.7 3600.0 53.0 18.4
5 100 3600.0 79.3 84.1 3600.0 56.0 60.8 3600.0 60.5 49.3 3600.0 61.6 42.9
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Partition step, the Domain Partition step, and the Partition Consistency

step, applied at each iteration) on the quality of the solutions found.
As already mentioned, we set ρ = 0.5 in all the experiments involving our

criterion for identifying critical points and we consider a tabu list with a memory
of two iterations. When tuning the parameters, we observed improved results on
the smaller instances when increasing ρ, as opposed to worse ones on the larger
instances. This is, most likely, a consequence of the number of iterations carried
out within the time limit, which becomes much smaller for a larger value of ρ,
thus forcing the method to halt with a solution which is too close to the start-
ing one. As to the tabu list, we observed that a short memory of two iterations
suffices to prevent loops. Indeed, due to the nature of the problem as well as
due to the many aspects of k-PAMF-PLS that our method considers, the values
of the parameters of the piecewise affine submodels change often dramatically
within very few iterations. This way, few iterations taking place after a wors-
ening move typically suffice to prevent that a point-to-submodel reassignment
could take place twice, thus making the occurrence of loops extremely unlikely.

To assess the impact of the Point Partition step based on the criterion
for critical points (and on the corresponding control parameter), we introduce a
variant of 4S-CR where, in the former step, every point (ai, bi) is (re)assigned
to a submodel yielding the smallest fitting error. This is in line with the reas-
signment step of many popular clustering heuristics, as reported in Sections 2
and 5. We refer to this method as 4S-CL (where “CL” stands for “closest”).

To evaluate the relevance of considering, in 4S-CR, the domain partition
aspect directly at each iteration (via the Domain Partition and Partition

Consistency steps), as well as to compare 4S-CR to classical algorithms, we
also consider a standard (STD) two-phase method which, first, addresses the
clustering aspect of k-PAMF-PLS and, only at the end, before halting, takes the
domain partition aspect into account, thus tackling the problem in two distinct,
successive phases: a clustering phase and a classification phase. In the algo-
rithm, which we consider in two versions, we iteratively alternate between the
Submodel Fitting and Point Partition steps. In the Point Partition step,
we either reassign every point to the “closest” submodel (STD-CL) or to that
indicated by our criterion (STD-CR). After a local minimum has been reached,
a piecewise linearly separable domain partition with minimum misclassification
error is derived by solving only once a multicategory linear classification prob-
lem via linear programming, as in Problem (25)–(28). Since STD-CL is similar
to most of the standard techniques proposed in the literature, we consider it
as the baseline method and compare the other methods (4S-CR, 4S-CL, and
STD-CR) to it.

For the sake of comparison, we also consider an extension of this standard
method, STD-CL, obtained after introducing an extra third phase, based on
the refinement point-reassignment criterion proposed in [BGPV05], taking place
between the clustering and classification phases. We refer to this algorithm as
STD-CL-B. This refinement criterion is based on the identification of so-called
undecidable points, namely, data points which lie within a maximum given error
δ ≥ 0 w.r.t., at least, two affine submodels. According to this criterion, each
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undecidable data point ai is iteratively reassigned to the submodel to which
the majority of the c points which are closer, in `2-norm, to ai are currently
assigned. We remark that [BGPV05] addresses a piecewise-affine model fitting
problem where k is minimized, subject to a maximum fitting error of δ. To
adapt the criterion to k-PAMF-PLS, we set, in our experiments, δ to the average
fitting error between each data point and its current submodel. As suggested
in [BGPV05], we select c = 10 and carry out the reassignment of undecidable
points 5 times, each time followed by a Submodel Fitting step7.

The results for the medium, large, and UCI datasets, obtained within a
time limit of, respectively, 900, 1800, and 900 seconds, are reported in Table 4.
The comparison shows that 4S-CR outperforms the baseline method STD-CL
in almost all the cases. When considering the medium instances, 4S-CR yields
an improvement in objective function value of, on geometric average, 8%, 21%,
21%, and 24% for, respectively, k = 2, 3, 4, and 5. On the large instances, the
improvement is of 16%, 24%, 29%, and 24%. For the four UCI instances, the
improvement is of 6%, 9%, 13%, and 16%. When considering the three datasets
jointly, the improvement is of 8%, 21%, 21%, 24%. On geometric average, for
all the values of k, 4S-CR improves on the fitting error of STD-CL by 20%. On
a total of 112 instances (for the different values of k) of k-PAMF-PLS, 4S-CR
achieves the best solution in 103 cases (92%).

When comparing 4S-CL to STD-CL, we register, on geometric mean and
for the different values of k, an improvement of 4%, 9%, 10%, and 16% on the
medium instances, of 12%, 17%, 17%, and 11% on the large ones, and of 4%,
9%, 10%, and 16% on the UCI datasets. When considering all the datasets and
all the values of k jointly, the improvement is of 12%. Although still substantial,
this value is not as large as that for 4S-CR, thus highlighting the relevance of our
criterion based on critical points which is adopted in the Point Partition step.
At the same time, it also shows that, even without the criterion, the central idea
of 4S-CR (i.e., considering the domain partition aspect of the problem directly
at each iteration, rather than deferring it to a final phase) has a large positive
impact on the solution quality.

Most interestingly, the results for STD-CR are quite poor. When consid-
ering all the 112 instances (for the different values of k), the method yields,
on geometric average, a 4% larger fitting error w.r.t. STD-CL. This is not
surprising as, by constructing a domain partition only at the very end of the
algorithm, the solutions that are obtained before its derivation typically contain
a large number of misclassified points, which yield a large negative contribution
to the final fitting error. Indeed, when comparing the value of the solutions
that are found before and after carrying out the domain partition phase at the
end of the method, we register an increase in fitting error of up to 4 times for

7Experiments with δ equal to the average fitting error scaled by a factor of
{0.1, 0.25, 0.50, 0.75, 1} revealed that the best results are obtained with a factor of 1. We
also experimented with c = 5, 20, 50 and carrying out 1, 10, and 20 passes of the criterion. On
average, on average, we obtained comparable results.
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Table 4: Results obtained with 4S-CR, when compared to STD-CL, STD-CR, 4S-CL, and
STD-CL-B on the medium, large, and UCI instances, within a time limit of, respectively, 900,
1800, and 900 seconds, for k = 2, 3, 4, 5. For each instance, the value of the best solution
found is highlighted in boldface.
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both STD-CR and STD-CL. This suggests the lack of a strong correlation, in
both algorithms, between the quality of the solutions found before and after
constructing the final domain partition. Also note that, with the adoption of
our criterion for the identification of critical points, the Point Partition step
becomes more time consuming. Indeed, our experiments show that the average
number of iterations carried out in the time limit by STD-CR with respect to
those for STD-CL can be up to 40% smaller (as observed for the large instances
with k = 5). Therefore, investing more computing time in a more refined crite-
rion for the Point Partition step turns out to be not effective for a method
(such as STD-CR) which only considers the domain partition aspect in a second
phase.

The comparison between 4S-CR and STD-CL-B yields results that are com-
parable to those between 4S-CR and STD-CL. Indeed, when focusing on STD-
CL-B, we register a slight improvement w.r.t. STD-CL only for k = 5, equal
to 2% on average. For k = 3, 4, the results of STD-CL-B and STD-CL are, on
average, identical. For k = 2, those for STD-CL-B are slightly inferior than
those for STD-CL, with the former method providing a fitting error 1% larger.
Overall, when considering the whole dataset and all the values of k, STD-CL-B
provides an improvement over STD-CL of less that 0.5% on average.

6.6. Generalization for different values of k

While a thorough evaluation of the accuracy and generalization capabilities
of the models obtained with k-PAMF-PLS lies outside of the scope of this work,
we carry out a cross-validation to estimate the so-called generalization error,
i.e., the fitting error of the models corresponding to the solutions found with
our techniques on unseen data.

We compare the results obtained with k-PAMF-PLS on the UCI instances
for increasing values of k. As baseline for the comparisons, we also report the
results obtained when fitting a single affine model (k = 1) by minimizing the
`1-norm error (this linear program is solved with CPLEX). Since these k-PAMF-
PLS instances are larger than those we tackled with our exact formulation (see
Tables 1,2 and Subsection 6.3) and solving them with our MILP formulation
would require too much computing time, for k ≥ 2 we take the best solutions
found via our heuristic 4S-CR in 900 seconds.

Each data set is randomly split into two parts, with 75% of the data used
for training and the remaining 25% retained for validation. The training set is
used to compute an optimal k-PAMF-PLS model for each method, whereas the
remaining points in the validation set are only used a posteriori as unseen data
to evaluate the generalization error.

We construct 5 training/validation splits by sampling the data points at
random and solve k-PAMF-PLS for each split. In Table 5, we report, for both
the training set and the validation set, the `1-norm fitting error divided by the
number of data points (the so-called mean absolute error), averaged over the 5
training/validation splits. The best result obtained in the validation phase is
highlighted in boldface.
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Table 5: Mean absolute error of k-PAMF-PLS solutions on the of UCI dataset for k =
1, 2, 3, 4, 5. Five data splits are considered to generate training and validation sets containing
75% and 25% of the data points. The results are reported on average for the different values
of k, with the best error on the training set highlighted in boldface for each instance.

k 1 2 3 4 5
Train Valid Train Valid Train Valid Train Valid Train Valid

auto 0.073 0.076 0.054 0.060 0.051 0.062 0.048 0.066 0.046 0.073
breast 0.263 0.285 0.052 0.070 0.047 0.074 0.046 0.077 0.044 0.089
cpus 0.186 0.243 0.117 0.219 0.096 0.210 0.086 0.213 0.081 0.244
hous 0.345 0.378 0.257 0.324 0.219 0.292 0.208 0.360 0.205 0.434

We observe that, as expected, the fitting error over the training sets decreases
monotonically for larger values of k. As to the generalization error, computed,
by definition, on the validation set, it achieves the smallest error for low values
of k, between 2 and 3, while, contrary to the training case, it increases for larger
values of k = 4, 5. This suggests an overfitting phenomenon where models with
a small k allow for a better generalization error on the unseen data due to their
low complexity (the so-called Occam’s razor principle). Indeed, a closer look at
the results reveals that, by employing too many affine submodels, we may obtain
solutions where some of the hyperplanes are used to fit only a small subset of
points with a close to zero fitting error (which is always possible if the number
of assigned points is not larger than the dimension of the feature space). Such
solutions, as it is intuitive to see, could generalize quite badly.

7. Application to the identification of piecewise affine dynamical sys-
tems

Let us consider an application of k-PAMF-PLS to the identification of hybrid
dynamical systems. A dynamical system is said to be hybrid if it exhibits a
combination of a continuous and discrete behavior. Such models are of use
in a number of practical cases to approximate the behavior of continuous, but
nonlinear, systems. Adopting the standard notation, a piecewise affine system
can be formally described by an equation of the form:

yt = g(ϕt) + et,

where yt is the output of the system at time t, ϕt is the regression vector, et is
white noise, and g is a piecewise affine function. In piecewise affine autoregres-
sive exogenous models, the vector ϕt consists of a collection of previous inputs
and outputs, namely:

ϕt = [yt−1 . . . yt−ny
ut−1 . . . ut−nu

],

where ny and nu define the orders of the model, and ut is the input at time t.
Given an input vector u and an output vector y, the problem of identifying

a piecewise affine model that best reproduces the dynamics of the underlying
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process has been extensively studied in the system identification literature. We
refer the reader to the surveys [PJFTV07, GPV12] and the references therein,
as well as to the works we cited in Section 2.

Since the identification of this type of systems can be seen as a natural
testbed for k-PAMF-PLS, in this section we tackle this task with our exact
and heuristic algorithms. In particular, we compare our exact formulation to
the MILP formulation proposed in [RBL04] for the subclass of piecewise affine
models based on hinging hyperplanes and compare the results of our heuristic
4S-CR to a state-of-the-art approach [OL13] on a real-world benchmark dataset
that has been often used in the literature.

7.1. Comparison with a MILP formulation for the identification of hinging hy-
perplane models

Hinging Hyperplane (HH) models, originally introduced in [Bre93], are piece-
wise affine models defined as a sum of so-called hinge functions of the form
g(x) = ±max

{
w+x− w+

0 ,w
−x− w−0

}
. The graph of a hinge function is thus

the union of two intersecting half-hyperplanes with normal vectors (w+, w+
0 )

and (w−, w−0 ) which, depending on the sign, can be either convex or concave.
See Figure 5 for an illustration.

g(x) = max{w+x� w+
0 , w�x� w�0 }

(w+, w+
0 )

(w�, w�0 )

Figure 5: A convex hinge function.

HH models provide a convenient way to represent a large subclass of piece-
wise affine models, and can be effectively used in the identification of hybrid
systems, as proposed in [RBL04]. After a reparameterization, an HH model
composed of h hinge functions can be written as:

f(x) = w0x− w0
0 +

h∑
j=1

sj max
{
wjx− wj0, 0

}
,

where sj ∈ {−1,+1} represents the sign of the j-th hinge function. The problem
of identifying an HH model (here referred to as Hinging Hyperplane Model
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Fitting, or HHMF) can be formulated [RBL04] as the following MILP:

min

m∑
i=1

zi (29)

zi ≥ bi −w0ai + w0
0 −

h∑
j=1

sjβij ∀i ∈ I (30)

zi ≥ −bi + w0ai − w0
0 +

h∑
j=1

sjβij ∀i ∈ I (31)

0 ≤ βij ≤M ijδij ∀i ∈ I, j ∈ J (32)

wjai − wj0 ≤ βij ∀i ∈ I, j ∈ J (33)

βij +M ij(1− δij) ≤ wjai − wj0 ∀i ∈ I, j ∈ J (34)

(w1 w1
0)v ≥ (w2 w2

0)v ≥ · · · ≥ (wh wh0 )v (35)

δij ∈ {0, 1} ∀i ∈ I, j ∈ J (36)

zi ≥ 0 ∀i ∈ I (37)

(wj , wj0) ∈ Rn+1 ∀j ∈ J. (38)

Consistently with the notation used throughout this paper, the data points
are denoted by (ai, bi) ∈ Rn+1, while (wj , wj0) are the variables describing the
fitting hyperplanes (in this case, hinging hyperplanes), and the nonnegative
variables zi represent the absolute error for each point i ∈ I. The auxiliary

variables βij are introduced to linearize the term max
{
wjx− wj0, 0

}
via Con-

straints (32)–(34), whereM ij andM ij are lower and upper bounds on wjai−wj0.

We remark that, in principle, wjai − wj0 is unbounded. Since the bounds M ij

and M ij are necessary for the linearization though, they should be chosen care-
fully, lest the optimality of the solution is invalidated. Constraint (35) is in-
cluded to break some of the symmetries of the model, where v ∈ Rn+1 is an
arbitrary vector.

Due to their structure, hinging hyperplane models are clearly a restriction
of the more general class of piecewise affine models. Quite conveniently, the
subdomains Dj are implicitly induced by the hinge functions and, therefore,
they can be reconstructed analytically a posteriori, if necessary. Note also that,
differently from the models found via k-PAMF-PLS, the actual number of affine
submodels in an optimal solution of HHMF cannot be fixed a priori to an arbi-
trary number, as it depends on the number of regions into which h hyperplanes

can partition the domain D. When D = R2, such number is h(h+1)
2 + 1, i.e., the

maximum number of regions into which h lines divide a plane8.
When comparing the formulation for HHMF to that for k-PAMF-PLS, we see

that Formulation (29)–(38) contains O(n|J |+|I||J |) variables and O(|I||J |) con-

8Usually referred to as the lazy caterer’s sequence.
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straints, while Formulation (4)–(12) has O(n|J |+|I||J |) variables and O(|I||J |2)
constraints. The HHMF formulation has a few intrinsic limitations. First of all,
the sign determining the convexity or concavity of each hinging function has to
be selected in advance, and may clearly affect the quality of the model. Sec-
ondly, the formulation does not allow for discontinuities in the fitted model. To
overcome these limitations, extra variables and constraints must be added, as
also mentioned in [RBL04]. Since the more general formulation thus obtained is
even more challenging to solve, we will restrict ourselves to Formulation (29)–
(38), which is used in all the experiments in [RBL04].

To compare k-PAMF-PLS to HHMF, we consider the two main instances
adopted in [RBL04], neglecting the toy examples. By imposing, for both of
them, ny = 1, nu = 1, each data point (at, bt) in the corresponding MILP
formulation is defined in terms of the system inputs and outputs as:

at := [yt−1 ut−1], bt := yt.

7.1.1. Instance 1 (Example 5 in [RBL04])

Let us consider 100 data points obtained from a system whose output at
time t is computed according to the bivariate HH function:

yt = −0.3 + 1.2yt−1 − ut−1 + max{1.2 + 2ut−1, 0} −max{−0.2yt−1, 0}+ et, (39)

where et is a Gaussian noise with a variance of 0.01. The data points and the
original HH function from which they are sampled are displayed in Figure 6.

Figure 6: The HH function in Equation (39) with 100 sampled data points.

Our MILP formulation for k-PAMF-PLS is solved in 4.6 seconds for k = 2,
yielding a total absolute error of 8.67. Consider now HHMF with a single hinge
function (thus, two affine submodels). We assume that the appropriate choice
s1 = +1 is known, since the data comes from a mostly convex function (see
Figure 6). Formulation (29)–(38) is solved in 5.8 seconds, and the corresponding
`1-norm error in the optimal solution is 8.805. It is worth noting that the k-
PAMF-PLS solution achieves a better fit by allowing for a discontinuity that
cannot be reproduced with the considered HHMF formulation.
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On this instance, HHMF is not solved to optimality for any h ≥ 2 (50.6%
gap at the time limit with h = 2), suggesting that the identification of hinging
hyperplane models is a difficult task even when the sign of the hinge functions
is fixed a priori. Similarly, k-PAMF-PLS becomes very challenging already for
k = 3, for which CPLEX obtains a solution with 19.8% gap in 3600 seconds.

7.1.2. Instance 2 (Example 6 in [RBL04])

Let us consider an instance with 100 data points, obtained from a system
whose output at time t is defined according to the quadratic function:

yt = −0.5y2t−1 + 0.7ut−1 + et, (40)

where et is Gaussian noise with a variance of 0.01. The data points and the
original quadratic function from which they are sampled are displayed in Fig-
ure 7(a).

(a) (b) (c)

Figure 7: (a) The quadratic function in Equation (40) with 100 sampled data points. (b)
The model estimated by solving k-PAMF-PLS for k = 2. (c) The model estimated by solving
k-PAMF-PLS for k = 3.

For k = 2, k-PAMF-PLS is solved to optimality in 5.2 seconds. With a single
concave hinge function (we set s1 = −1 due to the nonlinear component of the
function in Equation (40) being concave), HHMF is solved to optimality within
2.4 seconds. Interestingly, the two solutions obtained with k-PAMF-PLS and
HHMF have the same fitting error of 26.77, and very similar submodel equations.
The solution obtained with k-PAMF-PLS is represented in Figure 7(b).

Both k-PAMF-PLS and HHMF become significantly harder when more than
two affine submodels are considered. For k = 3, k-PAMF-PLS is solved to
optimality in 1211 seconds, yielding an error of 15.16; the optimal solution is
shown in Figure 7(c). For k = 4, optimality appears out of reach within the
time limit. As far as HHMF is concerned, CPLEX does not reach optimality
within one hour for any value of h larger than 1 (for h = 2, we register a gap of
36.4% at the time limit).

These experiments indicate that the MILP formulations for k-PAMF-PLS
and HHMF are of comparable difficulty. This may be due to the fact that the
bounds from the linear programming relaxations at each node of the branch-
and-bound tree are, typically, rather weak.
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7.2. System identification for a pick-and-place machine model

We now consider a real-world benchmark case study: the pick-and-place ma-
chine example adopted in [BGPV05, JHFT+05, OL13]. The dataset is sampled
from a pick-and-place machine used to place electronic components on a circuit
board. It consists of 15 seconds of input (the input voltage of the machine, u)
and output (the vertical position of the mounting head, y) sampled at 4000Hz.
See Figure 8 for a depiction. The physical system has two main modes: the free
mode, active when the head moves freely, and the impact mode, active when the
head is in contact with the circuit board.
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Figure 8: Input and output vectors u and y sampled from the pick-and-place machine.

In our experiments, we adopt the settings of [OL13] which, to the best of our
knowledge, is one of the latest references using this dataset. We will compare the
results achieved by k-PAMF-PLS to those in [OL13], obtained with a method
which aims at balancing the fitting error and the number of submodels via a
sum-of-norms regularization term. The data are downsampled to 50 Hz, so as
to obtain a total of 750 samples. We consider a model of orders ny = 2, nu = 2.
The data points (at, bt) are thus constructed as follows:

at := [yt−1 yt−2 ut−1 ut−2], bt := yt.

To test the effectiveness of the identification approach and assess its general-
ization capabilities, we split the data set in a training and a validation set, using
the first 8 seconds (400 points) for training and the remaining 7 seconds (350
points) for validation. The validation phase is carried out by running a complete
simulation of the system with the estimated model and the original input vec-
tor u. Note that the task is significantly more challenging than predicting the
output yt at time t given perfect information on the past, i.e., assuming perfect
knowledge of yt−1 and yt−2. Indeed, the simulated output yt is a function (of the
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original input and) of the simulated outputs at time t− 1 and t− 2, which were
also obtained by applying the identified piecewise affine model. Identification
errors may clearly propagate over time.

For k = 2, our 4S-CR heuristic finds in 900 seconds a solution with a total
error of 54.3 on the training set. When simulating the system with the inputs
contained in the validation set, we obtain the output reported in Figure 9(a).
Observe that this output is very similar to the solution with two affine submodels
reported in [OL13]. The fit percentage9 of our solution is 81.11%, slightly better
than that of the solution reported in [OL13], which amounts to 78.6%.
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Figure 9: Simulation results on the pick-and-place machine example with (a) k = 2 and (b)
k = 4, with real and simulated outputs reported as, respectively, a dashed and a solid line.
The lower panels report the submodel that is active at each point in time.

Considering k-PAMF-PLS with k = 4 submodels, 4S-CR provides in 900
seconds a solution with an objective function of 29.4 on the training set and a
86.35% fit percentage in simulation, see the output in Figure 9(b). Even though
a smaller fitting error on the training set can be obtained by further increasing
the value of k, the performance in simulation (on the validation data) does not
improve for larger values of k, most likely due to overfitting. Note that the
k-PAMF-PLS solution well reproduces the behavior of the system over most
of the time horizon, although the range [75, 150] appears to be particularly
challenging, as also observed in [OL13].

Overall, the experiments suggest that the techniques that we proposed to
solve k-PAMF-PLS could provide a valid alternative to state-of-the-art methods
for piecewise affine system identification.

8. Concluding remarks

We have addressed the k-PAMF-PLS problem of fitting a piecewise affine
model with a piecewise linearly separable domain partition to a set of data

9The fit percentage, computed as 100
(

1− ‖ysim−ytrue‖
‖ytrue−ȳ‖

)
, is a measure of the fitting error,

where ysim is the vector of simulated outputs, ytrue is the vector of the original, sampled
outputs, and ȳ is the mean of the original, sampled output. See [BGPV05] for more details.
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points. We have proposed an MILP formulation to solve the problem to optimal-
ity, strengthened via symmetry breaking constraints. To solve larger instances,
we have developed 4S-CR, a four-step heuristic algorithm which simultaneously
deals with the various aspects of the problem.

Computational experiments on a set of structured randomly generated and
real-world instances show that, with our MILP formulation with symmetry
breaking constraints, we can solve to optimality small-size instances. Our four-
step heuristic provides close-to-optimal solutions for small-size instances, while
also allowing us to tackle instances of much larger size. The results not only
indicate the high quality of the solutions found by 4S-CR when compared to
those obtained with either an exact method or a standard two-phase heuristic
algorithm, but they also highlight the relevance of the different features of 4S-
CR, suggesting to address them in a joint way to achieve high quality solutions
to k-PAMF-PLS. On the instances from the UCI repository, the results obtained
with cross-validation confirm that low-complexity models (with a small value
of k) provide solutions with good generalization properties.

Finally, the performance of our k-PAMF-PLS exact and heuristic algorithms
is confirmed on problems arising in the field of dynamical system identification,
for which, on benchmark instances from the literature, the quality of the solu-
tions provided by our approaches well compares with state-of-the-art methods.
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